
 

Loop quantum cosmological dynamics of scalar-tensor
theory in the Jordan frame

Yu Han *

College of Physics and Electrical Engineering, Xinyang Normal University, 464000 Xinyang, China

(Received 4 November 2019; revised manuscript received 30 November 2019; published 26 December 2019)

The effective dynamics of scalar-tensor theory (STT) in the Jordan frame is studied in the context of loop
quantum cosmology with holonomy corrections. After deriving the effective Hamiltonian from the
connection dynamics formulation, we obtain the holonomy-corrected evolution equations of STT on
spatially flat Friedmann-Robterson-Walker background, which exhibit some interesting features unique to
the Jordan frame of STT. In particular, the linear term of the cosine function appearing in the equations
could lead to dynamics much different from the classical theory in the low-energy limit. In the latter part of
this paper, we choose a particular model in STT—the Brans-Dicke theory to specifically illustrate these
features. It is found that in Brans-Dicke theory the effective evolution equations can be classified into four
different cases. Exact solutions of the Friedmann equation in terms of the internal time are obtained in these
cases. Moreover, the solutions in terms of the proper time describing the late time evolution of the Universe
are also obtained under certain approximation; in two cases the solutions coincide with the existing
solutions in classical Brans-Dicke theory while in the other two cases the solutions do not.
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I. INTRODUCTION

The scalar-tensor theory (STT) has been widely inves-
tigated in much of the literature during the past several
decades, especially in the research with regard to cosmic
acceleration in the very early or late Universe (see, for
instance, Refs. [1–6]). In particular, recent astrophysical
observations tend to support some inflationary models in
STT, which triggers considerable research interest about the
effects produced during inflation in STT (see, for instance,
Refs. [7–10]). Nevertheless, the preinflationary evolution in
STT which may also leave footprints in observations has
largely been neglected yet. In the preinflationary period,
due to the extremely high energy and large spacetime
curvature, the description by general relativity may well
lose its effectiveness; and to search for the footprints
generated during this period, we must fall back on the
theory of quantum gravity.
As one of the tentative quantum cosmology theories,

loop quantum cosmology (LQC) is often used to search for
the quantum gravity effects [11–13]. Among the three main
quantum corrections in LQC are, namely, the holonomy
correction, inverse-volume correction and quantum back-
reaction. The holonomy correction, which arises from
replacing the classical connection variable by its holonomy
around a given square, is usually believed to be dominant
when the energy density is much higher than the typical
energy scale of slow-roll inflation [12,14]. The holonomy

correction in STT can be studied either in the Einstein
frame or in the Jordan frame. In the Einstein frame, one first
performs the conformal transformation to connection vari-
able and then applies the polymer quantization of LQC to
the transformed connection [15], while in the Jordan frame
one directly quantizes the connection variable. For sim-
plicity, the effects of holonomy correction in STT were
mainly investigated in the Einstein frame in many particular
models of STTover the past decade, such as the model with
nonminimal coupling ξϕ2 [16,17], fðRÞ gravity and Brans-
Dicke (BD) theory [18–21]. In the past few years, the loop
quantization of STT has also been formulated in the Jordan
frame [22,23]; and its cosmological application to BD
theory has been studied in Ref. [24]. The comparison of
holonomy correction in the Einstein frame and the Jordan
frame of BD theory from the perspective of effective
dynamics was given in Ref. [25], in which the author
showed that in LQC of BD theory the two frames are no
longer equivalent, because the implementation of holon-
omy correction does not commute with the conformal
transformation. Hence, unlike the classical case, the equa-
tions in the two frames cannot be switched to each other by
conformal transformation. Therefore, the physics in the two
frames are completely different, a concrete example of
which is that the critical energy density of the scalar fields
in BD theory becomes frame dependent. Another crucial
difference between the two frames was analyzed for the
effective dynamics of fðRÞ gravity in Ref. [26], in which
fðRÞ gravity is regarded as a special sector of BD theory;
and the author showed that the bounce does not exist in the*hanyu@xynu.edu.cn
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Jordan frame of R2 gravity for a broad class of initial
conditions, which is also completely different from the
physics in the Einstein frame in which a bounce generally
exists.
Despite these useful results, more work needs to be done

in the research of LQC of STT in the Jordan frame. For one
thing, only effective dynamics of certain particular models
are studied; but the analysis of the general STT is still
lacking. For another thing, some existing results in the
study of these particular models are still incomplete. To be
specific, it is known that in standard LQC with minimally
coupled scalar field the function cosb (or sin b) appears in
the effective Hamiltonian in quadratic terms. As a result,
only quadratic terms and quartic terms of cosb (or sinb) are
involved in Raychadhuri equation; thus, the sign of cosb
(or sin b) does not directly affect the cosmological evolution.
However, in LQC of BD theory, in addition to the quadratic
terms, the Friedmann equation and Raychadhuri equation
also involve linear terms of cos b; moreover, as wewill show
in this paper, the sign of cos b is to flip around the bounce in
BD theory. Thus, whether cosb takes positive or negative
value directly influences the evolution of the Universe. But
this crucial fact was not noticed in previous literature such as
[24,25]. To summarize, not only an overall analysis of the
effective dynamics with holonomy corrections in the Jordan
frame of STT is necessary, but also some existing results
should be reanalyzed.
The structure of this paper is as follows. In Sec. II, the

connection dynamics of STT is developed in the Jordan
frame. In Sec. III, the corresponding effective Hamiltonian
and holonomy-corrected equations of motion in the Jordan
frame of STT are derived. In Sec. IV, the BD theory is
reanalyzed using the results in Sec. III and exact solutions
of effective equations in BD theory are also found. In the
last section, we conclude and make some remarks.

II. CONNECTION DYNAMICS OF STT

The action of STT in the Jordan frame that we use in this
paper reads

SðSTTÞ ¼
Z
Σ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
×

�
1

2κ
FðϕÞR−

1

2
KðϕÞð∂μϕÞ∂μϕ−VðϕÞ

�
; ð2:1Þ

where Σ is the spacetime manifold and κ ¼ 8πG, and FðϕÞ,
KðϕÞ are real-valued, dimensionless functions of the scalar
field ϕ. Besides, in this paper FðϕÞ, KðϕÞ are asked to
satisfy

KðϕÞ ≠ −
3

2κ

ðF0ðϕÞÞ2
FðϕÞ ; ð2:2Þ

in which the prime denotes the derivative with respective
to ϕ. Otherwise there will be additional constraints in the

canonical theory [22], which will much complicate the
analysis. Obviously, if FðϕÞ ¼ KðϕÞ ¼ 1, the action (2.1)
can reproduce the action of general relativity with a
minimally coupled scalar field.
Note that an alternative form of action of STT often used

in the literature is given by

S̃ðSTTÞ ¼ 1

2
ffiffiffi
κ

p
Z
Σ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
×

�
φR −

ωðφÞ
φ

ð∂μφÞ∂μφ − VðφÞ
�
: ð2:3Þ

At first sight, the action (2.1) can be transformed into the
action (2.3) through field redefinition

ffiffiffi
κ

p
φ ≔ FðϕÞ. In fact,

the two actions are equivalent to each other only if the
function FðϕÞ admits an regular inverse ϕ ¼ F−1ð ffiffiffi

κ
p

φÞ.
However, in many commonly used cosmological models
such as the ones in which FðϕÞ is expressed by series with
even powers of ϕ, FðϕÞ does not have an inverse. In this
case, (2.1) cannot be rewritten in the form of (2.3). In some
literature, the theory of the action (2.3) is also called
“generalized Brans-Dicke theory.” The physical difference
between the two actions has been discussed in certain
models in the literature such as Refs. [27,28]. In this paper,
we use action (2.1) as our starting point.
In the Arnowitt-Deser-Misner (ADM) formulation, the

Hamiltonian constraint associated with (2.1) can be
expressed in terms of canonical variables as [29]

HADM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

2κðqacqbd − 1
2
qabqcdÞpabpcd

FðϕÞ

þ ðF0ðϕÞqabpcd − FðϕÞπ̃Þ2
2FðϕÞGðϕÞ

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
−

1

2κ
FðϕÞRð3Þ þ 1

κ
qabDaDbFðϕÞ

þ KðϕÞ
2

qabðDaϕÞDbϕþ VðϕÞ
�

¼ 0; ð2:4Þ
where GðϕÞ is defined by

GðϕÞ ≔ 3

2κ
ðF0ðϕÞÞ2 þ FðϕÞKðϕÞ; ð2:5Þ

and the canonical variables satisfy the standard commuta-
tion relationship:

fqabðxÞ; pcdðyÞg ¼ δcðaδ
d
bÞδ

ð3Þðx; yÞ;
fϕðxÞ; π̃ðyÞg ¼ δð3Þðx; yÞ: ð2:6Þ

In the case FðϕÞ ¼ KðϕÞ ¼ 1, we haveGðϕÞ ¼ 1 and (2.4)
reproduces the Hamiltonian constraint in general relativity
with a minimally coupled scalar field.
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The ADM phase space can be extended to a larger phase
space of connection variables by introducing the su(2)-
valued triad eai and its co-triad e

i
awhich satisfyqab¼eiae

j
bδij,

qab ¼ eai e
b
jδ

ij. In the new phase space, the densitized triad
and its conjugate momentum are defined by

Ea
i ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
eai ;

Ki
a ≔

2κffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

pbcqabeic −
1

2
ðpbcqbcÞeia

�
; ð2:7Þ

and the Ashtekar connection is defined by Ai
a ≔ Γi

a þ γKi
a,

which satisfies [30,31]

fAi
aðxÞ; Eb

j ðyÞg ¼ γκδijδ
b
aδ

ð3Þðx; yÞ; ð2:8Þ

where Γi
a is the spin connection compatible with the triad

and γ is the Barbero-Immirzi parameter.
The Hamiltonian constraint (2.4) (modulo the Gauss

constraint) can be reexpressed in terms of the new
variables A, E as

Hnew ¼ FðϕÞ
2κ

ffiffiffiffiffiffiffiffiffiffiffiffij detEp jE
a
i E

b
j

�
ϵijk F

k
ab − 2

�
γ2 þ 1

ðFðϕÞÞ2
�
Ki

½aK
j
b�

�
þ 1

2FðϕÞGðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp �
F0ðϕÞ
κ

ðKi
aEa

i Þ þ FðϕÞπ̃
�
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p �
1

κ
DaDaFðϕÞ þ

KðϕÞ
2

ðDaϕÞDaϕþ VðϕÞ
�
¼ 0; ð2:9Þ

where Fab
i ≔ 2∂ ½aAi

b� þ ϵijkA
j
aAk

b is the curvature of Ashtekar connection. Note that if we set FðϕÞ ¼ ffiffiffi
κ

p
ϕ

and KðϕÞ ¼ ωðϕÞffiffi
κ

p
ϕ
, (2.9) can exactly reproduce the Hamiltonian constraint of generalized Brans-Dicke theory in

Ref. [22].
From now on, we consider the spatially flat, homogeneous and isotropic Friedmann-Robertson-Walker (FRW)

background. On this background, the line element of the spacetime metric is expressed as

ds2 ¼ −N2dτ2 þ a2ðdx21 þ dx22 þ dx23Þ; ð2:10Þ

where N is the homogenous lapse function and a is the scale factor; and the new variables reduce to

Ai
a ¼ c̃oeia; Ea

i ¼ p̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðoqÞ

p
oeai ; ð2:11Þ

in which oeai and
oeia represent some fiducial triad and co-triad and oqab ≔ oeiaoe

j
bδij is the fiducial ADM 3-metric which is

related to the physical metric by qab ¼ a2oqab. Comparing (2.11) with (2.10), we find jp̃j ¼ a2.
On the spatially flat FRW background, the Hamiltonian constraint (2.9) reduces to

HFRW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðoqÞ

p �
−
3

ffiffiffiffiffiffijp̃jp
c̃2

κγ2FðϕÞ þ
1

2FðϕÞGðϕÞjp̃j32
�
3

κγ
F0ðϕÞc̃p̃þ FðϕÞπ̃

�
2

þ jp̃j32VðϕÞ
�
¼ 0: ð2:12Þ

It is convenient of to introduce the following variables which are independent of the fiducial metric:

c ≔ V
1
3
oc̃; p ≔ V

2
3
op̃; π ≔ Voπ̃; ð2:13Þ

where Vo ≔
R
C d

3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðoqÞp

is the volume of the elementary cell C measured by the fiducial metric oqab. With these
variables, the background Hamiltonian is given by

HFRW ¼
Z
C
d3xNHFRW ¼ N

�
−
KðϕÞ
GðϕÞ

3
ffiffiffiffiffiffijpjp

c2

κγ2
þ F0ðϕÞ

GðϕÞ
sgnðpÞffiffiffiffiffiffijpjp 3cπ

κγ
þ FðϕÞ
GðϕÞ

π2

2jpj32 þ jpj32VðϕÞ
�
; ð2:14Þ

in which the conjugate variables satisfy

fc; pg ¼ κγ

3
; fϕ; πg ¼ 1: ð2:15Þ

Then, using the Hamilton’s equation
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df
dτ

¼ ff;HFRWg; ð2:16Þ

we obtain the equations of motion of the canonical
variables,

dc
dτ

¼ N
2

sgnðpÞffiffiffiffiffiffijpjp �
−
KðϕÞ
GðϕÞ

c2

γ
−
F0ðϕÞ
GðϕÞ

cπ
p

−
FðϕÞ
GðϕÞ

κγπ2

2p2
þ κγjpjVðϕÞ

�
; ð2:17Þ

dp
dτ

¼ 2N
sgnðpÞffiffiffiffiffiffijpjp �

KðϕÞ
GðϕÞ

cp
γ

−
F0ðϕÞ
GðϕÞ

π

2

�
; ð2:18Þ

dϕ
dτ

¼ N

jpj32
�
F0ðϕÞ
GðϕÞ

3cp
κγ

þ FðϕÞ
GðϕÞ π

�
; ð2:19Þ

dπ
dτ

¼ N
ffiffiffiffiffiffi
jpj

p ��
KðϕÞ
GðϕÞÞ

0 3c
2

κγ2
−
�
F0ðϕÞ
GðϕÞ

�0 3cπ
κγp

−
�
FðϕÞ
GðϕÞ

�0 π2

2jpj2 − jpjV 0ðϕÞ
�
; ð2:20Þ

in which sgnðpÞ is the sign function of p, which is related

to the scale factor by jpj ¼ a2V
2
3
o. After setting N ¼ 1, the

coordinate time “dτ” becomes the proper time “dt”. In the
following, we use “·” to denote the differentiation with
respect to the proper time; thus, Eq. (2.19) becomes

_ϕ ¼ 1

GðϕÞjpj32
�
3

κγ
F0ðϕÞcpþ FðϕÞπ

�
: ð2:21Þ

Plugging Eq. (2.21) into the smeared Hamiltonian con-
straint (2.14), we obtain

c2

γ2jpj ¼
GðϕÞ
2

_ϕ2 þ FðϕÞVðϕÞ; ð2:22Þ

then, by using Eq. (2.18), the constraint (2.22) gives the
Friedmann equation of STT,

FðϕÞH2 þ _FðϕÞH ¼ κ

3

�
KðϕÞ
2

_ϕ2 þ VðϕÞ
�
; ð2:23Þ

where H is the Hubble parameter,

H ≔
_p
2p

: ð2:24Þ

Using the canonical equations of motion, it is straight-
forward to derive the second-order evolution equations.
First, from the Friedmann equation (2.23) and the
Eqs. (2.17), (2.19), we derive the Raychadhuri equation

FðϕÞ _H −
1

2
_FðϕÞH ¼ −

1

2
ðκKðϕÞ _ϕ2 þ F̈ðϕÞÞ; ð2:25Þ

then, by taking time derivative of (2.23) and using (2.25),
we obtain the Klein-Gordon equation,

ϕ̈þ3H _ϕþ1

2

_GðϕÞ
GðϕÞ

_ϕ−
1

GðϕÞ½2F
0ðϕÞVðϕÞ−FðϕÞV 0ðϕÞ�¼0:

ð2:26Þ

Now let us take a further look at the above equations of
motion. It is interesting to observe that the theory allows the
existence of bounce, at which

H ¼ 0; _H > 0: ð2:27Þ

From the Eqs. (2.23) and (2.25), it is easy to see that at the
bouncing point the following two conditions have to be
satisfied:

KðϕÞ
2

_ϕ2þVðϕÞ¼0;
1

FðϕÞðκKðϕÞ
_ϕ2þ F̈ðϕÞÞ<0:

ð2:28Þ

The conditions in (2.28) can be met in some models in STT,
because from (2.22) we see that the effective kinetic energy
term in STT is 1

2
GðϕÞ _ϕ2 and the effective potential is

FðϕÞVðϕÞ, and thus the functions FðϕÞ, KðϕÞ and VðϕÞ
can be negative to meet the conditions in (2.28), as long as
the right-hand side of the constraint (2.22) remains positive.
The bouncing behavior in STT has been of much theo-
retical interest in the cosmology (see the recent articles
[32,33] for reference). Note that in the minimally coupled
case with FðϕÞ ¼ KðϕÞ ¼ 1, the bounce can never exist,
because the second inequality in (2.28) is violated.

III. EFFECTIVE DYNAMICS OF STT WITH
HOLONOMY CORRECTIONS

After briefly analyzing the classical dynamics of STT,
we proceed to study the quantum gravity effects in STT.
Generally speaking, it is necessary to exploit the quantum
constraint equation to thoroughly understand the theory on
the quantum level. However, this usually requires compli-
cated numerical analysis, especially in our case with
nonminimally coupling functions. To avoid the involved
numerical analysis and at the same time capture the
essential features of quantum corrections, we exploit the
effective dynamics to study STT on the semiclassical level
(just like what has been done for BD theory in [24]). In the
previous part of this section, we promote the Hamiltonian
constraint to a quantum operator and derive the effective
Hamiltonian using path integral in the timeless framework
of LQC; in the latter part, by using the effective
Hamiltonian, we obtain the first order canonical equations,
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from which the second-order evolution equations can be
subsequently derived. Some novel features of the holo-
nomy corrections in the Jordan frame are also discussed.

A. Effective Hamiltonian of STT

To study the quantum dynamics of STT, first we should
have well-defined operators in LQC. Note that in the
Hamiltonian constraint (2.9) there are both quadratic and
linear terms of the connection. However, in loop quantum
gravity there is no direct analog of the connection operator;
instead, we only have well-defined holonomy operators. To
have a plausible relation to the full theory, in LQC we need
to express these terms as functions of holonomies. In this
paper, we use the polymerlike quantization prescription
first put forward in [34] and intensively studied in [35,36],
in which the connection operator on the spatially homo-
genous background is expressed by

ĉ ¼
dsinðμ̄cÞ
μ̄

; ð3:1Þ

where μ̄ stands for the length of the curve used to calculate

the holonomy along it, and μ̄ ¼
ffiffiffiffi
Δ
jpj

q
with Δ ¼ 4

ffiffiffi
3

p
πγGℏ

being the minimum nonzero eigenvalue of the area operator
in loop quantum gravity. For convenience, we introduce the
new conjugate variables:

b ≔ μ̄c; v ≔ 2
ffiffiffi
3

p
sgnðpÞμ̄−3; ð3:2Þ

where v is proportional to the physical volume of the
elementary cell, satisfying fb; vg ¼ 2

ℏ.
For the quantization of the scalar field, we use the

standard Schrödinger representation adopted in [11,24], in
which the kinematical Hilbert space for the scalar field is
constructed as in standard quantum mechanics. Now, the
whole kinematical Hilbert space of STT HSTT

kin becomes a
direct product of the Hilbert space of the geometry and that
of the scalar field. We denote the orthonormal basis for
HSTT

kin by jv;ϕi, on which the operator v̂ acts by simple

multiplication and the operator dsin b acts by [36]

dsin bjv;ϕi ¼ 1

2i
½jvþ 2;ϕi − jv − 2;ϕi�: ð3:3Þ

In the Schrödinger representation for the scalar field, the

operators
dðKðϕÞGðϕÞÞ,

dðF0ðϕÞ
GðϕÞÞ,

dðFðϕÞGðϕÞÞ, V̂ðϕÞ in the quantum

Hamiltonian constraint also act on jv;ϕi by multiplication,
for instance,

d�
KðϕÞ
GðϕÞ

�
jv;ϕi ¼ KðϕÞ

GðϕÞ jv;ϕi; ð3:4Þ

and the conjugate momentum of ϕ acts by differentiation. It
is obvious that such definition of operators is well defined

only if the functions KðϕÞ
GðϕÞ,

F0ðϕÞ
GðϕÞ,

FðϕÞ
GðϕÞ and VðϕÞ have no

singularities for any ϕ.
Moreover, in order to avoid the quantization ambiguities

caused by the inverse-volume operator, following [12], we
set N ¼ jpj32 prior to quantization; then, by using (3.1), we
obtain a symmetric expression of the Hamiltonian con-
straint operator,

ĤFRW ¼ −
Δ2

4κγ2

d�
KðϕÞ
GðϕÞ

�
v̂ðdsin bÞ2v̂

þ 3ℏ
16

� d�
F0ðϕÞ
GðϕÞ

�
π̂þ π̂

d�
F0ðϕÞ
GðϕÞ

��
½dsin b v̂þ v̂ dsin b�

þ 1

4

�
π̂2

d�
FðϕÞ
GðϕÞ

�
þ

d�
FðϕÞ
GðϕÞ

�
π̂2
�
þ ðΔÞ3

12
v̂2V̂ðϕÞ

≕ Ĥ1 þ Ĥ2 þ Ĥ3 þ Ĥ4: ð3:5Þ

It is worth mentioning that the change of factor ordering in
(3.5) only affects the details of the theory but does not affect
the general properties of effective dynamics. Using (3.3),
the action of Ĥ1 and Ĥ2 on the quantum state read
separately as

Ĥ1jv;ϕi ¼
Δ2

16κγ2
KðϕÞ
GðϕÞ v½ðvþ 4Þjvþ 4;ϕi − 2vjv;ϕi

þ ðv − 4Þjv − 4;ϕi�; ð3:6Þ

Ĥ2jv;ϕi¼−
3iℏ
16

� d�
F0ðϕÞ
GðϕÞ

�
π̂þπ̂

F0ðϕÞ
GðϕÞ

�
× ½ðvþ1Þjvþ2;ϕi− ðv−1Þjv−2;ϕi�: ð3:7Þ

Now, let us derive the effective Hamiltonian using the
timeless path integral approach developed in [37]. In this
approach, the transition amplitude in the traditional path
integral is replaced by the following extraction amplitude
which can extract physical states from kinematical states in
the Hilbert space,

Aðvf;ϕf; vi;ϕiÞ ≔
Z

dαhvf;ϕfjei
ℏαĤjvi;ϕii

¼
Z

dα
X

vN−1;…;v1

Z
dϕN−1…dϕ1

× hvN;ϕN jei
ℏϵαĤjvN−1;ϕN−1i…

× hv1;ϕ1jei
ℏϵαĤjv0;ϕ0i; ð3:8Þ

in which we have decomposed the extraction amplitude
into N parts with ϵ ¼ 1

N, and hvN;ϕN j≡ hvf;ϕfj, jv0;ϕ0i≡
jvi;ϕii. For each part with ϵ ≪ 1, we have
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hvnþ1;ϕnþ1jei
ℏϵαĤjvn;ϕni ¼ δðϕnþ1;ϕnÞδvnþ1;vn þ

i
ℏ
ϵα

X4
i¼1

hvnþ1;ϕnþ1jĤijvn;ϕni þOðϵ2Þ: ð3:9Þ

Using Eqs. (3.6) and (3.7), we can calculate the matrix elements in (3.9). First, we have

hvnþ1;ϕnþ1jĤ1jvn;ϕni ¼
Δ2

16κγ2
KðϕnÞ
GðϕnÞ

δðϕnþ1;ϕnÞvnvnþ1ðδvnþ1;vnþ4 − 2δvnþ1;vn þ δvnþ1;vn−4Þ

¼ −
Δ2

16π2κγ2ℏ
vnvnþ1

KðϕnÞ
GðϕnÞ

Z
dπnþ1 exp

�
i
ℏ
ϵπnþ1

ϕnþ1 − ϕn

ϵ

�
×
Z

π

−π
dbnþ1sin2bnþ1 exp

�
−
i
2
ϵbnþ1

vnþ1 − vn
ϵ

�
; ð3:10Þ

where in the last step we have used the identities:

δv;v0 ¼
1

2π

Z
π

−π
db exp

�
−
i
2
bðv − v0Þ

�
; δðϕ;ϕ0Þ ¼ 1

2πℏ

Z
dπ exp

�
i
ℏ
πðϕ − ϕ0Þ

�
; ð3:11Þ

then, by using (3.11) again, we can calculate the remaining matrix elements in (3.9), which, together with (3.10), yield the
result:

Aðvf;ϕf; vi;ϕiÞ ¼
Z

dα
X

vN−1;…;v1

�
1

2π

�
N
Z

π

−π
dbN…db1

Z
dϕN−1…dϕ1

�
1

2πℏ

�
N
Z

dπN…dπ1 × exp

�
i
ℏ
SN

�
; ð3:12Þ

where

SN ¼ ϵ
XN−1

n¼0

�
πnþ1

ϕnþ1 − ϕn

ϵ
−
ℏ
2
bnþ1

vnþ1 − vn
ϵ

þ α

�
−

Δ2

4κγ2
vnvnþ1

KðϕnÞ
GðϕnÞ

sin2bnþ1 þ
3ℏ
16

�
F0ðϕnþ1Þ
Gðϕnþ1Þ

þ F0ðϕnÞ
GðϕnÞ

�
ðvnþ1 þ vnÞπnþ1 sin bnþ1

þ 1

4

�
Fðϕnþ1Þ
Gðϕnþ1Þ

þ FðϕnÞ
GðϕnÞ

�
π2nþ1 þ

ðΔÞ3
12

v2nþ1Vðϕnþ1Þ
��

: ð3:13Þ

In the continuum limit with N → ∞, the extraction amplitude (3.12) can be expressed as

Aðvf;ϕf; vi;ϕiÞ ¼
Z

Dα

Z
Dv

Z
Db

Z
Dϕ

Z
Dπ exp

�
i
ℏ
S̃

�
; ð3:14Þ

where

S̃ ¼
Z

1

0

dτ

�
π _ϕ −

ℏ
2
b _vþ α

�
−

Δ2

4κγ2
KðϕÞ
GðϕÞ v

2sin2bþ 3ℏ
4

F0ðϕÞ
GðϕÞ πv sin bþ 1

2

FðϕÞ
GðϕÞ π

2 þ ðΔÞ3
12

v2VðϕÞ
��

: ð3:15Þ

From (3.15), it is direct to read off the effective Hamiltonian constraint. Recall that we have set N ¼ jpj32 for convenience of
quantization. To describe the realistic evolution of the Universe, we reset N ¼ 1 in the following; hence, the effective
Hamiltonian constraint is given by

Heff ¼ −
ffiffiffiffiffiffi
3Δ

p

2κγ2
KðϕÞ
GðϕÞ jvjsin

2bþ sgnðvÞ 3
ffiffiffi
3

p
ℏ

2ðΔÞ32
F0ðϕÞ
GðϕÞ π sin bþ

ffiffiffi
3

p

ðΔÞ32
FðϕÞ
GðϕÞ

π2

jvj þ
ðΔÞ32
2

ffiffiffi
3

p jvjVðϕÞ ¼ 0: ð3:16Þ
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Finally, we mention again that the above derivation of
effective Hamiltonian constraint requires that the functions
KðϕÞ
GðϕÞ,

F0ðϕÞ
GðϕÞ,

FðϕÞ
GðϕÞ, VðϕÞ are continuous and differential

functions for all ϕ. However, in some particular models
of STT, this requirement cannot be satisfied. In this case,
the path integral will diverge at the singularities of these
functions; thus, the form of effective Hamiltonian con-
straint (3.16) may not be applicable, and one may need to
find alternative definitions of operators to remove the
singularities in the path integral.

B. Effective equations of motion

Using the effective Hamiltonian Heff , the Hamilton’s
equations of motion of the canonical variables can be
directly obtained,

_b ¼ sgnðvÞ 2
ℏ

�
−

ffiffiffiffiffiffi
3Δ

p

2κγ2
KðϕÞ
GðϕÞ sin

2b

−
ffiffiffi
3

p

ðΔÞ32
FðϕÞ
GðϕÞ

π2

jvj2 þ
ðΔÞ32
2

ffiffiffi
3

p VðϕÞ
�
; ð3:17Þ

_v¼ sgnðvÞ2
ℏ

� ffiffiffiffiffiffi
3Δ

p

κγ2
KðϕÞ
GðϕÞvsinbcosb−

3
ffiffiffi
3

p
ℏ

2ðΔÞ32
F0ðϕÞ
GðϕÞ πcosb

�
;

ð3:18Þ

_ϕ ¼ sgnðvÞ 3
ffiffiffi
3

p
ℏ

2ðΔÞ32
F0ðϕÞ
GðϕÞ sin bþ 2

ffiffiffi
3

p

ðΔÞ32
FðϕÞ
GðϕÞ

π

jvj ; ð3:19Þ

_π ¼
ffiffiffiffiffiffi
3Δ

p

2κγ2

�
KðϕÞ
GðϕÞ

�0
jvjsin2b

− sgnðvÞ 3
ffiffiffi
3

p
ℏ

2ðΔÞ32
�
F0ðϕÞ
GðϕÞ

�0
π sin b −

ffiffiffi
3

p

ðΔÞ32
�
FðϕÞ
GðϕÞ

�0 π2

jvj

−
ðΔÞ32
2

ffiffiffi
3

p jvjV 0ðϕÞ: ð3:20Þ

These canonical equations can be exploited to derive the
Friedmann equation. From (3.19), we have

FðϕÞ
GðϕÞ

π

jvj ¼
ðΔÞ32
2

ffiffiffi
3

p
�
_ϕ − sgnðvÞ 3

ffiffiffi
3

p
ℏ

2ðΔÞ32
F0ðϕÞ
GðϕÞ sin b

�
; ð3:21Þ

substitute (3.21) into (3.18), we obtain

HFðϕÞ ¼ 1

3

_v
v
FðϕÞ ¼ 2

ffiffiffiffiffiffi
3Δ

p

3κγ2ℏ
sgnðvÞ sin b cos b

−
1

2
_FðϕÞ cos b; ð3:22Þ

from which we find that the Hubble parameter will
vanish at

sin b ¼ 3κγ2ℏ

4
ffiffiffiffiffiffi
3Δ

p sgnðvÞ _FðϕÞ; ð3:23Þ

or at

cos b ¼ 0; ð3:24Þ

then, inserting (3.21) into (3.16), we get

sin2b ¼ ρe
ρc

; ð3:25Þ

where ρc ≡ 3
Δκγ2 and the effective energy density ρe is

defined by

ρe ≔
GðϕÞ
2

_ϕ2 þ FðϕÞVðϕÞ: ð3:26Þ

Equation (3.25) implies that the effective energy density is
upper bounded by ρc; and Eq. (3.22) implies that the
Hubble parameter will vanish if ρe reaches ρc. Combination
of Eqs. (3.22) and (3.25) gives the Friedmann equation in
LQC of STT,

FðϕÞH2 þ _FðϕÞH cos b ¼ κ

3

�
KðϕÞ
2

_ϕ2 þ VðϕÞ
�
cos2b:

ð3:27Þ

Multiplying FðϕÞ on both sides of (3.27) and inserting

cos2b ¼ 1 −
ρe
ρc

; ð3:28Þ

we obtain�
FðϕÞH þ 1

2
_FðϕÞ cos b

�
2

¼ κ

3
ρe

�
1 −

ρe
ρc

�
: ð3:29Þ

It is easy to check that Eq. (3.29) can reproduce the
Friedmann equation (3.27) when FðϕÞ ≠ 0. Since ρe is
bounded from above by ρc, from Eq. (3.29) we learn that
the Hubble parameter cannot approach infinity during the
whole evolution.
In the phase space of a collapsing Universe, if the point

cos b ¼ 0 can be reached, the Universe will stop collapsing;
then, if _b ≠ 0, we have _cos b ≠ 0, and thus the sign of cos b
will flip around cos b ¼ 0. According to Eq. (3.22), the
Hubble parameter will also change its sign around this
point; in other words, a bounce will take place. We call such
a bounce the “quantum bounce” to distinguish from the
bounce mentioned in Sec. II which could happen at a much
lower energy density than ρc. Owing to the complicated
theoretical structure, in STT a collapsing Universe is not
necessarily followed by the quantum bounce.
Using the effective Hamiltonian constraint (3.16) and the

Hamilton’s equations of motion (3.17)–(3.20), after long
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but straightforward derivations, we obtain the effective
Klein-Gordon equation in STT,

ϕ̈þ3H _ϕþ1

2

_GðϕÞ
GðϕÞ

_ϕ

−
1

GðϕÞ ½ð3cosb−1ÞF0ðϕÞVðϕÞ−FðϕÞV 0ðϕÞ� ¼ 0:

ð3:30Þ

Moreover, by taking time derivative of Eqs. (3.27), (3.28)
and using Eq. (3.30), tedious calculations yield the effective
Raychadhuri equation in STT,

FðϕÞ _H cos b − _FðϕÞH
�
3

2
cos 2b − cos b

�
¼ −

1

2
ðκKðϕÞ _ϕ2 cos 2bþ F̈ðϕÞ cos b

þ _FðϕÞ _ðcos bÞÞ cos b: ð3:31Þ

When FðϕÞ ¼ KðϕÞ ¼ 1, it is easy to see that the above
effective equations in STT turn into the effective equations
in LQC with minimally coupled scalar field.

From (3.28), we find cos b ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρe

ρc

q
, i.e., the cosine

function can take positive or negative values. In the low-
energy limit with ρe → 0, we have cos b → 1 or cos b → −1.
In the limit cos b → 1, we can directly check that the
effective Friedmann equation (3.27), effective Klein-
Gordon equation (3.30) and effective Raychaudhuri
equation (3.31) can separately reduce to their classical
counterparts in (2.23), (2.26), (2.25). In the other low-
energy limit with cos b → −1, the effective Friedmann
equation (3.27) reduces to

FðϕÞH2 − _FðϕÞH ¼ κ

3

�
KðϕÞ
2

_ϕ2 þ VðϕÞ
�
; ð3:32Þ

which can also be transformed into�
FðϕÞH −

1

2
_FðϕÞ

�
2

¼ κ

3
ρe; ð3:33Þ

and the effective Klein-Gordon equation (3.30) and
Raychaudhuri equation separately reduce to

ϕ̈þ 3H _ϕþ 1

2

_GðϕÞ
GðϕÞ

_ϕþ 1

GðϕÞ ½4F
0ðϕÞVðϕÞ þ FðϕÞV 0ðϕÞ�

¼ 0; ð3:34Þ

and

FðϕÞ _H þ 5

2
_FðϕÞH ¼ −

1

2
ðκKðϕÞ _ϕ2 − F̈ðϕÞÞ: ð3:35Þ

Hence, due to the appearance of linear terms of cos b, there
exist two different sets of evolution equations in the low-
energy limit, which is totally different from the minimally
coupled LQC where effective equations involve only quad-
ratic or quartic terms of cosb (or sinb) and thus can reduce to
only one set of evolution equations in the low- energy limit.
This is a nontrivial quantum gravity effect caused by
holonomy corrections in STT, which deeply reflects the fact
that the holonomy plays a fundamental role in LQC.
Since the Eqs. (3.32), (3.34) and (3.35) do not correspond

to their classical counterparts, very naturally the question
arises: Does there exist an effective action from which these
equations can be derived? After careful exploration, we
obtain a negative answer to this question.Nevertheless, there
exists an action which can yield the above equations in the
slow-roll limit. Consider the following effective action:

SðeffÞ ¼
Z
Σ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p �
1

FðϕÞ
�

5

×

�
1

2κ
R −

1

2

KðϕÞ
FðϕÞ ð∂

μϕÞ∂μϕ −
VðϕÞ
FðϕÞ

�
: ð3:36Þ

Under the slow-roll condition with���� _H
H2

����≪ 1;

���� ϕ̈

H _ϕ

����≪ 1;

���� _FðϕÞ
HFðϕÞ

����≪ 1;

���� _GðϕÞ
HGðϕÞ

����≪ 1;

ð3:37Þ

it is not difficult to check that the effective equations
obtained from action (3.36) agree with Eqs. (3.32), (3.34)
and (3.35). Therefore, in the sector with cosb → −1, the
coupling functions appearing in action (3.36) can be
regarded as the quantum effective version of their classical
counterparts in the slow-roll limit.

IV. EFFECTIVE DYNAMICS OF BD THEORY

In this section, we choose BD theory as a test field to
more clearly display the characteristics of holonomy
corrections in STT. In the literature, the action of BD
theory without potentials is usually given by

S ¼ 1

2
ffiffiffi
κ

p
Z
Σ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p �
φR −

ω

φ
ð∂μφÞ∂μφ

�
; ð4:1Þ

where ω is a free dimensionless coupling parameter. For
simplicity, in this section we only consider the ω > 0 case.
Following [38], we call the theory of action (4.1) the
“prototype of BD theory,” where the adjective “prototype”
emphasizes the originality of (4.1) compared with its many
other extended versions. In the prototype of BD theory,
FðφÞ ¼ ffiffiffi

κ
p

φ and KðφÞ ¼ ωffiffi
κ

p
φ
; thus, we have
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KðφÞ
GðφÞ ¼

2ωffiffiffi
κ

p ð3þ 2ωÞ
1

φ
: ð4:2Þ

However, the action of the operator bð1φÞ is ill defined at
φ ¼ 0 in the quantization prescription we choose for the
scalar field. Hence, the effective Hamiltonian (3.16) does
not apply. To avoid this trouble, we introduce a new field ϕ
by putting ffiffiffi

κ
p

φ ≔ e
ffiffi
κ

p
ϕ; ð4:3Þ

thus, the action of BD theory becomes

SðBDÞ ¼ 1

2κ

Z
Σ
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p
½e ffiffi

κ
p

ϕR − ωe
ffiffi
κ

p
ϕð∂μϕÞ∂μϕ�:

ð4:4Þ

Accordingly, we get

KðϕÞ
GðϕÞ ¼

2ω

3þ 2ω
e−

ffiffi
κ

p
ϕ;

FðϕÞ
GðϕÞ ¼

2

3þ 2ω
e−

ffiffi
κ

p
ϕ;

F0ðϕÞ
GðϕÞ ¼ 2

ffiffiffi
κ

p
3þ 2ω

e−
ffiffi
κ

p
ϕ; ð4:5Þ

of which the corresponding operators are well defined for
all ϕ. In this way, the results in the last section can be
applied to BD theory.
Since e

ffiffi
κ

p
ϕ does not vanish for any ϕ, the Friedmann

equation can also be written in the form of (3.29) which in
BD theory becomes�

e
ffiffi
κ

p
ϕH þ 1

2
ðe _ffiffiκp

ϕÞ cos b
	
2 ¼ κ

3
ρe

�
1 −

ρe
ρc

�
; ð4:6Þ

where

ρe ≔
3þ 2ω

4
ðe ffiffi

κ
p

ϕ _ϕÞ2: ð4:7Þ

The Klein-Gordon equation in BD theory can be directly
obtained from (3.30),

ϕ̈þ 3H _ϕþ ðe _ffiffiκp
ϕÞ

e
ffiffi
κ

p
ϕ

_ϕ ¼ 0; ð4:8Þ

which translates into

d
dt

ðjvje ffiffi
κ

p
ϕ _ϕÞ ¼ 0; ð4:9Þ

from which we get jvje ffiffi
κ

p
ϕ _ϕ ¼ C where C is a constant.

Therefore, if _ϕ > 0 at the initial time, _ϕ will be greater than
zero during the whole evolution and vice versa; hence,
the theory can be divided into two independent sectors by

_ϕ > 0 and _ϕ < 0. Since in the first sector ϕ will increase
monotonically with respect to the proper time, ϕ can be
regarded as a global internal time variable in this sector. For
no matter which sector, from (4.6) and (3.28), we infer that
the Hubble parameter can vanish only at cos b ¼ 0.
Besides, Eq. (4.8) can also be expressed as

d
dt

ðe ffiffi
κ

p
ϕ _ϕÞ ¼ −3He

ffiffi
κ

p
ϕ _ϕ: ð4:10Þ

Plugging (4.7) into (4.10), we have

_ρe ¼ −6Hρe; ð4:11Þ
which shows that the sign of time variation of the energy
density is opposite of the sign of Hubble parameter. Hence,
in BD theory, the effective energy density of the scalar field
in a contracting Universe will keep increasing until
ρe ¼ ρc; and the effective energy density in an expanding
Universe will keep decreasing. Since the Hubble parameter
can only vanish at ρe ¼ ρc, an expanding Universe will
never undergo a recollapse in BD theory.
Moreover, using (3.17), we get

_b¼−
2sgnðvÞ
ð3þ2ωÞℏ

� ffiffiffiffiffiffi
3Δ

p

κγ2
ωsin2bþ2

ffiffiffi
3

p

ðΔÞ32
π2

jvj2
�
e−

ffiffi
κ

p
ϕ; ð4:12Þ

from which it is clear that _cos b ≠ 0 at cos b ¼ 0; thus,
according to the arguments in Sec. III, both the sign of cos b
and the sign of H are bound to change around cosb ¼ 0.
Hence, in BD theory, the contracting branch of the
Universe is always connected with the expanding branch
of the Universe by the quantum bounce.
From Eq. (4.6), we find

e
ffiffi
κ

p
ϕH þ

ffiffiffi
κ

p
2

e
ffiffi
κ

p
ϕ _ϕ cos b ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

3
ρe

�
1 −

ρe
ρc

�s
: ð4:13Þ

Plugging Eq. (4.7) into Eq. (4.13) and using

cos b ¼ sgnðcos bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρe
ρc

r
; ð4:14Þ

we get

H¼
ffiffiffi
κ

p
2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2ω

3

r
− sgnðcosbÞ

�
_ϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

ρe
ρc

r
: ð4:15Þ

Since _ϕ is either positive or negative during the entire
evolution and the sign of cos b is either 1 or −1 in a certain
branch of the Universe, the evolution of the Universe in a
certain branch can be classified into four cases by the sign
of _ϕ together with the sign of cosb.
First, we consider the two cases with _ϕ > 0. In these

cases, using Eq. (4.10), we find that in the expanding
branch of the Universe Eq. (4.15) becomes
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−
1

3

d
dt

ðe ffiffi
κ

p
ϕ _ϕÞ ¼

ffiffiffi
κ

p
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω

3

r
− sgnðcos bÞ

����
H>0

�
e

ffiffi
κ

p
ϕ _ϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3þ 2ω

4ρc
ðe ffiffi

κ
p

ϕ _ϕÞ2
s

; ð4:16Þ

while in the contracting branch of the Universe Eq. (4.15) becomes

−
1

3

d
dt

ðe ffiffi
κ

p
ϕ _ϕÞ ¼ −

ffiffiffi
κ

p
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω

3

r
þ sgnðcos bÞ

����
H<0

�
e

ffiffi
κ

p
ϕ _ϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3þ 2ω

4ρc
ðe ffiffi

κ
p

ϕ _ϕÞ2
s

¼ −
ffiffiffi
κ

p
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω

3

r
− sgnðcos bÞ

����
H>0

�
e

ffiffi
κ

p
ϕ _ϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3þ 2ω

4ρc
ðe ffiffi

κ
p

ϕ _ϕÞ2
s

; ð4:17Þ

where in the last step of Eq. (4.17) we have used the fact that sgnðcos bÞjH<0 ¼ −sgnðcos bÞjH>0.
Due to the complexities of Eqs. (4.16) and (4.17), the analytical solution of HðtÞ does not generally exist. However,

considering that ϕ can be treated as an internal time variable, we may as well express the solution in terms of ϕ. To this aim,
we denote

fðϕÞ ¼ e
ffiffi
κ

p
ϕ _ϕ; ð4:18Þ

then, from Eq. (4.10) we find the Hubble parameter can be expressed by

HðϕÞ ¼ −
1

3

�
dfðϕÞ
dϕ

�
e−

ffiffi
κ

p
ϕ; ð4:19Þ

and thus Eqs. (4.16) and (4.17) can be rewritten as

−
1

3

dfðϕÞ
dϕ

¼ �
ffiffiffi
κ

p
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω

3

r
− sgnðcos bÞ

����
H>0

�
fðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3þ 2ω

4ρc
f2ðϕÞ

s
; ð4:20Þ

in which the sign “þ” in front of the parenthesis corresponds to the expanding branch and the sign “−” corresponds to the
contracting branch. It is not difficult to solve Eq. (4.20). For the sgnðcos bÞjH>0 ¼ 1 case, the solution of Eq. (4.20)
describing both the contracting branch and the expanding branch of the Universe is given by

f1ðϕÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ 2ω

r
exp½cþ3

2

ffiffiffi
κ

p ðϕ − ϕbÞ�
exp½c ffiffiffi

κ
p ðϕ − ϕbÞ� þ exp½3 ffiffiffi

κ
p ðϕ − ϕbÞ�

; ð4:21Þ

where c≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6ω

p
and ϕb denotes the value of ϕ at the instant of bounce.

For the sgnðcos bÞjH>0 ¼ −1 case, the solution is given as follows:

f2ðϕÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ 2ω

r
exp½c−3

2

ffiffiffi
κ

p ðϕ − ϕbÞ�
exp½c ffiffiffi

κ
p ðϕ − ϕbÞ� þ exp½−3 ffiffiffi

κ
p ðϕ − ϕbÞ�

: ð4:22Þ

Using Eq. (4.19), for sgnðcos bÞjH>0 ¼ 1, we obtain the solution of Hubble parameter in terms of ϕ,

H1ðϕÞ ¼
2

3
ðc − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
exp½3cþ1

2

ffiffiffi
κ

p ðϕ − ϕbÞ� − exp½cþ7
2

ffiffiffi
κ

p ðϕ − ϕbÞ�
expð ffiffiffi

κ
p

ϕbÞðexp½c
ffiffiffi
κ

p ðϕ − ϕbÞ� þ exp½3 ffiffiffi
κ

p ðϕ − ϕbÞ�Þ2
; ð4:23Þ

while for sgnðcos bÞjH>0 ¼ −1 we obtain

H2ðϕÞ ¼
2

3
ðcþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
exp½3c−5

2

ffiffiffi
κ

p ðϕ − ϕbÞ� − exp½c−11
2

ffiffiffi
κ

p ðϕ − ϕbÞ�
expð ffiffiffi

κ
p

ϕbÞðexp½c
ffiffiffi
κ

p ðϕ − ϕbÞ� þ exp½−3 ffiffiffi
κ

p ðϕ − ϕbÞ�Þ2
: ð4:24Þ

Comparison of the evolution of Hubble parameter around the bounce is illustrated in the left panel of Fig. 1.
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In the other two cases with _ϕ < 0, we denote ϕ̃≡ −ϕ.
Since ϕ̃ monotonically increases in these cases, it can also
be treated as a global time variable. Denoting

gðϕ̃Þ ¼ e−
ffiffi
κ

p
ϕ̃ _̃ϕ; ð4:25Þ

we have

Hðϕ̃Þ ¼ −
1

3

�
dgðϕ̃Þ
dϕ̃

�
e

ffiffi
κ

p
ϕ̃: ð4:26Þ

Then, by simply repeating the procedures above, we can
directly obtain the solutions. For the sgnðcos bÞjH>0 ¼ 1
case, we have

g1ðϕ̃Þ¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ2ω

r
exp½c−3

2

ffiffiffi
κ

p ðϕ̃−ϕ̃bÞ�
exp½c ffiffiffi

κ
p ðϕ̃−ϕ̃bÞ�þexp½−3 ffiffiffi

κ
p ðϕ̃−ϕ̃bÞ�

;

ð4:27Þ

where ϕ̃b denotes the value of ϕ̃ at the bounce; and for the
sgnðcos bÞjH>0 ¼ −1 case we have

g2ðϕ̃Þ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ2ω

r
exp½cþ3

2

ffiffiffi
κ

p ðϕ̃− ϕ̃bÞ�
exp½c ffiffiffi

κ
p ðϕ̃− ϕ̃bÞ�þ exp½3 ffiffiffi

κ
p ðϕ̃− ϕ̃bÞ�

:

ð4:28Þ
The solution of Hubble parameter in each case is given by
H1ðϕ̃Þ and H2ðϕ̃Þ respectively, which read

H1ðϕ̃Þ ¼
2

3
ðcþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
exp½3c−1

2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ� − exp½c−7
2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ�
expð− ffiffiffi

κ
p

ϕ̃bÞðexp½c
ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ� þ exp½−3 ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ�Þ2
; ð4:29Þ

and

H2ðϕ̃Þ ¼
2

3
ðc − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
exp½3cþ5

2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ� − exp½cþ11
2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ�
expð− ffiffiffi

κ
p

ϕ̃bÞðexp½c
ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ� þ exp½3 ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ�Þ2
: ð4:30Þ

See the right panel of Fig. 1 for comparison of H1ðϕ̃Þ and
H2ðϕ̃Þ around the bounce.
In the first case with sgnðcos bÞjH>0 ¼ 1 and _ϕ > 0,

using the field redefinition in (4.3), we find that Eq. (4.23)
can reproduce Eq. (5.15) in Ref. [24]. Nevertheless, the
other three cases were not considered in Ref. [24].
By comparing (4.23) with (4.24), and (4.29) with (4.30),

we find that the solutions agree with each other in the large
c limit. But it does not necessarily mean that the choice of
sign of cos b does not make much difference when c
becomes large in BD theory, because we have not included
the potential VðϕÞ yet. Actually, from Eq. (3.30), it is clear

that different signs of cos b could lead to important
differences if F0ðϕÞVðϕÞ dominates FðϕÞV 0ðϕÞ.
Although it is generally not possible to find the exact

solutions in terms of the proper time, in the late epoch of the
expanding branch of the Universe when ϕ becomes large
enough, it is still possible to find some approximate
solutions of the scale factor aðtÞ and the scalar field
ϕðtÞ using the above results. In the remaining part of this
section, we will derive these solutions.
First, we consider the expanding branch with both

sgnðcos bÞjH>0 ¼ 1 and _ϕ > 0. In this case, substituting
(4.18) into Eq. (4.21), we obtain

1

2

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

H

1

2

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5

H

FIG. 1. Evolution of the Hubble parameter (in Planck units) with respect to the internal time around the bounce in different cases. For
clearer comparison, in both panels, we set ω ¼ 10 and ϕb ¼ ϕ̃b ¼ 0.
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dϕðtÞ
dt

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ 2ω

r
exp½− ffiffiffi

κ
p

ϕb�
exp½c−1

2

ffiffiffi
κ

p ðϕðtÞ − ϕbÞ� þ exp½5−c
2

ffiffiffi
κ

p ðϕðtÞ − ϕbÞ�
; ð4:31Þ

which yields

t − tb ¼ α exp

�
c − 1

2

ffiffiffi
κ

p ðϕðtÞ − ϕbÞ
�
þ β exp

�
5 − c
2

ffiffiffi
κ

p ðϕðtÞ − ϕbÞ
�
− ðαþ βÞ; ð4:32Þ

where tb denotes the proper time at the instant of bounce
and the coefficients α, β read

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2ω

p
exp½ ffiffiffi

κ
p

ϕb�
2

ffiffiffiffiffiffiffi
κρc

p ðc−1Þ ; β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ2ω

p
exp½ ffiffiffi

κ
p

ϕb�
2

ffiffiffiffiffiffiffi
κρc

p ð5−cÞ :

ð4:33Þ

For brevity, we set tb ¼ 0 in the remaining part of this
section. Since c > 3, the first term on the right-hand side of
Eq. (4.32) will dominate over the other two terms when ϕ
becomes sufficiently large, which yields

t ≃ α exp

�
c − 1

2

ffiffiffi
κ

p ðϕðtÞ − ϕbÞ
�
; ð4:34Þ

from which we derive

exp½ ffiffiffi
κ

p
ϕðtÞ� ≃ exp½ ffiffiffi

κ
p

ϕ0�
�
t
t0

� 2
c−1
; ð4:35Þ

where t0 denotes the proper time of the current Universe
and ϕ0 ≡ ϕðtÞjt¼t0 .
In the large ϕ regime, Eq. (4.23) can also be approxi-

mated by

H1ðϕÞ ≃
2

3
ðc − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
expð− ffiffiffi

κ
p

ϕbÞ

× exp

�
−
c − 1

2

ffiffiffi
κ

p ðϕ − ϕbÞ
�
; ð4:36Þ

substituting (4.34) into Eq. (4.36), we get

H1ðtÞ ≃
c − 3

3ðc − 1Þ
1

t
; ð4:37Þ

which directly gives

aðtÞ ≃ a0

�
t
t0

� c−3
3ðc−1Þ

; ð4:38Þ

where a0 ≡ aðtÞjt¼t0 .
Next, let us examine the _ϕ < 0 sector with

sgnðcos bÞjH>0 ¼ 1. It is easy to see that Eq. (4.27)
and Eq. (4.29) separately reduce to the following equa-
tions for large ϕ̃:

g1ðϕ̃Þ ≃ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3þ 2ω

r
exp

�
−
cþ 3

2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ
�
; ð4:39Þ

H1ðϕ̃Þ ≃
2

3
ðcþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρc

3þ 2ω

r
expð ffiffiffi

κ
p

ϕ̃bÞ

× exp

�
−
cþ 1

2

ffiffiffi
κ

p ðϕ̃ − ϕ̃bÞ
�
: ð4:40Þ

Substituting Eq. (4.25) into Eqs. (4.39) and (4.40), after
direct calculation, we obtain

exp½ ffiffiffi
κ

p
ϕ̃ðtÞ� ≃ exp½ ffiffiffi

κ
p

ϕ̃0�
�
t
t0

� 2
cþ1

; ð4:41Þ

aðtÞ ≃ a0

�
t
t0

� cþ3
3ðcþ1Þ

; ð4:42Þ

where ϕ̃0 ≡ ϕ̃ðtÞjt¼t0 ; then, using ϕ̃≡ −ϕ, Eq. (4.41) can
be rewritten as

exp½ ffiffiffi
κ

p
ϕðtÞ� ≃ exp½ ffiffiffi

κ
p

ϕ0�
�
t
t0

�
− 2
cþ1

: ð4:43Þ

Finally, by simply following the procedures above, we
obtain the solutions in the cases with sgnðcos bÞjH>0 ¼ −1,
which read

exp½ ffiffiffi
κ

p
ϕðtÞ� ≃ exp½ ffiffiffi

κ
p

ϕ0�
�
t
t0

�
s�
; ð4:44Þ

aðtÞ ≃ a0

�
t
t0

�
q�
; ð4:45Þ

where

s� ¼ 2

5� c
; q� ¼ 1

3

c� 3

c� 5
: ð4:46Þ

The solution corresponding to ðsþ; qþÞ is associated with
increasing ϕ and the solution corresponding to ðs−; q−Þ is
associated with decreasing ϕ. It should be pointed out that
the latter solution is true only for c > 5; when c ∈ ð3; 5Þ,
derivation shows that the Hubble parameter will go to
infinity in a very short time, which apparently cannot
describe the evolution of our Universe.
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Remarkably, in the cases with sgnðcos bÞjH>0 ¼ 1, both
the solutions (4.35), (4.38) associated with increasing ϕ
and the solutions (4.42), (4.43) associated with decreasing
ϕ exactly agree with the O’Hanlon and Tupper solutions
derived in [39]. Note that our solutions are obtained using
large ϕ (or ϕ̃) approximation, while such approximation
was not necessary in [39], which seems contradictory, but
actually, not. Let us offer an explanation: From (4.31) we
learn that _ϕ becomes sufficiently small when ϕ becomes
sufficiently large; thus, the effective energy density of the
scalar field becomes negligible compared with ρc, and
jcos bj → 1. Then, if the sign of cos b is positive in the
expanding branch, the effective Friedmann equation can
reduce to the classical Friedmann equation from which the
O’Hanlon and Tupper solutions can be obtained; however,
if the sign of cos b is negative in the expanding branch, the
classical Friedmann equation cannot be recovered, and this
is why we get different solutions in (4.44) and (4.45).

V. CONCLUSION AND REMARKS

In this paper, we performed a preliminary investigation
of the cosmological effective dynamics with holonomy
corrections in loop quantum scalar tensor theory in the
Jordan frame. Now, we summarize what has been achieved.
In Sec. II, the connection dynamics in terms of Ashtekar
variables was developed, which is then used to get the
classical evolution equations on the spatially flat FRW
background. In Sec. III, the connection dynamics was
quantized following the holonomy quantization prescrip-
tion in standard LQC; then, the effective Hamiltonian
was obtained in a timeless path integral framework, from
which the effective Friedmann equation, the effective
Klein-Gordon equation and the effective Raychaudhuri
equation are derived. From these equations, we found
that there exists a set of evolutions equations different
from the classical equations in the low-energy limit with
sgnðcos bÞ ¼ −1, which represents another important
effect of holonomy corrections in STT in addition to the
contributions from the higher powers of extrinsic curvature.
In Sec. IV, the BD theory without potentials was chosen as
an example to concretely show the features of holonomy
corrections in STT. It is found that the evolution of
Universe in BD theory can be classified into four different
cases by the sign of _ϕ and the sign of cos b. In the four
cases, we express the Hubble parameter as a function of the
internal time variable. The differences between the evolu-
tion of the Hubble parameter around the bounce in these
cases are illustrated in Fig. 1. Then, we obtained the
solution of the scaler field and the solution of the scale
factor in terms of the proper time in the large ϕ (or ϕ̃)
regime. In the cases with sgnðcos bÞjH>0 ¼ 1, the solutions
coincide with the O’Hanlon and Tupper solutions, while in
the cases with sgnðcos bÞjH>0 ¼ −1 the solutions do not.
Finally, let us make some remarks at the end of this paper.

First, the existence of two different sets of evolution
equations in the low-energy limit of STT is one of the main
results of this paper. Since it is widely believed that there
exists a slow-roll inflation which takes place at a energy
density much lower than the scale of Planck energy density,
an interesting question arises: Can the set of equations
of motion (3.32), (3.34) and (3.35) associated with
cos b → −1 also describe the evolution of our Universe
after the beginning of slow-roll inflation in some specific
models of STT? And, what are the differences between the
physical predictions of the two sectors? To answer these
questions, much more work needs to be done. For instance,
we can check whether or not the slow-roll inflation can take
place in some widely studied specific models of STT in
both sectors. Since the quantum bounce does not neces-
sarily exist in LQC of STT, to study the slow-roll inflation
in these specific models, following [40], we have to set the
initial conditions in the remote past in a contracting
Universe and then check if a flat probability distribution
function can be assigned during the contracting phase of the
Universe. If the slow-roll inflation with e-folds number
N > 60 can probably take place in both sectors in some
specific models, then we can use the cosmological pertur-
bation theory to calculate the spectral indices in both
sectors and check whether they both lie in the observation
range. To this aim, first we can develop the cosmological
perturbation theory in LQC of STT following the com-
monly used approaches such as the dressed metric
approach [41] or the deformed algebra approach (see,
for instance, the Refs. [42–44]). These works will be our
main concern in the future research.
Moreover, it is also worth investigating that whether the

two sectors separately associated with cosb → 1 and
cos b → −1 are dynamically independent or not in some
specific models of STT. To clarify this issue, we can set the
initial conditions in the low-energy limit of one sector in a
contracting Universe; then, we can study the evolution of
cos b and see whether it can evolve into the low-energy
limit of the other sector. Obviously, the necessary condition
to realize the evolution from one sector to the other is that
cos b must reach zero and then cross it, i.e., the quantum
bounce must take place during the evolution. Roughly
speaking, the evolution of cosb can be classified into
three cases. First, for those particular models in which
bouncing behaviors take place at a maximum energy
density much lower than ρc (such as the models considered
in Refs. [32,33]), the quantum bounce can never happen
and the evolution of cos b always remains in the sector with
cos b → 1, nonetheless, it is still a question whether the
evolution of cos b can remain in the other sector with
cos b → −1 in these models. Second, for those models in
which neither the above classical-like bounce nor the
quantum bounce could take place (such as the model
considered in Ref. [26]), the solutions will flow to some
fixed points in the contracting phase of the Universe, in this
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case, the evolution of cos b also remains in a certain sector.
Third, for those models in which the quantum bounce can
take place (such as the BD theory considered in our paper),
the sign of cos b changes during the evolution, in this case,
we need to check whether the solutions of these models can
stably flow to the low-energy limit of the other sector or to
some other fixed points in an expanding Universe. To
summarize, whether the two sectors are related to each
other depends on the specific model we choose; and it is
only after analyzing the equations of motion obtained in
this paper that we can determine to which case the
evolution of cos b in a specific model belongs.
Second, we would like to discuss more about the

quantization prescription used in this paper. For the
quantization of connection, we use the prescription pro-
posed in [34]. In recent years, another proposal of quan-
tization of Hamiltonian constraint formulated in [45–47]
resembling the holonomy quantization in the full theory
arouses much interest among LQC community. It is worth
investigating which new effects the application of this new
quantization scheme would bring about in STT, especially

in the low-energy limit; and this will be left for future
research. For the quantization of the scalar field, we choose
the Schrödinger representation, which requires that the

functions KðϕÞ
GðϕÞ,

F0ðϕÞ
GðϕÞ,

FðϕÞ
GðϕÞ, VðϕÞ should have no singularities

for any ϕ. However, for some commonly used coupling
functions, this requirement cannot be satisfied. Although
this problem can sometimes be avoided by introducing a
new scalar field such as in Sec. IV, we often lose the
evolution information in some interval of the original scalar
field. Perhaps adoption of polymer quantization for the
scalar field in further study can help to alleviate this
problem.
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