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A powerful result in theoretical cosmology states that a subset of anisotropic Bianchi models can be seen
as the homogeneous limit of (standard) linear cosmological perturbations. Such models are precisely those
leading to Friedmann spacetimes in the limit of zero anisotropy. Building on previous works, we give a
comprehensive exposition of this result, and perform the detailed identification between anisotropic
degrees of freedom and their corresponding scalar, vector, and tensor perturbations of standard perturbation
theory. In particular, we find that anisotropic models very close to open (i.e., negatively curved) Friedmann
spaces correspond to some type of supercurvature perturbations. As a consequence, provided anisotropy is
mild, its effects on all types of cosmological observables can always be computed as simple extensions of
the standard techniques used in relativistic perturbation theory around Friedmann models. This fact opens
the possibility to consistently constrain, for all cosmological observables, the presence of large scale
anisotropies on the top of the stochastic fluctuations.

DOI: 10.1103/PhysRevD.100.123534

I. INTRODUCTION

Homogeneous and spatially anisotropic cosmologies,
commonly referred to as Bianchi models, have long been
the arena for new developments in theoretical cosmology.
The interest in these models stems from their unique
ability to preserve a high degree of symmetry while
remaining phenomenologicaly versatile. Despite the fact
that CMB data seems to favor the more restricted class of
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
universes, Bianchi models are possibly the simplest exten-
sions of a maximally symmetric expanding universe, and
for that reason they are theoretically (if not observationaly)
interesting. However, despite all of their attractiveness, one
cannot avoid the feeling that Bianchi models fall in the
category of “alternative cosmologies.”
Meanwhile, a robust but less known theoretical result

states that all nearly isotropic Bianchi models with isotropic
limit (namely, models I, VII0, V, VIIh and IX) can be
extracted from standard (i.e., FLRW) cosmological pertur-
bations in the limit that these perturbations become
homogeneous. This idea, explored in the case of model
IX in Refs. [1,2], and fully established for the other models
by Pontzen and Challinor in 2010 (henceforth PC10) [3],
bridges the gap between FLRW and Bianchi models,
forcing us to see the latter as legitimate manifestations
of the standard cosmological framework.

The idea that Bianchi models emerge as homogeneous
cosmological perturbations on the top of an isotropic
universe is quite intuitive. In fact, since linear cosmological
perturbations break both translational and rotational iso-
metries of the FLRW background metric, a (suitably
defined) homogeneous limit of these perturbations should
restore translational invariance while keeping the most
general spatial anisotropies compatible with homogeneity.
The remaining anisotropic degrees of freedom are, then,
nothing else but those describing the subset of Bianchi
models—exactly the subset having the initial FLRWmetric
as their isotropic limits. In fact, by properly defining the
isometries of the FLRW metric and demanding rotational
invariance to be broken, one can build the isometries of the
corresponding Bianchi models from first principles [3].
This idea not only leads to a more intuitive formulation
of Bianchi models1 but, more importantly, sheds light on
their connections with linear cosmological perturbations.
Given the omnipresence of linear perturbation theory in
the cosmologist’s toolkit, the exploration of these con-
nections becomes central for a better understanding of the
ΛCDM model.
One simple example of this connection is easily illus-

trated: the spatial anisotropies of Bianchi type I model are
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1However, it does not apply to Bianchi models not having
FLRW limits, namely, models II, III, IV, VI0, VIh, and VIII. It
also excludes the homogeneous and anisotropic Kantowski-Sachs
model, which falls outside the usual Bianchi classification
anyway.
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dynamically equivalent to a gravitational wave of infinite
wavelength (i.e., homogeneous) on the top of a spatially flat
FLRWuniverse. Indeed, for small anisotropies, the Bianchi
I metric reads

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ 2βijðηÞÞdxidxj�;

whereas a FLRW universe with linear and homogeneous
gravitational wave is described by

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ 2EijðηÞÞdxidxj�:

Since both the shear βij and the wave amplitude Eij are
symmetric and trace free, both evolve as

X00
ij þ 2

a0

a
X0
ij ¼ 0:

While the above analogy could at first look as a
happy accident of model I, it is actually not. The general

correspondence in the weak field regime was investigated
for the five Bianchi types with a FLRW limit in PC10. As
hinted by these authors, and explicitly demonstrated here,
the connection results in a richer structure than could have
been expected from the simple example above, since some
Bianchi models arise as finite wavelength perturbations
over FLRW spacetimes. Indeed, the homogeneous limit of
models VII0, V, VIIh, and IX is not simply given (in Fourier
space) by k → 0, but rather by a proper identification of an
effective mode νm defined in terms of the Fourier mode k as

ν2m ¼ k2 þ ð1þ jmjÞK;

where jmj ¼ 0, 1, 2 accounts respectively for scalar, vector,
and tensor perturbations, and K is the spatial curvature
of the corresponding FLRW model. Furthermore, we
show that for models V and VIIh the homogeneous limit
corresponds to a complex νm or, equivalently, to a per-
turbation whose wavelength is larger than the curvature
scale. In this case, the construction of a proper eigenbasis

TABLE I. List of main symbols used in this work.

Symbol Definition Introduced in

fi; j; k;…g spatial indices of noncoordinate (triad) basis Sec. II A
fa; b; c;…g spacetime indices of noncoordinate (tetrad) basis Sec. II A
fμ; ν; λ;…g abstract space-time indices Sec. II A
i imaginary unity (3.22)
ξi Killing vector fields Sec. II
ei invariant basis Sec. II
ei dual basis (or cobasis) to the invariant basis ei Sec. II
eμ four-velocity of fundamental observers (used to foliate spacetime) Sec. II
uμ timelike fluid four-velocity. Sec. II C

FLRW quantities
gMS metric of maximally symmetric spaces (3.2)
K spatial curvature of maximally symmetric spaces (3.3) and Table II
K dimensionless spatial curvature (3.4)
Di spatial covariant derivative associated with the FLRW metric (3.5)
Δ Laplace-Beltrami operator associated with Di (3.6)

QðjmÞ
Ij

tensor plane-wave harmonic in position space (3.27)

sG
ðjmÞ
l

normal modes in the total angular momentum representation (3.28)

sYm
l spin-weighted spherical harmonics (3.28)

sα
ðjmÞ
l

radial functions in the total angular momentum representation (3.28)

lQðjmÞ
Ij

tensor harmonic in l-representation (3.33)

νm modes of the Bianchi-FLRW matching (5.2) and Table IV
ζml pseudo plane-wave weights for the Bianchi-FLRW matching (5.2) and Table IV

Bianchi quantities
g metric of Bianchi spacetime (2.22)
h spatial metric of Bianchi spacetime (2.23)
γij conformal spatial metric of Bianchi spacetimes (2.35)
βij expansion parameters of spatial anisotropy (4.15)
Di spatial covariant derivative in Bianchi spaces (2.24)

qðmÞ
ij

polarization basis for shear svt modes (4.25)

Nij; Ai irreducible components of the constants of structure (2.6) and (2.37)
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for the perturbations requires analytical continuation of
radial functions. The implementation and observational
consequences of these modes with this method will be
explored in a forthcoming publication [4].
The interplay between Bianchi and perturbed FLRW

models also has important practical applications: if one
wants to derive the dynamical behavior of some cosmo-
logical observable in a Bianchi I universe, it is enough to
derive the same dynamics for tensor perturbations in flat
FLRW universe and take their homogeneous limit. This
program was in fact used in [5] to derive theoretical
expressions for the weak-lensing signal, and in [6] to
derive the direction and redshift time drifts of noninertial
observers.
Here, we continue the effort started in PC10 and

show that the same program can be applied to all
Bianchi models with isotropic limit. In particular, we show
how this Bianchi/perturbed-FLRW duality can be used to
infer predictions for any observable (as, e.g., CMB radi-
ative transfer, weak gravitational lensing, etc.) in Bianchi
models from the well known methods of linearly perturbed
FLRW spacetimes [7,8]. Hence, one can use the same
theoretical framework by just separating modes describing
global anisotropies from the ones describing stochastic
perturbations.
From the observational point of view, upper limits on the

large scale anisotropy were placed in [9], followed by
claims of a Bianchi VIIh pattern in WMAP data [10–12].
Further investigations using the method of [13,14] for
radiative transport (see also the related method of [15])
combined with Planck data confirmed, however, that we
can only obtain upper limits [16,17] on the level of global
anisotropy.
We start this article by recalling some basic definitions

of Bianchi spacetimes in Sec. II, where we focus on the
subset of models having isotropic limit. We then review, in
Sec. III, some key elements of linear perturbation theory
in synchronous gauge, focusing on the introduction of
scalar, vector, and tensor modes and their decomposition
in terms of a complete basis of tensor harmonics. This
section summarizes the definition and constructions of the
companion paper [18]. Moving forward, we introduce a
set of linear modes for small anisotropies of Bianchi
spacetimes in Sec. IV; they are then used to find the exact
Bianchi/perturbed-FLRW correspondence in Sec. V.
Finally, we discuss the cosmological implications of our
results in Sec. VI.
Throughout this paper we use metric signature

ð−;þ;þ;þÞ and units where c ¼ 1. Coordinate and non-
coordinate indices, as well as a list of the main symbols
encountered in this work, are defined in Table I.

II. BIANCHI COSMOLOGIES

Let us start with a brief and informal recap of spatially
homogeneous (i.e., Bianchi) spacetimes. Detailed and

pedagogical introductions can be found in many nice
textbooks such as [19–21].

A. General construction

Informally, a three-dimensional space is said to be
homogeneous if for any pair of points there exists an
isometric (i.e., metric-preserving) path connecting these
points in a continuous way. The fields ξ tangent to such
paths are Killing vector fields (KVFs) and are defined as

Lξg ¼ 0 ⇔ ∇ðμξνÞ ¼ 0; ð2:1Þ

where L is the Lie derivative and ∇ is the covariant
derivative compatible with the metric g. In three dimen-
sions, the maximum number of such paths is 6, corre-
sponding to 3 translations and 3 rotations. However,
because the space is three dimensional, there can be at
most three KVFs which are everywhere linearly indepen-
dent. Any additional vector ζ obeying (2.1) is necessarily of
the form ζ ¼P3

i¼1 ciðxÞξi. Given a point p one can form
ζ̃ ¼P3

i¼1½ciðxÞ − ciðpÞ�ξi such that ζ̃ðpÞ ¼ 0, which cor-
responds to a rotation around point p. As an example, in the
Euclidean three-dimensional space, ζ ¼ x1ξ2 − x2ξ1 corre-
sponds to a rotation around the x3 axis which keeps the
point p ¼ ð0; 0; 0Þ fixed. Thus, homogeneous and spatially
anisotropic spaces are represented by KVFs which are
everywhere linearly independent. Moreover, since the
commutator of any two vectors ξi is another KVF, they
form a closed algebra given by

½ξi; ξj�≡ Ck
ijξk; ð2:2Þ

where the coefficients Ck
ij are called the constants of

structure of the algebra.
We can now build homogeneous spacetimes by simply

stacking up homogeneous spaces, each of which is labeled
by a continuous time coordinate t and has an orthogonal
1-form

ω ¼ −dt; ωμ ¼ −∂μt: ð2:3Þ

By construction, the vector e dual to ω is orthogonal to the
KVFs

e · ξi ¼ eμgμνξνi ¼ 0; ð2:4Þ

and is normalized such that

e · e ¼ eμgμνeν ¼ −1: ð2:5Þ

The task of finding explicit Bianchi spacetimes now
consists of finding all constants Ck

ij which are inequivalent
under linear combination of the ξi. This task is simplified
by noting that, since Ck

ij is antisymmetric in its lower
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indexes, it can be written as Ck
ij ≡ ϵ̂ijlHlk, where ϵ̂ijl is the

permutation symbol (such that ϵ̂123 ¼ 1) and Hlk is a
general 3 × 3 matrix. Decomposing the latter in its sym-
metric (N̂lk) and antisymmetric (ϵ̂lkmAm) parts, we find
that2

Ck
ij ¼ ϵ̂ijlN̂

lk − Aiδ
k
j þ Ajδ

k
i : ð2:6Þ

From the Jacobi identity

ϵ̂ijk½ξi; ½ξj; ξk�� ¼ 0 ð2:7Þ

the decomposition (2.6) implies

N̂ijAj ¼ 0: ð2:8Þ

By suitable linear transformations of the ξi we can dia-
gonalize the matrix N̂ij so that N̂ij ¼ diagðN1; N2; N3Þ.
From property (2.8) we then see that A is either null or an
eigenvector of the matrix N̂, and so we can set
A ¼ ð0; 0; AÞ.3 We are thus left with

½ξ1; ξ2� ¼ þN3ξ3;

½ξ1; ξ3� ¼ −N2ξ2 þ Aξ1;

½ξ2; ξ3� ¼ þN1ξ1 þ Aξ2: ð2:9Þ

We now note that by suitably rescaling the lengths of the
KVFs, we can set the components N1, N2, N3, and A to
either 0, 1 or −1 (see, e.g., chapter 10 of [20]). We will not
adopt this approach here. Instead, since the KVFs have
dimensions of inverse length, we will keep these constants
with the appropriate dimensions to maintain Eq. (2.2)
dimensionally homogeneous. For reasons that will become
clear later, the constants A and Ni are associated with
curvature and spiral lengths, respectively, so that we
introduce

A≡ l−1
c ; Ni ≡ l−1

s ; ð2:10Þ

as two free parameters, except in the Bianchi IX case where
A ¼ 0 and Ni ≡ 2l−1

c . We also define the (historical)
dimensionless ratio

ffiffiffi
h

p ≡ ls

lc
⇒ A ¼

ffiffiffi
h

p
l−1
s : ð2:11Þ

The full set of Bianchi models considered in this work, as
well as their underlying isotropic 3-spaces Mð3Þ, are

summarized in Table II. For future reference, note that
models I and V can be obtained from models VII0 and VIIh
in the limit ls → ∞.
Next, we define a spacetime basis of invariant vector

fields by choosing a set of spatial vectors at a reference
point, and Lie dragging them with the KVFs on a given
spatial section. That is we define the vector fields on that
section by the conditions

e · ei ¼ 0; ð2:12aÞ

½ξi; ej� ¼ Lξiej ¼ 0: ð2:12bÞ

These spatial vectors are extended throughout the other
spatial sections by demanding that

½e; ei� ¼ Leei ¼ 0: ð2:13Þ
Finally, we join the unit normal vector e to the set feig to
obtain a spacetime basis feag, with the understanding that
e0 ¼ e. From properties (2.1)–(2.4), it is shown that

Leξi ¼ ½e; ξi� ¼ 0; ð2:14Þ
that is, the normal vector e is also invariant under the action
of the KVFs. The Jacobi identity applied to e, ei and ξj then
shows that (2.13) is consistent. Moreover, the conditions
(2.3) and (2.5) imply that e is geodesic (eμ∇μeν ¼ 0).
The commutator of the basis vectors ei is another vector,

and can thus be represented as a linear combination of the
basis elements

½ei; ej� ¼ C̃k
ijek; ð2:15Þ

where C̃k
ij are constants. Since we are still free to fix the

orientation of the spatial basis feig at any point p, we
choose feigp ¼ fξigp.4 However, since our Eq. (2.2)
differs with theirs by a minus sign, so does our
Eq. (2.16). This then gives

TABLE II. Bianchi types considered in this work (first col-
umn), and their underlying maximally symmetric 3-spaces (last
column), namely, the Euclidean (E3), hyperbolic (H3), and
spherical (S3) spaces. For comparison, we also give (a combi-
nation of) the spatial Ricci scalar appearing in Friedmann
equations for each of the 3-spaces Mð3Þ.

Type A N1 N2 N3 a2ð3ÞR
6

¼ K Mð3Þ

I 0 0 0 0 0 E3

V l−1
c 0 0 0 −l−2

c H3

VII0 0 l−1
s l−1

s 0 0 E3

VIIh l−1
c l−1

s l−1
s 0 −l−2

c H3

IX 0 2l−1
c 2l−1

c 2l−1
c þl−2

c S3

2Our sign convention for Ai agrees with that of PC10 but
differs by a minus sign with that of Ref. [13].

3Note that our choice differs from the conventional one: A ¼
ðA; 0; 0Þ [13,22–24]. One easily recovers the standard results just
replacing the indexes (1, 2 ,3) in our expressions by (2, 3, 1). 4This choice agrees with the one made in PC10.
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½ei; ej� ¼ −Ck
ijek; ð2:16Þ

which can be checked by writing ei ¼ Mj
iξj, whereM

j
i is a

point-dependent matrix obeying Mj
iðpÞ ¼ δij, and using

Eq. (2.12b). We thus find

½e1; e2� ¼ −N3e3;

½e1; e3� ¼ þN2e2 − Ae1;

½e2; e3� ¼ −N1e1 − Ae2: ð2:17Þ

Using again the Jacobi identity for e, ei, and ej one can
show that

LeCi
jk ¼ 0; ð2:18Þ

that is, the constants of structure are really spacetime
constants for this invariant basis. Note that our choice of
a time-invariant basis contrasts with the more popular
choice of a tetrad basis, in which the constants of structure
become time dependent [15,22,25].
From the time-invariance property (2.13) and from

(2.16), we infer that

½ea; eb� ¼ −Cc
abec; ð2:19Þ

where

C0
i0 ¼ Ci

j0 ¼ C0
ab ¼ 0; ð2:20Þ

that is, the constants of structure vanish whenever one of
the indices is 0.
Next, we define the dual basis feag to the basis feag

from the condition

eaμe
μ
b ¼ δab ð2:21Þ

from where it follows that e0μ ¼ −ωμ ¼ −eμ. From (2.5)
and (2.12a) we deduce that in this dual basis the compo-
nents of the metric satisfy g00 ¼ −1 and g0i ¼ 0. Since the
metric has three spacelike KVFs, it can at most depend on t,
so it is of the form

g ¼ −e0 ⊗ e0 þ gijðtÞei ⊗ ej: ð2:22Þ

It is also convenient to define a spatial metric through

h≡ gþ e0 ⊗ e0 ¼ gijðtÞei ⊗ ej; ð2:23Þ

such that hij ¼ gij. From the covariant derivative ∇
associated with the metric g we can define an induced
covariant derivative D associated with the induced spatial
metric h. For any spatial tensor T it is defined by [25,26]

DμTν1���νn ≡ hσμh
λ1
ν1 � � � hλnνn∇σTλ1���λn : ð2:24Þ

From the definition (2.21) and the property (2.19), we
deduce that the constants of structure also satisfy the
property5

Cc
ab ¼ 2eμaeνb∇½μecν�: ð2:25Þ

Next we introduce the connection coefficients through

Γc
ab ≡ −eμaeνb∇μecν ¼ ecνe

μ
a∇μeνb: ð2:26Þ

Comparison with (2.25) then shows that Cc
ab ¼ −2Γc½ab�.

In particular

Γ0
ij ¼ −eμi eνj∇μe0ν ¼

1

2
Le0gij ¼

1

2
_gij; ð2:27Þ

which is related to extrinsic curvature Kμν ≡ hαμh
β
ν∇αeβ by

Kij ¼ Γ0
ij ≡ 1

3
θgij þ σij: ð2:28Þ

Here, we have separated its trace (proportional to the
volume expansion θ) from its traceless part (given by
the expansion shear σij).
Using also that the connection is torsionless we can

relate its components to the constants of structure by6

Γabc ¼
1

2
½−eμa∂μgbc þ eμb∂μgca þ eμc∂μgab

þ Cacb − Cbac þ Ccba�; ð2:29Þ

where we have introduced the definitions

Γabc ≡ gadΓd
bc; Cabc ≡ gadCd

bc: ð2:30Þ

For the spatial components we get simply

Γijk ¼
1

2
½Cikj − Cjik þ Ckji�: ð2:31Þ

Since the Riemann tensor is associated with the connection
and its derivatives, then from (2.31), this implies that the
Riemann tensor associated with h can be fully expressed in
terms of the constants of structure Ci

jk (see Appendix A).
The Gauss-Codazzi identity [27,28] allows us to relate the
Riemann tensor associated with the metric h and its
connection D to the spacetime Riemann tensor associated

5Antisymmetrization on n indices is defined with a prefactor
1=n!, that is T ½ij� ¼ ðTij − TjiÞ=2. However there is no such
prefactor in commutators.

6eμa∂μgbc ¼ Γcab þ Γbac from metric compatibility, and
Γc½ab� ¼ −Ccab=2 from torsionless conditions.
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with g and connection ∇. The most general form of this
identity is given by (A1).
Finally, we would like to stress the importance of the

invariant basis (2.12b). Indeed, the definition of a homo-
geneous tensor as any tensor T such that LξiT ¼ 0 is
natural, since in this basis T has constant components.
In particular, the quantities Ci

jk can be interpreted as
the components of an underlying homogeneous tensor
field C ¼ Ci

jkei ⊗ ej ⊗ ek.

B. Conformal parameterization

Using the time coordinate t introduced in (2.3), the
metric of a general Bianchi spacetime reads

gBianchi ¼ −dt ⊗ dtþ a2ðtÞγijðtÞei ⊗ ej; ð2:32Þ

At this point, it is also convenient to define a conformal
time by

aðηÞdη≡ dt; ð2:33Þ

which implies that, in conformal time, eμ ¼ a−1δμ0. The
volume expansion θ is related to the conformal Hubble
rate by

H≡ a0

a
¼ aθ

3
; ð2:34Þ

where, throughout this work, a prime indicates a deriva-
tive with respect to η. The conformal spatial metric γij is
defined by

hij ¼ a2γij ð2:35Þ

such that the Bianchi metric takes the form (2.32). Note that
the derivative (2.24) can also be considered as being
associated with γij.
The conformal shear σ̂ij is defined by

σ̂ij ≡ 1

2
γ0ij: ð2:36Þ

The components of the constants of structure are related to
their conformal counterparts by

Nij ¼ a−3N̂ij; Nij ¼ a1N̂ij; Nj
i ¼ a−1N̂j

i ;

Ai ¼ Âi; Ai ¼ a−2Âi: ð2:37Þ

We also have that

σij ¼ aσ̂ij; σji ¼ a−1σ̂ji : ð2:38Þ

This means that in practice the indices of σ̂ij, N̂
ij and Âi are

raised and lowered by γij and γij, whereas those of σij, Nij

and Ai are raised and lowered by a2γij and a−2γij. The
Levi-Civita tensor is also decomposed as ϵijk ¼ a3ϵ̂ijk with
ϵ̂123 ¼ 1 such that the combination ϵ̂ijlN̂

lk in the decom-
position (2.6) is equal to ϵijlNlk.
Since the constants of structure are constant, these

definitions ensure that the conformal N̂ij and Âi and their
related forms with different index placements are constant.

C. Stress-energy tensor

The stress-energy tensor of a fluid with energy density ρ,
pressure p, and anisotropic stress πμν is

Tμν ¼ ðρþ pÞuμuν þ pgμν þ πμν; ð2:39Þ

where uμ is the (timelike) fluid four-velocity. For simplicity
we assume no anisotropic stress, although its inclusion
is straightforward. Homogeneity of Bianchi space-times
implies that energy density and pressure depend only on
time, and therefore we use the notation ρ̄ and p̄ for the fluid
content of Bianchi universes to stress this fact. We stress
that the vector uμ is not necessarily parallel to eμ, since a
homogeneous boost of the fluid is allowed for tilted
Bianchi models. Actually, the fluid’s four-velocity can
be decomposed into components parallel and orthogonal
to eμ so that in the invariant basis we have

uμ ¼ Γðeμ þ vμÞ; with Γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p ; ð2:40Þ

where vμeμ ¼ 0. If this homogeneous velocity is not curl
free, then this corresponds to a global rotation of the
fluid [23,29].
Moving forward, we introduce comoving components

for the velocity as follows:

vi ¼ av̂i; vi ¼ a−1v̂i; ð2:41Þ

such that the velocity has components

uμ ¼ Γ
a
ð1; v̂iÞ; uμ ¼ aΓð−1; v̂iÞ: ð2:42Þ

Finally, the stress-energy tensor components are

−Tη
η ¼ Tμνeμeν ¼ ρ̄þ ðρ̄þ p̄ÞðΓ2 − 1Þ;

Tη
i ¼ ðρ̄þ p̄ÞΓ2v̂i;

Ti
j ¼ ½ðρ̄þ p̄ÞΓ2v̂iv̂j þ p̄δij�: ð2:43Þ

Because we allow for a tilt, Tμν will not look like (2.39)
with uμ → eμ for observers following the congruence
defined by eμ. In fact, from (2.43) we check that for those
observers the fluid will present an effective momentum
density and anisotropic stress. It then follows from Einstein
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equations that these components will source spatial anisot-
ropies even in the case of a perfect fluid.

D. Einstein equations

The time-time component of Einstein equation follows
by projecting Gμν ¼ 8πGTμν with eμ. Defining κ ¼ 8πG
and using the relation (A16) we get

H2 þ a2

6
ð3ÞR −

1

6
σ̂2 ¼ κa2

3
Tμνeμeν ð2:44Þ

where σ̂2 ≡ σ̂ijσ̂
ij and the spatial Ricci scalar is given in

terms of constants of structure to be [see (A7) with
definitions (2.37)]

a2ð3ÞR ¼ −6ÂiÂ
i − N̂ijN̂

ij þ 1

2
ðN̂i

iÞ2: ð2:45Þ

The evolution of the expansion rate is given by the
Raychaudhuri equation (A15)

3H0 þ σ̂2 ¼ −a2κ
�
Tμνeμeν þ

1

2
T

�
; ð2:46Þ

and the dynamics of the shear comes from the traceless part
of the spatial Einstein equation

ðσ̂ijÞ0 þ 2Hσ̂ij ¼ N̂k
kN̂hiji − 2N̂khiN̂k

ji

þ 2Âkϵ̂klhjN̂l
ii þ κThiji; ð2:47Þ

where Thiji ¼ a2ðρ̄þ p̄ÞΓ2v̂hiv̂ji.
Lastly, there is a constraint equation following from

Gη
i ¼ κTη

i , which is

Pi ≡ κa2Tη
i ¼ 3Âjσ̂ji þ ϵ̂ijkσ̂

jlN̂k
l : ð2:48Þ

This is known as the tilt constraint and by definition

Pi ¼ κa2Γ2ðρ̄þ p̄Þv̂i: ð2:49Þ

But this is what is used to deduce v̂i that we must then
replace in the shear equation because it is inside Tij.

E. Fluid equations

As usual, fluid equations follow from the covariant
divergence of the stress-energy tensor. The conservation
equation for energy density is just

ρ̄0 þ ðρ̄þ p̄Þ½3Hþ ðlnΓÞ0 þDiv̂i� ¼ 0; ð2:50Þ

and from (A11), we get the velocity divergence

Div̂i ¼ −2Âiv̂i: ð2:51Þ

When linearizing in the velocity v̂i, the term ðlnΓÞ0 will
behave as a second-order quantity, and thus will not
contribute.
The Euler equation is formally just

½a4ðρ̄þ p̄ÞΓ2v̂i�0 þ a4ðρ̄þ p̄ÞΓ2Djðv̂jv̂iÞ ¼ 0: ð2:52Þ

Separating the trace and traceless parts, the second term is
handled using (A11). However, when linearizing in the
velocity v̂i it vanishes hence the Euler equation reduces to

½a4ðρ̄þ p̄Þv̂i�0 ≃ 0: ð2:53Þ

III. SVT MODES IN FLRW

We now give a brief review of the background geometry
of FLRW models and the mathematics behind the standard
scalar-vector-tensor (henceforth SVT) decomposition of
perturbative modes. This will be needed when comparing
perturbations of the FLRW metric with spatial anisotropies
in the homogeneous limit.

A. Background FLRW cosmology

Given a cosmic time t which allows us to split spacetime
into space and time, all FLRW metrics can be written in the
form

gFLRW ¼ −dt ⊗ dtþ a2ðtÞgMS ð3:1Þ

where aðtÞ is the scale factor of the expansion and gMS is
the metric of maximally symmetric spaces, described by

gMS ¼ ½dχ2 þ r2ðχÞd2Ω�: ð3:2Þ

Here, d2Ω≡ dθ2 þ sin2 θdϕ2 is the standard line element
on the 2-sphere and the function rðχÞ is given by

rðχÞ ¼

8>><
>>:

lc sinhðχ=lcÞ; K < 0;

χ; K ¼ 0;

lc sinðχ=lcÞ; K > 0:

ð3:3Þ

The curvature parameter K differentiates between open
(K < 0), flat (K ¼ 0) and closed (K > 0) spatial sections. It
is related to the curvature radius lc of the spatial sections
by lc ¼ 1=

ffiffiffiffiffiffiffijKjp
. It is also useful to introduce the quantity

K≡ K=jKj ¼ Kl2
c; ð3:4Þ

which is either −1, 0 or þ1 for open, flat, and closed cases
respectively.

B. Linear perturbation theory

To complete the matching between Bianchi anisotropies
and FLRW perturbations, we will also need equations from

BIANCHI SPACETIMES AS SUPERCURVATURE MODES … PHYS. REV. D 100, 123534 (2019)

123534-7



perturbation theory in synchronous gauge (usually fixed
completely with an additional comoving condition on
cold dark matter) and in conformal time, which will
now be briefly summarized. More details can be found
in Refs. [30–32].
By definition, only the spatial part of the metric is

perturbed in synchronous gauge. In the SVT decomposi-
tion, such perturbations can be parametrized as follows:

δgij ¼ 2a2½−ϕgMS
ij þDijψ þDðiEjÞ þ Eij�; ð3:5Þ

where Di is the covariant derivative compatible with
gMS
ij and

Dij ≡
�
DiDj −

gMS
ij

3
Δ
�
; Δ≡DiDi: ð3:6Þ

At linear order, the perturbed components of the Einstein
tensor can also be decomposed into scalar, vector, and
tensor modes [31]. Working in conformal time [recall
Eq. (2.33)], such components are given by
Scalar modes:

a2δGη
η ¼ 6Hϕ0 − ðΔþ 3KÞ2ϕ −DiDjDijψ ; ð3:7aÞ

a2δGη
i ¼ −2Diϕ

0 −DjDijψ
0; ð3:7bÞ

a2δGi
j ¼
�
∂2
η þ 2H∂η þ

1

3
ðΔ− 6KÞ

�
Di

jψ þDi
jϕ

þ 2δij

�
ϕ00 þ 2Hϕ0 −

1

3
ðΔþ 3KÞϕ−

1

6
DkDlDklψ

�
:

ð3:7cÞ

Vector modes:

a2δGη
i ¼ −

1

2
ðΔþ 2KÞE0

i; ð3:8aÞ

a2δGi
j ¼ gikMSDðk½E00

jÞ þ 2HE0
jÞ�: ð3:8bÞ

Tensor modes:

a2δGi
j ¼ E00i

j þ 2HE0i
j − ðΔ − 2KÞEi

j: ð3:9Þ

We also give the Ricci scalar associated with the spatial
metric. For isotropic backgrounds and at linear order, it is
sourced only by scalar perturbations:

a2δðð3ÞRÞ ¼ 4ðΔþ 3KÞϕþ 4

3
ΔðΔþ 3KÞψ : ð3:10Þ

In order to proceed with the identification, we will also
need to perturb the energy-momentum tensor, here taken to
be that of a perfect fluid for simplicity. As it turns out, the

linearized tensor in synchronous gauge is exactly what one
would obtain by setting Γ ¼ 1 in (2.43) and linearizing
ρ and p around their background values (denoted below by
an overbar). This leads to

−Tη
η ¼ ρ̄þ δρ; ð3:11Þ

Tη
i ¼ ðρ̄þ p̄Þv̂i; ð3:12Þ

Ti
j ¼ ðp̄þ δpÞδij: ð3:13Þ

Note that the velocity v̂i is considered as a first-order
perturbation, and as such it is split into scalar and vector
parts as

v̂i ¼ Div̂þ V̂i; DiV̂i ¼ 0: ð3:14Þ

We thus have everything needed to write the perturbed
Einstein equations. The first of them follows from the time-
time component, and corresponds to the (perturbed)
Friedmann equation:

−6Hϕ0 þ ðΔþ 3KÞ2ϕþDiDjDijψ ¼ κa2δρ:

Then, we have the trace-free components of the space-
space Einstein equations. These are independently given
for scalar

�
∂2
η þ 2H∂η þ

1

3
ðΔ − 6KÞ

�
Di

jψ þDi
jϕ ¼ 0; ð3:15Þ

vector

DðiE00
jÞ þ 2HDðiE0

jÞ ¼ 0; ð3:16Þ

and tensor modes

E00i
j þ 2HE0i

j − ðΔ − 2KÞEi
j ¼ 0: ð3:17Þ

Next, we have two constraint equations for the scalar
and vector modes of the velocity perturbation. These are
given by

−2Diϕ
0 −DjDijψ

0 ¼ κa2ðρ̄þ p̄ÞDiv̂; ð3:18aÞ

−
1

2
ðΔþ 2KÞE0

i ¼ κa2ðρ̄þ p̄ÞV̂i: ð3:18bÞ

Finally, from the conservation of the energy-momentum
tensor we have the Euler equation

½a4ðρ̄þ p̄Þv̂i�0 ¼ −a4∂iδp; ð3:19Þ
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and the conservation equation

δρ0 þ ðδρþ δpÞ3H ¼ ðρ̄þ p̄Þð3ϕ0 −Div̂iÞ: ð3:20Þ

C. Harmonics

Since perturbative modes evolve independently for linear
perturbations, it is convenient to expand the metric pertur-
bation on a basis of tensor harmonics. In this section we
summarize how these harmonics are built (see [18] for
more details).
Let us first introduce the usual orthonormal spatial basis

associated with spherical coordinates

n ¼ ∂χ ;

nθ ¼ r−1ðχÞ∂θ;

nϕ ¼ r−1ðχÞ csc θ∂ϕ: ð3:21Þ

They allow us to introduce the standard helicity (vector)
basis,

n� ≡ 1ffiffiffi
2

p ðnθ ∓ inϕÞ; ð3:22Þ

which is in turn used to define an extended helicity (tensor)
basis [18]

n̂
i1���ij
�s ðnÞ≡ nhi1� � � � nis�nisþ1 � � � niji: ð3:23Þ

In what follows, we shall occasionally use a multi-index
notation

Ij ≡ i1 � � � ij; ð3:24Þ

such that the helicity basis is written simply as n̂�s
Ij

or

as n̂
Ij
�s.

The generalized helicity basis has a series of important
properties which are collected in Ref. [18]. For our present
purposes, we stress that it is both a complete basis for
symmetric and trace-free tensors, as well as a natural basis
for separating the angular from the radial dependence of
spin-valued tensors.
Cosmological perturbations can be expanded in a basis

of spatial eigenfunctions of the Laplace operator Δ. Any
tensor-valued perturbation QðjmÞ

Ij
ðx; kÞ satisfying [18]

½Δþ k2 − Kðj − jmjÞðjþ jmj þ 1Þ�QðjmÞ
Ij

¼ 0 ð3:25Þ

will be loosely called a harmonic. Here, j represents the
tensorial rank of the harmonic, and m the rank of the
primitive tensor from which this harmonic is derived. Thus,

for instance, Qð2;0Þ
ij is a rank-2 tensor derived from (two

derivatives of) a scalar function. The case j ¼ jmj

represents a “fundamental” harmonic, in the sense that it
is not derived from lower-rank tensors, and it is also
divergence-less. Harmonics with j > jmj are derived from
the fundamental ones. In what follows, it will be convenient
to give the expression above in terms of the mode νm
defined as

ν2m ¼ k2 þ ð1þ jmjÞK ð3:26Þ

in terms of which (3.25) becomes

fΔþ ν2 − K½ð1 − jmjÞð1þ jmjÞ þ jðjþ 1Þ�gQðjmÞ
Ij

¼ 0:

ð3:27Þ

Let us summarize the main definitions and results of [18]
in which these harmonics and their decomposition into
angular and radial functions are discussed. A point x in space
is specified by its distance (χ) and direction (n) from a given
origin. However, cosmological perturbations are character-
ized independently by their spatial (x) and angular (n)
dependencies, which requires the use of both orbital and
spin eigenfunctions [33,34]. Since what is observed is the
total angular dependence, one introduces a set of total
angular momentum normal modes [34] which splits pertur-
bations in their effective radial and angular dependencies:

sG
ðjmÞ
l ðχ; n; νÞ≡ clsα

ðjmÞ
l ðχ; νÞsYm

l ðnÞ; ð3:28Þ

where

cl ≡ il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
; ð3:29Þ

sYm
l ðnÞ are spherical harmonics of spin s and sα

ðjmÞ
l are

radial functions. These radial functions are zero whenever
one of the following conditions is violated:

j ≥ maxðjmj; jsjÞ; l ≥ maxðjmj; jsjÞ: ð3:30Þ

Moreover, these functions are conventionally normalized at
origin through the condition

sα
ðjmÞ
l jχ¼0 ¼

1

2jþ 1
δlj: ð3:31Þ

It is also convenient to decompose the radial functions into
even (electric) and odd (magnetic) types as

�sα
ðjmÞ
l ¼ sϵ

ðjmÞ
l � isβ

ðjmÞ
l : ð3:32Þ

Formal expressions and identities satisfied by the radial
functions are collected in [18].
Next we introduce the harmonics QðjmÞ

Ij
in the

l-representation. These are constructed by a simple com-
bination of the normal modes with the generalized helicity
basis as
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lQðjmÞ
Ij

≡Xj
s¼−j

sgðjmÞ
sG

ðjmÞ
l ðχ; n; νÞn̂sIjðnÞ; ð3:33Þ

where sgðjmÞ are numerical coefficients introduced in [18].
Overall, when following reference [18], the reader should
make use of the replacements χ → χ=lc, k → klc,
and ν → νlc.

D. Plane waves and pseudo plane waves

Finally, we build generalized plane-wave harmonics
from summation over l:

QðjmÞ
Ij

≡ X
l≥jmj

ζml
ζmj

× lQðjmÞ
Ij

ðχ; n; νÞ ð3:34Þ

where ζml are coefficients that can be fixed up to an overall
arbitrary constant (see Appendix E). Likewise, a plane-
wave normal mode is

sGðjmÞ ≡ X
l≥jmj

ζml
ζmj

× sG
ðjmÞ
l ðχ; n; νÞ; ð3:35Þ

such that (3.33) also holds without the l indices, that is
after summation on l. Usual plane waves correspond to the
case ζml ¼ const, but the previous definitions allow for
pseudo plane waves when ζml ≠ const. The plane-waves
harmonics were built using the zenith direction as a
reference, but we can rotate them so as to define harmonics
with respect to the wave vector ν ¼ νν̂, as detailed in
Sec. 6.2 of [18]. The perturbations defined in (3.5) are
expanded on the basis (3.34) as

ϕ →
Z

d3ν
ð2πÞ3H

ð0Þ
S ðν; ηÞQð0;0ÞðνÞ;

Dijψ →
Z

d3ν
ð2πÞ3H

ð0Þ
T ðν; ηÞQð2;0Þ

ij ðνÞ;

DðiEjÞ →
X
m¼�1

Z
d3ν
ð2πÞ3H

ðmÞ
T ðν; ηÞQð2;mÞ

ij ðνÞ;

Eij →
X
m¼�2

Z
d3ν
ð2πÞ3H

ðmÞ
T ðν; ηÞQð2;mÞ

ij ðνÞ: ð3:36Þ

For applications related to observations, most notably
those of CMB, it is convenient to work with the propa-
gating direction n̄ related to the line-of-sight direction n
through

n̄≡ −n: ð3:37Þ

We can also define harmonics, with related normal modes
and radial functions, associated with this convention. They
are trivially related to the previous ones by

Q̄ðjmÞ
Ij

ðχ;−n̄; νÞ ¼ ð−1Þj ×QðjmÞ
Ij

ðχ; n; νÞ:

The associated normal modes sḠðjmÞ and radial functions

�sᾱ
ðjmÞ
l are related to the previous ones as detailed in

Sec. 7.1 of [18].

E. Supercurvature modes

Quite generally, square-integrable cosmological pertur-
bations can be constructed by superposing tensor harmon-
ics characterized by νlc ≥ 0. For closed spaces one further
requires νlc − 1 to be an integer larger or equal to jmj, see
e.g., [18]. In the case of open spaces (K ¼ −l−2

c ), this
requires ðklcÞ2 ≥ ð1þ jmjÞ [see (3.26)]. While the inclu-
sion of modes in this range is enough to describe pertur-
bations that decay at infinity, it has been argued [35] that
the most general Gaussian perturbations also require the
inclusion of modes having

−1 ≤ ðνlcÞ2 ≤ 0: ð3:38Þ

In the scalar case (m ¼ 0) this corresponds to 0≤k2≤l−2
c .

For this reason, these are known as supercurvature modes.
Supercurvature harmonics are not square integrable.

Since they correspond to purely imaginary ν, they can
be defined from analytic continuation of the radial func-

tions sα
ðjmÞ
l of the usual harmonics (i.e., those with ν ≥ 0).

In [35] only the scalar harmonics were considered, but the
procedure of analytic continuation can be followed for all
types of harmonics. In fact the analytic continuation is not
restricted to (3.38) but can be extended at least to the whole
subset of the complex plane defined by

−1 ≤ ImðνlcÞ ≤ 1 ⇒ Re½ðνlcÞ2� ≥ −1: ð3:39Þ

For that, one only needs to know how to formally build the
radial functions—see [18]. Hereafter, we call the case
ðνlcÞ2 ¼ −1 the maximal supercurvature mode as it
corresponds to k ¼ 0 for scalar harmonics.
Given that ν can be complex, the electric and magnetic

parts of the radial functions are not necessarily real-

valued functions. In particular the relation sα
ðjmÞ⋆
l ðχ; νÞ ¼

−sα
ðjmÞ
l ðχ; νÞ, which holds in the flat case, is not valid

anymore and we must rely on Eq. (3.35) of [18].

IV. LINEARIZATION OF BIANCHI SPACE-TIMES

Our goal now is to derive the linearized dynamical
equations for the Bianchi models in Table II, which will be
ultimately matched to the Einstein and fluid equations
presented in the last section. Such matching requires
contrasting Eqs. (3.1) and (2.32), which in turn depends
on the knowledge of the cobasis ei in a given coordinate
system. Since the cobasis is the dual to the invariant basis
ei, which is in turn defined by the KVFs through

THIAGO S. PEREIRA and CYRIL PITROU PHYS. REV. D 100, 123534 (2019)

123534-10



Eq. (2.12b), we start this section by recalling the KVFs and
invariant basis for the selected Bianchi models.

A. KVF and invariant basis

An ingenious method to find the KVFs of Bianchi
models with FLRW limit was proposed in PC10, and
can be summarized as follows: starting from a maximally
symmetric space, one identifies its translational (Ti) and
rotational (Ri) KVFs, as well as their commutators. Next,
one looks for constants ρji such that the newly defined
vectors

ξi ≡ Ti þ ρjiRj ð4:1Þ

satisfy Eq. (2.2). From these vectors one then obtains the
invariant basis ei [through Eq. (2.12b)] and their associated
cobasis ei which, once multiplied by a time-dependent
tensor γijðtÞ, and following the prescription of Sec. II A,
leads to the metric (2.32).
The beauty of this method is that one naturally sees

which Bianchi models can emerge from a given maximally
symmetric space. Moreover, coordinate systems for the
KVFs are naturally inherited from the coordinate systems
of the underlying symmetric space. We now summarize
these vectors and their associated invariant basis. Their
cobasis can then be obtained from the prescription given in
Appendix C.

1. Models I and VII0
Bianchi models I and VII0 are the only models emerging

from flat Euclidean space. As such, their Killing vectors
and invariant fields can be expressed in terms of natural
(Cartesian) coordinates of the flat Euclidean metric:

gMS ¼ dx2 þ dy2 þ dz2: ð4:2Þ

The set of KVFs and invariant basis for model I corre-
sponds to simple spatial translations:

ξðIÞi ¼ ∂i; eðIÞi ¼ ∂i: ð4:3Þ

It is trivial to check that ξðIÞ satisfies (2.2) with Ck
ij ¼ 0,

and that (2.12b) is satisfied automatically.
The isometries of model VII0 correspond to two simple

translations, and a translation followed by a rotation.
Choosing this rotation to be around the z axis, we then
have for the KVFs:

ξðVII0Þ1 ¼ ∂x; ð4:4aÞ

ξðVII0Þ2 ¼ ∂y; ð4:4bÞ

ξðVII0Þ3 ¼ ∂z − l−1
s ðx∂y − y∂xÞ: ð4:4cÞ

One can check that these vectors satisfy (2.9) with N1 ¼
N2 ¼ l−1

s and A ¼ 0. The invariant basis which solves
(2.12b) is

eðVII0Þi ¼ Mj
ie

ðIÞ
j ; ð4:5Þ

where Mi
j are the components of the rotation matrix

around the z axis by the angle z=ls:

M ¼

0
B@

cosðz=lsÞ − sinðz=lsÞ 0

sinðz=lsÞ cosðz=lsÞ 0

0 0 1

1
CA: ð4:6Þ

Since rotation matrices are orthogonal, we also have
Mi

j ¼ Mi
j such that for the cobasis

eiðVII0Þ ¼ Mi
je

j
ðIÞ: ð4:7Þ

2. Models V and VIIh
These are the two models emerging from a maximally

symmetric open space (i.e., a space with negative curva-
ture). A possible coordinate system for the KVFs and
invariant basis are spherical hyperbolic coordinates
ðχ; θ;ϕÞ, in terms of which the metric of the underlying
space writes

gMS ¼ dχ2 þ l2
csinh2ðχ=lcÞd2Ω: ð4:8Þ

In these coordinates, the KVFs and invariant basis for
model V are given respectively by

ξðVÞ1 ¼ sin θ cosϕ∂χ

þ l−1
c ½cos θ cothðχ=lcÞ − 1� cosϕ∂θ

þ l−1
c ½cot θ − cothðχ=lcÞ csc θ� sinϕ∂ϕ; ð4:9aÞ

ξðVÞ2 ¼ sin θ sinϕ∂χ

þ l−1
c ½cos θ cothðχ=lcÞ − 1� sinϕ∂θ

þ l−1
c ½cothðχ=lcÞ csc θ − cot θ� cosϕ∂ϕ; ð4:9bÞ

ξðVÞ3 ¼ cos θ∂χ − l−1
c cothðχ=lcÞ sin θ∂θ: ð4:9cÞ

and
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eðVÞ1 ¼ sin θ cosϕ
coshðχ=lcÞ − cos θ sinhðχ=lcÞ

∂χ

þ l−1
c ½cos θ cothðχ=lcÞ − 1�

coshðχ=lcÞ − cos θ sinhðχ=lcÞ
cosϕ∂θ

− l−1
c sinϕ csc θcschðχ=lcÞ∂ϕ;

eðVÞ2 ¼ sin θ sinϕ
coshðχ=lcÞ − cos θ sinhðχ=lcÞ

∂χ

þ l−1
c ½cos θ cothðχ=lcÞ − 1�

coshðχ=lcÞ − cos θ sinhðχ=lcÞ
sinϕ∂θ

þ l−1
c cosϕ csc θcschðχ=lcÞ∂ϕ;

eðVÞ3 ¼ cos θ coshðχ=lcÞ − sinhðχ=lcÞ
coshðχ=lcÞ − cos θ sinhðχ=lcÞ

∂χ

−
l−1
c cschðχ=lcÞ sin θ

coshðχ=lcÞ − cos θ sinhðχ=lcÞ
∂θ:

As emphasized in [36], it proves useful to use a different
system of coordinates to recast these expressions in much
simpler forms, and we report the detailed expressions in
Appendix B.
The other possibility corresponds to model VIIh. In this

case the KVFs and invariant basis can be related to the
expressions above simply as [3]

ξðVIIhÞ1 ¼ ξðVÞ1 ; ð4:10aÞ

ξðVIIhÞ2 ¼ ξðVÞ2 ; ð4:10bÞ

ξðVIIhÞ3 ¼ ξðVÞ3 − l−1
s ∂ϕ; ð4:10cÞ

and

eðVIIhÞi ¼ Mi
jeðVÞj ð4:11Þ

with M given formally by the same expression (4.6), but
with z defined as in (B1).

3. Model IX

This is the only model emerging from a closed max-
imally symmetric space (i.e., a three-dimensional sphere)
with metric

gMS ¼ dχ2 þ l2
csin2ðχ=lcÞd2Ω: ð4:12Þ

The KVFs and invariant basis are given by

ξðIXÞ1 ¼ cosϕ sin θ∂r

þ l−1
c ½cotðχ=lcÞ cos θ cosϕþ sinϕ�∂θ

− l−1
c ½cotðχ=lcÞ csc θ sinϕ − cosϕ cot θ�∂ϕ;

ξðIXÞ2 ¼ sinϕ sin θ∂r

þ l−1
c ½cotðχ=lcÞ cos θ sinϕ − cosϕ�∂θ

þ l−1
c ½cotðχ=lcÞ csc θ cosϕþ sinϕ cot θ�∂ϕ;

ξðIXÞ3 ¼ cos θ∂r − l−1
c ½cotðχ=lcÞ sin θ∂θ þ ∂ϕ�;

and by

eðIXÞ1 ¼ cosϕ sin θ∂r

þ l−1
c ½cotðχ=lcÞ cos θ cosϕ − sinϕ�∂θ

− l−1
c ½cotðχ=lcÞ csc θ sinϕþ cosϕ cot θ�∂ϕ;

eðIXÞ2 ¼ sinϕ sin θ∂r

þ l−1
c ½cotðχ=lcÞ cos θ sinϕþ cosϕ�∂θ

þ l−1
c ½cotðχ=lcÞ csc θ cosϕ − sinϕ cot θ�∂ϕ;

eðIXÞ3 ¼ cos θ∂r − l−1
c ½cotðχ=lcÞ sin θ∂θ − ∂ϕ�;

respectively.
Before proceeding, note that the transformation ðθ;ϕÞ →

ðπ − θ; π þ ϕÞ is such that ðξðIXÞi ; eðIXÞi Þ → ð−eðIXÞi ;−ξðIXÞi Þ,
while the metric remains invariant. Thus, the role of KVFs
and invariant basis can be reversed in model IX. Such
inversion also happens in Bianchi I, as one can trivially
check. As we will see, this has practical implications in the
identification of homogeneous perturbations with spatial
anisotropies in these two models.

B. Linearized Bianchi equations

We now parametrize γij in (2.32) as

γijðtÞ ¼ ½e2βðtÞ�ij; ð4:13Þ

and we linearize equations in the time-dependent traceless
matrix βijðtÞ, and also in v̂i. When find that for the Bianchi
types which admit a FLRW limit, the metric reduces to a
maximally symmetric space metric when βij ¼ 0 (and thus
γij ¼ δij), that is we find

gMS ¼ δijei ⊗ ej: ð4:14Þ

Consequently, we also recover in that case that the Ricci
scalar takes a FLRW form. This means in particular that the
traceless part of the spatial Ricci vanishes, and the value of
the Ricci scalar (spatial curvature scalar) indicates to which
FLRW type (open, closed, or flat) it corresponds. This is
reported in Table II where the values of ðA;N1; N2; N3Þ are
given as functions of the two length scales introduced in
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(2.10). Neglecting sources of anisotropic stress, the back-
ground equations are

H2 þ K ¼ κa2

3
ρ̄; ð4:15Þ

ρ̄0 þ 3Hðρ̄þ p̄Þ ¼ 0; ð4:16Þ

where

K ¼ −6ÂiÂi − N̂ijN̂ij þ 1

2
N̂iiN̂jj: ð4:17Þ

These are formally the same as the dynamical equations for
a background FLRW metric. The curvature scale lc ¼
1=

ffiffiffiffiffiffiffijKjp
appears in the FLRW limit of the Ricci scalar

whereas the spiral scale ls (whose meaning will be made
clear later) does not.
The shear is given at linear order by

σ̂ij ¼ β0ij; ð4:18Þ

and the linear parts of the equations (in βij and v̂i) are

1

2
a2δðð3ÞRÞ ¼ κa2δρ; ð4:19aÞ

β00ij þ 2Hβ0ij ¼ Sij; ð4:19bÞ

3Âjβ
0
ji þ ϵ̂ijkβ

0
jlN̂kl ¼ Pi ð4:19cÞ

δρ0 þ 3Hðδρþ δpÞ ¼ −ðρ̄þ p̄ÞDiv̂i

¼ 2ÂiPi

κa2
ð4:19dÞ

½a4ðρ̄þ p̄Þv̂i�0 ¼ 0: ð4:19eÞ

The right-hand side of Eqs. (4.19a) and (4.19b) corre-
spond to the isotropic and anisotropic contribution to the
spatial curvature due to terms linear in βij. They are given
respectively by

a2δðð3ÞRÞ ¼ 2ð6ÂiÂj − 2N̂ikN̂kj þ N̂kkN̂ijÞβij; ð4:20Þ

and by

Sij ¼ N̂kkN̂fijg − 2N̂kfiN̂jgk − 2Âkϵ̂lkðiN̂jÞl

þ 2

�
2N̂kkβlfiN̂jgl −

1

3
N̂kkN̂llβij

þ N̂ijβklN̂
kl − 4N̂klN̂kfiβjgl

− 2N̂riN̂sjβrs þ
2

3
N̂klN̂klβij

þ 2ÂkϵklðiβjÞrN̂rl − 2ÂlβklϵkrðiN̂jÞr
�
: ð4:21Þ

Repeated indices are summed, and we have introduced the
notation f� � �g for symmetric and trace-free tensors with
respect to δij, such that all indices on the right-hand side are
now manipulated with the Kronecker delta.

C. Homogeneous svt modes

In order to identify βij with homogeneous metric
perturbations, we proceed by decomposing the former in
a similar fashion to the decomposition of δgij. Just as the
scalar, vector, and tensor modes appearing in (3.5) are
defined with respect to their transformation properties
under rotations around k—the wave vector of the pertur-
bation—we can introduce scalar, vector, and tensor modes
of the shear (henceforth svt modes) with respect to their
transformations under rotations around some direction ei of
the invariant basis [3]. For models I and IX it does not
matter which direction we choose, since any rotation will
preserve Ck

ij in these models. On the other hand, the
constants of structure in models V, VII0, and VIIh have a
residual symmetry given by rotations around the vector
A ∝ e3. Since the construction in this section is general to
all Bianchi models, we shall omit a subscript in the
covectors ei to designate the model they belong to, so as
to alleviate the notation. We thus choose the latter as a
fiducial direction and introduce a complex basis

eð�Þ
i ðe3Þ≡ ðe1i ∓ ie2i Þffiffiffi

2
p ; ð4:22Þ

in terms of which we introduce the following tensor
polarization basis:

qð0Þij ðe3Þ≡ ð−e3i e3j þ δij=3Þ;
qð�1Þ
ij ðe3Þ≡�e3ðie

ð∓Þ
jÞ ;

qð�2Þ
ij ðe3Þ≡ −

ffiffiffi
3

2

r
eð∓Þ
i eð∓Þ

j : ð4:23Þ

In what follows, we will omit the dependence on e3
whenever there is no chance of confusion. Note also that,

because e3 and e� form a general triad frame, qðmÞ
ij will in

general depend on the spacetime point, whose explicit
dependence we shall also omit.
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The above polarization tensors allow us to write the
shear as

βij ¼
X2
m¼−2

βðmÞq
ðmÞ
ij ð4:24Þ

with the values of m corresponding to scalar (m ¼ 0),
vector (m ¼ �1), and tensor (m ¼ �2) modes. Note that
all modes are constructed such that

qð−mÞ
ij ¼ ð−1ÞmqðmÞ⋆

ij ; ð4:25Þ

and hence the reality of βij implies

βð−mÞ ¼ ð−1Þmβ⋆ðmÞ: ð4:26Þ

This means that, in practice, we only need to consider
physical effects for the case m > 0.
Because the Bianchi models we are considering all have

a maximally symmetric 3-space as their isotropic limits, the
first line of Eq. (4.21) vanishes for all models of Table II, as
one can easily check. We can thus write

Sij ¼
X2
m¼−2

SðmÞβðmÞq
ðmÞ
ij : ð4:27Þ

The isotropic spatial curvature, on the other hand, splits
into a background plus perturbation as

a2ð3ÞR ¼ a2ð3ÞRFLRW þ δða2ð3ÞRÞ; ð4:28Þ

where

δða2ð3ÞRÞ ¼
X2
m¼−2

RðmÞβðmÞ; ð4:29Þ

and

RðmÞ ¼ RijqðmÞ
ij ;

Rij ¼ 2ð6ÂiÂj − 2N̂ikN̂kj þ N̂kkN̂ijÞ: ð4:30Þ

Likewise, the tilt Pi can be decomposed as

Pi ¼
X2
m¼−2

β0ðmÞP
ðmÞ
i ; ð4:31Þ

TABLE III. Bianchi svt modes and the quantities RðmÞ, SðmÞ, and PðmÞ
i for all Bianchi models considered in this work. For models I

and IX, PðmÞ
i ¼ 0, and is thus not shown. This reproduces Table II of PC10 up to variations of conventions in definitions.

m: 0 þ1 −1 þ2 −2

qðmÞ
ij :

1
3

 
1 0 0

0 1 0

0 0 −2

!
1ffiffi
8

p

 
0 0 1

0 0 i
1 i 0

!
1ffiffi
8

p

 
0 0 −1
0 0 i
−1 i 0

! ffiffi
3
8

q  −1 −i 0

−i 1 0

0 0 0

! ffiffi
3
8

q  −1 i 0

i 1 0

0 0 0

!

VII0 l2
sSðmÞ 0 0 0 −4 −4

l2
sRðmÞ 0 0 0 0 0ffiffiffi
8

p
lsP

ðmÞ
i

 
0

0

0

!  −i
1

0

!  −i
−1
0

!  
0

0

0

!  
0

0

0

!

V l2
cSðmÞ 0 0 0 0 0

l2
cRðmÞ −8 0 0 0 0ffiffiffi
8

p
lcP

ðmÞ
i

 
0

0

−4
ffiffiffi
2

p
!  

3

3i
0

!  −3
3i
0

!  
0

0

0

!  
0

0

0

!

VIIh l2
cSðmÞ 0 0 0 −4=h − 4i=

ffiffiffi
h

p
−4=hþ 4i=

ffiffiffi
h

p
l2
cRðmÞ −8 0 0 0 0ffiffiffi
8

p
lcP

ðmÞ
i

 
0

0

−4
ffiffiffi
2

p
!  

3 − i=
ffiffiffi
h

p
3iþ 1=

ffiffiffi
h

p
0

!  −3 − i=
ffiffiffi
h

p
3i − 1=

ffiffiffi
h

p
0

!  
0

0

0

!  
0

0

0

!

I SðmÞ 0 0 0 0 0
RðmÞ 0 0 0 0 0

IX l2
cSðmÞ −8 −8 −8 −8 −8

l2
cRðmÞ 0 0 0 0 0
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with

PðmÞ
i ¼ 3Âjq

ðmÞ
ji þ ϵ̂ijkq

ðmÞ
jl N̂kl: ð4:32Þ

The svt modes for the tensors Sij, Rij, and Pi for all
Bianchi models are summarized in Table III.

V. BIANCHI AND FLRW MODES RELATED

A. Matching the perturbations

We are now ready to find the correspondence between
Bianchi degrees of freedom and FLRW metric perturba-
tions. In other words, we can now identify the modes in the
expansion (3.36) which we must consider in (3.5) so as to
obtain the matching

δgij → 2a2βij: ð5:1Þ

Since βij is traceless, one can already set ϕ → 0. On the
Bianchi side, we have seen that the shear can be decom-
posed as in Eq. (4.24). As we detail in Appendix E, we
show that

qðmÞ
ij ðχ; nÞ ¼ ξ2

ξm
Qð2mÞ

ij ðχ; n; νm; ζml Þ; ð5:2Þ

where the constants ξm are defined as (see [18] for details)

ξm ≡Ym
i¼1

klcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνmlcÞ2 −Ki2

p ; ð5:3Þ

with the understanding that ξ0 ¼ 1. Defining

HðmÞ
T ≡ βðmÞ

ξ2
ξm

ð5:4Þ

implies that the identification (5.1) is madewith the discrete
sum

δgij
2a2

¼
X2
m¼−2

HðmÞ
T ðνm; ηÞQð2mÞ

ij ðνm; ζml Þ: ð5:5Þ

Let us stress already that the identification of model IX is a
special case since there are only tensor modes. That is, the

Bianchi modes qðmÞ
ij withm ¼ 0, 1, −1 do not map to scalar

and vector harmonics, but instead to sums of tensor
harmonics. We shall treat this case separately.
We still need to specify with which modes νm and with

which set of constants ζml the matching (5.2) holds. The
matching of the positive and negative m are necessarily
related since negative values can be obtained by the reality
condition (4.25). Using Eq. (6.8) of [18] for the complex
conjugation of a harmonic, we can check that we obtain

½Qð2mÞ
ij ðνm; ζml Þ�⋆ ¼ ð−1ÞmQð2;−mÞ

ij ðν−m; ζ−ml Þ

provided that the conditions

ν−m ¼ −ν⋆m; ζ−ml ¼ ð−1Þlζm⋆
l ð5:6Þ

are satisfied.
In order to find for each m the mode νm and the set of

coefficients ζml which define the pseudo plane wave, we
first determined the νm by comparing equations (4.19b)
and (4.19c) to the linearized Einstein equations given in
Sec. III B, and asking the constraints (5.6) to be satisfied.
The shear evolution in Bianchi models maps to either
tensor, vector, or traceless scalar perturbations in synchro-
nous gauge and we report details of the matching in
Appendix D. For the flat and open cases (corresponding
to types I, V, VII0, VIIh), the modes must be

νm ¼ m
ls

þ i
lc

ð5:7Þ

with km ¼ νm in the I and VII0 cases. For the closed case
(Bianchi IX) we obtain

ν�2 ¼ � 3

lc
: ð5:8Þ

Given that the νm can be complex in the open case, it is
understood that the radial functions are obtained through
analytic continuation corresponding to the presence of a
supercurvature mode (see Sec. III E). Technically, this
implies that the electric and magnetic radial functions
are no more real valued.
We must also specify the coefficients ζml since some

models are matched with pseudo plane waves. In
Appendix E we detail how these constants are found for
models VII0, V, and VIIh, and they are (up to a global
constant factor)

ζ�m
m ¼ ð�1Þm; ð5:9aÞ

ζ�m
l ¼ ζ�m

l−1ð−iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðν�mlcÞ2

p
ðlþ 1Þ ∓ mi=

ffiffiffi
h

p : ð5:9bÞ

Using the identity (E11), it can be recast in the form

ζ�m
l ¼ ð�1Þm

Yl
p¼mþ1

ð−iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þ �mi=

ffiffiffi
h

p

ðpþ 1Þ ∓ mi=
ffiffiffi
h

p
s

: ð5:10Þ

The case m ¼ 0 is special since in (5.9) one finds

ζ00 ¼ 1; ζ0l≥1 ¼ ð−iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνlcÞ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp : ð5:11Þ
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Note that there is a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðν0lcÞ2

p
¼ 0 in all ratios

ζ0l=ζ
0
0. One could think that this is problematic since

the ratios ζml =ζ
m
j enter the very definition of a pseudo

plane wave (3.34). For instance, in Qð20Þ
ij one would

encounter ζ00=ζ
0
2∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðν0lcÞ2

p
. However the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðν0lcÞ2
p

is nothing but k given the relation (3.26),
and it appears that there is a compensating divergence in the
radial functions. More precisely it can be checked that

sα
ðjmÞ
0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðν0lcÞ2

p
for k → 0 (except 0α

ð00Þ
0 → 1). In

practice, one must keep track of all factors of k and take the
limit k → 0 at the end. More rigorously, one could have
redefined radial functions to be

ζml
ζmj

sα
ðjmÞ
l ð5:12Þ

as these quantities would never possess any (apparent)
divergences.
The results for models VII0 and V can be obtained by

letting lc → ∞ (or h → 0) and ls → ∞ (or h → ∞),

respectively. For model VII0 this reduces to ζ�jmj
l ¼

ð�1Þl. In the Bianchi V case, we also find (5.11) when
m ¼ 0, and when m ≠ 0 we get

ζ�m
l ¼ ð�1Þmð−iÞl−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ
lðlþ 1Þ

s
: ð5:13Þ

As for models I and IX, we find ζ�m
l ¼ δ2l that is the sum is

reduced to the lowest term with l ¼ 2. In the case of model
I, one could alternatively consider that ζ�m

l ¼ ð�1Þl since
for l ≥ 3 all radial functions vanish for km ¼ 0. The pseudo
plane waves harmonics needed for the matching in the
various models are summarized in Table IV.
Let us comment that the scalar mode (m ¼ 0) is special.

Indeed we found that the ν0 and ζ0l are the same for models
Vand VIIh, and also the same for models I and VII0. This is
because there is a spiraling structure in models VII0 and

VIIh (with typical spiral scale 2πls=jmj) which is absent
for the scalar mode (m ¼ 0).
Note that the prefactor ξ2=ξm is always compensated by

an opposite factor ξm=ξ2 in the sgð2mÞ which enter in the
definition of harmonics from radial functions (3.33). This
was expected since this prefactor was precisely added to
remove any divergence so as to reach constant matrices for

the qðmÞ
ij .

B. Transformation properties

When writing the constants of structure in canonical
form in Table II, we have used the possibility of a global
rotation and of parity inversion. Hence, once we have
identified the harmonics corresponding to the svt modes,
we must explore the effect of global rotations and parity
inversion to exhaust all possible FLRW metric perturba-
tions matching Bianchi models.
In Table I of [18] are gathered the transformation rules of

the harmonics lQðjmÞ
Ij

ðν; ηml Þ (defined with respect to the
zenith axis) under inversion of a single individual axis (x, y,
or z) axis. For the pseudo plane waves used in the matching
(with j ¼ 2), the transformation rules can be deduced (see
Sec. 6.4 of [18]) and we summarize them in Table V for
clarity of the following discussion.

1. Isotropic constants of structure

When the constants of structure of a given model are
invariant under arbitrary rotations (such as in models I and
IX), any mode s, v, or t (or, equivalently, any basis qðmÞ

ij for
jmj ¼ 0, 1 or 2) can be constructed from any other by
appropriate linear combinations of rotated modes. One can
easily verify that

qð0Þij ðe3Þ ∝
X
m¼�2

qðmÞ
ij ðe1Þ þ qðmÞ

ij ðe2Þ; ð5:14Þ

where we use eð�Þ
i ðe1Þ≡ ð−e3i ∓ ie2i Þ=

ffiffiffi
2

p
and eð�Þ

i ðe2Þ≡
ð−e3i � ie1i Þ=

ffiffiffi
2

p
. Similar combinations can be used to

produce the qð�1Þ
ij ðe3Þ. As a consequence all modes have

the same dynamics and this is checked in Table III where
the SðmÞ are the same for allm in models I and IX. Thus, the
anisotropies of every Bianchi I model can be seen as
combinations of homogeneous gravitational waves, which

TABLE IV. Summary of modes (km or νm) and pseudo plane-
wave constants (ζml ) found in this section. It is understood that the
ζ0l for the V and VIIh models are (5.11).

ν or k ζ�m
l

I km → 0 δ2l

VII0 km ¼ m
ls

ð�1Þl

IX ν�2 ¼ � 3
lc

δ2l, jmj ¼ 2 only

V νm ¼ i
lc ð�1Þmð−iÞl−m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ1Þ
lðlþ1Þ

q
VIIh νm ¼ m

ls
þ i

lc ð�ÞmQl
p¼mþ1ð−iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp−1Þ ffiffihp �mi
ðpþ1Þ ffiffihp ∓mi

r

TABLE V. Transformation rules for harmonics (defined with
the zenith direction) under the inversion of a single axis.

x → −x y → −y z → −z

Factor ð−1Þm yes yes
ζml → ð−1Þlζml yes

QðjmÞ
Ij

→ Qðj;−mÞ
Ij

yes yes

QðjmÞ
Ij

ðνÞ → QðjmÞ
Ij

ð−νÞ yes
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are exhausted by the fives parameters βðmÞ which, given
(4.26), are 5 degrees of freedom of the model. Any global
rotation leads only to a transformation of the βðmÞ by a
constant phase.
The freedom in the point of view about the nature of the

modes results from the nonuniqueness in the definition of
SVTmodeswhen perturbations do not decay at infinity [37].
However, sinceBianchi IX arises as perturbations of a closed
FLRWuniverse, which has compact spatial sections, there is
no such freedomof interpretation and the s, vmodesmust be
consideredas sumsof tensorsmodes. Inotherwords, theyare

obtained from sums of rotations of qð�2Þ
ij ðν�2Þ.

In practice, when exploring the implications of Bianchi
models on observables, one might choose to lose complete
generality and to focus on the effect of a single gravitational
wave. Hence, one starts from the tensor mode aligned with
the zenith direction βð�2Þl¼2Qð2;�2Þ

ij ðν�2Þ and explores the
range of Euler angles for the rotation of the plane-wave
axis. When doing so, one does not need to explore the
freedom of the γ Euler angle, (i.e., of rotations of the wave
around its wave vector ν) since this is degenerate with the
phases in the βðmÞ.
a. Bianchi I. In the simple I models, one has νm ¼ 0 and

only l ¼ 2, so we infer from Table V that the tensor mode
with zenith direction is invariant under inversion of the z
axis. Also since νm ¼ ν−m we deduce that an inversion of
either the x or the y axis interchanges the m and −m
contributions, leaving the whole metric perturbation invari-
ant. Hence the svt modes are invariant under inversion of
any axis and in particular of global parity.
b. Bianchi IX. The case of Bianchi IX is different.

Indeed, since ν−2 ¼ −ν2 one loses the parity invariance as
seen on Table V. The tensor mode with zenith axis is only
invariant by simultaneous inversion of two axes among
x; y; z. Physically, this happens because such tensor mode
in Bianchi IX is a standing circularly polarized wave [2];
intuitively this is like a spiraling structure in the zenith
direction (and which has a spiraling effect on observables
[14]), and any rotation which flips this spiraling direction
leaves the system invariant. As found in [2] and summa-
rized in Appendix C, the difference between the type IX
and type I is related to the fact that the canonical choice of

constants of structure selects only one type of chirality for
the circularly polarized wave (one could invert all signs of
the constants of structure). The Bianchi IX is a sum of
(rotated) tensor harmonics of the same chirality [2]. To
exhaust all possible perturbations of the type IX one then
needs to consider a global parity transformation which
changes the chirality.

2. Anisotropic constants of structure

For anisotropic constants of structure, that is, for models
V, VII0, VIIh, one has the 5 degrees of freedom of the
amplitude βðmÞ, on top of which we must also allow for a
general direction of the special axis used when writing the
constants in canonical form. This brings 2 other degrees of
freedom (the angles of the special axis direction) since any
rotation around the special axis is degenerate with phases in
the βðmÞ. It is then instructive to look at the properties under
inversion of the axis, since it highlights the effects that
modes have on observables. As we now detail, a global
parity inversion is needed to explore the whole range of
VII0 and VIIh types but this is not needed for the V type.
a. Bianchi V. The associated modes have the property

ν−m ¼ νm and ζ−ml ¼ ζml . Hence from Table V we find that
it is invariant under inversion of either the x or the y axis.
However it is not invariant under inversion of the z axis.
This is because Bianchi V has a focusing effect on
observables in the special z direction [14,36]. This contrasts
with the cases of Bianchi VII0 and VIIh. Since a rotation of
angle π around e.g., the x axis inverts the y and z axis, one
deduces that global parity inversion does not bring new
models when exploring all possible directions.
b. Bianchi VII0. We still have the property ζ−ml ¼

ð−1Þlζml but we now have ν−m ¼ −νm. So from Table V
we find that the perturbation is invariant under the joint
inversion of any two of the three x; y; z axes. This is the
same symmetry as the one already found in the IX case. In
fact, the Bianchi VII0 modes withm ≠ 0 are also equivalent
to a standing circularly polarized standing wave, whose
wavelength is free and controlled by ls. And as for the IX
case, a global parity inversion, that is a change of sign in the
constants of structure, inverts the chirality of the stand-
ing wave.

FIG. 1. Schematic representation of the transformation properties of the spiraling and focusing structures, under inversions of some
axes. The type VII0 has only a spiraling structure (represented by the blue screw thread), whereas the type V has only a focusing effect
(represented by the red arrow). Type VIIh has both features.
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c. Bianchi VIIh. The VIIh models possess both the
properties of models V (that is a focusing direction) and
VII0 (a spiraling structure from a circularly polarized
standing wave in the m ≠ 0 modes). An inversion of the
z axis inverts the focusing direction but not the spiraling
structure. An inversion of either the x or y axis inverts the
chirality of the spiraling structure but leaves the focusing
direction unchanged. Hence a global parity inversion
(a change of sign in the constants of structure), combined
with a rotation of angle π around the x axis, inverts the
chirality of the standing wave while keeping the same
focusing direction. The transformation properties of modes
in Bianchi VIIh are illustrated in Fig. 1.

VI. COSMOLOGICAL IMPLICATIONS

We now illustrate the power of the identification to
compute theoretical predictions for observables in various
Bianchi models. Indeed, up to now the effect of a Bianchi
space-time on the CMB was computed with independent
codes from the ones used for the usual stochastic pertur-
bations around a FLRW background [16,17]. With the
identification (5.1) of Bianchi modes as FLRW perturba-
tions in synchronous gauge, it is possible to compute the
linear transfer functions from initial conditions to observ-
able multipoles in the same framework. The modes
identified as a Bianchi perturbations shall not correlate
statistically with other FLRW perturbations since the one-
point average of usual fluctuations vanishes. However it
should contribute in the three point function since the two-
point function average of usual fluctuations are related to
the nonvanishing power spectrum. In the next section we
review the dynamics of a Bianchi perturbations and recall
that only some modes are regular [14] and thus credible as a
possible large scale anisotropy. Then we detail the compu-
tation of the CMBmultipoles and show that it requires only
to adapt the usual Boltzmann hierarchy to take into account
the fact that we have pseudo plane waves instead of usual
plane waves.

A. Bianchi perturbation dynamics

Since our method is a based on a small shear approxi-
mation, it is important to discuss the existence of solutions
to Eq. (4.19b) which are finite at high redshifts. Such
solutions were extensively discussed in Refs. [3,14], and so
we will just give a brief summary. The main equation is

β00ðmÞ þ 2Hβ0ðmÞ − SðmÞβðmÞ ¼ 0 ð6:1Þ

which follows from (4.19b) with (4.24) and (4.27).
Being a homogeneous second-order differential equa-

tion, all solutions are linear combinations of two solutions.
In the case SðmÞ ¼ 0, one solution is a pure constant with
no observable effect, while the other is diverging at
early times. Hence, these modes are considered as being

irregular [14], and they are usually rejected on the basis that
they would not pass observational tests at early times.
Furthermore, it is also difficult to find a natural mechanism
to generate their initial conditions.
In the VII0 and VIIh models, we have Sð�2Þ ≠ 0, hence

these modes have a different dynamics. In a matter
dominated era, one has a ∝ η2 and thus 2H ¼ 4=η. The
regular solution of (6.1) for the tensor modes in these
models is then

βð�2Þ ∝
j1ðω�ηÞ
ω�η

; ω� ≡ 2

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iðls=lcÞ

p
: ð6:2Þ

Given that ω� is complex valued, this solution has to be
understood from the analytic continuation of the spherical
Bessel function j1. When ls ≫ lc, the solution is regular
as long as η ≪

ffiffiffiffiffiffiffiffiffiffi
lcls

p
, but in that case it is a constant

solution and we recover the dynamics of a Bianchi V. In the
opposite regime where ls ≪ lc, the solution is regular for
η ≪ lc (corresponding to the isotropic curvature scale
remaining superhorizon) and the solution results in damped
oscillations. Type IX also has a regular solution with damped
oscillations, since Sð�2Þ ¼ −8=l2

c and one finds that (6.2)
holds with ω� ¼ ffiffiffi

8
p

=lc in a matter dominated era.
Given the matching with FLRW perturbations, we can

interpret these regular solutions as frozen tensor modes
which become dynamical when their wavelength becomes
subhorizon. Note that the nonregular modes could still be
interesting for cosmological models with a homogeneous
(or very large scale) anisotropic stress which would then
source the right-hand side of (6.1), since in this case one
could set vanishing initial conditions and still have obser-
vational signatures (see, e.g, [38]).

B. CMB

1. Boltzmann hierarchy

We define CMB multipoles exactly like in Sec. 7.2 of
[18] (which is also the notation used in [33,34]). Moreover,
we use the notation of Sec. 7.3 of [18] for gravitational and
collisional terms. When using pseudo plane waves (that is
with ζml ≠ const), as is the case for the harmonics which
realize the matching with the Bianchi models, the
Boltzmann hierarchy [Eqs. (7.30) of [18]], is modified
by the rules

sκ
m
j → sκ

m
j

ζmj
ζmj−1

;

sκ
m
jþ1 → sκ

m
jþ1

ζmj
ζmjþ1

: ð6:3Þ

It is also implied that the ν which appears in the definition
of sκ

m
l [Eq. (3.19) of [18]] is νm. The modification (6.3)

arises because, for pseudo plane waves, the recursive
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relations for the normal modes, e.g., Eq. (7.29) of [18], are
now satisfied for the combination sḠðjmÞζmj . Consequently,
we find that the integral solutions [Eqs. (7.33) of [18]] are
modified by an extra factor ζmj =ζ

m
j0 on their right-hand sides,

that is

Θm
j ðη0Þ

2jþ 1
¼
Z

η0

0

dηe−τ
X
j0
ðΘCmj0 þ Gm

j0 Þ
ζmj
ζmj0

0ϵ̄
ðj0mÞ
j ðχÞ;

Em
j ðη0Þ

2jþ 1
¼
Z

η0

0

dηe−τ
X
j0

ECmj0
ζmj
ζmj0

2ϵ̄
ðj0mÞ
j ðχÞ;

Bm
j ðη0Þ

2jþ 1
¼
Z

η0

0

dηe−τ
X
j0

ECmj0
ζmj
ζmj0

2β̄
ðj0mÞ
j ðχÞ; ð6:4Þ

with χ ¼ η0 − η.
The line of sight integral solution (6.4) is only formal

because the sources depend on the multipoles themselves
and to compute them one needs to rely on the hierarchy.
However in practice it is sufficient to solve the Boltzmann
hierarchy for a small number of multipoles, since the
sources are restricted to multipoles with j ≤ 2, and to then
use the integral solutions for all multipoles.
The case of tensor modes (m ¼ 2), which are also the

only regular modes, is interesting. The temperature quadru-
pole is sourced by an integrated Sachs-Wolfe effect (ISW)
from tensor modes, and is damped by collision. When
Compton scattering is inefficient, the radial functions
account for the effect of free streaming, and this reveals
the focusing and spiraling patterns of the Bianchi modes if
present in the perturbation. Scattering of the temperature
quadrupole also generates the electric quadrupole of
polarization, and subsequent free streaming feeds higher
multipoles of both the electric and magnetic types.
We notice on the structure of the Boltzmann hierarchy

that the scalar mode (m ¼ 0) of the Bianchi V and VIIh
cases is special. Indeed, in that case sκ

0
1ζ

0
1=ζ

0
0 ¼ 0, which

implies that the temperature monopole does not feed the
temperature dipole. This is expected since a homogeneous
monopole cannot have a divergence. However, there is a
homogeneous divergence of radiation velocity which feeds
the monopole. This is because these Bianchi models are

tilted and the fluid velocity (proportional to Pð0Þ
i ) is not

normal to the foliation of the hypersurfaces.

2. Comparison with [13]

Our results can be compared with those of [13] using a
different method. From (5.9b) [or (5.11) when m ¼ 0] and
the identity (E11), we get

sFm
ll−1 ≡ sκ

m
l

ζml
ζml−1

¼ −i½ðl − 1Þ=lc þmi=ls�sκ̄ml ; ð6:5aÞ

sFm
llþ1 ≡ sκ

m
lþ1

ζml
ζmlþ1

¼ i½ðlþ 2Þ=lc −mi=ls�sκ̄mlþ1; ð6:5bÞ

where

sκ̄
m
l ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 − s2Þðl2 −m2Þ

l2

s
: ð6:6Þ

With these identities, the coupling between multipoles with
neighbor values of l take a simpler form, and the hierarchy
has the structure

∂ηΘm
l ¼

X
l0¼l�1

0F
m
ll0Θm

l0 þ Gm
l þ ΘCml − τ0Θm

l ;

∂ηEm
l ¼

X
l0¼l�1

2F
m
ll0Em

l0 −Mm
lB

m
l þ ECml − τ0Em

l ;

∂ηBm
l ¼

X
l0¼l�1

2F
m
ll0Bm

l0 þMm
lE

m
l − τ0Bm

l ; ð6:7Þ

with

Mm
l ≡ 2mνm

lðlþ 1Þ ¼
2

lðlþ 1Þ
�
m2

ls
þ im

lc

�
:

Up to variations in conventions, the hierarchy (6.7) is the
same as the one obtained in [13]. Eventually, as we want to
decompose the angular dependence of the observed CMB
directly on spin-weighted spherical harmonic (without
numerical prefactors) the CMB multipoles are related to
the previous ones by (7.35) of [18], that is

CMBΘm
l ðη0Þ ¼ Θm

l ðη0Þð−iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
: ð6:8Þ

For a complete comparison with [13] we also then need a
parity inversion which brings factors of ð−1Þl [respectively
ð−1Þlþ1] in the temperature and electric type multipoles
(respectively the magnetic type multipoles) since those
authors use multipoles defined with respect to the observed
direction.
The difference between our method based on FLRW

perturbations, and the method of [13] based on Bianchi
spaces directly, is manifest for the Bianchi VIIh and VII0.
The invariant basis of these models are related to the
invariant basis of the associated FLRW through (4.11) or
(4.7). In the method of [13], one works fully in the basis
eVII0i or eVIIhi . Hence the CMB sources are very simple at
emission, as they are proportional to the matrices (4.23),
but higher order multipoles are populated thanks to the
nontrivial propagation of light in this basis. In our point of
view, we work in the underlying FLRW basis eIi (e

V
i ) when

dealing with the case VII0 (VIIh). Hence the sources appear
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to have some large scale spiraling structure, but propaga-
tion is trivial as the direction of propagating photons is
constant. To make it short, either the sources are simple but
light propagation nontrivial as in [13], or sources are
nontrivial but light propagation is simple, eventually
leading to the same Boltzmann hierarchy. All these
differences disappear for the Bianchi I and IX cases (see
Sec. VI B 3) given their very simple structures.

3. Special case of Bianchi I and IX

The case of Bianchi IX is much simpler than other
models since we can see that there is no coupling to l ¼ 1
nor l ¼ 3. Of course we have m ¼ 2 so we need at least
l ≥ 2 but we need also l ≤ 2 because ν ¼ 3=lc. So we
have a set of equations for the multipoles with l ¼ 2 only
which is

∂ηΘ�2
2 ¼ G�2

2 þ ΘC�2
2 − τ0Θ�2

2 ;

∂ηE�2
2 ¼ −2l−1

c B�2
2 þ EC�2

2 − τ0E�2
2 ;

∂ηB�2
2 ¼ 2l−1

c E�2
2 − τ0B�2

2 : ð6:9Þ

The radial functions needed for an integral solution are
simply

0ϵ̄
ð2;2Þ
2 ¼ 1

5
; ð6:10aÞ

2ϵ̄
ð2;2Þ
2 ¼ 1

5
cosð2χ=lcÞ; ð6:10bÞ

2β̄
ð2;2Þ
2 ¼ 1

5
sinð2χ=lcÞ: ð6:10cÞ

Physically, polarization is rotated with respect to the
invariant basis, and a quadrupole in E (generated from
scattering out of the temperature quadrupole) converts to a
quadrupole in B and back [14].
The Bianchi I case is even simpler, and from the limit

lc → ∞, ls → ∞ in (6.5), we also check that there are no
couplings to l� 1, and magnetic type multipoles are not
fed from free streaming of electric type multipoles. Hence
the system of equations is simply

∂ηΘ�m
2 ¼ G�m

2 þ ΘC�m
2 − τ0Θ�m

2 ;

∂ηE�m
2 ¼ EC�m

2 − τ0E�m
2 : ð6:11Þ

Also the radial functions needed for the integral solutions

(6.4) are pure constants (1=5 for sϵ̄
ð2mÞ
2 ) as seen from the

limit lc → ∞ in (6.10), in agreement with the simple
structure of the previous system which is trivially integrated
on η.

C. General cosmological observables

All cosmological observables (weak lensing conver-
gence or shear, lensing field, galaxy number counts, red-
shift drifts, etc.) are of the form of an integral on the
background past light cone. However, when considering
the effect of a Bianchi perturbation, one must take into
account the fact that it corresponds to a pseudo plane wave,
and one must consider the effect of the weights ζml . Quite
similarly to the integral solution (6.4) for CMB, one finds
that the general solutions for the multipoles of cosmologi-
cal observables, when rephrased in terms of integrals on
sources multiplied by radial functions [Eq. (7.40) in [18]],
need only be modified by

sα
ðj0mÞ
j →

ζmj
ζmj0

sα
ðj0mÞ
j : ð6:12Þ

Hence from the knowledge of the radial functions, which
must be computed from analytic continuation given that ν is
complex for some Bianchi perturbations, it is immediate
that we obtain theoretical predictions for all observables
using the same framework as the one for stochastic linear
perturbations.
In general, since we use the zenith direction for the

reference axis, one needs to allow for a general orientation
of that Bianchi special direction, as discussed in Sec. V B.
Rotations can be performed directly at the level of the
computed observables, that is rotating the angular multi-
poles of observables. Similarly for models which are not
invariant by a global parity transformation (VII0, VIIh and
IX), we can perform the parity transformation at the level of
multipoles. For even type multipoles (e.g., temperature or
electric type polarization), this is a factor ð−1Þl and for
magnetic type ones a factor ð−1Þlþ1.
Finally, when computing multipoles, one can restrict

the computation to m ≥ 0 since the negative m are con-
strained by the fact that the metric perturbation must be
real [relations (4.25) and (4.26)]. The CMB multipoles
satisfy X−m

l ¼ ð−1ÞmXm⋆
l , with X ¼ Θ, E, B, and one

encounters the same relations for all cosmological observ-
able multipoles.

VII. CONCLUSION

Bianchi models with isotropic limit, namely, models I,
VII0, VIIh, V and IX, are not alternative cosmologies.
Rather, they are natural manifestations of linear and
homogeneous cosmological perturbations in FLRW uni-
verses. The exact correspondence between nearly isotropic
Bianchi and perturbed FLRW models allows for the
computation of all angular multipoles of cosmological
observables within the same FLRW framework. The modes
νm required for the exact correspondence are summarized
in Table IV, and our main results can be summarized as
follows:
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(i) For models I, IX the dynamics involves only l ¼ 2
multipoles, hence the Boltzmann hierarchy is not
really a hierarchy as it reduces to (6.9) and (6.11).
Nonetheless one could use existing tools [39,40] for
solving the Einstein-Boltzmann set of equations,
even though that would amount to use a sledge
hammer to kill a fly.

(ii) For the model VII0, the νm are real, and it corre-
sponds to the effect of standing circularly polarized
waves. Once again, existing tools are readily usable
in that case.

(iii) However, since the correspondence of Bianchi
models Vand VIIh with perturbed FLRW is through
supercurvature modes, that is with complex modes
νm, one must rely on an analytic continuation of the
radial functions needed in the expressions of the
normal modes (3.28). In addition, the correspon-
dence is not with usual plane waves, but with pseudo
plane waves, which are specified by the weights ζml
in the sum (3.34). This requires one to modify the
usual Boltzmann hierarchy of [34] with the rules
(6.3). It also modifies the integral solutions for any
cosmological observable, but this is simply equiv-
alent to the redefinition (6.12) for radial functions, as
seen explicitly on the CMB case in Eqs. (6.4).

The power of the this approach is that one could compute
the nonstochastic part due to a Bianchi type perturbation
with all the sophistication of the usual linear perturbation
theory around FLRW spacetimes. For instance, that would
allow one to include consistently the anisotropic stress of
photons and neutrinos that should normally enter in the
right ¼ -hand side of (6.1). This method would avoid the
need to split numerical codes between a part dedicated to
Bianchi related effects, and another for stochastic pertur-
bations, as done in [16,17]. Furthermore, using the integral
solutions to the CMB multipoles, that is the line of sight
method of [33,34], would fasten the computations. Indeed,
exactly like it has allowed one to solve the Boltzmann
hierarchy of the stochastic component for a limited number
of source multipoles, the integral solution method would
also allow one to keep only a small number of multipoles
when solving for the sources instead of the full hierarchy
(typically lmax ¼ 1000 for the analysis of [16]). More
importantly, this allows the possibility of computing con-
sistently the multipoles of various cosmological observ-
ables for the same linear Bianchi perturbation, opening the
possibility of joint constraints on global anisotropy.
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APPENDIX A: 1 + 3 SPLITTING OF EINSTEIN
EQUATIONS

The Gauss-Codazzi relation is [27]

Rμνλσ ¼ ð3ÞRμνλσ þ 2Kμ½λKσ�ν
− 4ðD½λKσ�½μÞeν� þ 4e½μKν�ρKρ½λeσ�

þ 4e½μ _Kν�½λeσ� − 4ðD½μKν�½λÞeσ�; ðA1Þ

where a dot derivative stands for eμ∇μ.
For a homogeneous projected tensor, one has [28]

DkTi1���ip ¼ −
Xp
j¼1

Γl
kijTi1…ij−1lijþ1…ip : ðA2Þ

Hence, using the definition of the Riemann tensor from the
commutation of two such derivatives, we infer after using
(2.31), the Riemann tensor associated with the spatial
metric

ð3ÞRij
kl ¼ −

1

2
Cp

ijCp
kl þ 1

2
Cp

l
iC

pk
j þ Cp

l
jCi

kp

þ Cp
l
jC

k
i
p þ CijpCpkl þ 1

2
Ci

l
pCj

kp

þ 1

2
Cl

ipCk
j
p þ Ck

jpCi
lp: ðA3Þ

The three-Ricci tensor and three-Ricci scalar can then be
deduced, and we obtain:

ð3ÞRij ¼ −
1

2
CkilCk

j
l −

1

2
CkilCl

j
k

þ 1

4
Ci

klCjkl þ CðijÞpCk
pk; ðA4Þ

ð3ÞR ¼ −
1

4
CijkCijk −

1

2
CijkCjik þ Ckj

kCp
pj: ðA5Þ

Whenever the placement of indices on the constants of
structure is not Ci

jk, it implies that indices are either
lowered by hij or raised by hij. In particular using the
general decomposition (2.6) the Ricci and Ricci scalar are
given

ð3ÞRij ¼ hij

�
−2AkAk − NklNkl þ 1

2
ðNk

kÞ2
�

þ 2Ni
kNkj − NijNk

k − 2ϵklðjNiÞlAk; ðA6Þ

ð3ÞR ¼ −6AiAi − NijNij þ 1

2
ðNi

iÞ2: ðA7Þ

Note that the traceless part of the Ricci scalar is

ð3ÞRhiji ¼ −NhijiNk
k þ 2NhikNjik − 2ϵklðjNiÞlAk; ðA8Þ

and it vanishes whenever Nij ¼ 0.
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From (A2) we find that for spatial (projected) symmetric
trace-free tensors Tμ1…μn

DkTki1…in ¼ −ðnþ 2ÞAkTki1…in − nϵjlhi1Ti2…inikjN
lk;

ðA9aÞ

curlTi1…in ¼ −Ajϵjkhi1Ti2…ini
k −

ðn − 1Þ
2

Nk
kTi1…in

þ ð2n − 1ÞNk
hi1Ti2…inik; ðA9bÞ

DhjTi1…ini ¼ nAhjTi1…ini − nϵlkhi1T
l
i2…inN

k
ji; ðA9cÞ

where we have introduced the curl in curved space

curlTij…k ¼ ϵrsðiDrTj…kÞs: ðA10Þ

In particular for a homogeneous projector vector Vμ, and a
symmetric trace-free homogeneous projected tensor Tμν

DjVj ¼ −2AiVi; ðA11Þ

DjT
j
i ¼ −3AjT

j
i − ϵijkT

j
pNpk: ðA12Þ

This last relation can be used for spatial derivatives on
extrinsic curvature (on separating its trace part) in (A1).
Furthermore, the Gauss-Codazzi relation is used in practice
by also converting the dot derivative to Lie derivative on the
extrinsic curvature. In general, the dot derivative of a
homogeneous tensor is transformed to a Lie derivative
using

LeTi1…ip ¼ _Ti1…ip þ
Xp
i¼1

Kj
iiTi1…ii−1jiiþ1…ip : ðA13Þ

We need quite often the relations

Lehij ¼
2

3
θhij þ 2σij; ðA14aÞ

Lehij ¼ −
2

3
θhij − 2σij; ðA14bÞ

Leσij ¼ _σij þ
2

3
θσij þ 2σikcσ

k
j; ðA14cÞ

Leσ
i
j ¼ _σij; ðA14dÞ

Leσ
ij ¼ _σij −

2

3
θσij − 2σikσk

j: ðA14eÞ

A contraction of the Gauss-Codazzi relation leads to the
Raychaudhuri equation

_θ ¼ −
1

3
θ2 − σ2 − Rμνeμeν; with σ2 ≡ σijσ

ij ðA15Þ

The general Friedmann equation (constraint) is another
contraction of the Gauss-Codazzi relation and is

ð3ÞR ¼ −
2

3
θ2 þ σ2 þ 2Gμνeμeν: ðA16Þ

The tilt constraint is found for yet another contraction
leading to

hki e
μGμk ¼ DjK

j
i ¼ −3Akσkj − ϵjkpσ

kqNp
q : ðA17Þ

And finally for the shear evolution we get

_σij þ θσij ¼ NhijiNk
k − 2Nk

hiNjik þ 2AkϵkphiN
p
ji þ Ghiji:

ðA18Þ

It can be easily recast with a Lie derivative using
Eqs. (A14).

APPENDIX B: OPEN CASE COORDINATES
AND BASIS

Here we give expressions for the KVFs and invariant
basis of the Bianchi V and VIIh model using the ðx; y; zÞ
coordinates of Ref. [36]. These are related to the spherical
hyperbolic coordinates in (4.8) by

x ¼ lc expðþz=lcÞ sinhðχ=lcÞ sin θ cosϕ;
y ¼ lc expðþz=lcÞ sinhðχ=lcÞ sin θ sinϕ;
z ¼ −lc ln½coshðχ=lcÞ − sinhðχ=lcÞ cos θ�: ðB1Þ

In terms of these variables, the metric of the open space
becomes

ds2 ¼ dz2 þ expð−2z=lcÞðdx2 þ dy2Þ: ðB2Þ

Because these variables are more adapted to the symmetries
of the Bianchi V models, the KVFs and invariant basis
simplify considerably. The KVFs are

ξVx ¼ ∂x;

ξVy ¼ ∂y;

ξVz ¼ ðx=lcÞ∂x þ ðy=lcÞ∂y þ ∂z: ðB3Þ

These solve (2.9) with Ni ¼ 0, as one can check. The
corresponding invariant basis is given by

eVx ¼ expðz=lcÞ∂x;

eVy ¼ expðz=lcÞ∂y;

eVz ¼ ∂z: ðB4Þ

As for the VIIh case, the KVFs are
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ξVIIh1 ¼ ∂x

ξVIIh2 ¼ ∂y

ξVIIh3 ¼
�
x
lc

þ y
ls

�
∂x þ

�
y
lc

−
x
ls

�
∂y þ ∂z; ðB5Þ

whereas the invariant basis is trivially found from (B4)
and (4.11).

APPENDIX C: INVARIANT COBASIS

In any case, denoting μ; ν… components in basis or
cobasis associated with coordinates (x; y; z or χ; θ;ϕ), the
invariant cobasis of a given Bianchi type is related to the
invariant basis through

eiμ ¼ gijgμνejν: ðC1Þ

Here gij are the components of the inverse metric in the
invariant cobasis, and gμν the components of the metric in
the coordinate basis. For Bianchi types I, V, IX, by
construction gij ¼ δij. Hence finding the cobasis from
the basis is straightforward. For instance from the invariant
basis in spherical coordinates in the Bianchi V case (B4),
one infers trivially the invariant cobasis. For the Bianchi
VIIh case, since the invariant basis is related to the one of V
by (4.11), finding the invariant cobasis of VIIh from the one
of V is also straightforward from (4.7).

APPENDIX D: MATCHING EQUATIONS
(FINDING THE νm)

In this section we gather all the details of the identi-
fication between FLRW and Bianchi models at the level of
equations, allowing to determine which modes νm are
needed to realize the matching (5.2).

1. Tensors

The matching between tensor modes is the easiest to
make. For that we just need to look for tensors such that the
definition

Eð�2Þ
ij ≡ βð�2Þq

ð�2Þ
ij ðD1Þ

holds. The two main equations in this case are Eqs. (3.17)
and (4.19b). Their direct comparison leads to

Sð�2Þ ¼ −ν2�2 þ K; ðD2Þ

where we have used (3.27) with j ¼ jmj ¼ 2. Using the
results of Table III, it is now straightforward to find the
mode ν�2 which connects these two equations. For flat
(K ¼ 0) models we find

ν�2 ¼
�
0; ðIÞ;
� 2

ls
; ðVII0Þ:

ðD3Þ

For open models, K ¼ −l−2
c and we find

ν�2 ¼
( i

lc
; ðVÞ;

� 2
ls
þ i

lc
; ðVIIhÞ:

ðD4Þ

Note that we can obtain models I and Vas limits of models
VII0 and VIIh, respectively, by taking ls to infinity while
keeping lc fixed [see Eq. (2.11)].
For the closed model (K ¼ l−2

c ) we have

ν�2 ¼ � 3

lc
ðIXÞ ðD5Þ

or jkj ¼ ffiffiffi
6

p
l−1
c . One can show that this corresponds to a

tensor wave whose length equals one-half the curvature
radius of a closed universe [2]. Finally, we note that in all

cases the momentum constraint PðmÞ
i ¼ 0 is obvious, since

tensor perturbations do not induce momentum.

2. Vectors

In principle the matching of the vector modes follows
similarly, that is, we introduce modes Eð�1Þ

i satisfying

DðiE
ð�1Þ
jÞ ≡ βð�1Þq

ð�1Þ
ij ðD6Þ

and then use it to compare Eqs. (3.18a) and (4.19b), from
which we deduce the ν�1 with the help of (3.27). But since
the former does not contain a Laplacian term, and the latter
has Sij ¼ 0 for flat and open models (the closed case is
discussed below), this comparison will lead us nowhere.
We can instead find ν�1 by comparing the constraint

equation (3.18a) with the tilt (2.49), provided we have an
explicit solution to Eq. (D6). Such solution can be con-

structed by writing Eð�1Þ
i as a linear combination of the

invariant basis and using Eq. (A2) to fix the coefficients.
Since DðiejÞ ¼ 0 in model I (see Sec. IVA), nontrivial
solutions can only be constructed in models VII0, VIIh, and
V. As it turns out, a solution to these models can be written
jointly as [3]

Eð�1Þ
i ¼ �lsβð�1Þ

�
ls=lc ∓ i

1þ ðls=lcÞ2
�
ðeð∓Þ

VIIh
Þi: ðD7Þ

One can easily check that model VII0 is recovered when
lc → ∞ (and thus h → 0), and model V in the limit
ls → ∞ (and thus h → ∞).
If we now use (4.31) to decompose the right-hand side

of (3.18a) and use (3.27) with j ¼ jmj ¼ 1, we find
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β0ð�1ÞP
ð�1Þ
i ¼

�ðν�1Þ2
2

− 2K

�
ðEð�1Þ

i Þ0: ðD8Þ

This, together with (D7) and the results of Table III, allows
us to find the ν�1 for each model. For flat models this gives

ν�1 ¼
�
0; ðIÞ;
� 1

ls
; ðVII0Þ: ðD9Þ

For open models, on the other hand, we find

ν�1 ¼
( i

lc
; ðVÞ;

� 1
ls
þ i

lc
; ðVIIhÞ:

ðD10Þ

From (D8), one notices that models VII0;V;VIIh are titled,
and consequently the fluid velocity has some homogeneous
vorticity. The form of this vorticity is deduced using

curlPð�1Þ
i ¼ �ν�1P

ð�1Þ
i ; ðD11Þ

which is consistent with (E4).
Finally, since Bianchi IX have compact spatial sections,

the splitting into svtmodes is unique [2,3]. Thus, all modes
of the shear map uniquely to tensor perturbations of FLRW
spacetimes, and there are no vector perturbations (see also
Appendix E).

3. Scalars

Since the shear is traceless, the correspondence with
metric perturbations assumes that ϕ ¼ 0 in (3.5). Following
the same logic as for tensor and vector modes, we now look
for modes ψ such that

Dijψ ≡ βð0Þq
ð0Þ
ij : ðD12Þ

The relevant equations to compare are Eqs. (3.15) and
(4.19b). Using (3.27) for j − 2 ¼ jmj ¼ 0, we arrive at

Sð0Þ ¼ 1

3
½ðν0Þ2 − K�: ðD13Þ

From Table III we see that all open and flat models have
Sð0Þ ¼ 0. Thus

ν0 ¼
�
0 ðI;VII0Þ;
i
lc

ðV;VIIhÞ:
ðD14Þ

For the open models, ν0 corresponds to the maximal
supercurvature mode.
We stress that one will run into difficulties when finding

explicitly the harmonic which leads to (D12). Let us
consider first the flat case, corresponding to Bianchi types
I or VII0, and for which k ¼ ν0 ¼ 0. One finds immediately

that DjDijψ ¼ 0. Hence, the moment constraint (3.18)
which reads

Pi ¼ −DjDijψ
0

¼ −
2

3
ðΔþ KÞDiψ

0 ðD15Þ

is satisfied. However, this also implies that if (D12) is a
harmonic with j ¼ 2,m ¼ 0, it cannot be deduced from the
STF derivative of a harmonic with j ¼ 1, m ¼ 0, as in
(2.22) of [18]. The best construction we can find consists in
defining

ψðxÞ ¼ βð0Þ
k2

eik·x; ki ¼ kðe3VII0Þi ðD16Þ

from which we can build Dijψ , and eventually we take the
limit k → 0.
For open models, the situation is slightly improved.

Indeed, we can define a vector field

Wi ≡ −lcβð0Þðe3VIIhÞi; ðD17Þ

such that

DhiWji ¼ βð0Þq
ð0Þ
ij : ðD18Þ

One can check by direct covariant differentiation [using
Eq. (A2)] that

DiWi ¼ 2βð0Þ; ΔWi ¼ −2l−2
c Wi: ðD19Þ

Since ðν0Þ2 ¼ −1=l2
c ¼ K for open models, it follows from

the second equation that Wi is a solution of (3.27) for
j − 1 ¼ m ¼ 0. That is, Wi is a harmonic vector.
Using (D17) in (D15), we obtain

Pð0Þ
i ¼ −

2

3
½ðν0Þ2 − 4K�lcðe3VIIhÞi ðD20Þ

where we have once again invoked (3.27), this time for
j − 1 ¼ jmj ¼ 0. We check that the above expression is
satisfied for ν0 ¼ i=lc, in agreement with (D14). Note that
the vector harmonic Wi cannot be deduced from a scalar
harmonic using (2.22) of [18] as is usually the case. Indeed,
using ν0 ¼ i=lc (which corresponds to k ¼ 0) in (A.3) of
[18], one obtains rather immediately that the scalar har-
monics j ¼ 0, m ¼ 0 for that mode is a pure constant, and
hence any derivative of it vanishes. But contrary to the flat
case, one needs not consider a scalar harmonics with k > 0
and then form the vector (j ¼ 1, m ¼ 0) and tensor (j ¼ 2,
m ¼ 0) harmonics before considering the limit k → 0,
since we can start our construction directly from (D17)
using (D18).
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4. Consistency checks

As a final consistency check, we verify whether the
curvature perturbation and the fluid conservation equations
are consistently matched with their Bianchi counterparts in
the homogeneous limit found in the last sections. Starting
with the curvature perturbation, we recall that the identi-
fication of the scalar mode assumes ϕ ¼ 0. It then follows
from (3.10) that

a2δðð3ÞRÞ ¼ 4

3
ΔðΔþ 3KÞψ ;

¼ 2DiDjDhiWji; ðD21Þ

where, in going from the first to the second line, we have
used the identity

2

3
ΔðΔþ 3KÞψ ¼ DiDjDijψ ;

¼ DiDjDhiWji:

For flat models, K ¼ 0 ¼ δðð3ÞRÞ, which gives k ¼ ν0 ¼ 0,
in agreement with our previous findings. For open models,
the second line of (D21) can be rewritten as

a2δðð3ÞRÞ ¼ −
4

3
½ðν0Þ2 − 4K�DiWi;

¼ −
8

3
½ðν0Þ2 − 4K�βð0Þ; ðD22Þ

where we have also used (D19). Using ν0 ¼ i=lc from
(D14) and the definition (4.29), we find that l2

cRð0Þ ¼ −8,
in accordance with Table III.
As for the fluid conservation equations, the matching

follows straightforwardly. Indeed, Eqs. (3.19) with ∂iδp→0
and (4.19e) are formally the same, whereas Eqs. (3.20)
and (4.19d) are formally matched for ϕ ¼ 0.

APPENDIX E: FINDING THE ζml

We give here the technical details of the method used in
computing the constants ζml needed in the matching
relation (5.2).

1. Method

Before getting into the details, we first note that relations
(4.5) and (4.11) allow us to unify the description of the
method using only the invariant basis of models I, V, IX.
Hence, let us define

q̃ðmÞ
ij ≡ qðmÞ

kl M̃k
iM̃l

j ðE1Þ

with M̃i
j ¼ δij for models I, V and IX and M̃i

j ¼ Mi
j for

models VII0 and VIIh, whereM was introduced in (4.6). In

all cases, q̃ð0Þij ¼ qð0Þij . In this appendix, indices i; j;…

belong to the invariant cobasis of models I, V, IX, which
are in turn associated respectively with the flat, open and
closed FLRW. For instance, we have

qðmÞ
ij eiVIIh ⊗ eiVIIh ¼ q̃ðmÞ

ij eiV ⊗ ejV: ðE2Þ

From (E1) we find the convenient property

∂zq̃
ðmÞ
ij ¼ im

ls
q̃ðmÞ
ij : ðE3Þ

Hence when computing spatial derivatives (Di) of the q
ðmÞ
ij

in the Bianchi VIIh case, it is convenient to use the right-
hand side of (E2). Indeed, the constants of structure
associated with the type V invariant basis have Nij ¼ 0
and we need only the first lines of Eqs. (A9), while the z

dependence of the components q̃ðmÞ
ij is handled simply via

(E3). Said differently, we avoid the complication of the
terms involving the Nij, as their effect is equivalent to the
simple relations (E3). A similar and even simpler method
applies for the type VII0 which is related to the type I
exactly as in (E2). Since the invariant basis associated with
the I type has vanishing constants of structure, we must
only consider the derivative of the components (E3).
Hereafter we used this method extensively.
Relation (5.2) can now be proven by proving that the

relation and all its derivatives (the covariant derivatives Di
associated with the background metric) hold at χ ¼ 0.
Checking that the relation (5.2) holds at χ ¼ 0 is trivial as

we chose the qðmÞ
ij precisely on that property. Checking that

the derivatives of (5.2) are equal at χ ¼ 0 is less obvious.
However, instead of proving that all derivatives are equal
at χ ¼ 0, given the general decomposition of a derivative
[e.g., Eq. (3.22) of [18]] it is equivalent to check only the
equality of STF combinations of derivatives at the origin,
in addition to showing that the curl and the successive
divergences associated with Di (see [18] for definition) of
both sides of (5.2) at χ ¼ 0 are equal.

2. Types I;VII0;V;VIIh
Let us consider first the I;VII0;V;VIIh cases. We first

check that the curl of an harmonic is also an harmonic [see
Refs. [18,41] and Eq. (3.16) of [18]], and similarly for
plane waves, since

curllQðjmÞ
Ij

ðνÞ ¼ mν

j
× lQðjmÞ

Ij
ðνÞ; ðE4Þ

where the curl is defined as in (A10), but with Di replaced
by Di. Hence the same relation is satisfied by pseudo plane
waves. Considering the fact that the derivative Di asso-
ciated with the FLRW metric is found from the spatial
derivative Di of the Bianchi metric evaluated at lowest
order in βij (meaning in practice that we can lower and raise
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indices of Ai and Nij with δij and δij), we can use (A9c) to
obtain

curlqðmÞ
ij ¼ mνm

2
× q̃ðmÞ

ij ; ðE5Þ

with the value (5.7) for νm. Hence we get

curlq̃ðmÞ
ij

����
χ¼0

¼ ξ2
ξm

curlQð2mÞ
ij

����
χ¼0

: ðE6Þ

Next, we must also check that

Dhi1…Din q̃
ðmÞ
jki

����
χ¼0

¼ ξ2
ξm

Dhi1…DinQ
ð2mÞ
jki

����
χ¼0

: ðE7Þ

The right-hand side is evaluated using the very definition of
derived harmonics [18] (but modified by the fact that we
consider pseudo plane waves)

Dhi1…Dil−2Q
ð2mÞ
il−1ili ¼ kl−2

ζml
ζm2

QðlmÞ
Il

; ðE8Þ

together with the normalization at origin. More specifically,
at χ ¼ 0, only the term l ¼ j in the sum (3.34) contributes,
and we then use either Eq. (2.39) or Eq. (B.30) of [18]. We
then find for the right-hand side of (E7)

ðikÞl−2 ξ2ζ
m
l

ξlζ
m
2

ezhi1…ezil−2 q̃
ðmÞ
il−1ili

����
χ¼0

:

The left-hand side of (E7) is found by induction using the
method detailed in Sec. E 1, and we find

Dhi1…Dil−2 q̃
ðmÞ
il−1ili

����
χ¼0

¼
Yl
p¼3

�
p − 1

lc
þmi

ls

�
ezhi1…ezil−2 q̃

ðmÞ
il−1ili

����
χ¼0

: ðE9Þ

Comparing this with (E8) allows us to check that form ≠ 0,
(E7) holds if

ζml ¼ ζml−1ð−iÞ
ðl − 1Þ þmi=

ffiffiffi
h

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðνmlcÞ2

p : ðE10Þ

Using the identity

h½l2 þ ðνmlcÞ2� ¼ ½ðl − 1Þ
ffiffiffi
h

p
þmi�

× ½ðlþ 1Þ
ffiffiffi
h

p
−mi� ðE11Þ

it is recast in the condition (5.9b). However (E10) is only
proven for l − 1 ≥ 2 with this method. To show it is valid
for l − 1 ¼ 1 one must check that divergences are equal.
For pseudo plane waves the divergence is

∇pQðjmÞ
Ij−1p

¼ −qðjmÞ ζ
m
j−1

ζmj
Qðj−1;mÞ

Ij−1
; ðE12Þ

where qðjmÞ is defined in Eq. (2.26) of [18]. A direct
computation then shows that

Djq̃ðmÞ
jk

����
χ¼0

¼ ξ2
ξm

DjQð2mÞ
jk

����
χ¼0

; ðE13Þ

implying that (E10) can also be used to determine ζm2 =ζ
m
1 .

Finally, for m ¼ 0 the equality

DjDkq̃ðmÞ
jk

����
χ¼0

¼ ξ2
ξm

DjDkQð2mÞ
jk

����
χ¼0

ðE14Þ

implies that ζ01=ζ
0
0 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðν0lcÞ2

p
=2 and thus we find

(5.11). Note that since ðν0lcÞ2 ¼ −1, divergences must be
handled as discussed in Sec. (5.11). The global factor
freedom in the ζml is fixed if we choose (5.9a) which
satisfies manifestly the necessary condition (5.6).

3. Type IX

We now summarize the results of Ref. [2] so as to
determine the ζml in the IX model. Let us consider a
homogeneous, symmetric and trace-free tensor T on the
closed FLRW background

T ¼ TijeiIX ⊗ ejIX: ðE15Þ

We can prove [using e.g., (A9c)] that it must satisfy

DiTjk ¼
2

3
ϵpiðjcurlTkÞp; ðE16aÞ

curlTij ¼
3

lc
Tij: ðE16bÞ

The first of these equations imply that Tij is a Killing
tensor, DðiTjkÞ ¼ 0, and in particular DiTij ¼ 0. From the
definition of the curl, one can also show that

curlðcurlTijÞ ¼ −ΔTij þ
3

l2
c
Tij −

3

2
DihDkTjik:

If we now combine these identities together we finally
arrive at

ΔTij ¼ −
6

l2
c
Tij: ðE17Þ

Hence, exactly as discussed in detail in [2], we find that
the homogeneous tensors on a closed FLRW are tensor
harmonics with k2 ¼ 6=l2

c and hence ν2m ¼ ð3=lcÞ2.
Comparison with (E4) then shows that it corresponds to
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mνm ¼ 6=lc, and thus with jmj ¼ 2 the modes needed in
the matching are

ν�2 ¼ � 3

lc
: ðE18Þ

Hence, all modes qðmÞ
ij which define the Bianchi IX as a

perturbation to a closed FLRW are tensor harmonics, or
linear combination of possibly rotated tensor modes, with
m ¼ 2 and ν2 ¼ 3=lc (along with its complex conjugate
which from Table V amounts to adding the harmonic

rotated by an angle π around the y axis so as to form a
standing wave of given chirality).
Had we chosen opposite signs for the Bianchi IX

constants of structure, there would be a minus sign in
the right-hand side of (E16b), and thus an extra minus sign
in (E18). We would find that homogeneous tensors corre-
spond instead to (sums of rotations of) m ¼ −2 harmonics
with ν−2 ¼ 3=lc (with their complex conjugate to form
standing waves). One construction is related to the other
one by a global parity transformation, and corresponds to
switching the KVF with the invariant basis [2,3].
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