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We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally
symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical
harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into
their radial and angular dependencies. We provide a thorough and self-contained set of expressions and
relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher
tensor type by recursion among radial functions, and we collect the complete set of recursive relations
which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we
also collect explicit forms of the radial harmonics which are needed for other cosmological observables.
Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence
and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements
in the literature.
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I. INTRODUCTION

Tensor harmonics are ubiquitous tools in gravitational
theories. Their applicability reach a wide spectrum of
topics including black-hole physics, gravitational waves,
quantum-field theory in curved spacetimes, and cosmology.
In the particular context of cosmology, one is usually
interested in the description of tensor harmonics over
maximally symmetric manifolds, since these are the spaces
in better agreement with observations. In this work we
revisit the construction of scalar, vector, and tensor har-
monics in symmetric three-dimensional spaces with par-
ticular interest in—but not limited to—cosmological
applications.
Scalar harmonics in symmetric spaces are well known

among cosmologists [1], and they are defined as a complete
set of eigenfunctions of the Laplace-Beltrami operator.
Vector- and tensor-valued harmonics can be similarly
defined, and their explicit forms were gathered in [2–4].
These objects are found nearly everywhere in cosmological
applications, especially in those related to large-scale
structure and its related observables. Indeed, on cosmo-
logical scales, where linear perturbation theory successfully
accounts for the formation of structures, perturbation
modes, that is the components in an expansion on
tensor harmonics, evolve independently from one another.

This fact enormously simplifies the construction of
observables and the assessment of their statistics. In
particular, a decomposition based on tensor harmonics
is essential for the computation of cosmic microwave
background (CMB) fluctuations around a maximally
symmetric (but possibly curved) space [5]. The normal
modes which have been introduced in [6,7] correspond to
specific components of those of [5], and are consequently
an equivalent presentation of them. An equivalent covar-
iant formulation of these normal modes is also presented
in [8,9].
In this article, we review the general construction of

harmonics in maximally symmetric three-dimensional
spaces, along with the associated normal modes, and
show how they can be systematically built by recursions.
In doing so, we collect all explicit expressions of the
normal modes for scalar, vector, and tensor harmonics.
Throughout, we choose to use a modern formulation
based on spin-weighted spherical harmonics from which
even and odd parts and also the general structure is more
tractable. Hence, this differs from the formulations given
in [10,11].
Section II A is dedicated to definitions and notation. In

particular, we define the harmonics, the helicity basis, the
normal modes and the radial functions of which many
properties are collected in the appendixes. Section III is
dedicated to the general construction of these radial
functions which characterize fully the harmonics and most
relations are collected in Appendix D. The reader interested
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only in the actual expression of the harmonics can jump
directly to Sec. IV where the explicit expressions of the
radial functions are collected, or to Appendix F if interested
in the flat case only. The normalization of harmonics is
discussed in Sec. V, while plane waves are built in Sec. VI.
The formalism is illustrated in Sec. VII for the standard
multipole expansion of the CMB radiative transfer func-
tions. Finally the comparison of our results with previous
references is detailed in Appendix G. The tables of
Appendix H gather the most important ancillary notation
used throughout.

II. DEFINITIONS

A. Maximally symmetric spaces

We start be recalling some basic properties of maximally
symmetric spaces. A nice and physicist targeted introduc-
tion can be found in [12].
Maximally symmetric spaces (as opposed to spacetime)

are uniquely fixed by a real parameterK, known as constant
of curvature. In three dimensions, and using standard
spherical coordinates ðχ; θ;ϕÞ, the metrics of these spaces
read

gijdxidxj ¼ dχ2 þ r2ðχÞ½dθ2 þ sin2 θdϕ2�: ð2:1Þ

The radial coordinate χ is implicitly defined by the function
rðχÞ, which assumes different values according to the sign
of the parameter K:

rðχÞ ¼

8>><
>>:

lc sinhðχ=lcÞ; ðK < 0Þ;
lc sinðχ=lcÞ; ðK > 0Þ;
χ; ðK ¼ 0Þ:

ð2:2Þ

Here, lc ≡ 1=
ffiffiffiffiffiffiffijKjp

is the curvature radius, which is related
to the Ricci scalar by R ¼ 6K. Clearly, K distinguishes
between open (K < 0), closed (K > 0), and flat (K ¼ 0)
spaces. When K ≠ 0 we can further use units for which
lc ¼ 1, that is, all lengths are expressed in units of the
curvature radius and, in the closed case, this implies
0 ≤ χ ≤ π. The general case lc ≠ 1 can be trivially restored
from dimensional analysis if needed. To emphasize our
special choice of units, let us introduce a reduced curvature
parameter

K≡ Kl2
c ¼ K=jKj ð2:3Þ

which assumes the valueþ1 (−1) in the closed (open) case.
The Riemann tensor of maximally symmetric spaces can

be written directly in terms of the space metric and the
constant K:

Rijkl ¼ Kðgikgjl − gilgjkÞ: ð2:4Þ

This greatly simplifies identities involving commutators of
covariant derivatives. One identity that we shall need is

½Δ;∇k1 � � �∇kn �Ti1…ij ¼ 2K½nðnþ 1Þ=2þ nj�
×∇k1 � � �∇knTi1…ij ð2:5Þ

where ∇i is the covariant derivative associated with the
metric (2.1) (i.e., ∇kgij ¼ 0) and Δ ¼ ∇j∇j is the Laplace-
Beltrami operator. In what follows we shall adopt the
unifying notation sin, tan, and cot for trigonometric
functions, defined as the usual functions when K > 0,
and as their hyperbolic counterparts when K < 0.

B. Helicity basis

The notion of helicity (or spin) basis is more conven-
iently introduced in terms of an orthonormal triad of
basis vectors

nχ ¼ ∂χ ; ð2:6aÞ

nθ ¼ r−1ðχÞ∂θ; ð2:6bÞ

nϕ ¼ r−1ðχÞ cscðθÞ∂ϕ; ð2:6cÞ

together with its dual basis

nχ ¼ dχ; ð2:7aÞ

nθ ¼ rðχÞdθ; ð2:7bÞ

nϕ ¼ rðχÞ sinðθÞdϕ: ð2:7cÞ

From this we can form the standard helicity vector (spin 1)
basis as

n� ≡ 1ffiffiffi
2

p ðnθ ∓ inϕÞ;

n� ≡ 1ffiffiffi
2

p ðnθ ∓ inϕÞ: ð2:8Þ

Given a unit vector n at the origin (χ ¼ 0), the pair (χ; n)
denotes a point reached following a geodesic of length χ
whose tangential direction at the origin is n. It is also
obvious from the spherical symmetry that the tangential
vector of the geodesic at that point is nχ . Hence it is
customary to use the symbol n for both nχ and its dual nχ .
The helicity basis vectors n� also depend on the point (χ; n)
considered, but they are parallel transported along a radial
curve, that is

nk∇kn�i ¼ 0: ð2:9Þ

Thus, since they depend essentially only on the direction n,
it is customary not to write this dependence explicitly.
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We now use the vector basis (2.8) to build a suitable
tensor basis (spin s) for symmetric trace-free (STF) tensors.
For 0 ≤ jsj ≤ j, we define

n̂�s
i1…ij

≡ n�hi1…n�is nisþ1
…niji; ð2:10Þ

with a similar definition when free indices are up. The angle
brackets mean that we must form the symmetric trace-free
part on the enclosed indices, and this is performed in
practice with (C1). Analogously to the helicity basis, these
tensors (which are also parallel transported) depend only on
the direction n—a dependence which will be omitted from
now on.
In what follows, it will be convenient to introduce a

multi-index notation

Ij ≡ i1…ij; ð2:11Þ

such that the basis for STF tensors is written succinctly as

n̂�s
Ij

or n̂
Ij
�s. In Appendix B we summarize how the extended

helicity basis (2.10) is related to spin-weighted spherical
harmonics.
The generalized helicity basis (2.10) extends the multi-

index notation reviewed in Ref. [13], which is restricted to
using the tensors (2.10) with s ¼ 0. Up to normalization
differences, it corresponds to the Legendre tensors intro-
duced in [14] for the cases s ¼ 0, 2. The explicit expres-
sions for j ≤ 3, and a collection of properties (which
extends those already found in Appendix A of Ref. [15]
for the case s ¼ 0), are given in Appendix C. The set of n̂sIj
with jsj ≤ j form a basis for STF tensors with j free indices
at each point. Their normalization, used for extraction of
components along that basis, is given by

n̂�s
Ij
n̂
Ij
∓s0 ¼ δss0djs ð2:12Þ

where

djs ≡ j!
ð2j − 1Þ!!

1

ðbjsÞ2
;

bjs ≡
ffiffiffi
2

p jsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðj!Þ2
ðjþ sÞ!ðj − sÞ!

s
: ð2:13Þ

C. Decomposition of tensor fields

Any STF tensor field in a maximally symmetric
(three-dimensional) space can be decomposed onto the
generalized helicity basis using spin-weighted spherical
harmonics. This decomposition can be understood in two
steps. At each point the helicity basis is a basis for STF
tensors at that point, hence we can decompose the STF
tensor field as

TIjðχ;nÞ ¼
Xj

s¼−j
sTðχ; nÞn̂sIj : ð2:14Þ

The spin functions sTðχ; nÞ are then decomposed onto spin-
weighted spherical harmonics, so as to separate its radial
and angular dependencies. This leads to

TIjðχ; nÞ ¼
Xj

s¼−j

X∞
l≥jsj

Xl
M¼−l

sTlMðχÞsYM
l ðnÞn̂sIj : ð2:15Þ

Given the rotation property (B33), this is a decomposition
in irreducible components under the group of rotations.
On the left-hand side, we recall that j is the number of free
indices given the multi-index notation (2.11).
The functions sTlM are however constrained by the fact

that the tensor fields must assume a given value at the origin
of coordinates (χ ¼ 0). Let us consider the tensors Yjm

Ij

defined at the origin of the system of coordinates, and
which are explicitly given in Appendix B, along with their
properties. They form a complete basis (for STF tensors)
and we can use them to decompose the value of the STF
tensor at origin in the form

TIjðχ; nÞjχ¼0
¼

Xj

m¼−j
tmY

jm
Ij
: ð2:16Þ

Therefore we find that at the origin the coefficient functions
sTlM must be

sTlMjχ¼0 ¼ δjltMkjs ð2:17Þ

where

kj�s ≡ ð∓1Þsbjs
ð2j − 1Þ!!

j!

¼ ð∓1ÞsðdjsbjsÞ−1: ð2:18Þ

This can be seen either from property (B32) once (2.17) is
replaced into (2.15), or from the component extraction by
contraction of (2.16) with the n̂sIj , and using the normali-

zation (2.12) and the property (B24).
In the next section we define the tensor harmonics,

and in the subsequent one we shall be guided by the
decomposition (2.15) to define normal modes and radial
functions.

D. Laplacian and harmonics

The tensor valued eigenfunctions of the Laplacian are
defined as

ðΔþ k2ÞTi1…ij ¼ 0: ð2:19Þ
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We further ask these modes to be STF and divergence-free
tensors, that is

∇i1Ti1…ij ¼ 0: ð2:20Þ

Solutions of (2.19) and (2.20) with m free indices, and
for a given k, are called harmonics of typem for the mode k,
and are denoted as

QðjmÞ
i1…ij

; j ¼ jmj: ð2:21Þ

When jmj ¼ 0, 1, 2 these are called respectively scalar,
vector, and tensor harmonics.
We next introduce some derived harmonics which are

obtained by STF combinations of ðj − jmjÞ derivatives of
these harmonics. More precisely they are defined as

QðjmÞ
Ij

≡∇hi1…∇ij−jmjQ
ðjmj;mÞ
ij−jmjþ1…iji

kj−jmj ; ð2:22Þ

which implies the basic relation for j > jmj

QðjmÞ
Ij

¼ 1

k
∇hijQ

ðj−1;mÞ
Ij−1i

: ð2:23Þ

It can be checked by using (2.5) that that they are not
divergenceless and do not satisfy (2.19), but they satisfy
instead

½Δþ k2 −Kðj − jmjÞðjþ jmj þ 1Þ�QðjmÞ
Ij

¼ 0 ð2:24Þ

as well as

∇pQðjmÞ
Ij−1p

¼ −qðjmÞQðj−1;mÞ
Ij−1

; ð2:25Þ

qðjmÞ ≡ ðj2 −m2Þ
jð2j − 1Þ

ðν2 −Kj2Þ
k

: ð2:26Þ

Here we have introduced the notation

ν2 ≡ k2 þ ð1þ jmjÞK; ð2:27Þ

such that harmonics and derived harmonics can be either
characterized by the value of the mode k or by the related
mode ν. If we fix k, then ν is a function of both jmj and k.
Conversely if we fix ν, then k is a function of both ν and
jmj, and from now on we consider this point of view.

E. Comment about notation

For simplicity, we often omit to write the dependence
of the harmonics on k (or ν) to alleviate the notation.
Similarly, wherever not needed, the dependence on the
position on space, that is on (χ; n), is not written explicitly.
Hence, even though the full expression of a harmonic

should beQðjmÞ
Ij

ðχ; n; νÞ, we shall useQðjmÞ
Ij

ðνÞ,QðjmÞ
Ij

ðχ; nÞ,
or simply QðjmÞ

Ij
, depending on the context. Such practice

will be used not only for the harmonics, but for any other
quantities depending on χ, n, and ν.

F. Normal modes

In order to find a decomposition of the type (2.15) for the
harmonics and their derivations, we follow [6,7] and split
the radial and angular dependence through a new function

sG
ðjmÞ
l ðχ; n; νÞ≡ clsα

ðjmÞ
l ðχ; νÞsYm

l ðnÞ; ð2:28Þ

with the conventional factor

cl ≡ il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
: ð2:29Þ

We insist on the fact that sG
ðjmÞ
l depends on the point

considered, that is, on (χ; n), while the STF basis n̂sIj
depends on the choice of n. Moreover, the radial functions

αðjmÞ
l ðχ; νÞ do not depend on n, while the spin-weighted

spherical harmonics sYm
l ðnÞ do.1 The radial functions, to be

constructed in Sec. II G, are conventionally normalized
when l ¼ j as [6,7]

sα
ðjmÞ
l

���
χ¼0

¼ 1

2jþ 1
δlj: ð2:30Þ

Accordingly, it implies that around the origin

sG
ðjmÞ
l¼j ¼ cj

2jþ 1
sYm

l¼j þOðχÞ: ð2:31Þ

In general radial functions are nonvanishing only for the
conditions

j ≥ maxðjmj; jsjÞ; l ≥ maxðjmj; jsjÞ; ð2:32Þ

and are chosen to be null functions otherwise.
We now search to build a basis for tensor harmonics (and

their derivations), with j free STF indices, in the form

lQðjmÞ
Ij

≡ Xj

s¼−j
sgðjmÞ

sG
ðjmÞ
l n̂sIj ; ð2:33Þ

where the sgðjmÞ are numerical coefficients yet to be fixed.
These harmonics correspond to considering a single (l;M)
pair in the otherwise general sum of (2.15). The summation
on l will be taken when we present the construction of
plane waves in Sec. VI, and the summation onM is needed

1In fact, such separation between radial and angular depend-
ence lies in the heart of the total angular momentum method;
see [6] for more details.
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only when considering general reference axis harmonics as
detailed in Sec. III E.
Moving forward, let us also define

sg̃ðjmÞ ≡ sgðjmÞdjs; ð2:34Þ

such that from (2.12) we get the inverse relation

lQðjmÞ
Ij

n̂
Ij∓s ¼ �sg̃

ðjmÞ
�sG

ðjmÞ
l : ð2:35Þ

From (2.33) and (2.35), we see that the coefficients sg̃ðjmÞ

and sgðjmÞ are used to relate the tensors lQðjmÞ
Ij

to the

functions �sG
ðjmÞ
l —called normal modes—and vice versa.

The normal modes are the coefficients [with a functional
dependence on (χ; n)] of the harmonics in the generalized
helicity basis. Since the coefficients sgðjmÞ (and thus sg̃ðjmÞ)
are yet undetermined, we can further choose that, for a
given ðjmÞ pair

�sg̃
ðjmÞ ¼ ð∓Þs

bjs
0g̃

ðjmÞ;

�sg̃
ðjmÞ ¼ �sg̃

ðj;−mÞ; ð2:36Þ

which, given (2.18), implies that

�sg
ðjmÞ ¼ ð∓Þsbjs0gðjmÞ;

¼ �sg
ðj;−mÞ; ð2:37Þ

and, in particular

−sgðjmÞ ¼ ð−1ÞssgðjmÞ; ð2:38Þ

with a similar relation for the sg̃ðjmÞ. The choices (2.37)
[that is sgðjmÞ ∝ kjs for the dependence on s] ensure that

l¼jQ
ðjmÞ
Ij

���
χ¼0

¼ 0g̃
ðjmÞ cj

2jþ 1
Yjm

Ij
; ð2:39Þ

for exactly the same reasons detailed after (2.16).
Given the linearity of (2.19), any linear combination of

solutions of the type (2.28) for different values of l is also a
solution. This is how plane-wave solutions are built, and we
discuss this construction in Sec. VI. Finally, it is trivial to
restore spatial dimensions (lc ≠ 1) since harmonics, nor-
mal modes, and radial functions are all dimensionless.

G. Radial functions

We recall that for simplicity the dependence on χ and ν

of the radial functions sα
ðjmÞ
l is omitted. We also split them

into even and odd parts (also called respectively electric and
magnetic radial functions) as

�sα
ðjmÞ
l ¼ sϵ

ðjmÞ
l � isβ

ðjmÞ
l ; ð2:40Þ

and by construction there is no odd part for s ¼ 0,
that is

0β
ðjmÞ
l ¼ 0: ð2:41Þ

We shall check further that they also satisfy the
properties

sϵ
ðj;−mÞ ¼ sϵ

ðjmÞ;

sβ
ðj;−mÞ ¼ −sβ

ðjmÞ: ð2:42Þ

In practice this means that we only need to build the radial
functions for m ≥ 0.
In most cases ν is real and the electric and magnetic

radial functions are real. However, when considering
supercurvature modes on open spaces [16,17], ν can
be complex. In that case one cannot deduce from (2.40)
that complex conjugation on radial functions amounts to
s → −s, and one must rather use (3.35).

III. BUILDING HARMONICS

We now proceed to the determination of the radial
functions. Indeed, they determine the normal modes from
the definition (2.28), and subsequently the harmonics (and
derived harmonics) from (2.33). In the next section we
first start by building the radial functions for harmonics
(j ¼ jmj), and in the subsequent one we deduce the radial
functions for the derived harmonics (j > jmj). In all
expressions, the value of l is general.

A. Radial functions of harmonics (j= jmj)
We recall that harmonics are divergenceless. We normal-

ize them with

0g̃
ðj;�jÞ ¼ 1: ð3:1Þ

We first note that [see e.g. Eq. (A.22) in [9] ]

Δ½curlðlQðj;�jÞ
Ij

Þ� ¼ curl½ΔðlQðj;�jÞ
Ij

Þ�; ð3:2Þ

where the curl is the obvious generalization to STF tensors
defined by

curlTIl ≡ ϵjphi1∇jTp
Il−1i: ð3:3Þ
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Hence, the curl of a harmonic is also a harmonic.
Furthermore using the divergenceless relation (2.20) it
can be proven that [see, e.g., Eq. (3.13) of Ref. [9] for
the j ¼ 2 case]

curl curlðlQðj;�jÞ
Ij

Þ ¼ ν2ðlQðj;�jÞ
Ij

Þ: ð3:4Þ

Therefore, we can choose

curlðlQðj;�jÞ
Ij

Þ ¼ �νðlQðj;�jÞ
Ij

Þ: ð3:5Þ

The choice of sign on the right-hand side (which could have
been ∓ ν) amounts to choosing the global normalization
of the odd radial function, and our choice is made so that
we recover the flat case construction that is recalled in
Appendix F.
Using the property (C19) of the extended helicity basis,

and the decomposition (2.33) along with the condition
(2.37), we deduce that the divergenceless relation (2.20)
leads to the set of relations among radial functions for
0 < s < j

d
dχ �sα

ðj;�jÞ
l þ ðjþ 1Þ cot χ�sα

ðj;�jÞ
l

¼ ð−λslÞð−λsjÞ
2ðjþ sÞrðχÞ �ðs−1Þα

ðj;�jÞ
l

þ ðþλslÞðþλsjÞ
2ðj − sÞrðχÞ �ðsþ1Þα

ðj;�jÞ
l

;

ð3:6Þ

where we defined

�λ
s
l ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1� sÞðl ∓ sÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − sðs� 1Þ

p
: ð3:7Þ

Condition (3.6) is a special case of the divergence relation
(E1). In the special case s ¼ 0 it reduces to

d
dχ 0ϵ

ðj;�jÞ
l þ ðjþ 1Þ cot χ0ϵðj;�jÞ

l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
rðχÞ

ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

j

s
1ϵ

ðj;�jÞ
l ; ð3:8Þ

which is a special case of (E2).
Hence, when considering the real and imaginary parts

of radial functions, we see that the divergenceless relation
brings j relations for the even modes and j − 1 relations
for the odd modes (if j ≥ 1). Given (2.41), we conclude
that using (3.6) we can deduce all radial modes in the
case j ¼ jmj (that is for all allowed values of s) once we

know 0ϵ
ðj;�jÞ
l and 1β

ðj;�jÞ
l . These terms are in turn found

from the Laplace equation (2.19). Again, using the

decomposition (2.33) along with the condition (2.36)
and the identities (C22), this leads (when s > 0) to

d2

dχ2
ð�sα

ðj;�jÞ
l Þ þ 2 cot χ

d
dχ

ð�sα
ðj;�jÞ
l Þ

þ �sα
ðj;�jÞ
l cot2ðχÞðs2 − jðjþ 1ÞÞ

þ �sα
ðj;�jÞ
l

1

r2ðχÞ ðs
2 − lðlþ 1ÞÞ

þ �ðs−1Þα
ðj;�jÞ
l

cot χ
rðχÞ ð−λ

s
jÞð−λslÞ

þ �ðsþ1Þα
ðj;�jÞ
l

cot χ
rðχÞ ðþλ

s
jÞðþλslÞ ¼ −k2�sα

ðj;�jÞ
l : ð3:9Þ

As for the s ¼ 0 case, it is simply

d2

dχ2
ð0ϵðj;�jÞ

l Þ þ 2 cot χ
d
dχ

ð0ϵðj;�jÞ
l Þ

−
�
jðjþ 1Þcot2ðχÞ þ lðlþ 1Þ

r2ðχÞ
�
0ϵ

ðj;�jÞ
l

þ 2
cot χ
rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þlðlþ 1Þ

p
1ϵ

ðj;�jÞ
l

¼ −k20ϵ
ðj;�jÞ
l : ð3:10Þ

When combined with the divergenceless condition (3.8),
this equation leads to

d2

dχ2 0ϵ
ðj;�jÞ
l þ 2ðjþ 1Þ cot χ d

dχ 0ϵ
ðj;�jÞ
l

þ 0ϵ
ðj;�jÞ
l

�
k2 þ jðjþ 1Þcot2ðχÞ − lðlþ 1Þ

r2ðχÞ
�
¼ 0:

ð3:11Þ

Similarly, the imaginary part of the relation (3.9) for
s ¼ 1, when combined with the divergenceless condition
(3.6)
at s ¼ 1, leads to

d2

dχ2 1β
ðj;�jÞ
l þ 2j cot χ

d
dχ 1β

ðj;�jÞ
l

þ 1β
ðj;�jÞ
l cot2ðχÞ½jðj − 1Þ − 1�

þ 1β
ðj;�jÞ
l

½1 − lðlþ 1Þ�
r2ðχÞ ¼ −k21β

ðj;�jÞ
l : ð3:12Þ

By comparing (3.11) with equation (A10), we can now
motivate the definition (2.27). Moreover, we find that

0ϵ
ðj;�jÞ
l ∝ Φν

l=r
j, where Φν

l are the hyperspherical Bessel
functions; see Appendix A. The normalization which
satisfies the normalization condition (2.30) [this is
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checked using (A5)] and recovers the flat case construc-
tion of Appendix F is

0ϵ
ðj;�jÞ
l ¼ ð2j − 1Þ!!ffiffiffiffiffiffiffiffiffiffið2jÞ!p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ jÞ!
ðl − jÞ!

s
ξj
kj

Φν
l

rjðχÞ ; ð3:13Þ

with the dimensionless constants

ξm ≡Ym
i¼1

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Ki2

p : ð3:14Þ

We also deduce that the odd radial functions must be

such that 1β
ðj;�jÞ
l ∝ r1−jðχÞΦν

l. The global normalization
is deduced from the solution (3.13) using the curl
condition (3.5) contracted with n̂Il which leads to

1β
ðj;�jÞ
l ¼ ∓νrðχÞ0ϵðj;�jÞ

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

ðjþ 1Þðlþ 1Þl

s
: ð3:15Þ

Note that this is a particular case of (E4) when j ¼ jmj.
The radial functions for larger values of s are found

from (3.8) for 1ϵ
ðj;�jÞ
l , and then from (3.6) for all s > 1, and

they satisfy automatically the Laplace equation (3.9).

B. Radial functions of derived harmonics ( j > jmj)
We now discuss the systematic construction of radial

functions for the derived harmonics, which must be
deduced using the definition (2.22). We start by noticing
that the derived harmonics satisfy the property

curllQðjmÞ
Ij

¼ mν

j
lQðjmÞ

Ij
ð3:16Þ

which is inherited from (3.5) and the identity for STF
tensors [see e.g. Eq. (4.7) of [8] ]

curl∇hijþ1
TIji ¼

j
jþ 1

∇hijþ1
curlTIji: ð3:17Þ

The derived harmonics are no more divergenceless, as was
the case for the j ¼ jmj harmonics. Instead, they satisfy the
relation (2.25). As will be shown later, the normalization
of the derived harmonics which is compatible with (2.30)
requires that

0g̃
ðjmÞ ≡ ð2jmj − 1Þ!!

ð2j − 1Þ!!
Yj

p¼jmjþ1

0κ
m
p

k
;

0g
ðjmÞ ≡ ð2jmj − 1Þ!!

j!

Yj
p¼jmjþ1

0κ
m
p

k
; ð3:18Þ

where2

sκ
m
l ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 − s2Þ

l2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kl2

p
: ð3:19Þ

The above normalization and (2.36) also imply the useful
relations

�sg̃
ðjmÞ ¼ �sg̃

ðj−1;mÞ 1

ð2j − 1Þ
sκ

m
j

k
;

�sg
ðjmÞ ¼ �sg

ðj−1;mÞ j
ðj2 − s2Þ

sκ
m
j

k
;

�sg̃
ðjmÞ ¼ ∓�ðs−1Þg̃

ðjmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjþ sÞ
2ðjþ 1 − sÞ

s
;

�sg
ðjmÞ ¼ ∓�ðs−1Þg

ðjmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðjþ 1 − sÞ

ðjþ sÞ

s
: ð3:20Þ

From (A3) of [15], we see that a general STF tensor obeys

∇jTIl ¼ ∇hjTIli þ
2l − 1

2lþ 1
gjhil∇pTIl−1ip

þ l
lþ 1

ϵpjhilcurlTIl−1ip: ð3:21Þ

When combined with (3.16) and (2.25), we obtain the
following relation among derived harmonics

∇pðlQðjmÞ
Ij

Þ ¼ kðlQðjþ1;mÞ
pIj

Þ − 2j − 1

2jþ 1
qðjmÞgphijðlQðj−1;mÞ

Ij−1i Þ

þ mν

jþ 1
ϵrphijðlQ

ðjmÞ
Ij−1irÞ: ð3:22Þ

Let us now consider a given m and a given l ≥ jmj, and
use the short notation (j; s) to refer to the radial function

sα
ðjmÞ
l , since we want to explore the relations between radial

functions with neighbor values of j and s. Identity (3.22)
allows one to derive recursive relations among radial
functions in the space of the (j; s) parameters, the most
famous of which connects (j; s) to the ðj� 1; sÞ ones. To
see how this is possible, we first need to contract (3.22)
with np and replace the harmonics by their expansion
(2.33) while using the identities derived in Appendix C 3.
Then, a relation among radial functions is obtained by

contraction with n̂
Ij∓s (or equivalently identification of the

n̂�s
Ij

components), and extraction of the radial function from

the orthogonality relation (B13) of spin-weighted spherical
harmonics, along with the relations (3.20). Eventually we
obtain the central relation [see also Eq. (C5) in [7]]

2Our definition of sκ
m
l corresponds to the one of [7] times a

factor ν such that ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Kl2=ν2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kl2

p
.
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d
dχ sα

ðjmÞ
l ¼ −

iνms
jðjþ 1Þ sα

ðjmÞ
l

þ 1

2jþ 1

h
−sκ

m
j sα

ðj−1;mÞ
l þ sκ

m
jþ1sα

ðjþ1;mÞ
l

i
;

ð3:23Þ

which holds for either negative or positive values of m
and s.
Since in the (j; s) plane this links the (j; s) radial

functions with the one above [ðj − 1; sÞ] and the one below
[ðjþ 1; sÞ] for a given l and m, we hereafter call it the
North-South (NS) relation.
Other relations can be obtained from (3.22) by con-

tracting with np∓ and then repeating the same procedure.
This leads to relations connecting the (j; s) radial functions
to the ðj ∓ 1; sÞ and ðj; sþ 1Þ ones. We thus call it the
North-South-East (NSE) relation. Similarly, contracting
instead with np� and using the same method allows us to
relate the (j; s) radial functions to ðj ∓ 1; sÞ and ðj; s − 1Þ
radial functions—a relation that we call North-South-
West (NSW). Their exact expressions are collected in
Appendix D.
The combination of NS and NSE relations leads either to

a relation between (j; s) radial functions with the ðj − 1; sÞ
and ðj; sþ 1Þ ones, which we call the North-East (NE)
relation, or to a relation between the (j; s) radial functions
with the ðjþ 1; sÞ and ðj; sþ 1Þ ones, which we call the
South-East (SE) relation. Similarly combining the NS and
NSW relations leads either to the North-West (NW) or
the South-West (SW) relations. All these relations are
collected in Appendix D.
These triangular relations (NW, NE, SW, and SE) are the

building blocks of all sorts of recursive relations among
radial function in the (j; s) space. For instance, the NS
relation is a combination of the NW and SW. It can also be
found as a combination of the NE and SE relations.
Similarly the NSE relation (respectively, the NSW relation)
is just the sum of the NE and SE relations (respectively,
the NW and SW relations). All the recursive relations are
depicted in the (j; s) plane in Fig. 1.
There is an alternative method to obtain the triangular

relations. Instead of considering various contractions of the
identity (3.22), we can instead extract the radial functions
of the divergence relation (2.25), the curl property (3.16),
and the STF construction of derived modes (2.23). Again,
this proceeds by contractions with the generalized helicity
basis, extraction of the radial functions using (B13), and
repeated use of the properties (3.20). The relations obtained
are also gathered in Appendix E. Combining the curl
relation with the divergence relation in two different
manners leads to the NW and NE relations. Similarly
combining the curl relation with the STF relation in
two different manners leads to the SW and SE relations.
While this method seems more appealing, it requires that

we carefully separate the s ¼ 0 cases for which the
aforementioned combinations cannot be formed in the
same manner. Instead it is found that in the s ¼ 0 case,
the curl relation gives the imaginary part of the NE and SE
relations. Also the s ¼ 0 case of the divergence relation

FIG. 1. Geographical representation of all recursion relations
among radial functions in the (j; s) space of parameters. Here,
“STF,” “div,” and “curl” denote respectively the relations (2.23),
(2.25), and (3.16). Moreover, “grad-0” (“grad-�”) is obtained by
contraction of the gradient identity (3.22) with np (np∓). The
triangular relations (NW, NE, SW, and SE) which can be formed
from the grad relations are collected in Appendix D. Shaded
squares indicate radial functions which appear with one deriva-
tive in the recursive relation. We depict only the s ≥ 0 part in the
chart as the negative s are deduced from (2.40). Only functions
with jsj ≤ j (and jmj ≤ j) are nonvanishing.
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gives the real part of the NE relation. Finally the s ¼ 0 case
of the STF relation gives the real part of the SE relation.
This indicates that the triangular relations (NW, NE, SW,

and SE) contain the information about recursions in the
most compact form. Their validity is only restricted by the
fact that they should not produce instances with s < 0 in
the (j; s) space, but they can be applied even if some of the
radial functions vanish because of s > j. If we instead use
the apparently more direct divergence and curl relations, we
must treat the s ¼ 0 case separately. As an illustration, this
is what has been presented in the j ¼ jmj case of Sec. III A.
The solution for the s ¼ 0 case is (3.13). The divergence
relation for s ¼ 0, given by (3.8), gives only the electric
function for s ¼ 1. One has then to rely on the curl relation
for s ¼ 0, which is (3.15), to get the magnetic function with
s ¼ 1. In order to obtain the s > 1 harmonics, still for
j ¼ jmj, one can use the divergence relation (3.6), but one
could also use more directly the NE relation. Indeed, given
that the north component of the NE relations vanishes
(since j ¼ jmj), it gives directly ðj ¼ jmj; sþ 1Þ as a
function of ðj ¼ jmj; sÞ.
Finally, we recall that all radial functions are restricted in

general to (2.32), and in the closed case (K ¼ 1) they are
also restricted to the integer values

l ≤ ν − 1: ð3:24Þ

C. Optimal algorithm

Given the plethora of recursion relations in the (j; s)
space for radial functions, there are several different ways
to deduce the radial modes for the derived harmonics for
increasing values of j. However we can judiciously add a
condition which selects one method. Since all radial
functions are expressed in terms of derivatives of hyper-
spherical Bessel functions, it is always possible to use
Eq. (A1) to reduce their form to an expression which
involves the hyperspherical Bessel function and at most its
first derivative. However, there are preferred methods for
the recursive construction of radial function, in which one
never has to rely on (A1) to reduce the order of derivatives.
Let us summarize one of these. Given the property (2.42)
and the definitions (2.40), we only need to build harmonics
for m ≥ 0 and s ≥ 0, and we now assume these condi-
tions hold.
(1) For a given m, the radial function for s ¼ 0 and

j ¼ m is given by (3.13), and it has no derivative of
hyperspherical Bessel functions.

(2) We then use the NE recursion to obtain the s ¼ 1 and
j ¼ m solution, with unavoidably one derivative
of Bessel function. However, note that this is not
possible in the special case m ¼ 0, and we discuss
the procedure for this case below.

(3) We can then use the difference of the NE and NW
relations to form a North-West-East relation without

derivatives whose exact expression is (D8) and that
we note NW-NE hereafter. In the case j ¼ m, the
north component vanishes so it is a relation between
ðj ¼ m; s − 1Þ, (j ¼ m, s), and ðj ¼ m; sþ 1Þ. Us-
ing it, one can obtain all radial modes for j ¼ m up
to s ¼ j.

(4) In order to build the line with j ¼ mþ 1, that is the
radial functions associated with the first derived
harmonics, one needs only to use the NSE relation

to deduce 0α
ðmþ1;mÞ
l , and then the NSW relation to

deduce 1α
ðmþ1;mÞ
l . This introduces no derivatives

since the NSE and NSW relation have none. Then

all sα
ðmþ1;mÞ
l with 2 ≤ s ≤ j can be found either

from the NW-NE relation (D8), or from the use of
the NSW relation. This, again, brings no extra
derivatives.

(5) This last method is iterated to obtain all radial
functions for increasing values of j.

In the special casem ¼ 0, we start from the known solution

0ϵ
ð00Þ
l ¼ Φν

l. Then there is no need to build the ðj ¼ 0;
s ¼ 1Þ solution since it vanishes, so we must proceed
directly by increasing the value of j, and build the solution
for ðj ¼ 1; s ¼ 0Þ. In that case, contrary to the procedure
mentioned above, we cannot use the NSE relation since
the East component vanishes, that is, it is outside of its
applicability [see (D3)]. Instead, we must use the NS

relation (3.23) to obtain 0α
ð10Þ
l , and this brings a derivative

of a Bessel function. Finally in order to obtain 1α
ð10Þ
l , we

can do as in the general case, and use the NSW relation
which involves no derivative. The rest of the construction
to j ≥ 2 then proceeds exactly like in the general case.
In both cases (m ¼ 0 and m > 0), there was only one

step of the procedure involving a derivative. Hence, with
this method it is possible to obtain radial functions up to
any desired values of (j; s) for any givenm, as illustrated in
Fig. 2, and with at most one derivative on Bessel functions,
without ever having to use (A1) to reduce the order of
derivatives. This algorithm has been implemented in a
Mathematica notebook available at [18]. Note that the
optimal algorithm is not unique. One could for instance
rely on (D2) to relate the s ¼ j to the sþ 1 ¼ jþ 1 radial
functions, thus deducing the radial functions on the
diagonal of Fig. 2.

D. Symmetry properties

Following the same algorithm [that is the same set of
recursions to travel in the (j; s) space of radial function] it
can be checked that the properties

−sα
ðjmÞ
l ðνÞ ¼ sα

ðj;−mÞ
l ðνÞ ¼ sα

ðjmÞ
l ð−νÞ ð3:25Þ

are always satisfied. It is indeed the case for the starting
radial function (3.13) of the algorithm, and it is maintained
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for all values of (j; s), since in all recursions for radial
functions the factors m are always multiplied by the sign
of s and by ν. Hence from the definition (2.40) of the even
and odd parts we deduce that (2.42) must be satisfied.
In addition to (3.25), there are two other symmetry

properties. First, we have checked for the first values3

of j, m, and s (but for unspecified l) that the following
property holds:

sα
ðjmÞ
l ðχ; νÞ ¼ mα

ðjsÞ
l ðχ; νÞ: ð3:26Þ

We have also checked for the first values of m, s, j, and
l that

sα
ðjmÞ
l ¼ ð−1Þl−jsαðlmÞ

j : ð3:27Þ

Furthermore, it can be checked explicitly on the first values
of j, m, and s (but for unspecified l) that [7]

d
dχ sα

ðjmÞ
l ¼ −

iνms
lðlþ 1Þ sα

ðjmÞ
l

þ 1

2lþ 1

h
sκ

m
l sα

ðjmÞ
l−1 − sκ

m
lþ1sα

ðjmÞ
lþ1

i
: ð3:28Þ

Combined with (3.23), this is consistent with the j ↔ l
symmetry (3.27). We stress that both them ↔ s and j ↔ l
symmetries are immediate in the flat case, as we demon-
strate in Appendix F.
The m ↔ s symmetry is consistent with the fact that

the relations which relate radial modes with both the same
s and m, that is Eqs. (3.23) and (3.28), are obviously
invariant under m ↔ s since sκ

m
l ¼ mκ

s
l. Note that in the

m ↔ s symmetry (3.26), the same ν appears on both sides.
Hence, given the relation between ν and k [see Eq. (2.27)],
the symmetry relates radial functions associated with
different k, except in the flat case. The m ↔ s symmetry
can be used as a shortcut in the algorithm previously

described to, for instance, calculate sα
ðjmÞ
l for jmj > jsj

from mα
ðjsÞ
l . Hence solving the radial functions in the plane

(j; s) for a given m also provides automatically some of the
radial functions for larger values of m. Conversely, this can
be left unused so as to serve as a consistency check.

E. General reference axis

When building the harmonics and the derived harmonics,
the central relations were Eqs. (C17) and (C18). They
depend on l, s, and j, but not on m. This happens because
(2.28) is implicitly related to a special choice of axis, which
is clearly not the most general construction. Indeed, one
could perform an active rotation Rν̂ ≡ Rðϕν; θν; 0Þ which
brings the zenith vector ez into a general direction ν̂ with
spherical coordinates ðθν;ϕνÞ, that is Rν̂½ez� ¼ ν̂. In order to
explore this rotation, let us define the mode vector

ν≡ νν̂ ð3:29Þ

which contains, at the same time, the information about the
reference axis used to define harmonics, and the value of
the mode ν itself. In Sec. VI we relate ν to the wave vector
of a plane wave.
The harmonics defined with a general direction are

related to the ones we have built using the zenith direction.
Using the rotation rules (B33) for spherical harmonics,
one finds

R½sGðjmÞ
l n̂sIj � ¼ clsα

ðjmÞ
l

Xl
M¼−l

Dl
MmðRÞsYm

l n̂
s
Ij
: ð3:30Þ

This naturally brings the more general definition for normal
modes [11]:

FIG. 2. Optimal algorithm: for a given jmj, the first step is to

start from the solution 0ϵ
ðjmj;jmjÞ
l . Then all other radial functions

are deduced following the algorithm described in the Sec. III C.
The steps 2,3,4,5 are depicted in red, green, black, and blue
arrows, respectively, and the relation needed to deduce each radial
function from the previous ones is written next to the arrow. Here
we have illustrated the case jmj ¼ 2, such that we have neces-
sarily j ≥ 2. The index s must also satisfy jsj ≤ j.

3In practice we checked it up to j ¼ 4, and for all allowed
values of s and m.
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sG
ðjmÞ
l ðνÞ≡ Xl

M¼−l
sG

ðjmÞ
lM ðνÞDl

MmðRν̂Þ;

sG
ðjmÞ
lM ðνÞ≡ clsα

ðjmÞ
l ðνÞsYm

l ; ð3:31Þ

with the related more general definition for the tensor
harmonics:

lQðjmÞ
Ij

ðνÞ≡ Rν̂½lQðjmÞ
Ij

ðνÞ�

¼
Xl
M¼−l

lMQðjmÞ
Ij

ðνÞDl
MmðRν̂Þ; ð3:32Þ

lMQðjmÞ
Ij

ðνÞ≡ Xj

s¼−j

sgðjmÞsGðjmÞ
lM ðνÞn̂sIj : ð3:33Þ

We then obtain a relation of the type (2.33)

lQðjmÞ
Ij

ðνÞ ¼
Xj

s¼−j
sgðjmÞ

sG
ðjmÞ
l ðνÞn̂sIj : ð3:34Þ

Evidently, we could redo the general construction of
radial functions using an arbitrary reference axis (instead of
our choice for the zenith). Provided we rotate the right-hand
side of the condition Eq. (2.31) [or Eq. (2.39)], it would
proceed exactly through the same set of equations and
steps, and one would find exactly the same radial functions.
This is not a surprise, since the latter depend only on ν.

F. Conjugation and parity

From (2.40) and (3.25) we deduce

½sαðjmÞ
l ðνÞ�⋆ ¼ −sα

ðjmÞ
l ðν⋆Þ

¼ sα
ðjmÞ
l ð−ν⋆Þ: ð3:35Þ

From (2.33) and (2.28) with properties (B11a) and (2.38),
one then obtains the conjugation property

½lQðjmÞ
Ij

ðνÞ�⋆ ¼ lQðj;−mÞ
Ij

ð−ν⋆Þð−1ÞðlþmÞ: ð3:36Þ

Furthermore, in the special case of a rotation R around
the direction ey of angle π [that is RyðπÞ≡ Rðα ¼ 0;
β ¼ π; γ ¼ 0Þ], we find from (B35)

RyðπÞ½lQðjmÞ
Ij

ðνÞ� ¼ ½lQðjmÞ
Ij

ðν⋆Þ�⋆; ð3:37Þ

which we can also relate to (3.36). Rotation around the y
axis by an angle π, or equivalently a parity inversion of
the x and z axis, is equivalent to considering the mode
with −m and −ν, up to a �1 factor.
We can also consider a parity transformation P, which is

defined on tensor fields as

P½TIjðχ;nÞ�≡ ð−1ÞjTIjðχ;−nÞ: ð3:38Þ

Following the same techniques using (B11b) along with

n̂sIjð−nÞ ¼ ð−1Þjþsn̂−sIj ðnÞ; ð3:39Þ

one finds

P½lQðjmÞ
Ij

ðνÞ� ¼ ð−1Þm½lQðj;−mÞ
Ij

ðν⋆Þ�⋆

¼ ð−1ÞllQðjmÞ
Ij

ð−νÞ: ð3:40Þ

It is instructive to combine the previous rotation with a
parity transformation. Indeed, this corresponds to an
inversion of the y axis only and we find

RyðπÞ½P½lQðjmÞ
Ij

ðνÞ�� ¼ ð−1ÞmlQðj;−mÞ
Ij

ðνÞ: ð3:41Þ

The factor ð−1Þm accounts for a rotation of angle π around
the z axis, that is, RzðπÞ≡ Rðα ¼ 0; β ¼ 0; γ ¼ πÞwhich is
also an inversion of the x and y axis. Hence, we can deduce
the transformations brought by the inversion of a single
axis. The results are gathered in Table I.

IV. RADIAL FUNCTIONS FOR SCALARS,
VECTORS, AND TENSORS

We now collect in this section the most common radial
functions. We report the results for the even and odd
components so we can use s ≥ 0. Furthermore we assume
m ≥ 0 since the negative values are found from (2.42). The
scalar, vector, and tensor cases correspond respectively to
m ¼ 0, 1, 2, with the general restrictions (2.32), on which
we also add the restriction (3.24) in the closed case. In what
follows, we only report radial functions for j ≤ 2.
For the harmonics (j ¼ m), the radial functions were

already derived (even though not formulated using spin-
weighted spherical harmonics) up to m ¼ 2 in Ref. [4].
Derived harmonics, that is with j > m, were reported up to
j ¼ 2 but only in the cases s ¼ 0 and s ¼ 2 in [7]. Hence
this section can be used as a complete reference for radial
functions. We shall only need two particular cases of the
general expression (3.14):

TABLE I. Transformation rules for harmonics under the in-
version of a single axis.

x → −x y → −y z → −z

Factor ð−1Þm yes yes
Factor ð−1Þl yes
QðjmÞ

Ij
→ Qðj;−mÞ

Ij
yes yes

QðjmÞ
Ij

ðνÞ → QðjmÞ
Ij

ð−νÞ yes
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ξ1 ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 −K
p ;

ξ2 ¼
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðν2 −KÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðν2 − 4KÞ
p : ð4:1Þ

Since radial functions determine the normal modes with
(2.28) and then in turn the harmonics (and derived
harmonics) with (2.33), we also report the values of the
coefficients sgðjmÞ. In case one needs contractions of the
type (2.35), we repeat that these are related to the sg̃ðjmÞ
using (2.34), and the first few coefficients needed are

d00 ¼ 1;

d10 ¼ 1; d11 ¼ 1;

d20 ¼
2

3
; d21 ¼

1

2
; d22 ¼ 1: ð4:2Þ

Throughout, we abbreviate rðχÞ given by (2.2) as r. In
the expressions reported below, we note that the radial
functions are not invariant under ν → −ν in general,
even though it is the case for the hyperspherical Bessel
functions of Appendix A. Indeed there is a prefactor linear
in ν in each magnetic radial function, as required by
property (3.25).

A. Scalar modes (m= 0)

The radial functions of the base scalar harmonics are
simply the hyperspherical Bessel functions:

0ϵ
ð00Þ
l ¼ Φν

l: ð4:3Þ

The radial functions for the derived harmonics are given,
up to j ¼ 2, by

0ϵ
ð10Þ
l ¼ ξ1

k
d
dχ

Φν
l; ð4:4aÞ

1ϵ
ð10Þ
l ¼ ξ1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
Φν

l

r
; ð4:4bÞ

0ϵ
ð20Þ
l ¼ ξ2

2k2

�
3
d2

dχ2
þ ðν2 −KÞ

�
Φν

l; ð4:4cÞ

1ϵ
ð20Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðlþ 1Þ

2

r
d
dχ

�
Φν

l

r

�
; ð4:4dÞ

2ϵ
ð20Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðlþ 2Þ!
8ðl − 2Þ!

s
Φν

l

r2
: ð4:4eÞ

The constants needed to build the harmonics and derived
harmonics are

0g
ð00Þξ−11 ¼ 0g

ð10Þ ¼ ∓�1g
ð10Þ ¼ ξ−11 ; ð4:5Þ

and

0g
ð20Þ ¼ ∓

ffiffiffi
3

p

2 �1g
20 ¼

ffiffiffi
3

2

r
�2g

20 ¼ ξ−12 : ð4:6Þ

B. Vector modes (m= 1)

Similarly, for the radial functions built from the vector
modes, we find that the base harmonics are given by

0ϵ
ð11Þ
l ¼ ξ1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
Φν

l

r
; ð4:7aÞ

1ϵ
ð11Þ
l ¼ ξ1

2k
dðrΦν

lÞ
rdχ

; ð4:7bÞ

1β
ð11Þ
l ¼ −

νξ1
2k

Φν
l: ð4:7cÞ

Note that (4.7a) agreeswith (4.4b),which corroborates (3.26).
The radial functions for the derived harmonics are

0ϵ
ð21Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðlþ 1Þ

2

r
d
dχ

�
Φν

l

r

�
; ð4:8aÞ

1ϵ
ð21Þ
l ¼ ξ2

k2

�
d2

dχ2
þ cotðχÞ d

dχ
þ
�
ν2

2
−

1

r2

��
Φν

l; ð4:8bÞ

1β
ð21Þ
l ¼ −

ξ2ν

2k2
r
d
dχ

�
Φν

l

r

�
; ð4:8cÞ

2ϵ
ð21Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

d
r2dχ

ðrΦν
lÞ; ð4:8dÞ

2β
ð21Þ
l ¼ −

ξ2
k2

ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

Φν
l

r
: ð4:8eÞ

One checks that (4.8a) agrees with (4.4d), in agreement
with (3.26). The constants needed to build the correspond-
ing harmonics are

0g
ð11Þ ¼ ∓�1g

ð11Þ ¼ 1;

2ffiffiffi
3

p 0g
ð21Þ ¼ ∓�1g

ð21Þ ¼
ffiffiffi
2

p
�2g

ð21Þ ¼ ξ1
ξ2

: ð4:9Þ

C. Tensor modes (m= 2)

Finally, we give the radial modes related to the base
tensor harmonics. They are
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0ϵ
ð22Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðlþ 2Þ!
8ðl − 2Þ!

s
Φν

l

r2
; ð4:10aÞ

1ϵ
ð22Þ
l ¼ ξ2

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

d
r2dχ

ðrΦν
lÞ; ð4:10bÞ

1β
ð22Þ
l ¼ −

ξ2ν

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

Φν
l

r
; ð4:10cÞ

2ϵ
ð22Þ
l ¼ ξ2

4k2

�
d2

dχ2
þ 4 cotðχÞ d

dχ
þ 2cot2ðχÞ

þ ð−K − ν2Þ
�
Φν

l; ð4:10dÞ

2β
ð22Þ
l ¼ −

ξ2ν

2k2
d

r2dχ
ðr2Φν

lÞ: ð4:10eÞ

Again, one checks that (4.10a) agrees with (4.4e), (4.10b)
agrees with (4.8d), and (4.10c) agrees with (4.8e), in
agreement with (3.26). There is an alternative expression
for 2ϵ

ð22Þ, which is

2ϵ
ð22Þ ¼ ξ2

4k2

�
d2

r2dχ2
ðr2Φν

lÞ − ðν2 −KÞΦν
l

�
:

The constants needed to build tensor harmonics are

2

3 0g
ð22Þ ¼ ∓ 1ffiffiffi

3
p �1g

ð22Þ ¼
ffiffiffi
2

3

r
�2g

ð22Þ ¼ 1: ð4:11Þ

V. NORMALIZATION

In this section we are going to show that expression
(3.18) is the correct one to enforce the normalization
condition (2.30) in all cases. We will also discuss the
overall normalization of the tensor harmonics in real space.

A. Normalization at origin

Following the same algorithm as the one described in
Sec. III C, one can show that the radial functions scale like
χjl−jj when χ → 0. Indeed, since Φν

l ∼ χl in this limit [see
(A5)], we find from (3.13) that 0ϵ

ðj;�jÞ ∼ χl−j. One can then
check that for the various steps of the algorithm which
increase j and s, this property is maintained. In practice, to
show that such scaling holds one needs to distinguish the
cases l > j, l ¼ j and l < j when applying the algorithm.
The constant in the scaling can then be determined by l − j
iterations of (3.28) (when keeping only the dominant term
as χ → 0), and using (2.30). For l ≥ j we find for χ → 0

sα
ðjmÞ
l ∼

χl−jð2j − 1Þ!!
ðl − jÞ!ð2lþ 1Þ!!

Yl
p¼jþ1

sκ
m
p : ð5:1Þ

In the case l ≤ j, it behaves as

sα
ðjmÞ
l ∼

ð−χÞj−lð2l − 1Þ!!
ðj − lÞ!ð2jþ 1Þ!!

Yj
p¼lþ1

sκ
m
p : ð5:2Þ

This is consistent with l − j iterations of (3.28) (when
keeping only the dominant term as χ → 0). This finally
proves that (3.18) is the correct expression needed to
enforce (2.30).
If we now use these results together with (B23), we find

that the normalization of harmonics at the origin is

l¼jQðjmÞ
Ij

���
χ¼0

l¼jQðjm0Þ⋆
Ij

���
χ¼0

¼ δmm0Nm
j ð5:3Þ

where

N m
j ≡ ð0g̃ðjmÞÞ2 ð2j − 1Þ!!

j!

≡ ð0gðjmÞÞ2 j!
ð2j − 1Þ!! ; ð5:4Þ

and where the following contraction of indices Ij was used
on the left-hand side of (5.3):

sgðjmÞn̂sIj sg
ðjm0Þn̂Ij⋆s ¼ sgðjmÞ

sgðjm
0Þdjs

≡N mm0
j ; ð5:5Þ

with N mm
j ¼ N m

j . Together with (2.33), the expressions
above allow us to write the contraction of harmonics at an
arbitrary point. Restoring the dependence with ν of the
harmonics and normal modes, we find

lQðjmÞ
Ij

ðνÞl0Qðjm0Þ⋆
Ij

ðν0Þ

¼ N mm0
j

Xj

s¼−j
sG

ðjmÞ
l ðνÞsGðjm0Þ⋆

l0 ðν0Þ: ð5:6Þ

B. Integral on space

We checked by means of integrations by parts (on the
lowest jmj values) and using (A1) and (A7) that the
harmonics satisfy the normalization (with again Ij indices
contracted)Z

d3VlMQðjmÞ
Ij

ðνÞl0M0
Qðjm0Þ⋆

Ij
ðν0Þ

¼ δll0δmm0δMM0N m
j ð2πÞ3

ð2lþ 1Þ
4π

δðν − ν0Þ
ðν2 −Km2Þ ð5:7Þ
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where d3V ≡ r2ðχÞdχ sin θdθdϕ. The case j > jmj is
deduced from the case j ¼ jmj through the construction
(2.23) using repeated application of (2.25) when integrating
by parts. A similar method can be used to infer the
vanishing of (5.7) when m ≠ m0. Note also that in the
closed case, ν takes integer values, hence the Dirac delta
function must be understood as a Kronecker symbol
instead, that is we must read (5.7) with δðν − ν0Þ → δνν0 .
From the general definition (3.33) and the identities

(B13) and (5.5), it follows that the normalization (5.7) is
equivalent to

Xj

s¼−j

Z
sα

ðjmÞ
l ðχ; νÞsαðjm

0Þ⋆
l ðχ; ν0Þr2ðχÞdχ

¼ δmm0
π

2

δðν − ν0Þ
ðν2 −Km2Þ : ð5:8Þ

This is a generalization of the normalization relation (A7)
which corresponds only to scalar modes (see e.g. [16]).
Conversely, for a given j, a closure relation can be also

formulated, showing that we have built a complete set of
basis functions. We find

X∞
l¼0

Xl
M¼−l

Xj

m¼−j

4π

ð2lþ 1ÞN m
j

×
Z

lMQðjmÞ
Ij

ðχ; n; νÞlMQðjmÞ⋆
Kj

ðχ0; n0; νÞ ðν
2 −Km2Þdν
ð2πÞ3

¼ δðχ − χ0Þ
r2ðχÞ δ2ðn − n0Þδhk1i1

…δ
kji
ij
: ð5:9Þ

For open cases, the integral runs on ν ≥ 0, whereas in the
closed case the integrals must be understood as a discrete
sum on integer values such that ν ≥ lþ 1. Again, this is
equivalent to the closure relation for radial functions (which
we checked for the lowest values of j)

Xj

m¼−j

Z
sα

ðjmÞ
l ðχ; νÞs0αðjmÞ⋆

l ðχ0; νÞðν2 −Km2Þdν

¼ π

2
δss0

δðχ − χ0Þ
r2ðχÞ ; ð5:10Þ

with the same convention that it is a discrete sum on
ν ≥ lþ 1 in the closed case. This is a generalization of
the closure relation (A8) which corresponds only to scalar
modes [16]. One also verifies immediately that (5.9) is
compatible with (5.7), since multiplying the former by
l0M0

Qðjm0Þ⋆
Ij

ðχ; n; ν0Þ and integrating over space using the

latter, yields l0M0
Qðjm0Þ⋆

Ij
ðχ0; n0; ν0Þ, exactly as the righ-hand

side of (5.9) indicates. Similarly (5.10) is obviously
compatible with (5.8).

VI. PLANE WAVES

In flat space, a plane wave is an eigenfunction of the
Laplacian which assumes constant values on planes
orthogonal to a constant wavevector k. For scalar functions
it is simply expðik · xÞ. This idea cannot be generalized to
the curved spaces since the notion of a globally constant
vector does not exist. We will nonetheless seek to build
eigenfunctions of the Laplacian in curved spaces—which
we shall abusively call plane waves—which look like flat
space plane waves near the origin of the coordinate system,
i.e., over distances much smaller than the curvature radius.

A. Zenith axis plane waves

Plane waves are defined by summation of harmonics
with different values of l. The most general summation on
l is of the form (restoring the explicit dependence on ν)

QðjmÞ
Ij

ðνÞ≡ X∞;ν−1

l≥jmj

ζml
ζmj

lQðjmÞ
Ij

ðνÞ ð6:1Þ

and similarly

sGðjmÞðνÞ≡ X∞;ν−1

l≥ðjmj;jsjÞ

ζml
ζmj

sG
ðjmÞ
l ðνÞ;

¼
X∞

l≥ðjmj;jsjÞ

ζml
ζmj

clsα
ðjmÞ
l ðνÞsYlmðnÞ; ð6:2Þ

such that

QðjmÞ
Ij

ðνÞ ¼
Xj

s¼−j
sgðjmÞ

sGðjmÞðνÞn̂sIj : ð6:3Þ

The previous sums on l run until infinity in the flat or
open case, and are limited by (3.24) in the closed case. The
weights ζml are undetermined coefficients. From these
definitions we recover, near the origin, the same behavior
as in (2.31). What we hereafter call plane waves corre-
sponds to the choice ζml ¼ const. (or ζml ¼ 1). By contrast,
we name pseudo plane waves the more general case
ζml ≠ const. A pseudo plane is thus specified both by the

mode ν and by the set of ζml : Q
ðjmÞ
Ij

ðν; ζml Þ.
We chose to divide by ζmj in the definitions (6.1) and

(6.2) so as to maintain the normalization at origin (2.39).
All recursion relations that were derived so far for the radial
functions in the (j; s) space are, in fact, also valid for the

sG
ðjmÞ
l , since the coefficients of all recursions are totally

independent from l. Hence all of these recursive relations
are transposed as relations among the summed normal
modes sGðjmÞζmj . This can be traced back to the fact that the

CYRIL PITROU and THIAGO S. PEREIRA PHYS. REV. D 100, 123535 (2019)

123535-14



general relation (3.22), from which all recursive relations

originate, is satisfied for the tensors ζmj Q
ðjmÞ
Ij

.

B. General axis plane waves

In the previous section, we have summed the harmonics
(2.33) on l. They correspond to a special choice where the
direction used to decompose the local structure is also the
zenith direction. Hence the plane waves (or pseudo plane
waves) built in Sec. (6.1) correspond to a wave vector
ν ¼ νez. As detailed in Sec. III E, one can consider a
general direction ν̂ with the associated wave vector ν ¼ νν̂.
The associated plane waves are built in general as

QðjmÞ
Ij

ðνÞ≡ Rν̂½QðjmÞ
Ij

ðνÞ�

¼
X∞;ν−1

l≥jmj

Xl
M¼−l

ζml
ζmj

lMQðjmÞ
Ij

ðνÞDl
MmðRν̂Þ: ð6:4Þ

This form is very similar to the general decomposition of a
STF tensor field (2.15) since it can also be written more
explicitly as

QðjmÞ
Ij

ðνÞ≡X
lMs

ζml
ζmj

clsgðjmÞ
sα

ðjmÞ
l ðχ; νÞ

×Dl
MmðRν̂ÞsYm

l ðnÞn̂sIj : ð6:5Þ

The normal modes associated with these general axis plane
waves are

sGðjmÞðνÞ ¼
X∞;ν−1

l≥ðjmj;jsjÞ

Xl
M¼−l

ζml
ζmj

clsα
ðjmÞ
l ðχ; νÞ

×Dl
MmðRν̂ÞsYm

l ðnÞ; ð6:6Þ

and we get a relation of the type (6.3) for the mode ν.

C. Extended Rayleigh expansion

Equation (6.5), possibly reshaped using (B33), is the
generalized Rayleigh expansion for tensor-valued plane
waves. In the flat case, for standard plane waves (i.e.,
ζml ¼ const.) with j ¼ 0 ¼ m, we recover the usual
Rayleigh expansion given by (F3).
We can recast Eq. (6.5) in a more covariant form as

n̂
Ij∓sðnÞQðjmÞ

Ij
ðχ; n; νÞ ¼

X∞;ν−1

l≥ðjmj;jsjÞ

ζml
ζmj

ð2lþ 1Þ

× �sg̃
ðjmÞ

�sg̃
ðlmÞ �sα

ðjmÞ
l ðχ; νÞn̂Il∓sðnÞ

×QðlmÞ
Il

ðχ ¼ 0; νÞ: ð6:7Þ

This extends Eq. (4.13) of [9] or Eq. (4.1.47) of [19],
which are restricted to the case j ¼ jmj and s ¼ 0.
Equation (6.7) can be understood essentially as a simple
Taylor expansion, since derived harmonics are precisely
made of derivatives of the base harmonic. The generalized
Rayleigh expansion is essential for the computation of
cosmological observables, and we illustrate its use in
Sec. VII D and in Ref. [17].

D. Parity and conjugation

The transformation properties of Sec. III F can be
extended to pseudo plane waves. For conjugation, we find

½QðjmÞ
Ij

ðν; ζml Þ�⋆ ¼ ð−1ÞðjþmÞ ×Qðj;−mÞ
Ij

ð−ν⋆; ð−1Þlζm⋆
l Þ:
ð6:8Þ

For π-rotation around axis y, we get

RyðπÞ½QðjmÞ
Ij

ðν; ζml Þ� ¼ ½QðjmÞ
Ij

ðν⋆; ζm⋆
l Þ�⋆: ð6:9Þ

Finally for parity transformations, we obtain

P½QðjmÞ
Ij

ðν; ζml Þ� ¼ ð−1Þm½Qðj;−mÞ
Ij

ðν⋆; ζm⋆
l Þ�⋆

¼ ð−1ÞjQðjmÞ
Ij

ð−ν; ð−1Þlζml Þ: ð6:10Þ

The combination of parity and rotation (which amounts to
an inversion of the y axis) is similar to (3.41) and reads

RyðπÞ½P½QðjmÞ
Ij

ðν; ζml Þ�� ¼ ð−1ÞmQðj;−mÞ
Ij

ðν; ζml Þ: ð6:11Þ

The rules for an inversion of a single axis are thus exactly

the same as in Table I for individual lQðjmÞ
Ij

, except that the

factor ð−1Þl manifests itself as ζml → ð−1Þlζml along with a
global ð−1Þj factor.

E. Orthogonality

As for the special case ν̂ ¼ ez, the plane waves (when
ζml ¼ const., which we now assume) are orthogonal as we
now review. Replacing (6.4) in (5.7), and using (B14) and
(B34), we find that in the open or flat case, the plane waves
are normalized according toZ

d3VQðjmÞ
Ij

ðνÞQðjm0Þ⋆
Ij

ðν0Þ

¼ δmm0 ð2πÞ3 ×N m
j

ν2

ðν2 −Km2Þ δ
3ðν − ν0Þ: ð6:12Þ

Therefore, we conclude that in the open case the plane
waves that we defined have orthogonality properties very
similar to the flat case plane waves, thus justifying our
abusive terminology.
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However, in the closed case (K ¼ 1), the sum on l
in (6.4) does not extend to infinity, and one cannot rely
on (B14). We find insteadZ

d3VQðjmÞ
Ij

ðνÞQðjm0Þ⋆
Ij

ðν0Þ

¼ δνν0δmm02π2N m
j ×

Xν−1
l¼jmj

ð2lþ 1Þ
ðν2 −Km2ÞD

l
mmðR−1

ν̂0 Rν̂Þ:

ð6:13Þ

In the case where the modes have the same direction
(ν̂ ¼ ν̂0), and using

Xν−1
l¼jmj

ð2lþ 1Þ ¼ ν2 −m2; ð6:14Þ

this reduces toZ
d3VQðjmÞ

Ij
ðνν̂ÞQðjm0Þ⋆

Ij
ðν0ν̂Þ ¼ 2π2δνν0δmm0N m

j : ð6:15Þ

Equation (6.13) shows that the plane waves as built in (6.4)
are not properly orthogonal in the closed case. In that case

one should work directly with lMQðjmÞ
Ij

ðνÞ, which according
to (5.7) and (5.9) is a proper orthogonal basis.
In all cases, the closure relation for plane waves reads

Xj

m¼−j

Z
QðjmÞ

Ij
ðχ; n; νÞQðjmÞ⋆

Kj
ðχ0; n0; νÞ ðν

2 −Km2Þdνd2ν̂
ð2πÞ3N m

j

¼ δðχ − χ0Þ
r2ðχÞ δ2ðn − n0Þδhk1i1

…δ
kji
ij
; ð6:16Þ

with the convention that it is a discrete sum on ν ≥ jmj þ 1
in the closed case. This relation is found from the definition
(6.4) with (B34) to express the Wigner D-coefficients, and
using the orthogonality relation (B13) to handle the angular
integration on ν̂ so as to fall back onto (5.9). The closure
(6.16) is obviously compatible with (6.12) in the open
of flat cases, and is also compatible with (6.13) even
though there is no Dirac function on the directions of ν̂ and
ν̂0 in its right-hand side. This is because the factorP

ν−1
l¼jmjð2lþ 1ÞDl

mmðR−1
ν̂0 Rν̂Þ effectively plays the role of

a Dirac delta when acting on functions with an angular
structure limited to l ≤ ν − 1, and this is exactly the case
for the dependence on the mode direction ν̂ of closed space
plane waves as defined by (6.4).

F. Integral on directions

For plane waves, and for the lowest normal modes
(specifically, we checked for j up to 4, and for all allowed
m and s) we have checked that the following identity holds:

Z
sGðjmÞðχ; n; νÞsGðj0m0Þ⋆ðχ;n; νÞd2n

¼ δmm0δjj0
X
l

jclsαðjmÞ
l ðχ; νÞj2;

¼ δmm0δjj0
4π

ð2jþ 1Þ ; ð6:17Þ

in agreement with Eq. (C8) of [7]. Hence the normalization
of plane waves is such that the dependence on χ, which is
there in principle at the second line, disappears at the third
line. In the particular case of j ¼ m ¼ s ¼ 0, and in the flat
case, this relation is proven using an addition theorem of
spherical Bessel function [e.g. Eq. (A.12) of [20] ].
Moreover, using properties (5.6) and (6.17), we find for

the plane waves harmonics (6.1) that

Z
d2n
4π

QðjmÞ
Ij

ðχ; n; νÞQðjm0Þ⋆
Ij

ðχ; n; νÞ ¼ δmm0N m
j : ð6:18Þ

If we further integrate (6.18) on the measure 4πr2ðχÞdχ to
complete an integration on the whole volume, we check in
the closed case that it leads again to (6.15) with ν ¼ ν0,
since in the closed case

R
d3V ¼ R

π
0 4πr2ðχÞdχ ¼ 2π2.

G. Discussion on general factorization
of normal modes

It is argued in Appendix C of [7], and this point is
recalled in Eq. (1.15) of [21] and Eq. (A9.3) of [22], that the
normal modes can be factorized in a form which separates
clearly the intrinsic angular dependence and the orbital one.
Restricting the discussion to modes ν ¼ νez for simplicity,
and omitting the explicit dependence on ν on all functions,
this factorization should be of the form

sGðjmÞðχ; nÞ¼? cj
2jþ 1

sYm
j ðnÞFðν; χ; nÞ ð6:19Þ

with a universal orbital function F such that4

jFðν; χ; nÞj ¼ 1: ð6:20Þ

Translated to the plane wave harmonics using (2.33), this is

QðjmÞ
Ij

¼? 0g̃
ðjmÞ cj

2jþ 1
Yjm

Ij
Fðν; χ; nÞ; ð6:21Þ

with the Yjm
Ij

defined everywhere following the remark

after (B32).
Expressions (6.19) and (6.21) are reminiscent of what is

found in the flat case [Eqs. (F1) and (F2)], where the orbital
function is a pure scalar plane-wave exp½iðkezÞ · ðχnÞ�. If
this was the case in the curved case, there would be a clear

4This function is often written as eiδðx⃗;k⃗Þ.
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separation between orbital and angular momentum.
Furthermore, the property (6.17) (which is correct) would
be a trivial consequence of (B13). We argue in this section
why this is not possible in the general curved case, and that
the factorization (6.19) does not exist. However, we insist
that property (6.17) is still correct since it does not imply
the factorization property (6.19).
From the j ¼ m ¼ s ¼ 0 case, one infers immediately

that the universal orbital function must be Fðν; χ; nÞ ¼
0G

ð00Þ. In the flat case, F ¼ eik·x, and since by construction
we have

0G
ð00Þ ¼

X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
iljlðχÞY0

lðnÞ; ð6:22Þ

we could be tempted to deduce that the radial functions can
be built exactly like in the flat case, i.e. in using (F5), but
with the replacement jlðkrÞ → Φν

lðχÞ. In the flat case, the
(usual) spherical Bessel functions can be combined by
means of (F5) and (F6), which then leads to the expressions
listed in Appendix F. If we insist on the idea of using the
same combinations in the curved case, but with Φν

l in place
of the usual jl, we must also use the relations (A2). But
note that these differ from (F6) by factors like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kl2

p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kðlþ 1Þ2

p
. Thus, the results obtained with this

method are not the radial functions reported in Sec. IV.
To be specific, let us attempt to build the radial function

0α
ð10Þ
l ¼ 0ϵ

ð10Þ
l from the factorization (6.19). Starting from

0ϵ
ð10Þ
l ¼? 1

2lþ 1
½lΦν

l−1 − ðlþ 1ÞΦν
lþ1�; ð6:23Þ

and using (A2), the radial function takes the form

0ϵ
ð10Þ
l ¼? xl

d
dχ

Φν
l þ yl cot χΦν

l; ð6:24Þ

where the coefficients are

xl ¼ 1

2lþ 1

�
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 −Kl2
p þ lþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 −Kðlþ 1Þ2
p �

;

yl ¼ lðlþ 1Þ
2lþ 1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 −Kl2
p −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kðlþ 1Þ2

p �
;

and this differs from the correct expression (4.4a) since
obviously xl ≠ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −K

p
and yl ≠ 0.

Another way to show that (6.19) does not apply in the
curved case consists in exhibiting counterexamples. In the
closed case, the sum on l in (6.2) (with ζml ¼ const.) to
form plane waves is a finite sum since 0 ≤ l ≤ ν − 1. Let
us first consider the case j ¼ 0, s ¼ 0, m ¼ 0. If ν ¼ 1,

then we have only l ¼ 0 and 0α
ð00Þ
0 ðχ; ν ¼ 1Þ ¼ Fðν ¼ 1;

χ; nÞ ¼ 1 and there is no issue. However as soon as we

consider ν ¼ 2, we have 0α
ð00Þ
0 ðχ; ν ¼ 2Þ ¼ cosðχÞ and

0α
ð00Þ
1 ðχ; ν ¼ 2Þ ¼ sinðχÞ= ffiffiffi

3
p

, and it is found that the
orbital function must be

Fðν ¼ 2; χ;nÞ ¼ cosðχÞ þ i
ffiffiffi
3

p
cos θ sinðχÞ: ð6:25Þ

Hence the unit norm condition (6.20) is not met. Of course
when χ ≪ 1, that is for distances much smaller than the
curvature scale, the norm tends to unity, thus recovering the
flat case result. Note however that (6.17) still holds since

jc00αð00Þ0 ðν ¼ 2Þj2 ¼ 4πcos2χ and jc10αð00Þ1 ðν ¼ 2Þj2 ¼
4πsin2χ. One could try to release this unit norm condition
and still look for a universal orbital function. However, for
ν ¼ 2 but for the values ðs ¼ 0; j ¼ m ¼ 1Þ, one infers

Fðν ¼ 2; χ;nÞ ¼ 1; ð6:26Þ

which is not equal to (6.25). Similarly for ðj¼1;m¼ s¼0Þ
one infers yet another orbital function, being Fðν ¼ 2Þ ¼
cos χ þ i=

ffiffiffi
3

p
sin χ sec θ. To conclude, not only the orbital

function cannot be of unit norm, but also it cannot be
universal, that is in practice it cannot depend only on ν and
on the position in space (χ; n). At best, (6.19) can be used
for a definition of F for each set of ðs; j; mÞ, that is to define
sFðjmÞ orbital functions. In the open case, one can also
check numerically (because of the infinite sum in l) that
the orbital function cannot be of unit norm and cannot
be universal.
We thus conclude that the general factorization (6.19)

does not exist, and we can rely on the explicit summation
(F5) only in the flat case. In the curved case, one must
determine the radial modes following the method used in
this article (or a related one). The impossibility of the
factorizations (6.19) and (6.21) in the curved cases is
related to the fact that the norm squared of plane waves is
not a constant, and only its average over spheres yields the
constant N m

j (independent on χ) as seen on (6.18). This is
different from the flat case where it is obvious from (F2)
that the square of the norm of plane waves is N m

j every-
where. It is important to stress, however, that while (6.19)
does not exist, its use in Ref. [7] was meant only as a
heuristic motivation, and all the results are of course correct
since they rely essentially only on the property (7.29).

VII. COSMOLOGICAL APPLICATIONS

We are now in position to discuss some physical
applications of the formalism developed so far. We will
focus on the derivation of the Boltzmann hierarchy to
describe the evolution of CMB, a key cosmological
observable, following both the pioneering work of [7]
based on normal modes, and the approach built in [8,9]
using STF tensors. In the next section we introduce
harmonics and normal modes which are adapted to the
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use of the propagating direction (of photons) rather than
the observing direction. In Sec. VII B we summarize the
angular decomposition for CMB temperature and linear
polarization. We then review the standard derivation of the
Boltzmann hierarchy providing only minimal ingredients
of cosmology in Sec. VII C. In Sec. VII D we address the
general method for extracting the multipolar decomposition
of all cosmological observables when using plane wave
harmonics. When using pseudo plane waves (ζml ≠ const.)
instead of standard plane waves (ζml ¼ const.), the results
are slightly different, as detailed in [17].

A. Relation to propagation normal modes

In the context of CMB, it is often more convenient to
rewrite everything in terms of the propagating direction of
photon, rather than the observed direction of the incoming
photon. Hence, let us define the propagation direction as
the opposite of the observed direction:

n̄≡ −n: ð7:1Þ

The helicity bases associated with a direction and its
opposite are related through (3.39). A given point on the
manifold is either denoted by the pair (χ; n) or the pair
ðχ;−n̄Þ. Plane-wave harmonics in the propagation direction
are linked with those built so far as

Q̄ðjmÞ
Ij

ðχ;−n̄Þ≡ ð−1Þj ×QðjmÞ
Ij

ðχ; nÞ: ð7:2Þ

In order to be consistent with the construction of derived
harmonics we must use, instead of (2.23), the defining
property

Q̄ðjmÞ
Ij

¼ −
1

k
∇hij Q̄

ðj−1;mÞ
Ij−1i : ð7:3Þ

The expansion of these new harmonics in terms of the
associated normal modes is

Q̄ðjmÞ
Ij

ðχ;−n̄Þ≡ Xj

s¼−j
sgðjmÞ

sḠðjmÞðχ; n̄Þn̂sIjðn̄Þ; ð7:4Þ

whereas we recall that the harmonics built with observation
directions are expanded as (6.3). The normal modes
associated with plane waves are expanded in radial func-
tions in a similar fashion to (6.2), as

sḠðjmÞðχ; n̄Þ ¼
X
l≥jmj

c̄lsᾱ
ðjmÞ
l sYlmðn̄Þ ð7:5Þ

where

c̄l ≡ ð−1Þlcl ¼ ð−iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
: ð7:6Þ

Using (7.5) and (6.2) for plane waves in (7.4) and (6.3), so
as to replace in the definition (7.2), we deduce from the
properties (3.39) and (B11b) that the new radial functions
are related to the ones built with observed directions by

sᾱ
ðjmÞ
l ðνÞ ¼ −sα

ðjmÞ
l ðνÞ ¼ sα

ðjmÞ
l ð−νÞ: ð7:7Þ

From the decomposition (2.40) in even and odd compo-
nents, we deduce that the ones built when using propaga-
tion directions, are related to those built using observation
directions, by

sϵ̄
ðjmÞ
l ðνÞ ¼ sϵ

ðjmÞ
l ðνÞ; ð7:8aÞ

sβ̄
ðjmÞ
l ðνÞ ¼ −sβ

ðjmÞ
l ðνÞ: ð7:8bÞ

To summarize, when using propagation direction, as is
common in the context of CMB, one needs only to add a
factor ð−1Þl to cl, factors of ð−1Þj in the definition of the
harmonics, and then the radial functions are exactly the same
up to a global sign for the magnetic (odd) radial functions.
Equivalently, one can use the same radial functions but
with −ν instead of ν. In fact this is just the parity trans-

formation rule (6.10) since P½QðjmÞ
Ij

ðnÞ� ¼ Q̄ðjmÞ
Ij

ðn̄Þ.

B. CMB multipole decomposition

At each cosmological time, the temperature fluctuation
field Θ depends both on the position in space, that is on
(χ; n), and on the propagating direction n̄i [which does not
necessarily satisfy (7.1)]. This dependence can be separated
using a multipolar decomposition as

Θ ¼
X
j

Θi1…ij n̄
i1…n̄ij ; ð7:9Þ

where the STF multipoles ΘIj depend only on (χ; n) and
on time. However, as argued in [6,7], a shortcut consists in
fixing the propagating direction,

n̄i ¼ −ni; ð7:10Þ

when solving for the observed CMB. This is equivalent
to consider, in a given observed direction ni, only the
propagating directions which are observed at some time
by the observer.5

The temperature multipolesΘIj are expanded on (general
axis) plane wave harmonics as

5When considering first-order cosmological perturbations, it is
enough to consider the background geodesic, which is a straight
line on the maximally symmetric spatial background. When
considering higher order effects, time-delay and lensing correc-
tions to the trajectory must also be considered [23–25].

CYRIL PITROU and THIAGO S. PEREIRA PHYS. REV. D 100, 123535 (2019)

123535-18



ΘIj ¼
Xj

m¼−j

Z
d3ν
ð2πÞ3

Θm
j ðν; ηÞ
0g̃

ðjmÞ Q̄ðjmÞ
Ij

ðνÞ: ð7:11Þ

The dynamical evolution for STF multipoles then translates
into evolution equations for each mode components
Θm

j ðν; ηÞ. From the choice (7.10), with (7.9), (7.11) and
(2.35), the temperature becomes a simple scalar field
expanded in normal modes as

Θ ¼
X
jm

Z
d3ν
ð2πÞ3 Θ

m
j ðν; ηÞ0ḠðjmÞðνÞ; ð7:12Þ

where the propagating direction normal modes are related
to the usual ones as specified in Sec. VII A.
The case of linear polarization is analogous, and we

decompose the angular dependence of the Stokes param-
eters Q and U according to [see [19] or Eq. (1.67) in [26] ]

Q� iU
2

¼
X
j

½EIj ∓ iBIj � ˆ̄n
Ij
∓2: ð7:13Þ

The electric and magnetic STF multipoles EIj and BIj are
decomposed in terms of plane waves as

EIj ¼
1

2

Xj

m¼−j

Z
d3ν
ð2πÞ3

Em
j ðν; ηÞ
2g̃

ðjmÞ Q̄ðjmÞ
Ij

ðνÞ;

BIj ¼ −
1

2

Xj

m¼−j

Z
d3ν
ð2πÞ3

Bm
j ðν; ηÞ
2g̃

ðjmÞ Q̄ðjmÞ
Ij

ðνÞ: ð7:14Þ

Exactly like for temperature, we then restrict the propa-
gating direction according to (7.10). Hence ðQ� iUÞn̂�2

ij is
a tensor field on space, which is tangential to spheres of
constant χ. From (2.35) we find that the expansion in
normal modes now reads

Q� iU ¼
X
jm

Z
d3ν
ð2πÞ3 × ½Em

j ðν;ηÞ � iBm
j ðν;ηÞ��2Ḡ

ðjmÞðνÞ:

ð7:15Þ

Finally, the velocity of baryons, Vi, which we need to
account for the Compton collisions with electrons, is
decomposed exactly as in (7.11) for j ¼ 1. This means
that the quantity Vin̄i is decomposed as in (7.12) with only
j ¼ 1, which in turn defines Vmðν; ηÞ.
In the closed case, the plane waves as defined by (6.4)

are not orthonormal, as shown in (6.13). Hence we must

work directly with the lMQðjmÞ
Ij

ðνÞ, which are orthogonal

according to (5.7) and (5.9). The previous expansions on
harmonics can be read formally if

ν ¼ ðν;l;MÞ; ð7:16Þ

and then one must use the formal replacement [8,9]

Z
d3ν
ð2πÞ3 →

X∞
ν¼mþ1

Xν−1
l¼m

Xl
M¼−l

: ð7:17Þ

To be clear, with the convention (7.16), sGðjmÞðνÞ refers to
sG

ðjmÞ
lM ðνÞ and QðjmÞ

Ij
ðνÞ refers to lMQðjmÞ

Ij
ðνÞ.

C. Boltzmann equation

1. General structure

When using conformal cosmological time η, the general
cosmological metric takes the form

gcosmo
μν ¼ a2ðηÞðgμν þ δgμνÞ ð7:18Þ

where μ, ν are spacetime indices, aðηÞ is the scale factor,
and where the background metric gμν extends the purely
spatial metric (2.1) with g0i ¼ 0 and g00 ¼ −1.
Restricting to linear cosmological perturbations, the

general Boltzmann equation dictating the evolution of
the distribution function of photons reduces to an evolution
of the black body temperature Θ which depends on η, the
position on space, and on the propagating direction n̄i. This
equation possesses the general structure

ð∂η þ n̄i∇i þ τ0ÞΘ ¼ CΘ þ G: ð7:19Þ

Here, C is the collision term accounting for all processes with
a final photon propagating in the direction n̄i, whereas the
term proportional to the Compton interaction rate τ0 ≡
aneσT (with the background number density of free elec-
trons ne and the Thomson cross section σT) accounts for all
collisions with an initial photon propagating in direction n̄i.
Furthermore, G accounts for the gravitational effects which
enter when considering metric perturbations around a
homogeneous and isotropic expanding background.
For polarization, the Boltzmann equation is even simpler

since it is not affected by these gravitational effects, and
one has only

ð∂η þ n̄i∇i þ τ0ÞðQ� iUÞ ¼ CQ�iU: ð7:20Þ

We now discuss the individual terms in these equations
in the following sections so as to obtain a Boltzmann
hierarchy in Sec. VII C 4. Finally we report its formal
integral solution in Sec. VII C 5.

2. Gravitational effects

The gravitational term selects only the scalar, vector and
tensor modes, that is jmj ≤ 2 and in practice this implies a
restriction on the sums onm in (7.12) and (7.15). The effect
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of the perturbed metric δgμν on temperature depends on the
combinations

δg00; δg0in̄i; δgijn̄in̄j; ð7:21Þ

since, from the null geodesic equation, one infers

G ¼ 1

2
n̄i∇iδg00 −

1

2
δg0ijn̄

in̄j þ n̄in̄j∇jδg0i: ð7:22Þ

This motivates us to decompose the metric perturbations
according to

δg00 ¼ −2
Z

d3ν
ð2πÞ3 Aðν; ηÞQ̄

ð00ÞðνÞ;

δg0i ¼
Z

d3ν
ð2πÞ3

X1
m¼−1

BðmÞðν; ηÞQ̄ð1mÞ
i ðνÞ;

δgij ¼ −2
Z

d3ν
ð2πÞ3HLðν; ηÞQ̄ð00ÞðνÞgij;

þ 2

Z
d3ν
ð2πÞ3

X2
m¼−2

HðmÞ
T ðν; ηÞQ̄ð2mÞ

ij ðνÞ: ð7:23Þ

It is customary to adopt a gauge in which Bð0ÞðνÞ ¼ 0,
and we now assume this to be the case. This encompasses
both the popular synchronous and Newtonian gauge.
The decomposition of (7.22) in terms of normal modes
takes the form

G ¼
X
jm

Z
d3ν
ð2πÞ3 G

m
j ðν; ηÞ0ḠðjmÞðνÞ; ð7:24Þ

and it follows from (2.35) that factors 0g̃
ðjmÞ are brought

in the expressions of the Gm
j . For completeness we report

them here (see Appendix C of [21] which corrects [6,7]).
The only nonvanishing components are (omitting the
dependencies on ν and η)

G0
0 ¼ H0

L;

G0
1 ¼ kA;

G0
2 ¼ −0g̃

ð20ÞHð0Þ0
T ;

G�1
2 ¼ −0g̃

ð21Þ½kBð�1Þ −Hð�1Þ0
T �;

G�2
2 ¼ Hð�2Þ0

T : ð7:25Þ

In each case, the mode k is related to ν through (2.27),
hence one must distinguish according to the value of m.
The relevant factors in these expressions are

0g̃
ð20Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 3K

p

3k
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 4K

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þK

p ;

0g̃
ð21Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2K

p
ffiffiffi
3

p
k

¼ νffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 2K

p : ð7:26Þ

In practice, the equations are solved in a specific gauge
and not all metric perturbations components are kept [7].
The synchronous gauge corresponds to the conditions
A ¼ 0 and Bð�1Þ ¼ 0, whereas the Newtonian gauge is

found when using Hð0Þ
T ¼ 0 and Hð�1Þ

T ¼ 0.
In fact, the expansion in modes and multipoles of (7.12)

(7.15), are exactly like Eq. (55) of [6] and Eq. (23) of [7],
with the directional dependence on ν̂ explicit, so we can
easily compare our results and we find that Eqs. (7.25)
differ slightly from Eqs. (35) and (36) of [7]. This is
expected since our gravitational effects correspond to
Eq. (C18) of [21] without the last term. Equation (7.25)
also corresponds to what is obtained in [27], and arises
when the observer who defines the temperature anisotro-
pies is chosen to have a velocity proportional to ðdηÞμ. If a
different observer is used to define anisotropies, namely,
one with velocity proportional to ð∂ηÞμ, then (7.22) gets
modified as we must consider the entirety of Eq. (C18) in
[21]. This explains the variations found with the literature,
in particular with [6,7] where the contribution of Bð�1Þ goes
into G�1

1 instead of G�1
2 here (see e.g. Sec. 4.3.1 of [27] for a

detailed discussion).

3. Collisions

The collision terms, which account for Compton colli-
sions on electrons, depend only on the multipoles of
temperature and linear polarization, and they are expanded
in multipoles with definitions following exactly the decom-
position of temperature and linear polarization of the
previous section. We find [6,7,19,26,27]

ΘCmj ¼ τ0ðδj0δm0 Θ0
0 þ δj2P

ðmÞ þ δj1V
ðmÞÞ;

ECmj ¼ −τ0
ffiffiffi
6

p
δj2P

ðmÞ;
BCmj ¼ 0;

PðmÞ ≡ 1

10
ðΘm

2 −
ffiffiffi
6

p
Em
2 Þ: ð7:27Þ

4. Boltzmann hierarchy

The only nontrivial part, once the effect of gravitation
and collisions are expanded in STF multipoles, is the free
streaming. It is sufficient to consider the case of modes
aligned with the zenith direction, and we use the expression

n̄i∇iðsḠðjmÞn̂sIjÞ ¼ −
d
dχ

ðsḠðjmÞÞn̂sIj ð7:28Þ
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as well as the recursion relation for the normal modes

d
dχ

ðsḠðjmÞÞ ¼ iνms
jðjþ 1Þ sḠ

ðjmÞ

þ 1

2jþ 1
½−sκ

m
j sḠðj−1;mÞ þ sκ

m
jþ1sḠ

ðjþ1;mÞ�

ð7:29Þ

which is a consequence of (2.28) and (3.23) translated to
propagating direction radial functions (7.7). Using this
property into (7.19) and (7.20), with (7.12) and (7.15),
one finally obtains the hierarchy (again, omitting the
dependence on ν)

∂ηΘm
j ¼

�
0κ

m
j

2j − 1
Θm

j−1 −
0κ

m
jþ1

2jþ 3
Θm

jþ1

�
þ Gm

j þ ΘCmj − τ0Θm
j ;

∂ηEm
j ¼

�
2κ

m
j

2j − 1
Em
j−1 −

2κ
m
jþ1

2jþ 3
Em
jþ1 −

2mν

jðjþ 1ÞB
m
j

�
þ ECmj − τ0Em

j ;

∂ηBm
j ¼

�
2κ

m
j

2j − 1
Bm
j−1 −

2κ
m
jþ1

2jþ 3
Bm
jþ1 þ

2mν

jðjþ 1ÞE
m
j

�
þ BCmj − τ0Bm

j : ð7:30Þ

Given the maximal symmetry of the background, the
evolution of the gravitational sources Gm

j depends only
on ν. However, their initial conditions (set deep in the past)
does depend fully on ν. Hence, in practice, the hierarchy
(7.30) needs to be solved only for various values of ν, and the
directional dependence is simply inherited from initial
conditions. Let us also comment that we do not necessarily
need to use the expansions in normal modes (7.12)
and (7.15) with (7.29) to derive the hierarchy. Indeed, this
is a shortcut based on using (7.10), and one might prefer
using directly the expansions in harmonics (7.11) and (7.14)
along with (3.22) to compute the effect of free streaming, as
in Refs. [8,9,19,27]. The hierarchy for multipoles is even-
tually recovered using the orthonormality condition (6.12).

5. Integral solution

We can check using (3.28) and (7.8) that when the
gravitational effects and the collision term can be neglected
(that is when the evolution of multipoles is only due to free
streaming), the functions

ð2jþ 1Þ0ϵ̄ðj
0mÞ

j ðη; νÞ;
ð2jþ 1Þ2ϵ̄ðj

0mÞ
j ðη; νÞ;

ð2jþ 1Þ2β̄ðj
0mÞ

j ðη; νÞ ð7:31Þ

are solutions of the hierarchy (7.30) for any j0. This guides
the general resolution of the full hierarchy when collisions

and gravitational effects are taken into account. Let us
introduce the optical depth from a cosmological time η to
today (η0)

τðη; η0Þ≡
Z

η0

η
dη0τ0ðη0Þ; ð7:32Þ

that we abbreviate as τ. It is then straightforward to
obtain the formal solution to the full hierarchy in the
integral form [6,7]

Θm
j ðη0Þ

2jþ 1
¼

Z
η0

0

dηe−τ
X
j0
ðΘCmj0 þ Gm

j0 Þ0ϵ̄ðj
0mÞ

j ðχÞ;

Em
j ðη0Þ

2jþ 1
¼

Z
η0

0

dηe−τ
X
j0

ECmj0 2ϵ̄
ðj0mÞ
j ðχÞ;

Bm
j ðη0Þ

2jþ 1
¼

Z
η0

0

dηe−τ
X
j0

ECmj0 2β̄
ðj0mÞ
j ðχÞ; ð7:33Þ

where the argument of the radial functions is

χ ¼ η0 − η: ð7:34Þ

Finally, and this is crucial, it is customary to expand
the directional dependence of the observed temperature
(polarization) directly in Ym

j (�2Y
m
j ). Hence, to obtain the

corresponding multipoles, one must consider the normali-
zation at origin (2.31), and this brings extra factors
c̄l=ð2lþ 1Þ ¼ ð−iÞl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π=ð2lþ 1Þp
. Thus, for the CMB,

we shall use

CMBΘm
l ðη0Þ ¼ Θm

l ðη0Þð−iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
; ð7:35Þ

with similar relations for the E and B modes. Eventually,
one might also prefer to use directions related to observa-
tion rather than propagation for the multipoles observed
today, and this brings extra factors of ð−1Þl for the
temperature and electric-type polarization multipoles and
ð−1Þlþ1 for the magnetic-type ones.

D. Other cosmological observables

Quite generally, all types of cosmological observables,
such as weak lensing convergence or shear, lensing field,
galaxy number counts, redshift drifts, etc., are all of the
form of an integral on the background past light cone,
which can be written formally as

sOðnÞ ¼
Z

η0

0

dη
X
jm

n̂
Ij
−sS

ðjmÞ
Ij

ðη; χ; nÞ ð7:36Þ

with (7.34). The sources SðjmÞ
Ij

are expanded on plane waves
harmonics as
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n̂
Ij
−sS

ðjmÞ
Ij

ðη; χ; nÞ ¼
Z

d3ν
ð2πÞ3 S

m
j ðη; νÞsGðjmÞðχ;n; νÞ:

ð7:37Þ

If we decompose the observable as a sum of the effects of
each harmonic as

sO ¼
Z

d3ν
ð2πÞ3

X
jm

sOm
j ðνÞsGðjmÞðχ ¼ 0; n; νÞ; ð7:38Þ

then we only need to expand the sources under the
integral with the Rayleigh expansion (6.7) which is
equivalent to

�sG
ðjmÞðχ; n; νÞ ¼

X∞;ν−1

l≥jmj
ð2lþ 1Þ ζ

m
l

ζmj

× �sα
ðjmÞ
l ðχ; νÞ�sG

ðlmÞðχ ¼ 0; n; νÞ;
ð7:39Þ

so as to obtain the integral solutions [with ζml ¼ const: since
the decomposition (7.37) is on plane-wave harmonics]

sOm
j ðνÞ

2jþ 1
¼

Z
η0

0

dη
X
j0≥jmj

sα
ðj0mÞ
j ðχ; νÞSmj0 ðη; νÞ: ð7:40Þ

Note that in the angular decomposition (7.38) we must use
the normalization at χ ¼ 0 given by (2.31) but taking into
account the rotation (6.6), that is6

sGðjmÞðχ ¼ 0; νÞ ¼ cj
2jþ 1

X
M

Dj
MmðRν̂ÞsYM

j : ð7:41Þ

The integral solution for the CMB multipoles arises
immediately with this method, if one notes that the
Boltzmann equation (7.19) is rewritten as

d
dη

ðe−τΘÞ ¼ e−τ½CΘ þ G� ð7:42Þ

where d=dη≡ ∂η þ n̄i∇i is the derivative along the back-
ground geodesic. Indeed, the integral form of the type
(7.36) is

Θðη0Þ ¼
Z

η0

0

e−τ½CΘ þ G�dη; ð7:43Þ

and following the aforementioned method, we then recover
the solution (7.33), up to the difference that for CMB we
used propagation direction harmonics and multipoles. Even
though this derivation appears much faster, one must not
forget that in the case of CMB the sources depend on the
multipoles themselves, and one must rely on the Boltzmann
hierarchy (which can be found by derivation of the integral
solutions with respect to η0) to solve for their evolution.
The physical interpretation based on this method is that

free streaming builds multipoles with increasing j from the
initial multipoles of sources. The effect of free streaming
amounts to intersecting plane-wave harmonics with spheres
of increasing radius, and the radial functions precisely
account for the projection effects of the sources, taking into
account the local angular structure at emission.

VIII. CONCLUSION

Thanks to the introduction of the generalized helicity
basis, we established in this work a systematic and
comprehensive construction of radial functions, normal
modes, and tensor harmonics in maximally symmetric
three-dimensional spaces. When combined with spin-
weighted spherical harmonics, they provide a powerful
set of tools adapted to the description of symmetric and
trace-free tensors, and are suited for separating the radial
from the angular dependencies of physical quantities.
Furthermore, the developed framework allows for system-
atic algebraic manipulations which greatly benefits from
the power of symbolic computational tools. In particular, in
this work, we have made intensive use of xAct [28].
In Appendix G our results are contrasted with earlier

literature on vector and tensor harmonics around maximally
symmetric curved spaces. However, our method is not
restricted to vector or tensor harmonics but can be applied
to higher rank harmonics thanks to the full set of recursive
relations in the (j; s) space. Our results also extend to
curved spaces of the construction of scalar, vector, and
tensor harmonics presented in [11], and puts on a firmer
ground the pioneering use of normal modes introduced
in [7]. However, we stress that some of our relations were
not fully demonstrated but only checked explicitly for all
modes up to reasonable values of the eigenvalue j (typically
j ≤ 4 and the associated jmj ≤ j, jsj ≤ j), as was also the
case in [7]. Hence, from a mathematical point of view, our
formalism would benefit from an appropriate general proof
on these relations. Still, for practical physical applications
which depend only on the lowest values of j (but with all
allowed values of m and s), it can be fully trusted since all
relations were checked with l being kept general, using
the general properties of hyperspherical Bessel functions.
Thus, in a restricted sense, they have been demonstrated.
The relations which were checked up to j ¼ 4 (and all
allowed values of m and s) but with general values of l are
Eqs. (3.28), (5.8), (5.10), and (6.17). Relation (3.27), on the
other hand, was checked only for j ≤ 4 and l ≤ 4.

6In the closed case, and given the formal meaning (7.16),
the normalization at χ ¼ 0 is directly sG

ðjmÞ
lM ðχ¼0;νÞ¼δjlcj=

ð2jþ1ÞsYM
j .
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The radial functions have very rich properties which fall
into four categories. These are summarized as follows:
(1) Recursive relations in the space of (j; s) values.

They can all be deduced from the triangular relations
(NW,NW,SW,SE) depicted in Fig. 1 and whose
expressions are collected in Appendix D. They
allow us to deduce all radial functions using the
algorithm described in Sec. III C. Furthermore,
Eq. (3.23) is of direct use for the effect of free
streaming on radiation multipoles.

(2) Sign inversions of either m, s or ν [Eq. (3.25)],
which are of direct use when studying the properties
under parity transformation as in Sec. III F.

(3) Symmetries in the space of ðj; m; s;lÞ values,
namely the m ↔ s and the j ↔ l exchange sym-
metries [Eqs. (3.26) and (3.27)].

(4) Orthogonality relations (5.8) and (5.10), which
imply corresponding orthogonality relations for
harmonics.

Once knowing the radial functions, whose expressions
for j ≤ 2 are gathered in Sec. IV (or Appendix F for the flat
case), the harmonics are built using (2.28) and (2.33), with
the needed coefficients sgðjmÞ given by (2.37) and (3.18),
and the explicit forms of the generalized helicity bases
reported in Appendix C.
The case of a flat space is very different from the curved

cases. Indeed, we have shown that the general factorization
(6.19), which can be used in the flat case to build
systematically all radial functions (see Appendix F), does
not exist in the curved case, contrary to previous statements
in the literature. Our results provide a systematic algorithm
to build recursively the radial functions in curved space
by systematic exploration of the (j; s) space of radial
functions. A Mathematica notebook implementing this
algorithm is available at [18].
The radial functions are extremely powerful for the

computation of theoretical expressions for multipoles of
observables. Once an observable is written as an integral on
the background past light cone, it is sufficient to decompose
the angular structure on normal modes, and to use the
Rayleigh expansion in the form (7.39) to obtain the result.
In practical applications, it is sometimes preferred to use
harmonics which are decomposed according to a propa-
gation direction (e.g., photon’s direction in the case of
CMB) rather than the observation direction, and the relation
between both convention is simple, as we summarized in
Sec. VII A.
Finally, it is worth mentioning that radial functions (and

thus harmonics) can also be defined for supercurvature
modes. They correspond to values of ν in the complex plane
and rely on analytic continuations of the radial functions
built here. In [17] we detail how supercurvature modes can
be used to described spatially anisotropic (i.e., Bianchi)
space-times as supercurvature fluctuations over maximally
symmetric space-times.
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APPENDIX A: HYPERSPHERICAL
BESSEL FUNCTIONS

Hyperspherical Bessel functions are derived in detail in
Refs. [1,4,5]. For the convenience of the reader, though, we
present some key properties in this appendix.
The hyperspherical Bessel functions Φν

l are solutions of
the following differential equation:

1

r2ðχÞ
d
dχ

r2ðχÞ d
dχ

Φν
l þ

�
ν2 −K −

lðlþ 1Þ
r2ðχÞ

�
Φν

l ¼ 0:

ðA1Þ

They satisfy the following recurrence relations:

d
dχ

Φν
l ¼ l

2lþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kl2

p
Φν

l−1

−
ðlþ 1Þ
2lþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kðlþ 1Þ2

q
Φν

lþ1;

cot χΦν
l ¼ 1

2lþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kl2

p
Φν

l−1

þ 1

2lþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kðlþ 1Þ2

q
Φν

lþ1; ðA2Þ

with

Φν
0 ≡ sin νχ

ν sin χ
: ðA3Þ

A closed expression for a general l is [4,16]

Φν
l ¼ 1

ν2

�Yl
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Ki2

p
�

× sinlχ

�
−1

sin χ

d
dχ

�
lþ1

cosðνχÞ: ðA4Þ

Near the origin (χ → 0), they are power-law suppressed
(except for l ¼ 0) as

Φν
l ∼ χl

Yl
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Ki2

p

ð2iþ 1Þ : ðA5Þ
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In the closed case, sin ¼ sin and the variable νmust take
positive integer values constrained by

0 ≤ l < ν: ðA6Þ

The lowest value ν ¼ 1 corresponds to a constant global
perturbation since there is only Φν¼1

0 ¼ 1. The ν ¼ 2 mode
allows only for global dipolar modulations since Φν¼2

0 ¼
cos χ and Φν¼2

1 ¼ ðsin χÞ= ffiffiffi
3

p
.

The hyperspherical Bessel functions are normalized
similarly to usual spherical Bessel functions [Eq. (F8)]

Z
Φν

lðχÞΦν0
l ðχÞr2ðχÞdχ ¼ π

2

δðν − ν0Þ
ν2

; ðA7Þ
Z

Φν
lðχÞΦν

lðχ0Þν2dν ¼
π

2

δðχ − χ0Þ
r2ðχÞ : ðA8Þ

In the closed case, the integral on νmust be understood as a
discrete sum on ν ≥ lþ 1.
A class of related functions is given by

Ψν;n
l ≡ Φν

l

rnðχÞ : ðA9Þ

One can check that these functions satisfy the differential
equation

d2

dχ2
Ψν;n

l þ 2ð1þ nÞ cot χ d
dχ

Ψν;n
l

þ
�
ν2 −Kð1þ nÞ − lðlþ 1Þ

r2ðχÞ

þ nðnþ 1Þcot2ðχÞ
�
Ψν;n

l ¼ 0: ðA10Þ

In practical numerical computations, hyperspherical
Bessel functions are challenging to compute. The reader
interested in fast and accurate implementations can check
Refs. [29,30].

APPENDIX B: SPHERICAL HARMONICS AND
HELICITY BASIS

In this appendix we work in the flat (Euclidean) three-
dimensional space, also identified with the tangent space at
the origin of the coordinates (χ ¼ 0) of curved spaces. The
unit direction vector is n, and we also use the helicity
vectors (7.34) along with the general helicity basis (2.10)
and the multi-index notation (2.11).

1. Spherical harmonics

Spherical harmonics are defined as functions on the unit
sphere:

Ym
l ðθ;φÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
eimφPm

l ðcos θÞ; ðB1Þ

with the associated Legendre polynomials being given by

Pm
l ðzÞ ¼ ð−1Þmð1 − z2Þm=2 ×

dlþm

dzlþm ðz2 − 1Þl: ðB2Þ

Let us define, for any pair of functions AðnÞ and BðnÞ,
the Hermitian inner product

fAjBg ¼ fBjAg⋆ ≡
Z

d2nA⋆ðnÞBðnÞ: ðB3Þ

The spherical harmonics are orthonormal

fYm
l jYm0

l0 g ¼ δll0δmm0 ; ðB4Þ

and complete

X∞
l¼0

Xl
m¼−l

Ym
l ðnÞYm⋆

l ðn0Þ ¼ δ2ðn − n0Þ: ðB5Þ

Given the spherical harmonics, which form a basis
for scalar functions on the sphere, one can define spin-
weighted spherical harmonics as basis for spin functions on
the sphere [31]. These are defined as

sYm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞ!
ðlþ sÞ!

s
=∂sYlm; s ≥ 0;

sYm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞ!
ðl − sÞ!

s
ð−1Þs=̄∂−sYlm; s ≤ 0; ðB6Þ

or by induction as

sþ1Y
m
l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞðlþ sþ 1Þp =∂sYm

l ;

s−1Y
m
l ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ sÞðl − sþ 1Þp =̄∂sYm
l ; ðB7Þ

where the spin-raising (=∂) and spin-lowering (=̄∂)
operators are

=∂ ≡ −ðsin θÞs
�
∂θ þ

i
sin θ

∂φ

�
ðsin θÞ−s;

=̄∂ ≡ −ðsin θÞs
�
∂θ −

i
sin θ

∂φ

�
ðsin θÞ−s: ðB8Þ

These operators are related to the covariant derivative D
on the sphere. Indeed, it is found that
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=∂ ¼ −
ffiffiffi
2

p
Dþ ¼ −

ffiffiffi
2

p
n− ·D; ðB9aÞ

=̄∂ ¼ −
ffiffiffi
2

p
D− ¼ −

ffiffiffi
2

p
nþ ·D: ðB9bÞ

This allows us to derive a central relation for the compu-
tation of covariant derivatives on the sphere

Djð�sY
m
l n̂

�s
Is
Þ ¼ ∓ ð�λslÞffiffiffi

2
p �ðsþ1ÞY

m
l
n�j n̂

�s
Is

� ð∓λslÞffiffiffi
2

p �ðs−1ÞY
m
l
n∓j n̂�s

Is
;

where the coefficients �λ
s
l where introduced in (3.7).

An explicit form of the spin-weighted spherical harmon-
ics is

sYm
l ¼ eimφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðlþmÞ!ðl −mÞ!
ðlþ sÞ!ðl − sÞ!

s

×
Xminðl−s;lþmÞ

r¼maxð0;m−sÞ

�
l − s

r

��
lþ s

rþ s −m

�

× ð−1Þlþm−r−s ðcos θ
2
Þ2rþs−m

ðsin θ
2
Þ2rþs−m−2l : ðB10Þ

Useful properties are

sYm⋆
l ðnÞ ¼ ð−1Þmþs

−sY
−m
l ðnÞ; ðB11aÞ

sYm
l ð−nÞ ¼ ð−1Þl−sYm

l ðnÞ; ðB11bÞ

−sYm
l ðezÞ ¼ δmsð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
; ðB11cÞ

and the s ↔ m interchange property

ð−1ÞseisϕsYm
l ¼ ð−1Þmeimϕ

mYs
l: ðB12Þ

Finally, we also find the orthogonality relation

fsYm
l jsYm0

l0 g ¼ δll0δmm0 ; ðB13Þ

as well as the closure relation, which generalizes (B5)

X∞
l¼jsj

Xl
m¼−l

sYm
l ðnÞsYm⋆

l ðn0Þ ¼ δ2ðn − n0Þ: ðB14Þ

2. Relation with helicity basis

In this section, we detail how spherical harmonics and
spin-weighted spherical harmonics are related to the
generalized helicity basis (2.10). This extends the results

already collected in Appendix D of [26]. First, from the
general rule for the integration over products of n [13]

Z
d2n
4π

nI2lþ1 ¼ 0;Z
d2n
4π

nI2l ¼ 1

2lþ 1
δði1i2…δi2l−1i2lÞ; ðB15Þ

where the parentheses mean full symmetrization on
enclosed indices, it is possible to show that

fn̂Il jn̂Jlg ¼ Δlδ
hi1
j1
…δilijl

; ðB16Þ

Δl ≡ 4πl!
ð2lþ 1Þ!! : ðB17Þ

n̂Il is a special case of (2.10) with multi-index notation,
and is simply the STF product of l unit direction vectors
(see e.g. [13,32]). Equation (B16) is a particular case of
Eq. (C2) in [32].
If we define

YIl
lm ≡ Δ−1

l fn̂Il jYm
l g; ðB18Þ

we can relate the spherical harmonics to the generalized
helicity basis (with s ¼ 0) as

Ym
l ðnÞ ¼ Δ−1

l n̂Ilfn̂Il jYm
l g ¼ n̂IlY

Il
lm: ðB19Þ

The inverse relation is

n̂Il ¼
Xl
m¼−l

Ym
l ðnÞfYlmjn̂Ilg;

¼
Xl
m¼−l

ΔlYm
l ðnÞY⋆Il

lm : ðB20Þ

From the identity

Xl
m¼−l

Ym
l ðnÞYm⋆

l ðnÞ ¼ 2lþ 1

4π
; ðB21Þ

we get the closure relation

Xl
m¼−l

YIl
lmY

lm⋆
Jl

¼ Δ−1
l δhi1j1 …δilijl

: ðB22Þ

Explicitly the YIl
lm are given by (for m > 0)
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YIl
lm ¼ Clm

X½ðl−mÞ
2

�

j¼0

ðδi11 þ iδi12 Þ…ðδim1 þ iδim2 Þ

× almjδ
imþ1

3 …δ
il−2j
3 δl−2jþ1l−2jþ2…δil−1il ;

where

Clm ≡ ð−1Þm
�
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

�
1=2

;

almj ≡ ð−1Þjð2l − 2jÞ!
2lj!ðl − jÞ!ðl −m − 2jÞ! :

Since we used a Cartesian basis in a Euclidean space,
we also define YIl

lm ¼ Ylm
Il

and we have the property

Y⋆Il
lm ¼ ð−1ÞmYIl

l−m which extends the definition for neg-
ative m. The YIl

lm satisfy the orthogonality property

YIl
lmY

lm0⋆
Il

¼ Δ−1
l δm

0
m : ðB23Þ

They also allow us to build spin-weighted spherical
harmonics, in close analogy to (B19):

�sY
m
l ðnÞ ¼ ð∓ÞsblsYlm

Il
n̂Il∓s: ðB24Þ

This relation is inverted as

n̂Il∓s ¼ ð∓ÞsΔl

bls

Xl
m¼−l

�sY
m
l ðnÞY⋆Il

lm : ðB25Þ

Using (B13) and (B22) we deduce immediately the useful
orthogonality condition for the generalized helicity basis

fn̂Il�sjn̂�s
Jl0
g ¼ δll0

Δl

ðblsÞ2
δhi1j1 …δilijl

¼ δll0dls
4π

ð2lþ 1Þ δ
hi1
j1
…δilijl

: ðB26Þ

Furthermore, since the generalized helicity basis is a
complete basis for STF tensors at each point, we also find
the closure relation

Xl
s¼−l

ðdlsÞ−1n̂Il�sn̂
∓s
Jl

¼ δhi1j1 …δilijl
: ðB27Þ

In the construction of harmonics of this paper, and more
specifically in (2.39), we are not working in a Euclidean
space. However we can still use the object (B18) if it is
understood that it is defined in the tangent space at the
origin.
Finally note that the YIl

lm are related to the generalized
helicity basis in the zenith direction. Since in this special
direction (θ ¼ 0) ϕ is not defined, we choose the convention

nθ ¼ ex; nϕ ¼ ey; n� ¼ 1ffiffiffi
2

p ðex ∓ ieyÞ ðB28Þ

which implies that at any point (θ;ϕ) of the unit sphere,
the helicity basis is obtained by a rotation of angle θ around
the y axis and a rotation of angle ϕ around the z axis from the
basis at the zenith direction. With this choice we get in
particular for m ≥ 0

YIl
l�m ¼ ð∓ÞmðΔldlmÞ−1=2n̂Il∓mjzen: ðB29Þ

Note that we can recast the value at χ ¼ 0 of harmonics
given in (2.39). We find

lQðj�mÞ
Ij

���
χ¼0

¼ δjlð∓
ffiffiffi
2

p
Þmij ð2m − 1Þ!!ffiffiffiffiffiffiffiffiffiffiffiffið2mÞ!p ξm

ξj
n̂
Ij∓m

����
zen
:

ðB30Þ

With the formulation (B29), Eq. (B24) can be recast as

�sY
�m
l ¼ ð∓1Þsð∓1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
n̂∓s
Il
n̂Il∓m

����
zen

ðB31Þ

which obviously leads to (B11a) after complex conjuga-
tion. Using that the generalized helicity basis is a complete
basis for STF tensors, we also obtain by decomposing the
generalized helicity basis in the zenith direction (consid-
ered as a constant tensor)

Xj

s¼−j
ðkjsÞsYm

j n̂
s
Ij
¼ Yjm

Ij
: ðB32Þ

with the factors kjs defined by (2.18).

In the flat case, the definition of the Yjm
Ij

in the tangent

space at χ ¼ 0 can be trivially extended to any point by
simple translations. In the curved case, one uses the relation
(B29) and extends it to any point by parallel transport
along the radial geodesic reaching this point. Since the
generalized helicity basis is also parallel transported
along radial geodesics, the properties (B24) and (B32)
are also valid when Yjm

Ij
and n̂sIj are evaluated at a general

point with χ ≠ 0.

3. Rotations

Let us consider an active rotation of angles Rðα; β; γÞ.
With the Euler angle notation, it consists in actively rotating
around the z axis by an angle γ, then actively rotating
around the y axis by an angle β, and finally rotating around
the z axis by an angle α. The rotated spherical and spin-
weighted spherical harmonics are related to the original
ones by (see e.g. Appendix A of [33] or Appendix D. 3
of [34])
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R½sYm
l n̂

s
Ij
� ¼

X
m0

Dl
m0mðRÞsYm0

l n̂sIj ðB33Þ

where the Wigner D-coefficients are related to spin
spherical harmonics through

sYm
l ðβ; αÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ð−1ÞmeisγDl

−msðα; β; γÞ: ðB34Þ

In particular, when considering only a rotation RyðπÞ
around the y axis by an angle π (that is α ¼ 0; β ¼ π; γ ¼ 0)

Dl
m0mðRyðπÞÞ ¼ δm−m0 ð−1Þlþm0

; ðB35Þ

and

RyðπÞ½sYm
l n̂

s
Ij
� ¼ ð−1Þl−msY−m

l n̂sIj : ðB36Þ

APPENDIX C: A COMPENDIUM OF
USEFUL FORMULAS

1. Explicit expression of the generalized helicity basis

From the general formula to extract the STF part from a
symmetric tensor [see e.g. Eq. (2.2) of [13] ] one infers
the general expression for the generalized helicity basis
which is

n̂�s
Il

¼
X½ðl−sÞ=2�

n¼0

salngðiii2…gi2n−1i2n

× n�i2nþ1
…n�i2nþs

ni2nþsþ1
…nilÞ; ðC1Þ

where the parentheses mean full symmetrization on
enclosed indices, and with the coefficients

saln ≡ ð−1Þnð2l − 2n − 1Þ!!ðl − sÞ!
ð2l − 1Þ!!ð2nÞ!!ðl − 2n − sÞ! : ðC2Þ

It is instructive to write down explicitly the first few
terms of the generalized helicity basis (2.10). For j ¼ 1, we
have by convention n̂i ¼ ni and n̂�1

i ¼ n�i . For two and
three indices, we find respectively

n̂ij ¼ ninj −
1

3
gij;

n̂�1
ij ¼ 1

2
ðn�i nj þ nin�j Þ;

n̂�2
ij ¼ n�i n

�
j ; ðC3Þ

and

n̂ijk ¼ ninjnk −
1

5
ðgijnk þ gjkni þ gkiniÞ;

n̂�1
ijk ¼

1

3
ðn�i njnk þ nin�j nk þ ninjn�k Þ;

−
1

15
ðgijn�k þ gjkn�i þ gkin�i Þ;

n̂�2
ijk ¼

1

3
ðn�i n�j nk þ n�i njn

�
k þ nin�j n

�
k Þ;

n̂�3
ijk ¼ n�i n

�
j n

�
k : ðC4Þ

2. Products and contractions

In the process of obtaining recursive relations among
radial functions, we encounter a series of products and
contractions of generalized helicity basis elements which
we now collect. The contractions

n̂Il−1p�s np ¼ n̂Il−1�s
ðl2 − s2Þ
lð2l − 1Þ ; ðC5Þ

n̂Il−1pn�p ¼ −
l − 1

2l − 1
n̂Il−1� ðC6Þ

generalize Eq. (A23) of [15]. For s ≥ 0 we also find

n̂Il−1p�s n�p ¼ −
ðl − sÞðl − s − 1Þ

lð2l − 1Þ n̂Il−1�ðsþ1Þ: ðC7Þ

For s > 0 we obtain

n̂Il−1p�s n∓p ¼ ðlþ sÞðlþ s − 1Þ
2lð2l − 1Þ n̂Il−1�ðs−1Þ: ðC8Þ

Repeated application of (C5)–(C8) allows to prove the
orthogonality property (2.12).
Defining the Levi-Civita tensor on the spheres as

ϵij ¼ nkϵkij; ðC9Þ

we also have parity inverting relations

ϵphil n̂
�s
Il−1ip ¼ � is

l
n̂�s
Il
: ðC10Þ

Let us now collect relations related to products of the
generalized helicity basis. Applying (A)3 of [15], we get

n̂Il�sn
j ¼ n̂hIlji�s þ ðl − sÞðlþ sÞ

lð2lþ 1Þ n̂hIl−1�s gilij

� is
lþ 1

ϵjhilp n̂Il−1ip�s : ðC11Þ

For s ≥ 0 we also find
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n̂Il�sn
j
� ¼ n̂Ilj�ðsþ1Þ ∓

iðl − sÞ
lþ 1

ϵjhilp n̂Il−1ip�ðsþ1Þ

−
ðl − sÞðl − s − 1Þ

lð2lþ 1Þ n̂hIl−1�ðsþ1Þg
ilij: ðC12Þ

For s > 0 it reads instead

n̂Il�sn
j∓ ¼ −

1

2
n̂Ilj�ðs−1Þ ∓

iðlþ sÞ
2ðlþ 1Þ ϵ

jhil
p n̂Il−1ip�ðs−1Þ

þ ðlþ sÞðlþ s − 1Þ
2lð2lþ 1Þ n̂hIl−1�ðs−1Þg

ilij: ðC13Þ

Note that the missing case s ¼ 0 for this relation is in fact
given by (C12) evaluated in s ¼ 0.
Finally, note that the STF part of products of helicity

vectors are the expected relation (for s ≥ 0)

n̂hIl�sn
ji
� ¼ n̂Ilj�ðsþ1Þ ðC14Þ

but one should be careful that for s ≥ 1 we also find

n̂hIl�sn
ji∓ ¼ −

1

2
n̂Ilj�ðs−1Þ: ðC15Þ

3. Derivatives of helicity basis

a. Simple derivative

In this section, we collect relations related to derivatives
of the generalized helicity basis. We work on the maximally
symmetric curved space with metric (2.1) whose associated
covariant derivative is ∇i. We first find

∇pn̂�s
Ij

¼ �is
rðχÞ cotθe

ϕ
pn̂�s

Ij
þ ðj− sÞ cotχ½gphij n̂�s

Ij−1i − npn̂�s
Ij
�

− s cotχn�p n̂
�ðs−1Þ
Ij

: ðC16Þ

The first line might seem peculiar at first sight, but it can be
absorbed when considering instead the derivative of prod-
ucts of spin-weighted spherical harmonics multiplied by
the associated helicity basis, which is precisely what we
always have in all expressions. Indeed, for s > 0 we get

∇pð�sY
m
l n̂

�s
Ij
Þ ¼ þðj − sÞ cot χ½gphij n̂�s

Ij−1i − npn̂�s
Ij
��sY

m
l

− s cot χn�p n̂
�ðs−1Þ
Ij �sY

m
l

∓ ðþλslÞffiffiffi
2

p
rðχÞ �ðsþ1ÞY

m
l
n�p n̂�s

Ij

� ð−λslÞffiffiffi
2

p
rðχÞ �ðs−1ÞY

m
l
n∓p n̂�s

Ij
; ðC17Þ

and in the particular case s ¼ 0 we find simply

∇pðYm
l n̂IjÞ ¼ þj cot χ½gphij n̂Ij−1i − npn̂Ij �Ym

l

−
1

rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
þYm

l n
þ
p n̂Ij

þ 1

rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
−Ym

l n
−
pn̂Ij : ðC18Þ

From (C14) and (C15), it is obvious to consider only the
STF part of these relations.

b. Divergence of helicity basis

Furthermore, by contraction with gpij of the expressions
in the previous section, we obtain relations associated with
the divergence of an helicity basis. For s > 0 it is

∇pð�sY
m
l n̂

�s
Ij−1p

Þ ¼ ðj2 − s2Þ
jð2j − 1Þ ×

�
ðjþ 1Þ cot χ�sY

m
l n̂

�s
Ij−1

� ðþλslÞffiffiffi
2

p
rðχÞ

ðj − s − 1Þ
ðjþ sÞ �ðsþ1ÞY

m
l
n̂�ðsþ1Þ
Ij−1

� ð−λslÞffiffiffi
2

p
rðχÞ

ðjþ s − 1Þ
2ðj − sÞ �ðs−1ÞY

m
l
n̂�ðs−1Þ
Ij−1

	

ðC19Þ
whereas in the s ¼ 0 case it is

∇pðYm
l n̂Ij−1pÞ ¼

jðjþ 1Þ
2j − 1

cot χYm
l n̂Ij−1

þ 1

rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
ðj − 1Þ
ð2j − 1Þ þ1Y

m
l n̂

þ1
Ij−1

−
1

rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
ðj − 1Þ
ð2j − 1Þ −1Y

m
l n̂

−1
Ij−1

:

c. Curl of helicity basis

The curl is also deduced by contraction with the Levi-
Civita tensor of the expressions in Appendix C 3 a. If s > 0
we get

curlð�sY
m
l n̂

�s
Ij
Þ¼�i

s
j
cotχ�sY

m
l n̂

�s
Ij

þ i
ðþλslÞ
2rðχÞ

ðj−sÞ
j �ðsþ1ÞY

m
l
n̂�ðsþ1Þ
Ij

− i
ð−λslÞ
2rðχÞ

ðjþsÞ
2j �ðs−1ÞY

m
l
n̂�ðs−1Þ
Ij

ðC20Þ

and for s ¼ 0 we get simply

curlðYm
l n̂IjÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
ffiffiffi
2

p
rðχÞ



þ1Y

m
l n̂

þ1
Ij

þ −1Y
m
l n̂

−1
Ij

�
:

ðC21Þ
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d. Laplacian

For a generic function fðχÞ, and using twice (C17) we
find for s > 0

Δðf�sY
m
l n̂

Ij
�sÞ ¼ þ½f00 þ 2 cot χf0��sY

m
l n̂

Ij
�s

þ ½fcot2ðχÞðs2 − jðjþ 1ÞÞ��sY
m
l n̂

Ij
�s

þ
�

f
r2ðχÞ ðs

2 − lðlþ 1ÞÞ
�
�sY

m
l n̂

Ij
�s

∓ cot χ
rðχÞ ðj − sÞ

ffiffiffi
2

p
ðþλslÞ�ðsþ1ÞY

m
l
n̂
Ij
�ðsþ1Þ

∓ cot χ
rðχÞ

ðjþ sÞffiffiffi
2

p ð−λslÞ�ðs−1ÞY
m
l
n̂
Ij
�ðs−1Þ:

ðC22Þ

In the s ¼ 0 case we find

ΔðfYm
l n̂

IjÞ ¼ ½f00 þ 2 cot χf0 − fcot2ðχÞjðjþ 1Þ�Ym
l n̂

Ij

−
f

r2ðχÞlðlþ 1ÞYm
l n̂

Ij

−
cot χ
rðχÞ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p
þ1Y

m
l n̂

Ij
þ1

þ cot χ
rðχÞ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p
−1Y

m
l n̂

Ij
−1: ðC23Þ

APPENDIX D: GEOGRAPHICAL RECURSION
RELATIONS

We collect recursive relations among radial functions in
the (j; s) plane. We illustrate in Fig. 1 the radial functions
which are related by these individual relations.
The NSW relation, whose derivation is summarized in

Sec. III B is (for 0 ≤ s ≤ j)

ðþλslÞðþλsjÞ
ðjþ sþ 1ÞrðχÞ �sα

ðjmÞ
l

¼ ðj − sÞ cot χ�ðsþ1Þα
ðjmÞ
l

þ ðsþ1Þκ
m
jþ1

ð2jþ 1Þ �ðsþ1Þα
ðjþ1;mÞ
l

þ
ðj − sÞðsþ1Þκ

m
j

ð2jþ 1Þðjþ 1þ sÞ �ðsþ1Þα
ðj−1;mÞ
l

� i
ðj − sÞmν

jðjþ 1Þ �ðsþ1Þα
ðjmÞ
l

: ðD1Þ

It is understood that when j ¼ s, this is a relation linking

�sα
ðjmÞ
l to �ðsþ1Þα

ðjþ1;mÞ
l

only. Indeed the coefficients in

front of these two terms contain
ffiffiffiffiffiffiffiffiffiffi
j − s

p
, but the coefficients

in front of the other terms contain (j − s) (and also multiply

radial functions that no longer satisfy jsj ≤ j). Hence it
must be understood that we must divide first by

ffiffiffiffiffiffiffiffiffiffi
j − s

p
before evaluating in j ¼ s and we get

ðþλjlÞffiffiffi
2

p
rðχÞ �jα

ðjmÞ
l ¼ �ðjþ1Þα

ðjþ1;mÞ
l

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 −m2

ðjþ 1Þð2jþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −Kðjþ 1Þ2

q
:

ðD2Þ

A recursive application of this relation allows us to

deduce s¼jα
ðj;0Þ
l from 0ϵ

ð00Þ
l ¼ Φν

l. Using (3.26), we then
recover (3.13).
As for the NSE relation, it is (0 < s ≤ j)

ð−λslÞð−λsjÞ
ðj − sþ 1ÞrðχÞ �sα

ðjmÞ
l

¼ ðjþ sÞ cot χ�ðs−1Þα
ðjmÞ
l

þ ðs−1Þκ
m
jþ1

ð2jþ 1Þ �ðs−1Þα
ðjþ1;mÞ
l

þ
ðjþ sÞðs−1Þκmj

ð2jþ 1Þðjþ 1 − sÞ �ðs−1Þα
ðj−1;mÞ
l

∓ i
ðjþ sÞmν

jðjþ 1Þ �ðs−1Þα
ðjmÞ
l

: ðD3Þ

Combining relations NS (3.23) with the NSE or NSW
leads to the set of four triangular relations (see interpre-
tation of this denomination on Fig. 1):
(1) NW relation (for 0 < s ≤ j):

ð−λslÞð−λsjÞ
ðjþ sÞrðχÞ �ðs−1Þα

ðjmÞ
l

¼ d
dχ �sα

ðjmÞ
l þ ðjþ 1 − sÞ cot χ�sα

ðjmÞ
l

þ sκ
m
j

ðjþ sÞ �sα
ðj−1;mÞ
l � i

mν

j �sα
ðjmÞ
l : ðD4Þ

(2) NE relation (for 0 ≤ s < j):

ðþλslÞðþλsjÞ
ðj − sÞrðχÞ �ðsþ1Þα

ðjmÞ
l

¼ d
dχ �sα

ðjmÞ
l þ ðjþ 1þ sÞ cot χ�sα

ðjmÞ
l

þ sκ
m
j

ðj − sÞ �sα
ðj−1;mÞ
l ∓ i

mν

j �sα
ðjmÞ
l : ðD5Þ
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(3) SW relation (for 0 < s ≤ jþ 1):

ð−λslÞð−λsjÞ
ðjþ 1 − sÞrðχÞ �ðs−1Þα

ðjmÞ
l

¼ −
d
dχ �sα

ðjmÞ
l þ ðjþ sÞ cot χ�sα

ðjmÞ
l

þ sκ
m
jþ1

ðjþ 1 − sÞ �sα
ðjþ1;mÞ
l � i

mν

jþ 1 �sα
ðjmÞ
l :

ðD6Þ

In the case s ¼ jþ 1, it reduces to a relation

between �ðs−1Þα
ðjmÞ
l

and �sα
ðjþ1;mÞ
l . However, both

terms contain a factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1 − s

p
, so it must be

understood that the expression is to be multiplied byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1 − s

p
before being evaluated in s ¼ jþ 1, and

we recover (D2).
(4) SE relation is (for 0 ≤ s < j):

ðþλslÞðþλsjÞ
ðjþ 1þ sÞrðχÞ �ðsþ1Þα

ðjmÞ
l

¼ −
d
dχ �sα

ðjmÞ
l þ ðj − sÞ cot χ�sα

ðjmÞ
l

þ sκ
m
jþ1

ðjþ 1þ sÞ �sα
ðjþ1;mÞ
l ∓ i

mν

jþ 1 �sα
ðjmÞ
l :

ðD7Þ

Let us also stress that by taking the difference of the
NW and NE relations, we obtain a useful NW-NE relation
which involves no derivative, which is (for 0 < s < j)

ðþλslÞðþλsjÞ
2rðχÞðj − sÞ �ðsþ1Þα

ðjmÞ
l

¼ ð−λslÞð−λsjÞ
2rðχÞðjþ sÞ �ðs−1Þα

ðjmÞ
l

∓ i
mν

j �sα
ðjmÞ
l

þ s cot χ�sα
ðjmÞ
l þ s

ðj2 − s2Þ sκ
m
j �sα

ðj−1;mÞ
l : ðD8Þ

Similarly, one could combine the SW and SE relations to
get a SW-SE relation without derivatives.

APPENDIX E: DIVERGENCE, CURL,
AND STF RECURSIONS

Following the method of Sec. III B, we can obtain
recursive relations among radial functions in the (j; s)
space, from the divergence relation (2.25), the curl property
(3.16), and the STF construction of derived modes (2.23).

The divergence relation leads for 0 < s ≤ j to

d
dχ �sα

ðjmÞ
l þ ðjþ 1Þ cot χ�sα

ðjmÞ
l þ j

j2 − s2 sκ
m
j �sα

ðj−1;mÞ
l

¼ ðþλslÞðþλsjÞ
2rðχÞðj − sÞ �ðsþ1Þα

ðjmÞ
l

þ ð−λslÞð−λsjÞ
2rðχÞðjþ sÞ �ðs−1Þα

ðjmÞ
l

:

ðE1Þ

In the s ¼ 0 case it reduces to

d
dχ 0ϵ

ðjmÞ
l þ ðjþ 1Þ cot χ0ϵðjmÞ

l þ 0κ
m
j

j 0ϵ
ðj−1;mÞ
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðjþ 1Þp

ffiffi
j

p
rðχÞ 1ϵ

ðjmÞ
l : ðE2Þ

We can check that this latter case corresponds to the real
part of the NE relation (D5).
The curl relation among radial functions is for 0 < s ≤ j

s

�
d
dχ �sα

ðjmÞ
l þ cot χ�sα

ðjmÞ
l

�
� imν�sα

ðjmÞ
l

¼ −
ðþλslÞðþλsjÞ

2rðχÞ �ðsþ1Þα
ðjmÞ
l

þ ð−λslÞð−λsjÞ
2rðχÞ �ðs−1Þα

ðjmÞ
l

:

ðE3Þ

In the s ¼ 0 case it reduces to

1β
ðjmÞ
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þjðjþ 1Þp

rðχÞ ¼ −mν0ϵ
ðjmÞ
l : ðE4Þ

This latter relation is exactly the imaginary part of the NE
relation (D5) or the SE relation (D7). Note also that
combining the curl relation (E3) and the div relation
(E1) allows us to remove the derivative of the radial
function and leads also the NW-NE relation without
derivative (D8).
Finally the STF construction of derived harmonics

brings the relation (for 0 < s ≤ j)

d
dχ �sα

ðjmÞ
l − j cot χ�sα

ðjmÞ
l −

ðjþ 1Þ
ðjþ 1Þ2 − s2 sκ

m
jþ1�sα

ðjþ1;mÞ
l

¼ −
ðþλslÞðþλsjÞ

2rðχÞðjþ 1þ sÞ �ðsþ1Þα
ðjmÞ
l

−
ð−λslÞð−λsjÞ

2rðχÞðjþ 1 − sÞ �ðs−1Þα
ðjmÞ
l

: ðE5Þ

The case j ¼ sþ 1 can also be considered with methods
similar to those detailed after (D6), and it is also reduced
to (D2).
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In the s ¼ 0 case it is

d
dχ 0ϵ

ðjmÞ
l − j cot χ0ϵ

ðjmÞ
l − 0κ

m
jþ1

jþ 1 0ϵ
ðjþ1;mÞ
l

¼ −
1

rðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þj
ðjþ 1Þ

s
1ϵ

ðjmÞ
l : ðE6Þ

This latter relation is nothing but the real part of the SE
relation (D7).
We then check that combinations of all the relations of

this section can be used to form the triangular relations
(NW, NE, SW, and SE relations). Hence this is an
alternative derivation for all recursions among radial
functions in the (j; s) space. However, the fact that we
need to separate explicitly the real and imaginary parts of
the triangular relations in the cases s ¼ 0 makes this
derivation less direct and we prefer the method based on
the various projections of (3.22).

APPENDIX F: RADIAL FUNCTIONS
IN FLAT SPACE

In the flat case, there is a complete separability between
the angular and the spatial dependencies. The spatial
dependence is the same for all modes, and thus the same
as for scalar harmonics, that is, it is a pure Fourier mode.
We choose to align the wave vector k of the Fourier mode
with the zenith direction ez. From this separability, the
plane-wave normal modes are all of the form [6,11]

sGðjmÞðr; nÞ ¼ cj
2jþ 1

sYm
j ðnÞeikez·r; ðF1Þ

where r ¼ rn, and r is now the radial coordinate, corre-
sponding to plane waves harmonics

QðjmÞ
Ij

ðr; nÞ ¼ 0g̃
ðjmÞ cj

2jþ 1
Yjm

Ij
eikez·r: ðF2Þ

We do not use χ which was in units of curvature, since now
the curvature length lc is infinite. Note that the Fourier
mode magnitude k is also no more in units of inverse
curvature length. In practice, the trigonometric functions
sinðχÞ, tanðχÞ, and cotðχÞ need also to be replaced
respectively by r, r, and 1=r in all expressions. Using
the Rayleigh expansion

eikez·n ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
iljlðkrÞY0

lðnÞ ðF3Þ

the decomposition of the plane-wave normal modes is then
given by

sGðjmÞðr; nÞ ¼
X
l

clsα
ðjmÞ
l ðkrÞsYm

l ðnÞ ðF4Þ

with the radial functions built as

sα
ðjmÞ
l ðxÞ≡X

L

sCm0m
lLj jLðxÞiLþj−l

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞð2Lþ 1Þ

ð2lþ 1Þð2jþ 1Þ

s
; ðF5Þ

with the coefficients sCm0m
lLj defined in (F9).

The jl are the usual spherical Bessel functions satisfying
the relations

j0lðxÞ ¼
1

2lþ 1
½ljl−1ðxÞ − ðlþ 1Þjlþ1ðxÞ�;

jlðxÞ
x

¼ 1

2lþ 1
½jl−1ðxÞ þ jlþ1ðxÞ�; ðF6Þ

with j0ðxÞ≡ sinðxÞ=x. They also satisfy the differential
equation

1

x2
d
dx

�
x2

d
dx

jl

�
þ
�
1 −

lðlþ 1Þ
x2

�
jl ¼ 0; ðF7Þ

and the normalization condition

Z
jlðaxÞjlðbxÞx2dx ¼ π

2

δða − bÞ
a2

: ðF8Þ

The constants in (F5) are the so-called Gaunt coefficients,
and are defined as

sCm1m2m3

l1l2l3
≡
Z

d2ΩðsYm1⋆
l1

ÞðYm2

l2
ÞðsYm3

l3
Þ

¼ð−1Þm1þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1þ1Þð2l2þ1Þð2l3þ1Þ

4π

r

×

�
l1 l2 l3

s 0 −s

��
l1 l2 l3

−m1 m2 m3

�
; ðF9Þ

where the 3 × 2 matrices on the third line are the well-
known Wigner 3-j symbols. From the symmetry properties
of the 3-j symbols, we deduce that

sCm0m
lLj ¼ mCs0s

lLj;
sCm0m

lLj ¼ sCm0m
jLl ðF10Þ

which with (F5) proves rigorously the properties (3.26) and
(3.27) in the flat case.
Let us now collect the explicit forms of the radial

functions in flat space. We recover results of [6,7] for s ¼
0 or s ¼ 2 up to the global sign inversion for odd modes
since we collect results when defining harmonics with
respect to the observed direction (see Sec. VII A for
propagation direction harmonics). We also use the compact
notation x≡ kr and we recall that in the flat case ξn ¼ 1 for
all n since ν ¼ k, so the constants sgðjmÞ are directly read
from those reported in Sec. IV. The first radial functions are
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0ϵ
ð00Þ
l ¼ jlðxÞ; ðF11aÞ

0ϵ
ð10Þ
l ¼ j0lðxÞ; ðF11bÞ

1ϵ
ð10Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
jlðxÞ
x

; ðF11cÞ

0ϵ
ð20Þ
l ¼ 1

2
½3j00lðxÞ þ jlðxÞ�; ðF11dÞ

1ϵ
ð20Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðlþ 1Þ

2

r
d
dx

�
jlðxÞ
x

�
; ðF11eÞ

2ϵ
ð20Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðlþ 2Þ!
8ðl − 2Þ!

s
jlðxÞ
x2

; ðF11fÞ

0ϵ
ð11Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r
jlðxÞ
x

; ðF12aÞ

1ϵ
ð11Þ
l ¼ 1

2

dðxjlðxÞÞ
xdx

; ðF12bÞ

1β
ð11Þ
l ¼ −

1

2
jlðxÞ; ðF12cÞ

0ϵ
ð21Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðlþ 1Þ

2

r
d
dx

�
jlðxÞ
x

�
; ðF13aÞ

1ϵ
ð21Þ
l ¼ j00lðxÞ þ

j0lðxÞ
x

−
jlðxÞ
x2

þ jlðxÞ
2

;

1β
ð21Þ
l ¼ −

1

2
x
d
dx

�
jlðxÞ
x

�
; ðF13bÞ

2ϵ
ð21Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

1

x2
d
dx

½xjlðxÞ�;

2β
ð21Þ
l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

jlðxÞ
x

; ðF13cÞ

0ϵ
ð22Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðlþ 2Þ!
8ðl − 2Þ!

s
jlðxÞ
x2

; ðF14aÞ

1ϵ
ð22Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

1

x2
d
dx

½xjlðxÞ�;

1β
ð22Þ
l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
2

jlðxÞ
x

; ðF14bÞ

2ϵ
ð22Þ
l ¼ 1

4

�
j00lðxÞ − jlðxÞ þ 4

j0lðxÞ
x

þ 2
jlðxÞ
x2

�
;

2β
ð22Þ
l ¼ −

1

2x2
d
dx

½x2jlðxÞ�: ðF14cÞ

APPENDIX G: COMPARISON WITH
LITERATURE

The harmonics built in this paper can be related to the
scalar, vector, and tensor harmonics derived in [4,10] in the
closed case, and expressed in the usual orthonormal
spherical basis (2.6) rather than with the helicity basis.
In these references, the harmonics and derived harmonics
are separated into their electric (even parity) and magnetic
(odd parity) by considering the contributions

lQðj;jmjÞ
Ij

� lQðj;−jmjÞ
Ij

: ðG1Þ
From the property (2.42), we see that the plus sign selects
only the contribution of the electric (even parity) radial
modes, whereas the negative sign selects the magnetic (odd
parity) radial modes. To be specific the three vector
harmonics defined in Eqs. (12–14) of [10] are proportional
to respectively the m ¼ 0 harmonics (necessarily of even
type), the m ¼ 1 magnetic harmonics, and the m ¼ 1
electric harmonics, where the notation used is k≡ ν − 1,
such that it takes positive integer values. Similarly the tensor
harmonics of Eqs. (26–30) are successively proportional to
the m ¼ 1 magnetic harmonics, the m ¼ 1 electric harmon-
ics, them ¼ 0 harmonics (necessarily of even type), them ¼
2 magnetic harmonics, and the m ¼ 2 electric harmonics.
The spectrum of eigenvalues of the Laplacian can also be

compared for scalar and vector harmonics with the exterior
calculus approach of [35] in the closed case, and we now
detail our agreement. We still work in units such that
lc ¼ 1. The Laplace-de Rahm operator is defined as
Δ̃≡ −ðdδþ δdÞ. For scalar functions it matches exactly
the Laplace-Beltrami operator (2.19). In the closed case the
set of eigenvalues for scalar harmonics (j ¼ m ¼ 0) is the
set of k2 ¼ ν2 − 1 ¼ LðLþ 2Þ where L ≥ 0 and ν ≥ 1 are
integers. For the derived vector valued harmonics (j ¼ 1
and m ¼ 0) which correspond to exact forms, we find that
the spectrum is the same since

Δ̃∇iQð00Þ ¼ ∇iΔQð00Þ ¼ −k2∇iQð00Þ: ðG2Þ
However for vector harmonics (j ¼ m ¼ 1), which corre-
spond to co-exact forms since they are divergenceless, we
find

Δ̃Qð11Þ
i ¼ ðΔ − 2KÞQð11Þ

i ¼ −ðk2 þ 2KÞQð11Þ
i :

The spectrum of Δ̃ in that case is the set of k2 þ 2 ¼ ν2

with the integer values ν ≥ 2, in agreement with [35].
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APPENDIX H: TABLES OF SYMBOLS

We gather in Tables II and III the most commonly used
symbols of this work.
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