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We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally
symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical
harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into
their radial and angular dependencies. We provide a thorough and self-contained set of expressions and
relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher
tensor type by recursion among radial functions, and we collect the complete set of recursive relations
which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we
also collect explicit forms of the radial harmonics which are needed for other cosmological observables.
Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence
and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements

in the literature.
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I. INTRODUCTION

Tensor harmonics are ubiquitous tools in gravitational
theories. Their applicability reach a wide spectrum of
topics including black-hole physics, gravitational waves,
quantum-field theory in curved spacetimes, and cosmology.
In the particular context of cosmology, one is usually
interested in the description of tensor harmonics over
maximally symmetric manifolds, since these are the spaces
in better agreement with observations. In this work we
revisit the construction of scalar, vector, and tensor har-
monics in symmetric three-dimensional spaces with par-
ticular interest in—but not limited to—cosmological
applications.

Scalar harmonics in symmetric spaces are well known
among cosmologists [1], and they are defined as a complete
set of eigenfunctions of the Laplace-Beltrami operator.
Vector- and tensor-valued harmonics can be similarly
defined, and their explicit forms were gathered in [2-4].
These objects are found nearly everywhere in cosmological
applications, especially in those related to large-scale
structure and its related observables. Indeed, on cosmo-
logical scales, where linear perturbation theory successfully
accounts for the formation of structures, perturbation
modes, that is the components in an expansion on
tensor harmonics, evolve independently from one another.
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This fact enormously simplifies the construction of
observables and the assessment of their statistics. In
particular, a decomposition based on tensor harmonics
is essential for the computation of cosmic microwave
background (CMB) fluctuations around a maximally
symmetric (but possibly curved) space [5]. The normal
modes which have been introduced in [6,7] correspond to
specific components of those of [5], and are consequently
an equivalent presentation of them. An equivalent covar-
iant formulation of these normal modes is also presented
in [8,9].

In this article, we review the general construction of
harmonics in maximally symmetric three-dimensional
spaces, along with the associated normal modes, and
show how they can be systematically built by recursions.
In doing so, we collect all explicit expressions of the
normal modes for scalar, vector, and tensor harmonics.
Throughout, we choose to use a modern formulation
based on spin-weighted spherical harmonics from which
even and odd parts and also the general structure is more
tractable. Hence, this differs from the formulations given
in [10,11].

Section IT A is dedicated to definitions and notation. In
particular, we define the harmonics, the helicity basis, the
normal modes and the radial functions of which many
properties are collected in the appendixes. Section III is
dedicated to the general construction of these radial
functions which characterize fully the harmonics and most
relations are collected in Appendix D. The reader interested
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only in the actual expression of the harmonics can jump
directly to Sec. IV where the explicit expressions of the
radial functions are collected, or to Appendix F if interested
in the flat case only. The normalization of harmonics is
discussed in Sec. V, while plane waves are built in Sec. VI.
The formalism is illustrated in Sec. VII for the standard
multipole expansion of the CMB radiative transfer func-
tions. Finally the comparison of our results with previous
references is detailed in Appendix G. The tables of
Appendix H gather the most important ancillary notation
used throughout.

II. DEFINITIONS

A. Maximally symmetric spaces

We start be recalling some basic properties of maximally
symmetric spaces. A nice and physicist targeted introduc-
tion can be found in [12].

Maximally symmetric spaces (as opposed to spacetime)
are uniquely fixed by a real parameter K, known as constant
of curvature. In three dimensions, and using standard
spherical coordinates (y, 6, ¢), the metrics of these spaces
read

g;;dx'dx) = dy* + r*(y)[d6* + sin® 0dg?].  (2.1)
The radial coordinate y is implicitly defined by the function

r(y), which assumes different values according to the sign
of the parameter K:

£.sinh(y/¢.), (K <0),
r(y) =4 €.sin(y/¢.), (K >0), (2.2)
)2 (K =0).

Here, £, = 1/+/|K]| is the curvature radius, which is related
to the Ricci scalar by R = 6K. Clearly, K distinguishes
between open (K < 0), closed (K > 0), and flat (K = 0)
spaces. When K # 0 we can further use units for which
¢. =1, that is, all lengths are expressed in units of the
curvature radius and, in the closed case, this implies
0 <y < &. The general case . # 1 can be trivially restored
from dimensional analysis if needed. To emphasize our
special choice of units, let us introduce a reduced curvature
parameter
K =K¢% =K/|K| (2.3)
which assumes the value +1 (—1) in the closed (open) case.
The Riemann tensor of maximally symmetric spaces can
be written directly in terms of the space metric and the
constant K:

Rijkl = K(gikgjl - gilgjk)- (2'4)

This greatly simplifies identities involving commutators of
covariant derivatives. One identity that we shall need is

AV, V)T

wd

=2K[n(n+1)/2 + nj

x Vi, "'vk,,TilA..ij (2:5)
where V; is the covariant derivative associated with the
metric (2.1) (i.e., V;g;; = 0) and A = V/V, is the Laplace-
Beltrami operator. In what follows we shall adopt the
unifying notation 3in, tan, and cot for trigonometric
functions, defined as the usual functions when K > 0,
and as their hyperbolic counterparts when K < 0.

B. Helicity basis

The notion of helicity (or spin) basis is more conven-
iently introduced in terms of an orthonormal triad of
basis vectors

n, =0, (2.6a)
ng = r~'(y)0y, (2.6b)
n, = r'(y)csc(6)d,. (2.6¢)
together with its dual basis
nt =dy, (2.7a)
n’ = r(y)do, (2.7b)
n? = r(y) sin(0)de. (2.7¢)

From this we can form the standard helicity vector (spin 1)
basis as

n 1(n F ingy)

=— ingy),

- V2 o ’
1

nt=—(n? ¥ in?). 2.8
= i) 29

Given a unit vector nr at the origin (y = 0), the pair (y,n)
denotes a point reached following a geodesic of length y
whose tangential direction at the origin is n. It is also
obvious from the spherical symmetry that the tangential
vector of the geodesic at that point is n,. Hence it is
customary to use the symbol n for both n, and its dual n*.
The helicity basis vectors n.. also depend on the point (y, )
considered, but they are parallel transported along a radial
curve, that is

n*Vnf = 0. (2.9)
Thus, since they depend essentially only on the direction n,
it is customary not to write this dependence explicitly.
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We now use the vector basis (2.8) to build a suitable
tensor basis (spin s) for symmetric trace-free (STF) tensors.
For 0 < |s| < j, we define

= £n. .
n;” . _n(il"’nisnl.x+1"’nl/>’

(2.10)
with a similar definition when free indices are up. The angle
brackets mean that we must form the symmetric trace-free
part on the enclosed indices, and this is performed in
practice with (C1). Analogously to the helicity basis, these
tensors (which are also parallel transported) depend only on
the direction n—a dependence which will be omitted from
now on.

In what follows, it will be convenient to introduce a
multi-index notation

(2.11)

such that the basis for STF tensors is written succinctly as

~ Al . .
A7s or A} . In Appendix B we summarize how the extended
; :

helicity basis (2.10) is related to spin-weighted spherical
harmonics.

The generalized helicity basis (2.10) extends the multi-
index notation reviewed in Ref. [13], which is restricted to
using the tensors (2.10) with s = 0. Up to normalization
differences, it corresponds to the Legendre tensors intro-
duced in [14] for the cases s = 0, 2. The explicit expres-
sions for j <3, and a collection of properties (which
extends those already found in Appendix A of Ref. [15]
for the case s = 0), are given in Appendix C. The set of ﬁjj

with |s| < j form a basis for STF tensors with j free indices
at each point. Their normalization, used for extraction of
components along that basis, is given by

Atsalj

nlj nq:;’ = (SS.Y/djs (212)
where
Jj! 1
di=—""———
P2 =1)1(by)?
.‘ 2
b, = V2" (" (2.13)

GGt

C. Decomposition of tensor fields

Any STF tensor field in a maximally symmetric
(three-dimensional) space can be decomposed onto the
generalized helicity basis using spin-weighted spherical
harmonics. This decomposition can be understood in two
steps. At each point the helicity basis is a basis for STF
tensors at that point, hence we can decompose the STF
tensor field as

J
T, (rm) = 3 T(zm)is.

s=—]

(2.14)

The spin functions ;7' (y, n) are then decomposed onto spin-
weighted spherical harmonics, so as to separate its radial
and angular dependencies. This leads to

Ty ()= i > Teule)s V¥ ()i .

s==j £2|s| M=—¢

(2.15)

Given the rotation property (B33), this is a decomposition
in irreducible components under the group of rotations.
On the left-hand side, we recall that j is the number of free
indices given the multi-index notation (2.11).

The functions (T ,), are however constrained by the fact
that the tensor fields must assume a given value at the origin
of coordinates (y = 0). Let us consider the tensors y;j"

defined at the origin of the system of coordinates, and
which are explicitly given in Appendix B, along with their
properties. They form a complete basis (for STF tensors)
and we can use them to decompose the value of the STF
tensor at origin in the form

J .
)],y = > )

m=—j

(2.16)

Therefore we find that at the origin the coefficient functions
sT sy must be

sTemly—0 = djetukis (2.17)
where
. 2j—1!
ki, = (:Fl)“bjs%
= (F1)*(djsbj) ™" (2.18)

This can be seen either from property (B32) once (2.17) is
replaced into (2.15), or from the component extraction by
contraction of (2.16) with the ﬁ;j, and using the normali-
zation (2.12) and the property (B24).

In the next section we define the tensor harmonics,
and in the subsequent one we shall be guided by the
decomposition (2.15) to define normal modes and radial
functions.

D. Laplacian and harmonics

The tensor valued eigenfunctions of the Laplacian are
defined as

(A+ )T, i = 0. (2.19)

123535-3



CYRIL PITROU and THIAGO S. PEREIRA

PHYS. REV. D 100, 123535 (2019)

We further ask these modes to be STF and divergence-free
tensors, that is

vi]Til_. i = 0.

“t

(2.20)

Solutions of (2.19) and (2.20) with m free indices, and
for a given k, are called harmonics of type m for the mode &,
and are denoted as

o j=ml. (2.21)
When |m| =0, 1, 2 these are called respectively scalar,
vector, and tensor harmonics.

We next introduce some derived harmonics which are
obtained by STF combinations of (j — |m|) derivatives of
these harmonics. More precisely they are defined as

v<i v Q(\m\,m)

1" Lj—|m| lj_‘mHl.A.lj)

(jm) _
0" = Jas . (222)
which implies the basic relation for j > |m|
o =1y gl-1m (2.23)
I k (i Iiy) ’ '

It can be checked by using (2.5) that that they are not
divergenceless and do not satisfy (2.19), but they satisfy
instead

[A+ K= K@= |m)(+ |m|+ 1] =0 (2.24)
as well as
VPP = —qumi . (2.25)
iy _ P =) 02 = K7) 25
q = — " . ( . 6)
j2ji-1  k
Here we have introduced the notation
=4+ (14 |m|)K, (2.27)

such that harmonics and derived harmonics can be either
characterized by the value of the mode k or by the related
mode v. If we fix k, then v is a function of both |m| and k.
Conversely if we fix v, then £ is a function of both v and
|m|, and from now on we consider this point of view.

E. Comment about notation

For simplicity, we often omit to write the dependence
of the harmonics on k (or v) to alleviate the notation.
Similarly, wherever not needed, the dependence on the
position on space, that is on (y, r), is not written explicitly.
Hence, even though the full expression of a harmonic

should be ng) (y.,n;v), we shall use ng) (v), E{m) (r.n),

or simply Q;f m), depending on the context. Such practice

will be used not only for the harmonics, but for any other
quantities depending on y, n, and v.

F. Normal modes

In order to find a decomposition of the type (2.15) for the
harmonics and their derivations, we follow [6,7] and split
the radial and angular dependence through a new function

G (romiw) = cpa? (riw), Y2 ()., (2.28)
with the conventional factor
cp =il\/4n(2¢ + 1). (2.29)

We insist on the fact that SG(fjm) depends on the point
considered, that is, on (y,n), while the STF basis ﬁ}j
depends on the choice of n. Moreover, the radial functions
ai,zi m)(;(; v) do not depend on nr, while the spin-weighted
spherical harmonics ,¥” (r) do.' The radial functions, to be

constructed in Sec. II G, are conventionally normalized
when £ = j as [6,7]

1

(jm)
, =——0s;. 2.30
A P TR el (2:30)
Accordingly, it implies that around the origin
) — Sy 4 0(y). (2.31)

s f:j*zj_’_ls

In general radial functions are nonvanishing only for the
conditions
jzmax(|ml.|s|),  £=max(|ml |s]),  (2.32)
and are chosen to be null functions otherwise.
We now search to build a basis for tensor harmonics (and
their derivations), with j free STF indices, in the form

) J ‘ .
,,ﬂme) = Z Sg(fm)sGE,/ )ﬁf/_, (2.33)

s=—j

where the ,g/") are numerical coefficients yet to be fixed.
These harmonics correspond to considering a single (£, M)
pair in the otherwise general sum of (2.15). The summation
on 7 will be taken when we present the construction of
plane waves in Sec. VI, and the summation on M is needed

'In fact, such separation between radial and angular depend-
ence lies in the heart of the total angular momentum method,
see [6] for more details.
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only when considering general reference axis harmonics as
detailed in Sec. IIIE.
Moving forward, let us also define

Sg(jm) = sg(jm)djsv (234)
such that from (2.12) we get the inverse relation
jm) A1 ~(im im
ng )”ﬂFs = Y )isGiﬂj g (2.35)

From (2.33) and (2.35), we see that the coefficients Sf}(j’")
and ¢U™ are used to relate the tensors ng‘;m to the
functions iSG;jm)—cadled normal modes—and vice versa.
The normal modes are the coefficients [with a functional
dependence on (y, n)] of the harmonics in the generalized
helicity basis. Since the coefficients ;g\ (and thus ;§U™))
are yet undetermined, we can further choose that, for a
given (jm) pair

jUg(/m) = iSg(f'-,—m), (2.36)
which, given (2.18), implies that

gt = (q:)sbjsog('im)a

(ji=m)

=0 , (2.37)

and, in particular

_eglim = (=1)% glim), (2.38)

with a similar relation for the ,§U"). The choices (2.37)
[that is ,¢U"™) « k js for the dependence on s] ensure that

= ,gtim _ S ym

(jm)
= Qlj x=0 2] + 1 I ( )

for exactly the same reasons detailed after (2.16).

Given the linearity of (2.19), any linear combination of
solutions of the type (2.28) for different values of # is also a
solution. This is how plane-wave solutions are built, and we
discuss this construction in Sec. VI. Finally, it is trivial to
restore spatial dimensions (£, # 1) since harmonics, nor-
mal modes, and radial functions are all dimensionless.

G. Radial functions

We recall that for simplicity the dependence on y and v

(jm)

of the radial functions ja,;" is omitted. We also split them

into even and odd parts (also called respectively electric and
magnetic radial functions) as

Gm) . olim) g ; glim)

1ap B (2.40)

and by construction there is no odd part for s =0,
that is

(jm) =0.

oh (2.41)

We shall check further that they also satisfy the
properties

s€<j._m) — se(jm)

Sﬂ(j-"") =

’

= pum. (2.42)
In practice this means that we only need to build the radial
functions for m > 0.

In most cases v is real and the electric and magnetic
radial functions are real. However, when considering
supercurvature modes on open spaces [16,17], v can
be complex. In that case one cannot deduce from (2.40)
that complex conjugation on radial functions amounts to
s — —s, and one must rather use (3.35).

II1. BUILDING HARMONICS

We now proceed to the determination of the radial
functions. Indeed, they determine the normal modes from
the definition (2.28), and subsequently the harmonics (and
derived harmonics) from (2.33). In the next section we
first start by building the radial functions for harmonics
(j = |m|), and in the subsequent one we deduce the radial
functions for the derived harmonics (j > |m|). In all
expressions, the value of  is general.

A. Radial functions of harmonics (j =|m)|)

We recall that harmonics are divergenceless. We normal-
ize them with

(G0 = 1. (3.1)
We first note that [see e.g. Eq. (A.22) in [9]]
Aleurl ("0 )] = curl[a(“Qf ). (3.2)

where the curl is the obvious generalization to STF tensors
defined by

Cur]TI{, = 6j[7<i|vap (33)

Iry)”
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Hence, the curl of a harmonic is also a harmonic.
Furthermore using the divergenceless relation (2.20) it
can be proven that [see, e.g., Eq. (3.13) of Ref. [9] for
the j = 2 case]

curl curl(fQ Sy = (fQ Iy, (3.4)
Therefore, we can choose
curl(‘Q ) = xu(“QY ). (3.5)

The choice of sign on the right-hand side (which could have
been F v) amounts to choosing the global normalization
of the odd radial function, and our choice is made so that
we recover the flat case construction that is recalled in
Appendix F.

Using the property (C19) of the extended helicity basis,
and the decomposition (2.33) along with the condition
(2.37), we deduce that the divergenceless relation (2.20)
leads to the set of relations among radial functions for
O<s<j

@isalg il) + (J + 1) cot)v/:f:s <j il)
_ BEE) sy GRIGA) i),
2(j + $)ry) T 2(j — 5)r(y) ¥+
(3.6)
where we defined
WENIETEDIED)
=\ +1)-s(s£1). (3.7)

Condition (3.6) is a special case of the divergence relation
(E1). In the special case s = 0 it reduces to

d 065‘! )

_VEE+T) i+l
re)

which is a special case of (E2).

Hence, when considering the real and imaginary parts
of radial functions, we see that the divergenceless relation
brings j relations for the even modes and j — 1 relations
for the odd modes (if j > 1). Given (2.41), we conclude
that using (3.6) we can deduce all radial modes in the
case j = |m| (that is for all allowed values of s) once we

know e/ % and ,4/*/). These terms are in turn found

from the Laplace equation (2.19). Again, using the

+(+1 cot;(oe(’ +)

(3.8)

decomposition (2.33) along with the condition (2.36)
and the identities (C22), this leads (when s > 0) to

d2 d (i)
@ dZ(isafj ])
+ 0l ot () (s2 = j(j + 1)

1
+1,0f ™ s (P =2+ 1)
(ot cot)(
+ :E(S—l)af F(){)
cot)( s s
+ +(s+1) Eﬂ ()() (+A' )(+’1f)

(isab(} jE]>) +2coty

(-4)(-42)

k2 U, ij).

+5%p (39)

As for the s =0 case, it is simply

&) d ()
@(Oe(f’ ])+2cot)(d)((0€fj )

£+ D] Gt
’,2()() o7

¢
+ 2% Vi + D + 1),e9)

— 1j(j+ Deot?(y) +

= k2l (3.10)

When combined with the divergenceless condition (3.8),
this equation leads to

dz =+ . d =
P 706l ])+2(J+1)C°t)(d)(o€§ﬂj 5
A
+ o€/ Yt {kz + (G + 1)eot?(y) — (2 ) =0.
)
(3.11)

Similarly, the imaginary part of the relation (3.9) for
s = 1, when combined with the divergenceless condition
(3.6)

at s = 1, leads to

£) d )
d 21ﬂj /) +2]c°t)(d)( I

+ B o) [j(j - 1) = 1]
Gap 1=+ 1] _
r*(x)

+1bs
By comparing (3.11) with equation (A10), we can now
motivate the definition (2.27). Moreover, we find that

061(,'/ ) @Y /r/, where @ are the hyperspherical Bessel

functions; see Appendix A. The normalization which
satisfies the normalization condition (2.30) [this is

= k2B (3.12)
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checked using (AS5)] and recovers the flat case construc-
tion of Appendix F is

(ki) _ (2j-1! ( ) 'fj (0

3.13
Oef \/T ' kj rj (X) ( )
with the dimensionless constants
=] ——. (3.14)
i—1V 1/2 - ’Cl2

We also deduce that the odd radial functions must be

such that lﬂi,zi A o =i (x)®@%. The global normalization
is deduced from the solution (3.13) using the curl
condition (3.5) contracted with A/ which leads to

VES) (Js£]) J

22 = :FVV()()oef m (3.15)

Note that this is a particular case of (E4) when j = |m|.
The radial functions for larger values of s are found

from (3.8) for 1eg’ij), and then from (3.6) for all s > 1, and

they satisfy automatically the Laplace equation (3.9).

B. Radial functions of derived harmonics (j > |m|)

We now discuss the systematic construction of radial
functions for the derived harmonics, which must be
deduced using the definition (2.22). We start by noticing
that the derived harmonics satisfy the property

curl’ Q™ = "X g (3.16)

which is inherited from (3.5) and the identity for STF
tensors [see e.g. Eq. (4.7) of [8]]

Cuer<iH1T1j> - —vOJ_HCUI‘lT]./_). (317)

J+1

The derived harmonics are no more divergenceless, as was
the case for the j = |m| harmonics. Instead, they satisfy the
relation (2.25). As will be shown later, the normalization
of the derived harmonics which is compatible with (2.30)
requires that

g(/m _ (2|m| — 1)” ﬁ OKZ1

0 = “1n )
(ZJ 1> p=|m|+1
2lm| -1 T
Og(/m 57( | |' ) H -, (3.18)
J: p=|m|+1

2
where

(3.19)

2 N2 2
W G Ny

The above normalization and (2.36) also imply the useful
relations

. 1 KT
glm) —  fj=1.m) 57
isg g (2] _ 1) k )
(jm) Gotm) KT
isg sg (]2 _ SZ) k
Zm) gmy | U+s)
+59 :Fi(s—l)g 2(] 1= S)’
. 2+ 1=y3)
(jm) — (jm) (2N L 2 2T
s9 =F.in9 : . 3.20
=+ ;t( 1) (] + S) ( )

From (A3) of [15], we see that a general STF tensor obeys

20 -1
vaIf = v<jT[f 2{_'_1 9jie \% T]f 04
4
f+1 J< curlTy, |y, (3.21)

When combined with (3.16) and (2.25), we obtain the
following relation among derived harmonics

jm) m) 2] - m m)
VP(KQEJ ) - k(fQ j+1 ) —q(j gp (i (KQ - 1 )
i 2j+1
mv e m)
+ —+ €n0 (fQ,’ L) (3.22)

Let us now consider a given m and a given ¢ > |m|, and
use the short notation (J, s) to refer to the radial function
sa(; m>, since we want to explore the relations between radial
functions with neighbor values of j and s. Identity (3.22)
allows one to derive recursive relations among radial
functions in the space of the (j,s) parameters, the most
famous of which connects (j, s) to the (j 4 1,s) ones. To
see how this is possible, we first need to contract (3.22)
with n” and replace the harmonics by their expansion
(2.33) while using the identities derived in Appendix C 3.
Then, a relation among radial functions is obtained by

contraction with 7 nqEY (or equivalently identification of the
A7 components), and extraction of the radial function from
the orthogonality relation (B13) of spin-weighted spherical
harmonics, along with the relations (3.20). Eventually we
obtain the central relation [see also Eq. (C5) in [7]]

2Our definition of sk corresponds to the one of [7] times a
factor v such that v\/1 — K£2/1* = V* — K£2.
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(3.23)

which holds for either negative or positive values of m
and s.

Since in the (j,s) plane this links the (j,s) radial
functions with the one above [(j — 1, s)] and the one below
[(j+1,s)] for a given £ and m, we hereafter call it the
North-South (NS) relation.

Other relations can be obtained from (3.22) by con-
tracting with n% and then repeating the same procedure.
This leads to relations connecting the (j, s) radial functions
to the (j F 1,s) and (j,s + 1) ones. We thus call it the
North-South-East (NSE) relation. Similarly, contracting
instead with n/ and using the same method allows us to
relate the (j, s) radial functions to (j F 1,s) and (j,s — 1)
radial functions—a relation that we call North-South-
West (NSW). Their exact expressions are collected in
Appendix D.

The combination of NS and NSE relations leads either to
a relation between (J, s) radial functions with the (j — 1, s)
and (j,s + 1) ones, which we call the North-East (NE)
relation, or to a relation between the (j, s) radial functions
with the (j+ 1, s) and (j,s + 1) ones, which we call the
South-East (SE) relation. Similarly combining the NS and
NSW relations leads either to the North-West (NW) or
the South-West (SW) relations. All these relations are
collected in Appendix D.

These triangular relations (NW, NE, SW, and SE) are the
building blocks of all sorts of recursive relations among
radial function in the (j,s) space. For instance, the NS
relation is a combination of the NW and SW. It can also be
found as a combination of the NE and SE relations.
Similarly the NSE relation (respectively, the NSW relation)
is just the sum of the NE and SE relations (respectively,
the NW and SW relations). All the recursive relations are
depicted in the (j, s) plane in Fig. 1.

There is an alternative method to obtain the triangular
relations. Instead of considering various contractions of the
identity (3.22), we can instead extract the radial functions
of the divergence relation (2.25), the curl property (3.16),
and the STF construction of derived modes (2.23). Again,
this proceeds by contractions with the generalized helicity
basis, extraction of the radial functions using (B13), and
repeated use of the properties (3.20). The relations obtained
are also gathered in Appendix E. Combining the curl
relation with the divergence relation in two different
manners leads to the NW and NE relations. Similarly
combining the curl relation with the STF relation in
two different manners leads to the SW and SE relations.
While this method seems more appealing, it requires that

;lo 1 2 3 4 5 67 8
0
1 N
o
2| %
5
3 S N
<
4 ?S E
E * q
9 leurls = 0
6 D) N
@
7 W =
&
8 N S
9 W E
10 div relation
STF relation curl] relation
11 W E W E
12 S
13| N N N
14 E W E
15 divs:=0 triangular relations
STFs=10
16 B W E
171 S S S
18 N
19 W E
NW-NE
FIG. 1. Geographical representation of all recursion relations

among radial functions in the (j, s) space of parameters. Here,
“STE,” “div,” and “curl” denote respectively the relations (2.23),
(2.25), and (3.16). Moreover, “grad-0" (“‘grad-£”) is obtained by
contraction of the gradient identity (3.22) with n” (ni). The
triangular relations (NW, NE, SW, and SE) which can be formed
from the grad relations are collected in Appendix D. Shaded
squares indicate radial functions which appear with one deriva-
tive in the recursive relation. We depict only the s > O part in the
chart as the negative s are deduced from (2.40). Only functions
with |s| < j (and |m| < j) are nonvanishing.

we carefully separate the s =0 cases for which the
aforementioned combinations cannot be formed in the
same manner. Instead it is found that in the s = O case,
the curl relation gives the imaginary part of the NE and SE
relations. Also the s = 0 case of the divergence relation
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gives the real part of the NE relation. Finally the s = O case
of the STF relation gives the real part of the SE relation.

This indicates that the triangular relations (NW, NE, SW,
and SE) contain the information about recursions in the
most compact form. Their validity is only restricted by the
fact that they should not produce instances with s < 0 in
the (J, s) space, but they can be applied even if some of the
radial functions vanish because of s > j. If we instead use
the apparently more direct divergence and curl relations, we
must treat the s = 0 case separately. As an illustration, this
is what has been presented in the j = |m/| case of Sec. Il A.
The solution for the s = 0 case is (3.13). The divergence
relation for s = 0, given by (3.8), gives only the electric
function for s = 1. One has then to rely on the curl relation
for s = 0, which is (3.15), to get the magnetic function with
s = 1. In order to obtain the s > 1 harmonics, still for
J = |m|, one can use the divergence relation (3.6), but one
could also use more directly the NE relation. Indeed, given
that the north component of the NE relations vanishes
(since j = |m]), it gives directly (j = |m|,s+ 1) as a
function of (j = |m|,s).

Finally, we recall that all radial functions are restricted in
general to (2.32), and in the closed case (K = 1) they are
also restricted to the integer values

£<v—1. (3.24)

C. Optimal algorithm

Given the plethora of recursion relations in the (j,s)
space for radial functions, there are several different ways
to deduce the radial modes for the derived harmonics for
increasing values of j. However we can judiciously add a
condition which selects one method. Since all radial
functions are expressed in terms of derivatives of hyper-
spherical Bessel functions, it is always possible to use
Eq. (Al) to reduce their form to an expression which
involves the hyperspherical Bessel function and at most its
first derivative. However, there are preferred methods for
the recursive construction of radial function, in which one
never has to rely on (A1) to reduce the order of derivatives.
Let us summarize one of these. Given the property (2.42)
and the definitions (2.40), we only need to build harmonics
for m >0 and s > 0, and we now assume these condi-
tions hold.

(1) For a given m, the radial function for s =0 and

Jj = m is given by (3.13), and it has no derivative of
hyperspherical Bessel functions.

(2) We then use the NE recursion to obtain the s = 1 and

Jj = m solution, with unavoidably one derivative
of Bessel function. However, note that this is not
possible in the special case m = 0, and we discuss
the procedure for this case below.

(3) We can then use the difference of the NE and NW

relations to form a North-West-East relation without

derivatives whose exact expression is (D8) and that
we note NW-NE hereafter. In the case j = m, the
north component vanishes so it is a relation between
(j=mys=1),(G=m,s),and (j=m,s+1). Us-
ing it, one can obtain all radial modes for j = m up
tos=].

(4) In order to build the line with j = m + 1, that is the
radial functions associated with the first derived
harmonics, one needs only to use the NSE relation

to deduce Oaz(fm“’m), and then the NSW relation to
deduce ;""" This introduces no derivatives
since the NSE and NSW relation have none. Then

all ;@™ with 2 <s < can be found either

from the NW-NE relation (D8), or from the use of
the NSW relation. This, again, brings no extra
derivatives.

(5) This last method is iterated to obtain all radial
functions for increasing values of ;.

In the special case m = 0, we start from the known solution

Oe(foo) = @Y. Then there is no need to build the (j =0,

s = 1) solution since it vanishes, so we must proceed
directly by increasing the value of j, and build the solution
for (j = 1,5 = 0). In that case, contrary to the procedure
mentioned above, we cannot use the NSE relation since
the East component vanishes, that is, it is outside of its

applicability [see (D3)]. Instead, we must use the NS

(10)

relation (3.23) to obtain ja, ', and this brings a derivative

of a Bessel function. Finally in order to obtain la(flo), we

can do as in the general case, and use the NSW relation
which involves no derivative. The rest of the construction
to j > 2 then proceeds exactly like in the general case.

In both cases (m = 0 and m > 0), there was only one
step of the procedure involving a derivative. Hence, with
this method it is possible to obtain radial functions up to
any desired values of (j, s) for any given m, as illustrated in
Fig. 2, and with at most one derivative on Bessel functions,
without ever having to use (Al) to reduce the order of
derivatives. This algorithm has been implemented in a
Mathematica notebook available at [18]. Note that the
optimal algorithm is not unique. One could for instance
rely on (D2) to relate the s = j to the s + 1 = j + 1 radial
functions, thus deducing the radial functions on the
diagonal of Fig. 2.

D. Symmetry properties
Following the same algorithm [that is the same set of
recursions to travel in the (j, s) space of radial function] it
can be checked that the properties
Ll ) = @ T v) = @™ () (3.25)

are always satisfied. It is indeed the case for the starting
radial function (3.13) of the algorithm, and it is maintained
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j30123456

2 NE NW-NE_
3 2y E NW-NE[NW-NE
z z
4 2y = NW-NE|NW-NE|NW-NE]
z z
5 2y = NW-NEINW-NEINW-NEINY-NE}
Z 2.
§) \ N N e - - -

FIG. 2. Optimal algorithm: for a given |m

start from the solution ,e!”""”. Then all other radial functions

are deduced following the algorithm described in the Sec. III C.
The steps 2,3,4,5 are depicted in red, green, black, and blue
arrows, respectively, and the relation needed to deduce each radial
function from the previous ones is written next to the arrow. Here
we have illustrated the case |m| = 2, such that we have neces-
sarily j > 2. The index s must also satisfy |s| < j.

, the first step is to

for all values of (j,s), since in all recursions for radial
functions the factors m are always multiplied by the sign
of s and by v. Hence from the definition (2.40) of the even
and odd parts we deduce that (2.42) must be satisfied.

In addition to (3.25), there are two other symmetry
properties. First, we have checked for the first values’
of j, m, and s (but for unspecified £) that the following
property holds:

2" (rw) = ) (o). (3.26)

We have also checked for the first values of m, s, j, and
¢ that

Sa(fjm) _ (_1)f—jsa;fm).

(3.27)

Furthermore, it can be checked explicitly on the first values
of j, m, and s (but for unspecified ¢) that [7]

’In practice we checked it up to j =4, and for all allowed
values of s and m.

4. _ ivms a(jm
T e+ 1)t

)

! (jm) (jm>] _

™ 27 + 1 [SKJ;Saf—l - SK?+lsaf+1 (328)

Combined with (3.23), this is consistent with the j < ¢
symmetry (3.27). We stress that both the m <> s and j <> ¢
symmetries are immediate in the flat case, as we demon-
strate in Appendix F.

The m <> s symmetry is consistent with the fact that
the relations which relate radial modes with both the same
s and m, that is Eqgs. (3.23) and (3.28), are obviously
invariant under m < s since (k}' = , k. Note that in the
m <> s symmetry (3.26), the same v appears on both sides.
Hence, given the relation between v and k [see Eq. (2.27)],
the symmetry relates radial functions associated with
different k, except in the flat case. The m <> s symmetry
can be used as a shortcut in the algorithm previously

described to, for instance, calculate Sa;im)

from ma<j *) Hence solving the radial functions in the plane
(j, s) for a given m also provides automatically some of the
radial functions for larger values of m. Conversely, this can
be left unused so as to serve as a consistency check.

for |m| > |s|

E. General reference axis

When building the harmonics and the derived harmonics,
the central relations were Eqs. (C17) and (C18). They
depend on 7, s, and j, but not on m. This happens because
(2.28) is implicitly related to a special choice of axis, which
is clearly not the most general construction. Indeed, one
could perform an active rotation R; = R(¢,,6,,0) which
brings the zenith vector e, into a general direction 2 with
spherical coordinates (6,, ¢, ), that is R;[e.] = . In order to
explore this rotation, let us define the mode vector

v=ub (3.29)

which contains, at the same time, the information about the
reference axis used to define harmonics, and the value of
the mode v itself. In Sec. VI we relate v to the wave vector
of a plane wave.

The harmonics defined with a general direction are
related to the ones we have built using the zenith direction.
Using the rotation rules (B33) for spherical harmonics,
one finds

4
RG] = o™ > DY, (R), YR (3.30)
M=-¢

This naturally brings the more general definition for normal
modes [11]:
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()Dign (R).

6= 3"
YG(;IC;)(V) - Cfsa;’]’m( )sYr;’

(3.31)

with the related more general definition for the tensor
harmonics:

‘00" v) = R:[ Q)" (v)]

2

= Z MO (1) DY, (Ry), (3.32)
M=
W%szimww%w%.<mw
s=—j
We then obtain a relation of the type (2.33)
Z Lgum . GI™( ;. (3.34)

s==j

Evidently, we could redo the general construction of
radial functions using an arbitrary reference axis (instead of
our choice for the zenith). Provided we rotate the right-hand
side of the condition Eq. (2.31) [or Eq. (2.39)], it would
proceed exactly through the same set of equations and
steps, and one would find exactly the same radial functions.
This is not a surprise, since the latter depend only on v.

F. Conjugation and parity
From (2.40) and (3.25) we deduce

L W) = _ad™ ()

= ™ (=u). (3.35)
From (2.33) and (2.28) with properties (B11a) and (2.38),
one then obtains the conjugation property

— fQ(j-—m) (—I/*)(—] )(erm) .

‘0" W) =0} (3.36)

Furthermore, in the special case of a rotation R around

the direction e, of angle z [that is R,(7)=R(a =0,
B =,y =0)], we find from (B35)
R0/ W) = /"W). (3.37)

which we can also relate to (3.36). Rotation around the y
axis by an angle z, or equivalently a parity inversion of
the x and z axis, is equivalent to considering the mode
with —m and —v, up to a 1 factor.

We can also consider a parity transformation P, which is
defined on tensor fields as

TABLE I. Transformation rules for harmonics under the in-
version of a single axis.
X = —X y = -y 7= —Z
Factor (—1)™ yes yes
Factor (—1)7 yes
Q,’m (’ ) yes yes
0" () - dﬂw yes
PIT;, (x.n)] = (=1)T; (x. —n). (3.38)

Following the same techniques using (B11b) along with

nj (—n) = (=107 (n), (3.39)
one finds
PO W) = (=)™ W)
= (=170} (~v). (3.40)

It is instructive to combine the previous rotation with a
parity transformation. Indeed, this corresponds to an
inversion of the y axis only and we find

R(m)[PIQ/™ )] = (-1)"Q) ™ (). (341)
The factor (—1)™ accounts for a rotation of angle 7 around
the z axis, thatis, R,(7) = R(a = 0, = 0,y = z) whichis
also an inversion of the x and y axis. Hence, we can deduce
the transformations brought by the inversion of a single

axis. The results are gathered in Table I.

IV. RADIAL FUNCTIONS FOR SCALARS,
VECTORS, AND TENSORS

We now collect in this section the most common radial
functions. We report the results for the even and odd
components so we can use s > 0. Furthermore we assume
m > 0 since the negative values are found from (2.42). The
scalar, vector, and tensor cases correspond respectively to
m =0, 1, 2, with the general restrictions (2.32), on which
we also add the restriction (3.24) in the closed case. In what
follows, we only report radial functions for j < 2.

For the harmonics (j = m), the radial functions were
already derived (even though not formulated using spin-
weighted spherical harmonics) up to m =2 in Ref. [4].
Derived harmonics, that is with j > m, were reported up to
j = 2 but only in the cases s = 0 and s = 2 in [7]. Hence
this section can be used as a complete reference for radial
functions. We shall only need two particular cases of the
general expression (3.14):
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k2
VP -K)/ (0 -4K)

Since radial functions determine the normal modes with
(2.28) and then in turn the harmonics (and derived
harmonics) with (2.33), we also report the values of the
coefficients ;gU"). In case one needs contractions of the
type (2.35), we repeat that these are related to the ,§U™)
using (2.34), and the first few coefficients needed are

(4.1)

do() = 1,
d10:17 d“:l,
2 1
d20 - gﬂ d21 - 57 d22 =1L (42)

Throughout, we abbreviate r(y) given by (2.2) as r. In
the expressions reported below, we note that the radial
functions are not invariant under v — —v in general,
even though it is the case for the hyperspherical Bessel
functions of Appendix A. Indeed there is a prefactor linear
in v in each magnetic radial function, as required by
property (3.25).

A. Scalar modes (m=0)
The radial functions of the base scalar harmonics are
simply the hyperspherical Bessel functions:

(00)

o0 — @y, (4.3)

The radial functions for the derived harmonics are given,
up to j =2, by

10 51 .,
o) &1 [E(£+ 1) DY
==/ ——, 4.4b
lef k 2 r ( )
20 52 v
e = =% {3(1 S+ (2 /C)]cpf, (4.4¢)
20) & 3f(f+ ) d CD’“
lef k2 2 d)( ’ (44d)
(20) & 3(?,” + 2)!(13; (4 46)

X0 T re\se-2) 2

The constants needed to build the harmonics and derived
harmonics are

0dE = g0 =, g0 =g (45)
and
V3 3 _
09(20) = :FTﬂQZO = Eﬂgzo =& (4.6)

B. Vector modes (m=1)

Similarly, for the radial functions built from the vector
modes, we find that the base harmonics are given by

iy & [0 H+1) DY
el =Ly [REE O (4.7a)

(11) o f_ld(l’q);)

= 4.
1€ 2k rdy (4.7b)
any _ vé "
By = 5 2 Y. (4.7¢)

Note that (4.7a) agrees with (4.4b), which corroborates (3.26).
The radial functions for the derived harmonics are

ey _& 34 +1)d (‘I’?>

ofr T2 5 dy (4.8a)

(21 & d o "
l€bp k2 |:d 5 =+ COt(){)d— <— ﬁ q)f, (48b)

& d
]ﬂ(;l) _ 22’; 5 ( > (4.8¢)
O+ -1) d
26;21) _ k; ( 2)( ) Ly (rav), (4.8d)
)l —1)
2ﬂ(le) % ( 2)( ) TK ' (42¢)

One checks that (4.8a) agrees with (4.4d), in agreement
with (3.26). The constants needed to build the correspond-
ing harmonics are

M = F, g0 =1,

2

¢
%Og(zw = 7,0 =V2,,4% = (:_; (4.9)

C. Tensor modes (m=2)

Finally, we give the radial modes related to the base
tensor harmonics. They are
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(22) /3(5 + 2)' (D”
0€f k2 W 2 s (410&)
»)  &HAN(C+2)(-1) d y
e = kj 5 o, (). (4.100)
(22) Sy (£ +2)(f-1)P
1Be 2 5 - (4.10c)
e = & —l— 4 cot(;() + 2¢0t?(y)
2%¢ 4k2 d 3.2 )(
+ (=K - uz)} DY, (4.10d)
521/ d "
2ﬁf = _W@ (r2CI>f). (4106)

Again, one checks that (4.10a) agrees with (4.4e), (4.10b)
agrees with (4.8d), and (4.10c) agrees with (4.8e), in
agreement with (3.26). There is an alternative expression
for ,e(?), which is

(22) _é[ d

e = 2 [ (R0 - (2 - )t

The constants needed to build tensor harmonics are

1

2
T (22)_% (22) — 1
.
\/gilg 3i2g

V. NORMALIZATION

2
gOg(22> (4.11)

In this section we are going to show that expression
(3.18) is the correct one to enforce the normalization
condition (2.30) in all cases. We will also discuss the
overall normalization of the tensor harmonics in real space.

A. Normalization at origin

Following the same algorithm as the one described in
Sec. I C, one can show that the radial functions scale like
#1777 when y — 0. Indeed, since @ ~ y* in this limit [see
(A5)], we find from (3.13) that ,eV*/) ~ ¥*~/. One can then
check that for the various steps of the algorithm which
increase j and s, this property is maintained. In practice, to
show that such scaling holds one needs to distinguish the
casesZ > j, £ = jand £ < j when applying the algorithm.
The constant in the scaling can then be determined by £ — j
iterations of (3.28) (when keeping only the dominant term
as y — 0), and using (2.30). For # > j we find for y — 0

(jm) 2-] — 1 ! m
™ ~ H K2 (5.)
(f 12¢ 4+ 1! b=t
In the case £ < j, it behaves as
G (V=11 o
~ . 5.2
e G mei Il w5 62

p=t+1

This is consistent with # — j iterations of (3.28) (when
keeping only the dominant term as y — 0). This finally
proves that (3.18) is the correct expression needed to
enforce (2.30).

If we now use these results together with (B23), we find
that the normalization of harmonics at the origin is

Q| 0| = sy (53)
where
m_ ( =Gmpe (27— D!
Nj = (p3™)? il
. j!
= (,g!™)? e (5.4)

and where the following contraction of indices I; was used
on the left-hand side of (5.3):

I:x

sg(jm)ﬁ}jsg(jm/)ﬁsl = sg(jm>sg(jm/>d‘

js
= N, (5.5)
with N7 = N Together with (2.33), the expressions

above allow us to write the contraction of harmonics at an
arbitrary point. Restoring the dependence with v of the
harmonics and normal modes, we find

0 W)Y (V)

J J

i »
=N ST G W),GU W), (5.6)

s=—j

B. Integral on space

We checked by means of integrations by parts (on the
lowest |m| values) and using (Al) and (A7) that the
harmonics satisfy the normalization (with again /; indices
contracted)

/ RE VKMQ;{m) (y)t”M’ng )* (1/)

,20+1) 6(v-1)

= 5/{’5mm’6MM’N;'n(2”) . (1/2 _ sz)

(5.7)
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where d*V = r?(y)dysin0ddd¢p. The case j > |m|
deduced from the case j = |m| through the construction
(2.23) using repeated application of (2.25) when integrating
by parts. A similar method can be used to infer the
vanishing of (5.7) when m # m’. Note also that in the
closed case, v takes integer values, hence the Dirac delta
function must be understood as a Kronecker symbol
instead, that is we must read (5.7) with §(v — /) = §,,.

From the general definition (3.33) and the identities
(B13) and (5.5), it follows that the normalization (5.7) is
equivalent to

j , -
> [l ) ey
s=—j
n S(v—1)
=0um = 55—~ - .
mm 2 (1/2 _ ICmZ) (5 8)

This is a generalization of the normalization relation (A7)
which corresponds only to scalar modes (see e.g. [16]).

Conversely, for a given j, a closure relation can be also
formulated, showing that we have built a complete set of
basis functions. We find

=0 M= 2f‘+
2 2
Gm) (jm)x 7= Km?)dy
X /KMQlj (Z’n’y)fMQIgj ()(/’n/’y)w
_ ‘S(X S =2) o —n)sl.. 8. (5.9)

For open cases, the integral runs on v > 0, whereas in the
closed case the integrals must be understood as a discrete
sum on integer values such that v > £ 4 1. Again, this is
equivalent to the closure relation for radial functions (which
we checked for the lowest values of j)

%o

2
with the same convention that it is a discrete sum on
v>7¢+1 in the closed case. This is a generalization of
the closure relation (A8) which corresponds only to scalar
modes [16]. One also verifies immediately that (5.9) is
compatible with (5.7), since multiplying the former by

V) @™ (¢ 0) (1* = Km?)dv

(5.10)

/ ng)*(;( n'z/) and integrating over space using the

latter, yields “M'Q (;(’ n';V), exactly as the righ-hand

side of (5.9) 1ndlcates.
compatible with (5.8).

Similarly (5.10) is obviously

VI. PLANE WAVES

In flat space, a plane wave is an eigenfunction of the
Laplacian which assumes constant values on planes
orthogonal to a constant wavevector k. For scalar functions
it is simply exp(ik - x). This idea cannot be generalized to
the curved spaces since the notion of a globally constant
vector does not exist. We will nonetheless seek to build
eigenfunctions of the Laplacian in curved spaces—which
we shall abusively call plane waves—which look like flat
space plane waves near the origin of the coordinate system,
1.e., over distances much smaller than the curvature radius.

A. Zenith axis plane waves

Plane waves are defined by summation of harmonics
with different values of #. The most general summation on
¢ is of the form (restoring the explicit dependence on v)

Z Cf fQ Jm (6.1)
fﬂm|
and similarly
oo, v—1 g
GUM(v) = 2 G W),
2(|ml.|s) C
Z C_mcfs ) Yfm( ) (6-2)
£2(|ml.|s[)
such that
(jm) . 1 1
0U" () = 3 g, G Wiy . (6.3)

s=—]j

The previous sums on ¢ run until infinity in the flat or
open case, and are limited by (3.24) in the closed case. The
weights {7 are undetermined coefficients. From these
definitions we recover, near the origin, the same behavior
as in (2.31). What we hereafter call plane waves corre-
sponds to the choice £/ = const. (or {% = 1). By contrast,
we name pseudo plane waves the more general case
(% # const. A pseudo plane is thus specified both by the
mode v and by the set of {”: /'" (v, &m).

We chose to divide by (;?1 in the definitions (6.1) and
(6.2) so as to maintain the normalization at origin (2.39).
All recursion relations that were derived so far for the radial
functions in the (j, s) space are, in fact, also valid for the
SGE,!'"), since the coefficients of all recursions are totally
independent from #. Hence all of these recursive relations
are transposed as relations among the summed normal

modes SG(/’”)ZJ’ . This can be traced back to the fact that the
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general relation (3.22), from which all recursive relations

originate, is satisfied for the tensors C;” Q}f m)

B. General axis plane waves

In the previous section, we have summed the harmonics
(2.33) on 7. They correspond to a special choice where the
direction used to decompose the local structure is also the
zenith direction. Hence the plane waves (or pseudo plane
waves) built in Sec. (6.1) correspond to a wave vector
v =ve,. As detailed in Sec. IIIE, one can consider a
general direction £ with the associated wave vector v = v&.
The associated plane waves are built in general as

o/ v) = Rﬁ[Qﬁjﬁ”"’ W)

Z Z é’m fMQI]m

¢>|m| M==¢

VD%, (Ry).  (6.4)

This form is very similar to the general decomposition of a
STF tensor field (2.15) since it can also be written more
explicitly as

ch 99 @™ (7 v)
fM?
X DZm(Rﬁ)sY?(n)ﬁ; (65)

The normal modes associated with these general axis plane
waves are

oo, v—1

Z Z g;: ¢s% "71 ’D)
) M=

c2(|ml.|s

X Dig(Ry)s Y7 (),

GU(v) =

(6.6)

and we get a relation of the type (6.3) for the mode v.

C. Extended Rayleigh expansion

Equation (6.5), possibly reshaped using (B33), is the
generalized Rayleigh expansion for tensor-valued plane
waves. In the flat case, for standard plane waves (i.e.,
(% =const.) with j=0=m, we recover the usual
Rayleigh expansion given by (F3).

We can recast Eq. (6.5) in a more covariant form as

oo,v—1 Cm

é’n’l

1

ﬁifs(”)ng)()(,"W) - o 2f+ 1)

2(|ml.|s])

glim) )
xg m Al
x 2y 400" G )i ()
E=X)

x 0" (y = 0w).

This extends Eq. (4.13) of [9] or Eq. (4.1.47) of [19],
which are restricted to the case j=|m| and s=0.
Equation (6.7) can be understood essentially as a simple
Taylor expansion, since derived harmonics are precisely
made of derivatives of the base harmonic. The generalized
Rayleigh expansion is essential for the computation of
cosmological observables, and we illustrate its use in
Sec. VIID and in Ref. [17].

D. Parity and conjugation

The transformation properties of Sec. IIIF can be
extended to pseudo plane waves. For conjugation, we find

07" (w.c0)]" = (=)0 5 Q™" (=ur (1)),

J

(6.8)
For z-rotation around axis y, we get
Ry(m)[0f" (v, e = [0 (v, ). (6.9)
Finally for parity transformations, we obtain
PlOf™ (w.¢m)] = (=1)"[f " wr, o]
= (=10 (~v.(=1)gp). (6.10)

The combination of parity and rotation (which amounts to
an inversion of the y axis) is similar to (3.41) and reads

R,(m)[PLQ}™ (v.c2)]) = (=1)"Qf ™ (w.¢2).

J

(6.11)

The rules for an inversion of a single axis are thus exactly
the same as in Table I for individual oy Um) except that the

factor (—1)7 manifests itself as ¢ (— )¢ along with a

global (—1)/ factor.

E. Orthogonality

As for the special case 7 = e_, the plane waves (when
{% = const., which we now assume) are orthogonal as we
now review. Replacing (6.4) in (5.7), and using (B14) and
(B34), we find that in the open or flat case, the plane waves
are normalized according to

[ everworw)
2

= Sy (270)° X N I P = Km?)

Fw-v). (6.12)

Therefore, we conclude that in the open case the plane
waves that we defined have orthogonality properties very
similar to the flat case plane waves, thus justifying our
abusive terminology.
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However, in the closed case (K = 1), the sum on ¢
in (6.4) does not extend to infinity, and one cannot rely
on (B14). We find instead

[everwo w)

v—1
204+ 1)
= 8,8,y 22N (7D"’ R;'R;).
v/ Ymm ﬂNj Xf;ll (UZ_ICmZ) mm( 1% 1/)
(6.13)

In the case where the modes have the same direction
(» =7'), and using

v—1

Z(2f+1)=1/2—m2,

£=|m|

(6.14)

this reduces to
/ EVol" w0) Q" (V9) = 22%6,y6,, N (6.15)

Equation (6.13) shows that the plane waves as built in (6.4)
are not properly orthogonal in the closed case. In that case

one should work directly with 7 Qg’/ " (1), which according

to (5.7) and (5.9) is a proper orthogonal basis.
In all cases, the closure relation for plane waves reads

j 2 2 25
(jm) ‘ (jm)* (= Km?)dvd*p
> [ om0 )

m=—j

S =x) (k k;)
ZT(X)‘Sz("_",)@]l---‘SL , (6.16)

7
with the convention that it is a discrete sum on v > |m| + 1
in the closed case. This relation is found from the definition
(6.4) with (B34) to express the Wigner D-coefficients, and
using the orthogonality relation (B13) to handle the angular
integration on # so as to fall back onto (5.9). The closure
(6.16) is obviously compatible with (6.12) in the open
of flat cases, and is also compatible with (6.13) even
though there is no Dirac function on the directions of # and
P’ in its right-hand side. This is because the factor
;’;llrnl(zf + 1)D},,(R5'R;) effectively plays the role of
a Dirac delta when acting on functions with an angular
structure limited to £ < v — 1, and this is exactly the case
for the dependence on the mode direction 2 of closed space

plane waves as defined by (6.4).

F. Integral on directions

For plane waves, and for the lowest normal modes
(specifically, we checked for j up to 4, and for all allowed
m and s) we have checked that the following identity holds:

/SGU’")(;(,n;V)SG(j/m/)*(;(,n;v)dzn
= 5mm/ jj/Z|CfSaz(f!m)(){;l/)|2’
7

47

- 5mm’5]]’ (2] + 1) s (617)
in agreement with Eq. (C8) of [7]. Hence the normalization
of plane waves is such that the dependence on y, which is
there in principle at the second line, disappears at the third
line. In the particular case of j = m = s = 0, and in the flat
case, this relation is proven using an addition theorem of
spherical Bessel function [e.g. Eq. (A.12) of [20]].

Moreover, using properties (5.6) and (6.17), we find for
the plane waves harmonics (6.1) that

d2n im im')%
/EQE{ )()(,H;V)QE{ ) (Z’n;v):5mm’N7-

(6.18)
If we further integrate (6.18) on the measure 4772 (y)dy to
complete an integration on the whole volume, we check in
the closed case that it leads again to (6.15) with v = ¢/,
since in the closed case [d*V = [Fdnr?(y)dy = 27°.

G. Discussion on general factorization
of normal modes

It is argued in Appendix C of [7], and this point is
recalled in Eq. (1.15) of [21] and Eq. (A9.3) of [22], that the
normal modes can be factorized in a form which separates
clearly the intrinsic angular dependence and the orbital one.
Restricting the discussion to modes v = ve, for simplicity,
and omitting the explicit dependence on v on all functions,
this factorization should be of the form

jm l Cj m
G )2 Y Fwgm) (619
with a universal orbital function F such that*
\F(v.pom)] = 1. (6.20)

Translated to the plane wave harmonics using (2.33), this is

m) 7 im C: im
0" Egum L YI"F(v,z.m),  (621)

2j+1

with the ;" defined everywhere following the remark
after (B32).

Expressions (6.19) and (6.21) are reminiscent of what is
found in the flat case [Egs. (F1) and (F2)], where the orbital
function is a pure scalar plane-wave expli(ke,) - (yn)]. If
this was the case in the curved case, there would be a clear

*This function is often written as e!o(4).
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separation between orbital and angular momentum.
Furthermore, the property (6.17) (which is correct) would
be a trivial consequence of (B13). We argue in this section
why this is not possible in the general curved case, and that
the factorization (6.19) does not exist. However, we insist
that property (6.17) is still correct since it does not imply
the factorization property (6.19).

From the j = m = s = 0 case, one infers immediately
that the universal orbital function must be F(v,y,n) =
0G'%). In the flat case, F = ¢'**, and since by construction
we have

oGO =" \/4z(20 + 1)1 j o (1) Yo (n).
14

(6.22)

we could be tempted to deduce that the radial functions can
be built exactly like in the flat case, i.e. in using (F5), but
with the replacement j,(kr) — @4 (). In the flat case, the
(usual) spherical Bessel functions can be combined by
means of (F5) and (F6), which then leads to the expressions
listed in Appendix F. If we insist on the idea of using the
same combinations in the curved case, but with @ in place
of the usual j,, we must also use the relations (A2). But
note that these differ from (F6) by factors like Vo> — K£?
and \/v? — K(¢ + 1)2. Thus, the results obtained with this

method are not the radial functions reported in Sec. IV.
To be specific, let us attempt to build the radial function

00{;10) = 06;10> from the factorization (6.19). Starting from
10 ? 1 U v
Oe(f ):21,”—1— 1 [ty — (¢ +1)Dy,,],  (6.23)
and using (A2), the radial function takes the form
a2 d ., y
o€y :xf@cbf + yg cot y @4, (6.24)

where the coefficients are

1 ( 6, 4l )
X, = ,
T+ 1I\Vi2_K2 \JP-K({+ 1)

_f(f+1)( 1 1 )
YT 1 \ViZ Kk VA-K@E+1)?2)

and this differs from the correct expression (4.4a) since
obviously x, # 1/V1?> — K and y, # 0.

Another way to show that (6.19) does not apply in the
curved case consists in exhibiting counterexamples. In the
closed case, the sum on ¢ in (6.2) (with {%// = const.) to
form plane waves is a finite sum since 0 <7 <v —1. Let
us first consider the case j =0, s=0, m=0. If v =1,
then we have only Z = 0 and Oaéoo)(;(;v =1)=F@=1,
x-n) =1 and there is no issue. However as soon as we

consider v =2, we have 00{(()00) (y;v=2) =cos(y) and

Oasoo)(;(; v=2) =sin(y)/+/3, and it is found that the
orbital function must be

F(v=2,y,n) =cos(y) +ivV3cos@sin(y). (6.25)
Hence the unit norm condition (6.20) is not met. Of course
when y <« 1, that is for distances much smaller than the
curvature scale, the norm tends to unity, thus recovering the
flat case result. Note however that (6.17) still holds since
oo (v = 2)? = 4ncos?y  and |, yal (v =2)]? =
4zsin’y. One could try to release this unit norm condition
and still look for a universal orbital function. However, for
v = 2 but for the values (s =0, j = m = 1), one infers

Flv=2,y,n) =1, (6.26)

which is not equal to (6.25). Similarly for (j=1,m=s5=0)
one infers yet another orbital function, being F(v = 2) =
cos y +i/+/3 siny sec . To conclude, not only the orbital
function cannot be of unit norm, but also it cannot be
universal, that is in practice it cannot depend only on v and
on the position in space (y,n). At best, (6.19) can be used
for a definition of F for each set of (s, j, m), that is to define
JFUm orbital functions. In the open case, one can also
check numerically (because of the infinite sum in £) that
the orbital function cannot be of unit norm and cannot
be universal.

We thus conclude that the general factorization (6.19)
does not exist, and we can rely on the explicit summation
(F5) only in the flat case. In the curved case, one must
determine the radial modes following the method used in
this article (or a related one). The impossibility of the
factorizations (6.19) and (6.21) in the curved cases is
related to the fact that the norm squared of plane waves is
not a constant, and only its average over spheres yields the
constant \V° ;" (independent on y) as seen on (6.18). This is
different from the flat case where it is obvious from (F2)
that the square of the norm of plane waves is N ' every-
where. It is important to stress, however, that while (6.19)
does not exist, its use in Ref. [7] was meant only as a
heuristic motivation, and all the results are of course correct
since they rely essentially only on the property (7.29).

VII. COSMOLOGICAL APPLICATIONS

We are now in position to discuss some physical
applications of the formalism developed so far. We will
focus on the derivation of the Boltzmann hierarchy to
describe the evolution of CMB, a key cosmological
observable, following both the pioneering work of [7]
based on normal modes, and the approach built in [8,9]
using STF tensors. In the next section we introduce
harmonics and normal modes which are adapted to the
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use of the propagating direction (of photons) rather than
the observing direction. In Sec. VIIB we summarize the
angular decomposition for CMB temperature and linear
polarization. We then review the standard derivation of the
Boltzmann hierarchy providing only minimal ingredients
of cosmology in Sec. VIIC. In Sec. VIID we address the
general method for extracting the multipolar decomposition
of all cosmological observables when using plane wave
harmonics. When using pseudo plane waves (/' # const.)
instead of standard plane waves ({7 = const.), the results
are slightly different, as detailed in [17].

A. Relation to propagation normal modes

In the context of CMB, it is often more convenient to
rewrite everything in terms of the propagating direction of
photon, rather than the observed direction of the incoming
photon. Hence, let us define the propagation direction as
the opposite of the observed direction:

n=—n. (7.1)
The helicity bases associated with a direction and its
opposite are related through (3.39). A given point on the
manifold is either denoted by the pair (y,n) or the pair
(x, —n). Plane-wave harmonics in the propagation direction
are linked with those built so far as

07" (y, —i) = (-

J

1Y x 0" (rm).  (7.2)
In order to be consistent with the construction of derived
harmonics we must use, instead of (2.23), the defining

property

AHi=1m)

Aum) 1 :
lj — ——V<i/_ 1/_71> . (73)

k

The expansion of these new harmonics in terms of the
associated normal modes is

00" =)= 3 G

s==j

(. m)g (), (7.4)

whereas we recall that the harmonics built with observation
directions are expanded as (6.3). The normal modes
associated with plane waves are expanded in radial func-
tions in a similar fashion to (6.2), as

jm Z Cfsaf Yfm ﬁ) (75)
£>|m|
where
Cp = (—l)fcf = (—i)f 4r(2¢ +1). (7.6)

Using (7.5) and (6.2) for plane waves in (7.4) and (6.3), so
as to replace in the definition (7.2), we deduce from the
properties (3.39) and (B11b) that the new radial functions
are related to the ones built with observed directions by

@) = _ad™ W) = ,al™ (-v).

(7.7)
From the decomposition (2.40) in even and odd compo-
nents, we deduce that the ones built when using propaga-
tion directions, are related to those built using observation
directions, by

&M () = e (), (7.8a)
B W) = =B ). (7.8b)

To summarize, when using propagation direction, as is
common in the context of CMB, one needs only to add a
factor (—1)” to ¢,, factors of (—1)/ in the definition of the
harmonics, and then the radial functions are exactly the same
up to a global sign for the magnetic (odd) radial functions.
Equivalently, one can use the same radial functions but
with —v instead of v. In fact this is just the parity trans-

() = 0" ().

formation rule (6.10) since P|

B. CMB multipole decomposition
At each cosmological time, the temperature fluctuation
field ® depends both on the position in space, that is on
(y.n), and on the propagating direction i’ [which does not
necessarily satisfy (7.1)]. This dependence can be separated
using a multipolar decomposition as

_ E =1 =i
0= ®l'lml'jn]...l’lf,
J

where the STF multipoles 91, depend only on (y,n) and

on time. However, as argued in [6,7], a shortcut consists in
fixing the propagating direction,

(7.9)

il = —ni, (7.10)

when solving for the observed CMB. This is equivalent
to consider, in a given observed direction n', only the
propagating directions which are observed at some time
by the observer.

The temperature multipoles ©;, are expanded on (general

axis) plane wave harmonics as

>When considering first-order cosmological perturbations, it is
enough to consider the background geodesic, which is a straight
line on the maximally symmetric spatial background. When
considering higher order effects, time-delay and lensing correc-
tions to the trajectory must also be considered [23-25].
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(7.11)

&y O (W)
Z / i QSj ‘W)
9

m=—j

The dynamical evolution for STF multipoles then translates
into evolution equations for each mode components
G);."(V,n). From the choice (7.10), with (7.9), (7.11) and
(2.35), the temperature becomes a simple scalar field
expanded in normal modes as

GUmM®w),  (7.12)

where the propagating direction normal modes are related
to the usual ones as specified in Sec. VII A.

The case of linear polarization is analogous, and we
decompose the angular dependence of the Stokes param-
eters Q and U according to [see [19] or Eq. (1.67) in [26] ]

Q +iU . al
5 Z[Elj F 1By Jn,

J

(7.13)

The electric and magnetic STF multipoles E I, and B, are
decomposed in terms of plane waves as

1 < &y ET®.n) - (jm)
E=3 2. / 2o g 9 @)

m=—j

1< v BT W. 1) _ (jm)
B = ,,,Z / g )

(7.14)

J

Exactly like for temperature, we then restrict the propa-
gating direction according to (7.10). Hence (Q + iU)#;;* is
a tensor field on space, which is tangential to spheres of
constant y. From (2.35) we find that the expansion in
normal modes now reads

Q+iU = Z/ d

" (v,n) £iBY (v,n)] G @)
(7.15)

Finally, the velocity of baryons, V;, which we need to
account for the Compton collisions with electrons, is
decomposed exactly as in (7.11) for j = 1. This means
that the quantity Vi’ is decomposed as in (7.12) with only
Jj =1, which in turn defines V" (v, 7).

In the closed case, the plane waves as defined by (6.4)
are not orthonormal, as shown in (6.13). Hence we must

work directly with the © MQE{ ") (1), which are orthogonal

according to (5.7) and (5.9).' The previous expansions on
harmonics can be read formally if

v=w. M), (7.16)

and then one must use the formal replacement [8,9]
[ v—1 14
[om Ty
m+1£6=m

v= M=-¢
To be clear, With the convention (7.16), ;GU™ (v) refers to
G;M)( ) and Q )(v) refers to fMQEj”')(y).

(7.17)

C. Boltzmann equation

1. General structure

When using conformal cosmological time #, the general
cosmological metric takes the form

g™ = a*(n)(gu + 69, (7.18)
where y, v are spacetime indices, a(n) is the scale factor,
and where the background metric g, extends the purely
spatial metric (2.1) with gp; = 0 and gy = —1.

Restricting to linear cosmological perturbations, the
general Boltzmann equation dictating the evolution of
the distribution function of photons reduces to an evolution
of the black body temperature ® which depends on 7, the
position on space, and on the propagating direction 7. This
equation possesses the general structure

(0, +7'V;+7)0 =Co + G. (7.19)
Here, C is the collision term accounting for all processes with
a final photon propagating in the direction 7, whereas the
term proportional to the Compton interaction rate 7’ =
an,or (with the background number density of free elec-
trons n, and the Thomson cross section o) accounts for all
collisions with an initial photon propagating in direction 7.
Furthermore, G accounts for the gravitational effects which
enter when considering metric perturbations around a
homogeneous and isotropic expanding background.

For polarization, the Boltzmann equation is even simpler
since it is not affected by these gravitational effects, and
one has only

(8” + r’z’V,- + ‘L'/)(Q j: IU) = CQ:I:iU‘ (720)
We now discuss the individual terms in these equations
in the following sections so as to obtain a Boltzmann
hierarchy in Sec. VIIC4. Finally we report its formal
integral solution in Sec. VIIC 5.

2. Gravitational effects

The gravitational term selects only the scalar, vector and
tensor modes, that is |m| < 2 and in practice this implies a
restriction on the sums on m in (7.12) and (7.15). The effect
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of the perturbed metric 6g,, on temperature depends on the
combinations

8900 8goit’, Sgii' i/, (7.21)
since, from the null geodesic equation, one infers
1—iv Lo i s
Gg= Tk 0000 — Eégijn i + 'V ;6go;. (7.22)

This motivates us to decompose the metric perturbations
according to

d3 _
Sgn = 2 / G A0,

P ~(im
690 = /ﬁ Z B(”‘>(v,n)QEI )(V),

3 2
2 / (S,,';g ST HP w0 w).  (1.23)

m==2

It is customary to adopt a gauge in which B (v) =0,
and we now assume this to be the case. This encompasses
both the popular synchronous and Newtonian gauge.
The decomposition of (7.22) in terms of normal modes
takes the form

3
G= Z / éTV)agj"(v,n)oG(f’”(v), (7.24)

and it follows from (2.35) that factors OgUm) are brought
in the expressions of the G7'. For completeness we report
them here (see Appendix C of [21] which corrects [6,7]).
The only nonvanishing components are (omitting the
dependencies on v and 7)

Go = H.
G0 = kA,
e
Gy' = =gV kBED — Hy ],
G2 = Y (7.25)

In each case, the mode k is related to v through (2.27),
hence one must distinguish according to the value of m.
The relevant factors in these expressions are

40 2V -3K 2V - 4K
. -

3k 3WVAHK
o _ VI =2K _ v (7.26)
0d V3k V3VE 12K '

In practice, the equations are solved in a specific gauge
and not all metric perturbations components are kept [7].
The synchronous gauge corresponds to the conditions
A =0 and B*D =0, whereas the Newtonian gauge is

found when using Hg)) =0 and H(Tﬂ) =0.

In fact, the expansion in modes and multipoles of (7.12)
(7.15), are exactly like Eq. (55) of [6] and Eq. (23) of [7],
with the directional dependence on 7 explicit, so we can
easily compare our results and we find that Egs. (7.25)
differ slightly from Egs. (35) and (36) of [7]. This is
expected since our gravitational effects correspond to
Eq. (C18) of [21] without the last term. Equation (7.25)
also corresponds to what is obtained in [27], and arises
when the observer who defines the temperature anisotro-
pies is chosen to have a velocity proportional to (dy) g Ifa
different observer is used to define anisotropies, namely,
one with velocity proportional to (9,)¥, then (7.22) gets
modified as we must consider the entirety of Eq. (C18) in
[21]. This explains the variations found with the literature,
in particular with [6,7] where the contribution of B+!) goes
into Gi! instead of G5! here (see e.g. Sec. 4.3.1 of [27] for a
detailed discussion).

3. Collisions

The collision terms, which account for Compton colli-
sions on electrons, depend only on the multipoles of
temperature and linear polarization, and they are expanded
in multipoles with definitions following exactly the decom-
position of temperature and linear polarization of the
previous section. We find [6,7,19,26,27]

oCn = 7/(8)50 + 8P + 8 VM),
Eem = —2' V68, P,

Bom __

cr =0,

P = — (@3 — V6ED). (7.27)

1
o'

4. Boltzmann hierarchy

The only nontrivial part, once the effect of gravitation
and collisions are expanded in STF multipoles, is the free
streaming. It is sufficient to consider the case of modes
aligned with the zenith direction, and we use the expression

. e d
V(G ) = - —

J

(;GU)a; (7.28)

&
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as well as the recursion relation for the normal modes

d -, L
— (,GUm) = — SGlm)
dy Jj+1)
1 _ o
g KB kg GO

(7.29)

which is a consequence of (2.28) and (3.23) translated to
propagating direction radial functions (7.7). Using this
property into (7.19) and (7.20), with (7.12) and (7.15),
one finally obtains the hierarchy (again, omitting the
dependence on v)

_ | 0% 0 /+1 n O
871971 = _2] — 1 T_l - 2 + 3@13_1:| + g;n + CJH - T/®T7
o E™ = [ ZK;H m 2K.;n+1 m 2my Bm:|
=i — |5 1 j—1 A J+1 - . j
2j—1 2j+3 JG+1)
E,
+ C;-” —r’E;?’,
LY K’ 2my
oBn = |24 _pn _ il pm o 7 pm
2= 243 (1)
+ B —o'B (7.30)

Given the maximal symmetry of the background, the
evolution of the gravitational sources G' depends only
on v. However, their initial conditions (set deep in the past)
does depend fully on ». Hence, in practice, the hierarchy
(7.30) needs to be solved only for various values of v, and the
directional dependence is simply inherited from initial
conditions. Let us also comment that we do not necessarily
need to use the expansions in normal modes (7.12)
and (7.15) with (7.29) to derive the hierarchy. Indeed, this
is a shortcut based on using (7.10), and one might prefer
using directly the expansions in harmonics (7.11) and (7.14)
along with (3.22) to compute the effect of free streaming, as
in Refs. [8,9,19,27]. The hierarchy for multipoles is even-
tually recovered using the orthonormality condition (6.12).

5. Integral solution

We can check using (3.28) and (7.8) that when the
gravitational effects and the collision term can be neglected
(that is when the evolution of multipoles is only due to free
streaming), the functions

(2 + 1)oe ™ (),
—(J

(2j + 1,67 (),

(J

(2j+ 1,87 () (7.31)

are solutions of the hierarchy (7.30) for any j". This guides
the general resolution of the full hierarchy when collisions

and gravitational effects are taken into account. Let us
introduce the optical depth from a cosmological time 7 to

today (179)

Hr) = / " o). (7.32)

that we abbreviate as z. It is then straightforward to
obtain the formal solution to the full hierarchy in the
integral form [6,7]

‘;’le I e + 97 2.
R S e L)
2j+1 0 7 s
l; f(j"l) - A " dne—f;Ec%/?}f’”)(x), (7.33)
where the argument of the radial functions is
X =no—1n. (7.34)

Finally, and this is crucial, it is customary to expand
the directional dependence of the observed temperature
(polarization) directly in Yy (1n YT). Hence, to obtain the
corresponding multipoles, one must consider the normali-
zation at origin (2 31), and this brings extra factors

col(2¢ 41 )i \/4n/(2¢ + 1). Thus, for the CMB,
we shall use
MR (1) = O (10) (—i)f /e (7.35)
‘ ‘ 20+ 1

with similar relations for the £ and B modes. Eventually,
one might also prefer to use directions related to observa-
tion rather than propagation for the multipoles observed
today, and this brings extra factors of (—1)” for the
temperature and electric-type polarization multipoles and
(=1)7*! for the magnetic-type ones.

D. Other cosmological observables

Quite generally, all types of cosmological observables,
such as weak lensing convergence or shear, lensing field,
galaxy number counts, redshift drifts, etc., are all of the
form of an integral on the background past light cone,
which can be written formally as

O(n) = / P anyoalSy o gm)(736)
0 J

jm

with (7.34). The sources S;f ") are expanded on plane waves
harmonics as
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NG jm d31/ m jm
a8 (n, x.m) :/ S (:v),GU™ (r. m:v).

(27)*
(7.37)

If we decompose the observable as a sum of the effects of
each harmonic as

dv .
0= [ G 0r.G G = 0m). (138
jm

then we only need to expand the sources under the
integral with the Rayleigh expansion (6.7) which is
equivalent to

oo,v—1 m

LG ) = 3 (20 + 1)L

>|m| C;"
x ™ (130) L GO (r = 0,m5w),
(7.39)

s0 as to obtain the integral solutions [with {7} = const. since
the decomposition (7.37) is on plane-wave harmonics]

SO".”(V) Mo 'm
. _/0 dnzsaﬁj )()(;I/)S;',l(i’];l/). (7.40)

J'=|m|

Note that in the angular decomposition (7.38) we must use
the normalization at y = 0 given by (2.31) but taking into
account the rotation (6.6), that is

. C: .
SGUM (= 0%) = 5 > D (Re) Y
J M

(7.41)

The integral solution for the CMB multipoles arises
immediately with this method, if one notes that the
Boltzmann equation (7.19) is rewritten as

di”(e-fe) — [Co + ] (7.42)

where d/dn = 0, + 7'V, is the derivative along the back-
ground geodesic. Indeed, the integral form of the type
(7.36) is

o) = / " ¢~[Co + Gldn. (7.43)

°In the closed case, and given the formal meaning (7.16),

the normalization at y = 0 is directly SG%}’)(X:O;I/):@Q/

(2j+1),Y.

and following the aforementioned method, we then recover
the solution (7.33), up to the difference that for CMB we
used propagation direction harmonics and multipoles. Even
though this derivation appears much faster, one must not
forget that in the case of CMB the sources depend on the
multipoles themselves, and one must rely on the Boltzmann
hierarchy (which can be found by derivation of the integral
solutions with respect to 7,) to solve for their evolution.

The physical interpretation based on this method is that
free streaming builds multipoles with increasing j from the
initial multipoles of sources. The effect of free streaming
amounts to intersecting plane-wave harmonics with spheres
of increasing radius, and the radial functions precisely
account for the projection effects of the sources, taking into
account the local angular structure at emission.

VIII. CONCLUSION

Thanks to the introduction of the generalized helicity
basis, we established in this work a systematic and
comprehensive construction of radial functions, normal
modes, and tensor harmonics in maximally symmetric
three-dimensional spaces. When combined with spin-
weighted spherical harmonics, they provide a powerful
set of tools adapted to the description of symmetric and
trace-free tensors, and are suited for separating the radial
from the angular dependencies of physical quantities.
Furthermore, the developed framework allows for system-
atic algebraic manipulations which greatly benefits from
the power of symbolic computational tools. In particular, in
this work, we have made intensive use of xAct [28].

In Appendix G our results are contrasted with earlier
literature on vector and tensor harmonics around maximally
symmetric curved spaces. However, our method is not
restricted to vector or tensor harmonics but can be applied
to higher rank harmonics thanks to the full set of recursive
relations in the (j,s) space. Our results also extend to
curved spaces of the construction of scalar, vector, and
tensor harmonics presented in [11], and puts on a firmer
ground the pioneering use of normal modes introduced
in [7]. However, we stress that some of our relations were
not fully demonstrated but only checked explicitly for all
modes up to reasonable values of the eigenvalue j (typically
J <4 and the associated |m| < j, |s| < j), as was also the
case in [7]. Hence, from a mathematical point of view, our
formalism would benefit from an appropriate general proof
on these relations. Still, for practical physical applications
which depend only on the lowest values of j (but with all
allowed values of m and s), it can be fully trusted since all
relations were checked with # being kept general, using
the general properties of hyperspherical Bessel functions.
Thus, in a restricted sense, they have been demonstrated.
The relations which were checked up to j =4 (and all
allowed values of m and s) but with general values of £ are
Eqgs. (3.28), (5.8), (5.10), and (6.17). Relation (3.27), on the
other hand, was checked only for j <4 and ¢ < 4.
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The radial functions have very rich properties which fall
into four categories. These are summarized as follows:

(1) Recursive relations in the space of (j,s) values.
They can all be deduced from the triangular relations
(NW.NW,SW,SE) depicted in Fig. 1 and whose
expressions are collected in Appendix D. They
allow us to deduce all radial functions using the
algorithm described in Sec. III C. Furthermore,
Eq. (3.23) is of direct use for the effect of free
streaming on radiation multipoles.

(2) Sign inversions of either m, s or v [Eq. (3.25)],
which are of direct use when studying the properties
under parity transformation as in Sec. III F.

(3) Symmetries in the space of (j,m,s,£) values,
namely the m <> s and the j <> £ exchange sym-
metries [Eqgs. (3.26) and (3.27)].

(4) Orthogonality relations (5.8) and (5.10), which
imply corresponding orthogonality relations for
harmonics.

Once knowing the radial functions, whose expressions
for j < 2 are gathered in Sec. IV (or Appendix F for the flat
case), the harmonics are built using (2.28) and (2.33), with
the needed coefficients ;¢\ given by (2.37) and (3.18),
and the explicit forms of the generalized helicity bases
reported in Appendix C.

The case of a flat space is very different from the curved
cases. Indeed, we have shown that the general factorization
(6.19), which can be used in the flat case to build
systematically all radial functions (see Appendix F), does
not exist in the curved case, contrary to previous statements
in the literature. Our results provide a systematic algorithm
to build recursively the radial functions in curved space
by systematic exploration of the (j,s) space of radial
functions. A Mathematica notebook implementing this
algorithm is available at [18].

The radial functions are extremely powerful for the
computation of theoretical expressions for multipoles of
observables. Once an observable is written as an integral on
the background past light cone, it is sufficient to decompose
the angular structure on normal modes, and to use the
Rayleigh expansion in the form (7.39) to obtain the result.
In practical applications, it is sometimes preferred to use
harmonics which are decomposed according to a propa-
gation direction (e.g., photon’s direction in the case of
CMB) rather than the observation direction, and the relation
between both convention is simple, as we summarized in
Sec. VIT A.

Finally, it is worth mentioning that radial functions (and
thus harmonics) can also be defined for supercurvature
modes. They correspond to values of v in the complex plane
and rely on analytic continuations of the radial functions
built here. In [17] we detail how supercurvature modes can
be used to described spatially anisotropic (i.e., Bianchi)
space-times as supercurvature fluctuations over maximally
symmetric space-times.
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APPENDIX A: HYPERSPHERICAL
BESSEL FUNCTIONS

Hyperspherical Bessel functions are derived in detail in
Refs. [1,4,5]. For the convenience of the reader, though, we
present some key properties in this appendix.

The hyperspherical Bessel functions ® are solutions of
the following differential equation:

1 d

d
— 2 (y) — DY o K-—— L =0
rwy Wt 7 |
(A1)
They satisfy the following recurrence relations:
d 4
— Y = 2 _ Zq)y
AP v B L
(+1) )
~ 57T V- K€+ 1)y,
1
DY, = 2 _ 2¢)y
cot y @Y w1 VY K2 dy,_,
1
+2f+1\/y2—IC(f+1)2q>;H, (A2)
with
sinvy
= . A3
07 ysiny (A3)

A closed expression for a general ¢ is [4,16]

bl
‘ 1/2 i—=1 I/z —Kiz

. —1 d\7H!
x gin‘y singdy cos(vy). (A4)

Near the origin (y — 0), they are power-law suppressed
(except for Z = 0) as

Vr— K2

o~y
KA § SpYEY)

(AS)

z'\x

i=1
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In the closed case, 8in = sin and the variable v must take
positive integer values constrained by

0<?<w. (A6)
The lowest value v = 1 corresponds to a constant global
perturbation since there is only ®4~! = 1. The v = 2 mode
allows only for global dipolar modulations since Cbgzz =
cosy and @2 = (siny)/+/3.

The hyperspherlcal Bessel functions are normalized
similarly to usual spherical Bessel functions [Eq. (F8)]

[oswerrema =321
[oeiena =540 ag)

In the closed case, the integral on v must be understood as a
discrete sum on v > ¢ + 1.
A class of related functions is given by

fd
Pyt = . A9
2 P ()() ( )
One can check that these functions satisfy the differential
equation

d2 v,n d v,n
@"Pf + 2(1 + n) Cot)(@lpf

24+ 1)
r(x)

+n(n+ l)cotz(;()] Pyt = 0.

+ [vz—lC(l—f—n)—
(A10)

In practical numerical computations, hyperspherical
Bessel functions are challenging to compute. The reader
interested in fast and accurate implementations can check
Refs. [29,30].

APPENDIX B: SPHERICAL HARMONICS AND
HELICITY BASIS

In this appendix we work in the flat (Euclidean) three-
dimensional space, also identified with the tangent space at
the origin of the coordinates (y = 0) of curved spaces. The
unit direction vector is n, and we also use the helicity
vectors (7.34) along with the general helicity basis (2.10)
and the multi-index notation (2.11).

1. Spherical harmonics

Spherical harmonics are defined as functions on the unit
sphere:

20+ 1(—m)!
dn (£+m)!

Y2 (0. ) = "o P (cosd),  (B)

with the associated Legendre polynomials being given by

(B2)

Let us define, for any pair of functions A(n) and B(n),
the Hermitian inner product

(A|B} = {B|A}* = / EnA*(n)B(n).  (B3)
The spherical harmonics are orthonormal
(YY" = 8408 (B4)
and complete
00 4
ZZ Y2(m)Yr*(n') = 8n—n').  (BS)
=0 m=—

Given the spherical harmonics, which form a basis
for scalar functions on the sphere, one can define spin-
weighted spherical harmonics as basis for spin functions on
the sphere [31]. These are defined as

I (7Y
Y=\ e

Yy = EZ+S§|( 'Yz, s<0,  (B6)

or by induction as

@S ms N 209

1 2.y
NC+s+1) 0

N
1 _

Y e s L

m __
s+1Yz,” -

(B7)

where the spin-lowering  (¢)

operators are

spin-raising (#) and

P = —(sin0)* (89 + ﬁ@,p) (sin@)~*,
P =—(sin0)° (89 - ﬁ%) (sin@)~* (B8)

These operators are related to the covariant derivative D
on the sphere. Indeed, it is found that
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P =—2D. =—/2n_-D, (B9a)

—V2D_ = —v/2n, -D. (B9b)

This allows us to derive a central relation for the compu-
tation of covariant derivatives on the sphere

m \) ( lb) m 93 \)

D;( Ypn;*) = F i\/g ﬂz(s+1)Y,,ﬂnjE”1i
(:Fl‘f) m,, T Ats

+ NG IR SR LA

where the coefficients , A} where introduced in (3.7).
An explicit form of the spin-weighted spherical harmon-
ics is

i — g 20+ 1(+m)! (€ —m)!
=e
e dr (£ +9)(C—s)!

min(£—s,6+m) £ — £+
2 UGS
r r+s—m

r=max(0,m—s)

(COS §)2r+s—m

X (=1)7Fm=r=s W. (B10)
Useful properties are
Y7t (n) = (=1)" Y (n), (B1la)
i (=n) = (1)’ Y7 (n), (B11b)
L) = (-1 2L 1)
and the s <> m interchange property
(=1)%els? ym = (=1)melm?, Y. (B12)
Finally, we also find the orthogonality relation
{Y2LYES = 6008, (B13)

as well as the closure relation, which generalizes (BS)

o 4
SN )y () = Sn—n').  (Bl4)

t=|s| m=—¢

2. Relation with helicity basis

In this section, we detail how spherical harmonics and
spin-weighted spherical harmonics are related to the
generalized helicity basis (2.10). This extends the results

already collected in Appendix D of [26]. First, from the
general rule for the integration over products of n [13]

/—I’LIZ”‘ =0,

nle =

47r 2041

5(i|i2”.5l'2/_1i2f), (B15)

where the parentheses mean full symmetrization on
enclosed indices, it is possible to show that

{(Al]a,,} = A5\ ...87), (B16)
iV iA
=——. B17
NG T (B17)
a's is a special case of (2.10) with multi-index notation,

and is simply the STF product of # unit direction vectors
(see e.g. [13,32]). Equation (B16) is a particular case of
Eq. (C2) in [32].
If we define
Vi = 07 {1y}, (B18)

we can relate the spherical harmonics to the generalized
helicity basis (with s = 0) as

Y2 (n) = AZ'Ay (Rl)Y2Y = 2V, (B19)
The inverse relation is
¢
ple= 3 VEm){Y o'},
= Z A Y (R) Yk (B20)
From the identity
z 20+ 1
> Y)Y (n) = : (B21)
= 4z
we get the closure relation
Z yfm fm* _ 15<’1 5}:;) (B22)

Explicitly the y;fm are given by (for m > 0)
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[(z’-m)]

X agy, j53'"*‘ LYIGOAURIERRL sicnic
where
204+ 1 (6 —m)!1/2
Cfm = (_1)m u
dr (£ +m)!

_ (=1)/(2¢ = 2j)!
Aemi =206~ NE —m—2))!

Since we used a Cartesian basis in a Euclidean space,
we also define y;m = yf;" and we have the property

*1 [
yt’n: = (_l)my;—m
ative m. The y;fm satisfy the orthogonality property

which extends the definition for neg-

Vi yfm*: Slan, (B23)

They also allow us to build spin-weighted spherical
harmonics, in close analogy to (B19):

LY (n) = (F) be Vi als. (B24)
This relation is inverted as
R F)°A "
A%, _(Fra » 2 Z LYrm)Yie.  (B25)

m=—¢

Using (B13) and (B22) we deduce immediately the useful
orthogonality condition for the generalized helicity basis

A S
Aly | ats 2 i %
(Al A5} = 5”,—( b, )25§1 .80
4z (iy i)
= 5ff’dfs 0; o/ (B26)

4(22,”-1—1) 07

Furthermore, since the generalized helicity basis is a
complete basis for STF tensors at each point, we also find
the closure relation

4
_1al, 7S <11 t,)
E (dfs) nysng, _5 ]f
s==t

(B27)

In the construction of harmonics of this paper, and more
specifically in (2.39), we are not working in a Euclidean
space. However we can still use the object (B18) if it is
understood that it is defined in the tangent space at the
origin.

Finally note that the y’;m are related to the generalized
helicity basis in the zenith direction. Since in this special
direction (6 = 0) ¢ is not defined, we choose the convention

1
ny=e,, n,=e,, n. = 7§(ex Fie,) (B28)

which implies that at any point (6, ¢») of the unit sphere,
the helicity basis is obtained by a rotation of angle 8 around
the y axis and a rotation of angle ¢ around the z axis from the
basis at the zenith direction. With this choice we get in
particular for m > 0

Vi = (F) (Bed ) P (B29)
Note that we can recast the value at y = 0 of harmonics
given in (2.39). We find

£~ iEm) _5] mj(zm_ 1) 'ém P I;
R Y T R Tk

(B30)

With the formulation (B29), Eq. (B24) can be recast as

m K m, | 4n 7 saly

which obviously leads to (Blla) after complex conjuga-
tion. Using that the generalized helicity basis is a complete
basis for STF tensors, we also obtain by decomposing the
generalized helicity basis in the zenith direction (consid-
ered as a constant tensor)

(B31)

zen

J .
D (k) Yy = W

s=—J

(B32)

with the factors k;, defined by (2.18).
In the flat case, the definition of the y;;”

space at y = 0 can be trivially extended to any point by
simple translations. In the curved case, one uses the relation
(B29) and extends it to any point by parallel transport
along the radial geodesic reaching this point. Since the
generalized helicity basis is also parallel transported
along radial geodesics, the properties (B24) and (B32)

in the tangent

are also valid when )" and 7§ are evaluated at a general
J J

point with y # 0.

3. Rotations

Let us consider an active rotation of angles R(a,f3,7).
With the Euler angle notation, it consists in actively rotating
around the z axis by an angle y, then actively rotating
around the y axis by an angle $, and finally rotating around
the z axis by an angle a. The rotated spherical and spin-
weighted spherical harmonics are related to the original
ones by (see e.g. Appendix A of [33] or Appendix D.3
of [34])
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(B33)

[ Y7as ZD

) Y7,
where the Wigner D-coefficients are related to spin

spherical harmonics through

20+ 1
A

Y7 (B a) = (-1)"e* DL, (a.p.y).  (B34)

In particular, when considering only a rotation R(7)
around the y axis by an angle z (thatisa = 0, = 7,y = 0)

D, (Ry(7)) = Sy (1)1, (B35)

and

R(n)[\Ypa)] = (1)~ Y ;" .

J

(B36)

APPENDIX C: A COMPENDIUM OF
USEFUL FORMULAS

1. Explicit expression of the generalized helicity basis

From the general formula to extract the STF part from a
symmetric tensor [see e.g. Eq. (2.2) of [13]] one infers
the general expression for the generalized helicity basis
which is

[(Z-5)/2]
Ats
nypS = E ?angltz Gy, 1in,
n=0
+ +
XM ME M, (C1)

where the parentheses mean full symmetrization on
enclosed indices, and with the coefficients

(=1)"(2¢ = 2n — (£ = 5)!

7 (27 = )N2)I(£ =2n —s5)!"

(C2)

sa

It is instructive to write down explicitly the first few
terms of the generalized helicity basis (2.10). For j = 1, we
have by convention #; = n; and AF! = n. For two and
three indices, we find respectively

1
njj=nnj— ggij’
! —l(nin—i—n»n )
i = 5\t nng ),
P R
e = niny, (C3)

and

1
Rjje = ninjng — 5 (gijme + gjeni + grini)
. 1
Ay = g(nin g+ g+ nngngc),

1
——(gini + guni + guni).

15
Aije =3 (n g+ nfngngc + nning),
fzﬁz = nlin]i ,f (C4)

2. Products and contractions

In the process of obtaining recursive relations among
radial functions, we encounter a series of products and
contractions of generalized helicity basis elements which
we now collect. The contractions

Al Ay (=5 )
n:ﬁ:s pnP n:i:s f(2f— 1) (CS)
et = - £ 1 e (C6)

r 20-1 7
generalize Eq. (A23) of [15]. For s > 0 we also find

slep -

Loy = CNE e

f(2f _ ]) +(s+1)

For s > 0 we obtain

(C+s)(+s=1) 4,

Alep  Fo_
" 20020 —1)  E6-”

+s p =

(C8)

Repeated application of (C5)—(C8) allows to prove the
orthogonality property (2.12).
Defining the Levi-Civita tensor on the spheres as

€Ij - nkekt/v (C9)

we also have parity inverting relations
e a2 g (C10)

(g™ To—1)p £ Iy *

Let us now collect relations related to products of the
generalized helicity basis. Applying (A)3 of [15], we get

AI/ Ifj (f_s)(f+ ) <I/_

J— Lo
niYn +s f(Zf—l— 1) n:ts

is (i Al
+ €]<fn f—l)/"

11
f+1 p +s (C )

For s > 0 we also find
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N N i(£—5s) ilip alp_y)
ffnl = n:t(s+1) T € f”i/(;fn
C=s)C—s=1) 4., .
- - e, C12
20+ 1) Esrd (C12)
For s > 0 it reads instead
; 1 i(Z+s)
N N e €] lf’\lf 1)
Ny s 5 M (s- 20+ 1) My (s— 1)
4 4 -1 L
s S)( = )ﬁﬁf;‘_l) @i (C13)

20020 4+ 1)

Note that the missing case s = 0 for this relation is in fact
given by (C12) evaluated in s = 0.

Finally, note that the STF part of products of helicity
vectors are the expected relation (for s > 0)

Ay J) _ Alj

Ry = L) (C14)

but one should be careful that for s > 1 we also find

. 1 .
alend) = —Zald . (C15)

3. Derivatives of helicity basis
a. Simple derivative

In this section, we collect relations related to derivatives
of the generalized helicity basis. We work on the maximally
symmetric curved space with metric (2.1) whose associated
covariant derivative is V;. We first find

Vit = r—()()cotee‘gn,iY + (=) eoty[g, i 77 > —nyhp]
— scotynii; "7, (C16)

The first line might seem peculiar at first sight, but it can be
absorbed when considering instead the derivative of prod-
ucts of spin-weighted spherical harmonics multiplied by
the associated helicity basis, which is precisely what we
always have in all expressions. Indeed, for s > 0 we get

V(L VERE) = 4= 8) ot gy i) = myf]. Y
-5 cotznfﬁi(‘q_l)h Y
(+47) R
\/_ (},’) (s+1 Ymnljfn;ijs
ls
(A7) _yYing i, (C17)

V2r(y) *

and in the particular case s = 0 we find simply

V,(Y¢h) = +jeotx[gpu fis_y —nyh Yy
1 e+
_r_()() ?Jran;n,j
1 ce+1)
+r7(;() —  -Yemhy,. (C18)

From (C14) and (C15), it is obvious to consider only the
STF part of these relations.

b. Divergence of helicity basis

Furthermore, by contraction with g”% of the expressions
in the previous section, we obtain relations associated with
the divergence of an helicity basis. For s > 0 it is

u X {(] + 1) eoty, Y7R;?
J2j=1) ‘

+ (+’1;) (j—s—1) YmAi-(Hrl)
\/ir(;() (]+S) +(s+1) 2 1/1

Vr( Yra ) =

( A ) (j + 5 - ) Ym”;li(s_l)
V2r(y) 2(j—s) bt
(C19)
whereas in the s = 0 case it is
JjG+1) e
vr( Py ) = -1 cot y Y7 i, |
n 1 2 +1) (j-1) mpy+1
Vo2 @-nth e
L ee+) (-0,
oV 2 ey

c. Curl of helicity basis

The curl is also deduced by contraction with the Levi-
Civita tensor of the expressions in Appendix C3a.Ifs > 0
we get

+i- cot)(iSY”“iS

.m;)(j—s)
o

curl(y,Yyh;") =

mﬁi(erl)
Es+1)7 2

( /13)( ) mpE(s—1)
—iy ) 2j 6D Yo (C20)
and for s = 0 we get simply
AN +1)
curl(Y%7; ) = iY——-> ( Y”“+1 +_ Y’”A_1>
( 4 [j) \/Erw) +15 7
(C21)
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d. Laplacian

For a generic function f(y), and using twice (C17) we
find for s > 0

A(fo YA ) = +[f" + 2 otz f'] . YIR,
. mali
+ [feot?(r) (52 = j(j + 1)), Y,

f m’\lj
+ 7‘2()() (Sz - I/ﬂ(l’ﬂ + 1)) :I:sz nyg
oty s mal
+ r—()() (- s>\/§(+/1f)i(s+l)yf Mi(s+1)
oty (j+s), mpl
) V3 e VR

(C22)

In the s = 0 case we find

A(fYpals) = [f" + 2ot g f' = feot? (1) j(j + 1) YAl

f mal,
R0 (¢ + 1)Y2 il
CDt){ . m’\lj
—r—()()J Zf(f—l-l)_HanH
cot .
+r—(;)’j 2006+ 1)_yua,. (C23)

APPENDIX D: GEOGRAPHICAL RECURSION
RELATIONS

We collect recursive relations among radial functions in
the (j, s) plane. We illustrate in Fig. 1 the radial functions
which are related by these individual relations.

The NSW relation, whose derivation is summarized in
Sec. III B is (for 0 <5 <)

(142)(145) (jm)
T o Loy 5%
G+s+Drl)™
(5+1)K;n+l (j+1.m)
(2] + 1) j:(S‘Fl)af

=(-s) mt)(i(sﬂ)a,(!m) +

+ (J - S)(SJrl)Kj a(j_l‘m)
2+ 1)+ 14 9) 5077

(j—s)my (m)
ilmi(ﬁl)afj . (Dl)

It is understood that when j = s, this is a relation linking

La?™ 1o L(ep@ 1) only. Indeed the coefficients in

front of these two terms contain /j — s, but the coefficients
in front of the other terms contain (j — s) (and also multiply

radial functions that no longer satisfy |s| < j). Hence it
must be understood that we must divide first by /j — s
before evaluating in j = s and we get

(:47)

(jm) _ i+1.m
VarG) P T (e @
: 1 2 _ 2
% A —m 2 — K+ 1)

G+ DE2j+1)
(D2)

A recursive application of this relation allows us to
deduce ,_ ja(f/ 9 from Oe(foo) = @Y. Using (3.26), we then
recover (3.13).

As for the NSE relation, it is (0 < s < j)

(—’1}) (—)“}) a(jm)
(=s+1r() ™"

m

. im (S—I)K'_;'_l i lm
=+ s)eoty, pay )+(2j+j1)i(s—l) g

[+ s K"
+ Ut ) ali=1m)
27+ 1) +1=95)*0707

(j+ s)my (m)
Sl e .

Combining relations NS (3.23) with the NSE or NSW
leads to the set of four triangular relations (see interpre-
tation of this denomination on Fig. 1):

(1) NW relation (for 0 < s < j):

)
(4 8)r(x) *=077
d jm . jm
= @isai’! "+ (J+1-s) cot)(isa;j )
s]("." . mv .
+— J Sa(] Lm) +i— sa(]m). D4
(] 4 S) +s7¢ j +sU7 ( )

(+/1§”)(+Aj) a(jm)
(j = s)r(z) Her07e
d jm . jm
= @isa(f/ "+ (J+1+s) Cotlisag )
SK’." . mv .
420 Sa(J Lm) i sa(1m> D5
(] _ S) 570 j 577 ( )
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(3) SW relation (for 0 < s < j+ 1):

(LA)(4) -
—_— Ha
(j+ 1 =s)r(y) =e=D7¢
d im . jm
- _aisa;j ) + (J + S) Cot)(isa(f! )
Ky Glm) | . MY (jm)
T — +
G+1—s5)=% 1j_|_1:tsaf
(D6)

it reduces to a relation

)a(fjm) and _ .« L!H ™) . However, both

In the case s =j+1,

between (51

terms contain a factor 1/4/j + 1 —s, so it must be
understood that the expression is to be multiplied by
v/j + 1 — s before being evaluated in s = j + 1, and
we recover (D2).

(4) SE relation is (for 0 < s < j):

(+’1Sf)(+)“j> (X(jm)
(+ 14 s)r(y) o7
d m m
= _@isa(j ) (.] - S) Cot)(:ts (j )
‘YmeLl j+1,m . mv im
(J+j1_|_s):|:s(f/ ):l:l.]_'_l:l:sa(f!)

(D7)

Let us also stress that by taking the difference of the
NW and NE relations, we obtain a useful NW-NE relation
which involves no derivative, which is (for 0 < s < j)

(+42) (47)

(jm)

2r(y) (j — 5) £
_ (—’1;)(—@) ( m i . my aum
2r(x) (j + ) £6-0% j o

( s (j=Lm).

+s cot)(isafm) + WSKJ +5%p (Dg)

Similarly, one could combine the SW and SE relations to
get a SW-SE relation without derivatives.

APPENDIX E: DIVERGENCE, CURL,
AND STF RECURSIONS

Following the method of Sec. III B, we can obtain
recursive relations among radial functions in the (j,s)
space, from the divergence relation (2.25), the curl property
(3.16), and the STF construction of derived modes (2.23).

The divergence relation leads for 0 < s < j to

d m jm ] ji—1,m
ai (j )+(]+ )COt)(isaE"J )+j2—2SKJ i\a({! )

(+42)(143) o AR (LA) -
a(/ ) - v JT a(/ )
TG = T R () e
(E1)
In the s = O case it reduces to
d Gm .. Gm) | OK7 (Gi-tm)
4 —o€;  + (j+1)cotye,; +70€f
I+ 1)(j+1 im
_ (+1)(+1) (jm) (E2)

i)

We can check that this latter case corresponds to the real
part of the NE relation (D5).
The curl relation among radial functions is for0 < s < j

() (jm) (jm)

s d_i‘ +eoty )" | £imv_a)"
CGEIGE) L e
2r(;() £(s+1)7p 2r(y) (s=1)7p
(E3)
In the s = O case it reduces to
my VE(C+1)j(j+1) im
1 fj \/ r()() - _m’“oeg )' (E4)

This latter relation is exactly the imaginary part of the NE
relation (D5) or the SE relation (D7). Note also that
combining the curl relation (E3) and the div relation
(E1) allows us to remove the derivative of the radial
function and leads also the NW-NE relation without
derivative (D8).

Finally the STF construction of derived harmonics
brings the relation (for 0 < s < j)

jm . jm (] + 1) m j-+1,m
@isa(f! ) - J cotxisaﬁi = ms’(ﬁlisa;j )
—_——— a
2r()(j + 1+ 5) H0HD77
(—/If)(—/lj) (Z(jm). (ES)

C2r(p)(j+ 1 =) DT

The case j = s+ 1 can also be considered with methods
similar to those detailed after (D6), and it is also reduced
to (D2).
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In the s = 0 case it is

jm . im OK_"’zrl j+1,m
@Oez(f’j )—]cotj(oefpj )_j_lkloez(fj :
1 f(f + 1)] (jm)

=T\ G (ES)

This latter relation is nothing but the real part of the SE
relation (D7).

We then check that combinations of all the relations of
this section can be used to form the triangular relations
(NW, NE, SW, and SE relations). Hence this is an
alternative derivation for all recursions among radial
functions in the (j, s) space. However, the fact that we
need to separate explicitly the real and imaginary parts of
the triangular relations in the cases s =0 makes this
derivation less direct and we prefer the method based on
the various projections of (3.22).

APPENDIX F: RADIAL FUNCTIONS
IN FLAT SPACE

In the flat case, there is a complete separability between
the angular and the spatial dependencies. The spatial
dependence is the same for all modes, and thus the same
as for scalar harmonics, that is, it is a pure Fourier mode.
We choose to align the wave vector k of the Fourier mode
with the zenith direction e,. From this separability, the
plane-wave normal modes are all of the form [6,11]

C; .
J m (n)elke,~r’

SG(j’")(r’n) — ﬁSY]
J

(F1)

where r = rn, and r is now the radial coordinate, corre-
sponding to plane waves harmonics

jm ~(i Cj im _ike.-

ng, l)(r,n) — Og(Jm) 2]_1 13}}/ eiker. (F2)
We do not use y which was in units of curvature, since now
the curvature length 7, is infinite. Note that the Fourier
mode magnitude k is also no more in units of inverse
curvature length. In practice, the trigonometric functions
3in(y), tan(y), and cot(y) need also to be replaced
respectively by r, r, and 1/r in all expressions. Using
the Rayleigh expansion

ellen =N " \/an(26 + 1)1’ j (kr)YO(n)  (F3)
14

the decomposition of the plane-wave normal modes is then
given by

(G (rn) = cpad™ (kr) Y2 (n)  (F4)
14

with the radial functions built as

sl x) = Y e ()it
[ émeL+)
C+1)(2j+1)

(F5)

with the coefficients SC’;’B;" defined in (F9).

The j, are the usual spherical Bessel functions satisfying
the relations

1

Jo(x) = 7l [Cje-1(x) = (£ + D)jer (%)),
I o) + () (F6)

with j,(x) = sin(x)/x. They also satisfy the differential
equation

1d/,d ce+1)).
i <x aM) + [1 e =0, (F7)

and the normalization condition

_ndla-Db)
2 a2

/ jolax)jo (bx)x2dx (F8)

The constants in (F5) are the so-called Gaunt coefficients,
and are defined as

crp = [ @R Y

:<—1>m1+s\/<2f1+1)<2fi;1)<2f3+1)

<f1 2 fs)( AN fs)
X b
s 0 —s/) \—my my my

where the 3 x 2 matrices on the third line are the well-

known Wigner 3-j symbols. From the symmetry properties
of the 3-j symbols, we deduce that

(F9)

Cppn = nCly,sC =scplr (F10)
which with (F5) proves rigorously the properties (3.26) and
(3.27) in the flat case.

Let us now collect the explicit forms of the radial
functions in flat space. We recover results of [6,7] for s =
0 or s =2 up to the global sign inversion for odd modes
since we collect results when defining harmonics with
respect to the observed direction (see Sec. VII A for
propagation direction harmonics). We also use the compact
notation x = kr and we recall that in the flat case £, = 1 for
all n since v = k, so the constants ,¢U") are directly read
from those reported in Sec. IV. The first radial functions are
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()6(5’00) = jf(x)v

10 .
ocv” = ju(x),

Lo _ JEEH D o)

1%7 2 X ’
| B .

0e2” = Z[3j0(x) + o (%),

2

X

(20 _ 3¢(¢+1) d [jex)
1%¢ 2 dx ’
(20) 3(£+2)!je(x)

2 T\[8(z-2) 2 °

L D) je(x)
(17 2 X ’

S ld(xjf(x))
me 2 xdx

S = =2,

07 2 dx X
(21) " jlf(x) Je(x) | je(x)
€0 = Jp(x) + . 2 + 7
(21) _1 i Je(x)
we 27dx \ x )’
21 +2)-1)14d .
e g i)
(21) (Z+2)(£=1)j(x)

o T\8(-2) £ °
w JEr2(Z-1)14d
1¢¢ ) Pa[x”(x)]’
@ _ _V{+2)(€=1)j(x)
WPe 2 X ’

(Flla)

(F11b)

(Fllc)

(F11d)

(Flle)

(F11f)

(F12a)

(F12b)

(F12¢)

(F13a)

(F13b)

(F13c¢)

(Fl14a)

(F14b)

2 1, . Jr(x) Jje(x)
2o = 4 |70) = j(x) + 475 1 2702
2 1 d ;.
by ——ﬁa[xzjf(xﬂ- (Fl4c)

APPENDIX G: COMPARISON WITH
LITERATURE

The harmonics built in this paper can be related to the
scalar, vector, and tensor harmonics derived in [4,10] in the
closed case, and expressed in the usual orthonormal
spherical basis (2.6) rather than with the helicity basis.
In these references, the harmonics and derived harmonics
are separated into their electric (even parity) and magnetic
(odd parity) by considering the contributions

ngj"m‘) + ngj—V"‘) (Gl)
From the property (2.42), we see that the plus sign selects
only the contribution of the electric (even parity) radial
modes, whereas the negative sign selects the magnetic (odd
parity) radial modes. To be specific the three vector
harmonics defined in Egs. (12—14) of [10] are proportional
to respectively the m = 0 harmonics (necessarily of even
type), the m =1 magnetic harmonics, and the m =1
electric harmonics, where the notation used is k=v — 1,
such that it takes positive integer values. Similarly the tensor
harmonics of Egs. (26-30) are successively proportional to
the m = 1 magnetic harmonics, the m = 1 electric harmon-
ics, the m = 0 harmonics (necessarily of even type), the m =
2 magnetic harmonics, and the m = 2 electric harmonics.

The spectrum of eigenvalues of the Laplacian can also be
compared for scalar and vector harmonics with the exterior
calculus approach of [35] in the closed case, and we now
detail our agreement. We still work in units such that
. =1. The Laplace-de Rahm operator is defined as
A = —(ds + 6d). For scalar functions it matches exactly
the Laplace-Beltrami operator (2.19). In the closed case the
set of eigenvalues for scalar harmonics (j = m = 0) is the
setof k> =1> —1 = L(L +2) where L > 0 and v > 1 are
integers. For the derived vector valued harmonics (j = 1
and m = 0) which correspond to exact forms, we find that
the spectrum is the same since

AV;0) = V.AQ0) = _2V,0(00), (G2)

However for vector harmonics (j = m = 1), which corre-
spond to co-exact forms since they are divergenceless, we
find

Ao"V = (a-2)0") = (k2 +2K) 0"

The spectrum of A in that case is the set of k> 42 = 12
with the integer values v > 2, in agreement with [35].
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APPENDIX H: TABLES OF SYMBOLS

We gather in Tables II and III the most commonly used
symbols of this work.

TABLEII. Main symbols used in the construction of harmonics.
Variable Definition
r(x) 22)
K (2.3)
v (2.27)
bjs (2.13)
djs (2.13)
ki (2.18)
sgtm (2.33)
$gim (2.34)
Cpy Cp (2.29), (7.6)
S (3.14)
gtim (2.26)
N7 54
gin, tan, cot §ITA
K7 (3.19)
Y 3.7)
4 6.1)
A, (B17)

TABLE III. Main functions and tensors used in building
harmonics. The barred version of these functions are related to
the propagating direction, and are defined in Sec. VII A.

Function Definition
ny, (2.10)
" (228)
edm . pgam (2.40)
,Gm (2.28)
Nl (6.2)
‘o § 1D

7" ©.1)
G GU™ () § IE
o™, Qi w) § E
GUm (), § VIB

) § VIB
Ve (B18)
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