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Bianchi spacetimes as supercurvature modes around isotropic cosmologies
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A powerful result in theoretical cosmology states that a subset of anisotropic Bianchi models can be seen
as the homogeneous limit of (standard) linear cosmological perturbations. Such models are precisely those
leading to Friedmann spacetimes in the limit of zero anisotropy. Building on previous works, we give a
comprehensive exposition of this result, and perform the detailed identification between anisotropic
degrees of freedom and their corresponding scalar, vector, and tensor perturbations of standard perturbation
theory. In particular, we find that anisotropic models very close to open (i.e., negatively curved) Friedmann
spaces correspond to some type of supercurvature perturbations. As a consequence, provided anisotropy is
mild, its effects on all types of cosmological observables can always be computed as simple extensions of
the standard techniques used in relativistic perturbation theory around Friedmann models. This fact opens
the possibility to consistently constrain, for all cosmological observables, the presence of large scale
anisotropies on the top of the stochastic fluctuations.
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I. INTRODUCTION

Homogeneous and spatially anisotropic cosmologies,
commonly referred to as Bianchi models, have long been
the arena for new developments in theoretical cosmology.
The interest in these models stems from their unique
ability to preserve a high degree of symmetry while
remaining phenomenologicaly versatile. Despite the fact
that CMB data seems to favor the more restricted class of
isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW)
universes, Bianchi models are possibly the simplest exten-
sions of a maximally symmetric expanding universe, and
for that reason they are theoretically (if not observationaly)
interesting. However, despite all of their attractiveness, one
cannot avoid the feeling that Bianchi models fall in the
category of “alternative cosmologies.”

Meanwhile, a robust but less known theoretical result
states that all nearly isotropic Bianchi models with isotropic
limit (namely, models I, VII,, V, VII, and IX) can be
extracted from standard (i.e., FLRW) cosmological pertur-
bations in the limit that these perturbations become
homogeneous. This idea, explored in the case of model
IX in Refs. [1,2], and fully established for the other models
by Pontzen and Challinor in 2010 (henceforth PC10) [3],
bridges the gap between FLRW and Bianchi models,
forcing us to see the latter as legitimate manifestations
of the standard cosmological framework.
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The idea that Bianchi models emerge as homogeneous
cosmological perturbations on the top of an isotropic
universe is quite intuitive. In fact, since linear cosmological
perturbations break both translational and rotational iso-
metries of the FLRW background metric, a (suitably
defined) homogeneous limit of these perturbations should
restore translational invariance while keeping the most
general spatial anisotropies compatible with homogeneity.
The remaining anisotropic degrees of freedom are, then,
nothing else but those describing the subset of Bianchi
models—exactly the subset having the initial FLRW metric
as their isotropic limits. In fact, by properly defining the
isometries of the FLRW metric and demanding rotational
invariance to be broken, one can build the isometries of the
corresponding Bianchi models from first principles [3].
This idea not only leads to a more intuitive formulation
of Bianchi models' but, more importantly, sheds light on
their connections with linear cosmological perturbations.
Given the omnipresence of linear perturbation theory in
the cosmologist’s toolkit, the exploration of these con-
nections becomes central for a better understanding of the
ACDM model.

One simple example of this connection is easily illus-
trated: the spatial anisotropies of Bianchi type I model are

'However, it does not apply to Bianchi models not having
FLRW limits, namely, models II, III, IV, VI,, VI,, and VIIL It
also excludes the homogeneous and anisotropic Kantowski-Sachs
model, which falls outside the usual Bianchi classification
anyway.
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dynamically equivalent to a gravitational wave of infinite
wavelength (i.e., homogeneous) on the top of a spatially flat
FLRW universe. Indeed, for small anisotropies, the Bianchi
I metric reads

ds? = a*(n)[=dn* + (8;; + 2;;(n))dx’dx/],

whereas a FLRW universe with linear and homogeneous
gravitational wave is described by

ds? = a®(n)[~dn* + (8 + 2E;;(n) )dx'dx/].

Since both the shear f;; and the wave amplitude E;; are
symmetric and trace free, both evolve as

/!
X! +25 %, =0,
L] a 3]

While the above analogy could at first look as a
happy accident of model 1, it is actually not. The general

TABLE I. List of main symbols used in this work.

correspondence in the weak field regime was investigated
for the five Bianchi types with a FLRW limit in PC10. As
hinted by these authors, and explicitly demonstrated here,
the connection results in a richer structure than could have
been expected from the simple example above, since some
Bianchi models arise as finite wavelength perturbations
over FLRW spacetimes. Indeed, the homogeneous limit of
models VII, V, VII,,, and IX is not simply given (in Fourier
space) by k — 0, but rather by a proper identification of an
effective mode v,, defined in terms of the Fourier mode k as

Vi =K+ (14 |m))K,

where |m| = 0, 1, 2 accounts respectively for scalar, vector,
and tensor perturbations, and K is the spatial curvature
of the corresponding FLRW model. Furthermore, we
show that for models V and VII,, the homogeneous limit
corresponds to a complex v,, or, equivalently, to a per-
turbation whose wavelength is larger than the curvature
scale. In this case, the construction of a proper eigenbasis

Symbol Definition Introduced in
{i,j, k,...} spatial indices of noncoordinate (triad) basis Sec. TA
{a,b,c,...} spacetime indices of noncoordinate (tetrad) basis Sec. ITA
{u,v,4,...} abstract space-time indices Sec. ITA
i imaginary unity (3.22)
& Killing vector fields Sec. I
e; invariant basis Sec. 1T
el dual basis (or cobasis) to the invariant basis e; Sec. 11
et four-velocity of fundamental observers (used to foliate spacetime) Sec. II
ut timelike fluid four-velocity. Sec. IC
FLRW quantities
gMs metric of maximally symmetric spaces (3.2)
K spatial curvature of maximally symmetric spaces (3.3) and Table II
K dimensionless spatial curvature 3.4
D; spatial covariant derivative associated with the FLRW metric 3.5
A Laplace-Beltrami operator associated with D; (3.6)
(jm) tensor plane-wave harmonic in position space (3.27)
1
SG(fi’") normal modes in the total angular momentum representation (3.28)
Yy spin-weighted spherical harmonics (3.28)
sa)(//jm radial functions in the total angular momentum representation (3.28)
nym) tensor harmonic in Z-representation (3.33)
J
Uy, modes of the Bianchi-FLRW matching (5.2) and Table IV
v pseudo plane-wave weights for the Bianchi-FLRW matching (5.2) and Table IV
Bianchi quantities
g metric of Bianchi spacetime (2.22)
h spatial metric of Bianchi spacetime (2.23)
Yij conformal spatial metric of Bianchi spacetimes (2.35)
Bij expansion parameters of spatial anisotropy (4.15)
D; spatial covariant derivative in Bianchi spaces (2.24)
q(jﬂ) polarization basis for shear svt modes (4.25)
ij
N, A, irreducible components of the constants of structure (2.6) and (2.37)
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for the perturbations requires analytical continuation of
radial functions. The implementation and observational
consequences of these modes with this method will be
explored in a forthcoming publication [4].

The interplay between Bianchi and perturbed FLRW
models also has important practical applications: if one
wants to derive the dynamical behavior of some cosmo-
logical observable in a Bianchi I universe, it is enough to
derive the same dynamics for tensor perturbations in flat
FLRW universe and take their homogeneous limit. This
program was in fact used in [5] to derive theoretical
expressions for the weak-lensing signal, and in [6] to
derive the direction and redshift time drifts of noninertial
observers.

Here, we continue the effort started in PC10 and
show that the same program can be applied to all
Bianchi models with isotropic limit. In particular, we show
how this Bianchi/perturbed-FLRW duality can be used to
infer predictions for any observable (as, e.g., CMB radi-
ative transfer, weak gravitational lensing, etc.) in Bianchi
models from the well known methods of linearly perturbed
FLRW spacetimes [7,8]. Hence, one can use the same
theoretical framework by just separating modes describing
global anisotropies from the ones describing stochastic
perturbations.

From the observational point of view, upper limits on the
large scale anisotropy were placed in [9], followed by
claims of a Bianchi VII,, pattern in WMAP data [10-12].
Further investigations using the method of [13,14] for
radiative transport (see also the related method of [15])
combined with Planck data confirmed, however, that we
can only obtain upper limits [16,17] on the level of global
anisotropy.

We start this article by recalling some basic definitions
of Bianchi spacetimes in Sec. II, where we focus on the
subset of models having isotropic limit. We then review, in
Sec. III, some key elements of linear perturbation theory
in synchronous gauge, focusing on the introduction of
scalar, vector, and tensor modes and their decomposition
in terms of a complete basis of tensor harmonics. This
section summarizes the definition and constructions of the
companion paper [18]. Moving forward, we introduce a
set of linear modes for small anisotropies of Bianchi
spacetimes in Sec. IV; they are then used to find the exact
Bianchi/perturbed-FLRW correspondence in Sec. V.
Finally, we discuss the cosmological implications of our
results in Sec. VL

Throughout this paper we use metric signature
(=, +, 4+, +) and units where ¢ = 1. Coordinate and non-
coordinate indices, as well as a list of the main symbols
encountered in this work, are defined in Table 1.

I1. BIANCHI COSMOLOGIES

Let us start with a brief and informal recap of spatially
homogeneous (i.e., Bianchi) spacetimes. Detailed and

pedagogical introductions can be found in many nice
textbooks such as [19-21].

A. General construction

Informally, a three-dimensional space is said to be
homogeneous if for any pair of points there exists an
isometric (i.e., metric-preserving) path connecting these
points in a continuous way. The fields € tangent to such
paths are Killing vector fields (KVFs) and are defined as

Lig=0e V&) =0, (2.1)
where L is the Lie derivative and V is the covariant
derivative compatible with the metric g. In three dimen-
sions, the maximum number of such paths is 6, corre-
sponding to 3 translations and 3 rotations. However,
because the space is three dimensional, there can be at
most three KVFs which are everywhere linearly indepen-
dent. Any additional vector { obeying (2.1) is necessarily of
the form & = >"3_, ¢;(x)&;. Given a point p one can form
& =373 |[ei(x) = ci(p)]& such that (p) = 0, which cor-
responds to a rotation around point p. As an example, in the
Euclidean three-dimensional space, & = x'&, — x?€, corre-
sponds to a rotation around the x* axis which keeps the
point p = (0,0, 0) fixed. Thus, homogeneous and spatially
anisotropic spaces are represented by KVFs which are
everywhere linearly independent. Moreover, since the
commutator of any two vectors &; is another KVF, they
form a closed algebra given by

[‘fi,fj] = Ckijgkv (2.2)
where the coefficients C",-j are called the constants of
structure of the algebra.

We can now build homogeneous spacetimes by simply
stacking up homogeneous spaces, each of which is labeled
by a continuous time coordinate ¢ and has an orthogonal
1-form

(2.3)

By construction, the vector e dual to @ is orthogonal to the
KVFs

e & =e'g,t =0, (2.4)
and is normalized such that
e-e=e'g,e’ =—1. (2.5)

The task of finding explicit Bianchi spacetimes now
consists of finding all constants C¥; ; which are inequivalent
under linear combination of the ;. This task is simplified
by noting that, since Ckij is antisymmetric in its lower
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indexes, it can be written as C}; = &, H'¥, where &, is the
permutation symbol (such that é,; = 1) and H* is a
general 3 x 3 matrix. Decomposing the latter in its sym-
metgic (N*) and antisymmetric (&'"A,,) parts, we find
that

Chyj = &N™ — A5 + A6k, (2.6)
From the Jacobi identity
VMg [, &)l =0 (2.7)
the decomposition (2.6) implies
NiA; = 0. (2.8)

By suitable linear transformations of the & we can dia-
gonalize the matrix N/ so that N7 = diag(N', N>, N?).
From property (2.8) we then see that A is either null or an

eigenvector of the matrix N, and so we can set
A = (0,0,A).” We are thus left with

[&.&] = +N&,
[61’63] = _N2§2 +A§l’

&2, 8] = +N'E| + AE,. (2.9)
We now note that by suitably rescaling the lengths of the
KVFs, we can set the components N!, N>, N°, and A to
either 0, 1 or —1 (see, e.g., chapter 10 of [20]). We will not
adopt this approach here. Instead, since the KVFs have
dimensions of inverse length, we will keep these constants
with the appropriate dimensions to maintain Eq. (2.2)
dimensionally homogeneous. For reasons that will become
clear later, the constants A and N’ are associated with
curvature and spiral lengths, respectively, so that we
introduce
A=77t, N =/¢71, (2.10)
as two free parameters, except in the Bianchi IX case where
A=0 and N'=2¢;'. We also define the (historical)
dimensionless ratio

4
Vh=="t= A=Vhetl

7 (2.11)

The full set of Bianchi models considered in this work, as
well as their underlying isotropic 3-spaces M), are

Our sign convention for A; agrees with that of PC10 but
differs by a minus sign with that of Ref. [13].

3Note that our choice differs from the conventional one: A =
(A,0,0) [13,22-24]. One easily recovers the standard results just
replacing the indexes (1, 2 ,3) in our expressions by (2, 3, 1).

TABLE II. Bianchi types considered in this work (first col-
umn), and their underlying maximally symmetric 3-spaces (last
column), namely, the Euclidean (E?), hyperbolic (H?), and
spherical (S?) spaces. For comparison, we also give (a combi-
nation of) the spatial Ricci scalar appearing in Friedmann
equations for each of the 3-spaces M),

Type A N! N? N R g MO
I 0 0 0 0 0 E3
\Y% 7! 0 0 0 32 H?
VII, 0 ¢! ¢! 0 0 B3
VHh Lﬂ;l bﬂs_l fs_l 0 _LﬂEZ |H]3
IX 0 2070 2070 207! +£:2 Sk

summarized in Table II. For future reference, note that
models I and V can be obtained from models VII; and VII,,
in the limit 7, — oo.

Next, we define a spacetime basis of invariant vector
fields by choosing a set of spatial vectors at a reference
point, and Lie dragging them with the KVFs on a given
spatial section. That is we define the vector fields on that
section by the conditions

e-e =0, (2.12a)

These spatial vectors are extended throughout the other
spatial sections by demanding that
le.e;] = L.e; = 0. (2.13)
Finally, we join the unit normal vector e to the set {e;} to
obtain a spacetime basis {e,}, with the understanding that
ey = e. From properties (2.1)—(2.4), it is shown that

‘cegi = [e7§i] =0,

that is, the normal vector e is also invariant under the action
of the KVFs. The Jacobi identity applied to e, e; and §; then
shows that (2.13) is consistent. Moreover, the conditions
(2.3) and (2.5) imply that e is geodesic (e”V”e” = 0).

The commutator of the basis vectors e; is another vector,
and can thus be represented as a linear combination of the
basis elements

(2.14)

le;. e;] = Ckijek,

(2.15)

where C, ; are constants. Since we are still free to fix the
orientation of the spatial basis {e;} at any point p, we
choose {e;}, = {Ei}p.4 However, since our Eq. (2.2)
differs with theirs by a minus sign, so does our
Eq. (2.16). This then gives

*This choice agrees with the one made in PC10.
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[ei,ej] = —Ck,-jek, (216)
which can be checked by writing e; = M{f ;> where M{ isa
point-dependent matrix obeying M{ (p) = 5; and using
Eq. (2.12b). We thus find

le1, €] = —Nes,
le1, €3] = +N%e, — Aey,
[92,83] = —Nlel —Aez. (217)
Using again the Jacobi identity for e, e;, and e; one can
show that
ﬁeCijk - O, (218)

that is, the constants of structure are really spacetime
constants for this invariant basis. Note that our choice of
a time-invariant basis contrasts with the more popular
choice of a tetrad basis, in which the constants of structure
become time dependent [15,22,25].

From the time-invariance property (2.13) and from
(2.16), we infer that

[ea’eb] = —C e, (219)

where

Coio - Cij() — Coab — O, (220)
that is, the constants of structure vanish whenever one of
the indices is O.

Next, we define the dual basis {e?} to the basis {e,}
from the condition

(2.21)

from where it follows that 62 = —w, = —e,. From (2.5)
and (2.12a) we deduce that in this dual basis the compo-
nents of the metric satisfy goy = —1 and gy; = 0. Since the
metric has three spacelike KVFs, it can at most depend on ¢,
so it is of the form

g=-e" Qe +yg,;(t)e Qe (2.22)

It is also convenient to define a spatial metric through

h=g+e Qe =g;(t)e @ e, (2.23)
such that h;; = g;;. From the covariant derivative V
associated with the metric g we can define an induced
covariant derivative D associated with the induced spatial
metric k. For any spatial tensor T it is defined by [25,26]

c A ln
DT, .., ="y - hi VT, . . (2.24)
From the definition (2.21) and the property (2.19), we
deduce that the constants of structure also satisfy the
propelr‘[y5

Céup = 2e’ée’;,V[ﬂe;']. (2.25)

Next we introduce the connection coefficients through

I, = —eueyV, el = efelV, el (2.26)
Comparison with (2.25) then shows that C¢, = =21,
In particular

1 1,
I = —ele¥uel =5 Loay =iy (220

which is related to extrinsic curvature K, = hy 4 V.ep by

1
K,-jzroijzgﬁgij—i-aij. (2.28)
Here, we have separated its trace (proportional to the
volume expansion #) from its traceless part (given by
the expansion shear o;;).

Using also that the connection is torsionless we can
relate its components to the constants of structure by®

1
abc — & [_egaﬂghc + elljaﬂgca + e";auguh

r
2

+ Cacb - Cbac + cha}’ (229)

where we have introduced the definitions
I_‘abc = gadrdbc" Ctle = gadcdbc- (230)

For the spatial components we get simply

1

Lijp = 5 [Cixj — Cjix + Cujil- (2.31)

Since the Riemann tensor is associated with the connection
and its derivatives, then from (2.31), this implies that the
Riemann tensor associated with A can be fully expressed in
terms of the constants of structure C';; (see Appendix A).
The Gauss-Codazzi identity [27,28] allows us to relate the
Riemann tensor associated with the metric £ and its
connection D to the spacetime Riemann tensor associated

5Antisymmetrization on n indices is defined with a prefactor
1/n!, that- is T;;; = (T;; —Tj;)/2. However there is no such
prefactor in commutators.

eﬁaﬂgbﬂ =T +Thae _ from metri(; compatibility, and
[fap) = —Ceap/?2 from torsionless conditions.
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with g and connection V. The most general form of this
identity is given by (Al).

Finally, we would like to stress the importance of the
invariant basis (2.12b). Indeed, the definition of a homo-
geneous tensor as any tensor T such that £, T =0 is
natural, since in this basis T has constant components.
In particular, the quantities C’ jk can be interpreted as
the components of an underlying homogeneous tensor
field C = C'j1e; ® ¢/ ® e*.

B. Conformal parameterization
Using the time coordinate ¢ introduced in (2.3), the
metric of a general Bianchi spacetime reads

gBianchi =—dr®dr+ az(t)yij(t)ei ® e,

(2.32)
At this point, it is also convenient to define a conformal
time by

a(n)dny = dr, (2.33)
which implies that, in conformal time, ¢# = a~'8j. The
volume expansion @ is related to the conformal Hubble
rate by

(2.34)

where, throughout this work, a prime indicates a deriva-
tive with respect to n. The conformal spatial metric y;; is
defined by

hij = Clzyl’j (235)
such that the Bianchi metric takes the form (2.32). Note that
the derivative (2.24) can also be considered as being
associated with y;;.

The conformal shear 6;; is defined by

A~

1
Oij 57

e (2.36)
The components of the constants of structure are related to
their conformal counterparts by

Nij:a_3Nij’ Nij:alj\\]ij’ N{:a_lj\\,{,
Ai = Ai’ Ai = a_zzai. (237)
We also have that

oy =ady, o =a’'sl. (2.38)

This means that in practice the indices of 6,;, N/ and A,- are

Ly
raised and lowered by y;; and y"/, whereas those of ¢;;, N/

and A; are raised and lowered by a’y;; and a~?y". The
Levi-Civita tensor is also decomposed as €;;, = a’e; jx with
€123 = 1 such that the combination ¢; j,ﬁ/”‘ in the decom-
position (2.6) is equal to ¢;;N'¥.

Since the constants of structure are constant, these
definitions ensure that the conformal N/ and A; and their
related forms with different index placements are constant.

C. Stress-energy tensor

The stress-energy tensor of a fluid with energy density p,
pressure p, and anisotropic stress 7, is

T/w = (p + p)uﬂuv + PIw + Tyys (239)
where u# is the (timelike) fluid four-velocity. For simplicity
we assume no anisotropic stress, although its inclusion
is straightforward. Homogeneity of Bianchi space-times
implies that energy density and pressure depend only on
time, and therefore we use the notation p and p for the fluid
content of Bianchi universes to stress this fact. We stress
that the vector u#* is not necessarily parallel to ¢*, since a
homogeneous boost of the fluid is allowed for tilted
Bianchi models. Actually, the fluid’s four-velocity can
be decomposed into components parallel and orthogonal
to e so that in the invariant basis we have

1
V1—viot

where v¥e, = 0. If this homogeneous velocity is not curl
free, then this corresponds to a global rotation of the
fluid [23,29].

Moving forward, we introduce comoving components
for the velocity as follows:

u* =T(et + o), with I'= (2.40)

v; = ab;, vi=a ', (2.41)
such that the velocity has components
r... N
w =—(1,9"), u, = al'(=1,9;).  (2.42)
a
Finally, the stress-energy tensor components are
_TZ =Tyete" =p+ P+ ]-))(Fz - 1),
T’;’ = (/_) + p>F2®ia
Ti = [(p + p)T*0'D; + pdi]. (2.43)

Because we allow for a tilt, T, will not look like (2.39)
with u, — e, for observers following the congruence
defined by e*. In fact, from (2.43) we check that for those
observers the fluid will present an effective momentum

density and anisotropic stress. It then follows from Einstein
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equations that these components will source spatial anisot-
ropies even in the case of a perfect fluid.

D. Einstein equations
The time-time component of Einstein equation follows
by projecting G,, = 8xGT,, with e*. Defining x = 8zG
and using the relation (A16) we get
2 )

H? + Y OR-152 = —T,,e'e

1
- 2.44
6 6 3 (244)

where 62 = 6,;6"/ and the spatial Ricci scalar is given in
terms of constants of structure to be [see (A7) with
definitions (2.37)]

Non a1
a?®R = —6A,A" - NNV + 3 (N2 (2.45)

The evolution of the expansion rate is given by the
Raychaudhuri equation (A15)

1
IH + 62 = —a’k (Tﬂyeﬂev +5 T) . (2.46)

and the dynamics of the shear comes from the traceless part
of the spatial Einstein equation

A A _ RkR N Rk
(Gij)/ + ZHGU = NkN<lj> - ZNk<le>
+ 24K N + 6Ty, (2.47)
Where T(lj) = (12(/_) + ]_7)1—‘2730@”
Lastly, there is a constraint equation following from
G! = kT, which is

Pi = K'azT? == 3AJ&/[ + é[jk&ﬂNll(.

(2.48)
This is known as the tilt constraint and by definition

Pi = Kazrz(,(_) + [_7)@1 (249)

But this is what is used to deduce ?; that we must then
replace in the shear equation because it is inside T;.

E. Fluid equations

As usual, fluid equations follow from the covariant
divergence of the stress-energy tensor. The conservation
equation for energy density is just

p'+(p+ p)3H+ (InT) + D;?'] = 0, (2.50)
and from (Al1), we get the velocity divergence
D' = =247, (2.51)

When linearizing in the velocity 9;, the term (InT")" will
behave as a second-order quantity, and thus will not
contribute.

The Euler equation is formally just

[a*(p + p)T*0)] +a*(p + p)I*D;(#/9;) =0.  (2.52)

Separating the trace and traceless parts, the second term is
handled using (A11). However, when linearizing in the
velocity ?; it vanishes hence the Euler equation reduces to

(2.53)

III. SVT MODES IN FLRW

We now give a brief review of the background geometry
of FLRW models and the mathematics behind the standard
scalar-vector-tensor (henceforth SVT) decomposition of
perturbative modes. This will be needed when comparing
perturbations of the FLRW metric with spatial anisotropies
in the homogeneous limit.

A. Background FLRW cosmology

Given a cosmic time ¢ which allows us to split spacetime
into space and time, all FLRW metrics can be written in the
form

gV — —dr @ dt + a*(1)gMs (3.1)

where a(t) is the scale factor of the expansion and g™ is
the metric of maximally symmetric spaces, described by

gMs = [dy? + r*(y)d*Q). (3.2)

Here, d>Q = d6” + sin® 8d¢? is the standard line element
on the 2-sphere and the function r(y) is given by

¢.sinh(y/¢.),

rr) = 1
C.sin(y/¢.), K >D0.

The curvature parameter K differentiates between open
(K < 0), flat (K = 0) and closed (K > 0) spatial sections. It
is related to the curvature radius £, of the spatial sections

by . = 1/+/|K]|. It is also useful to introduce the quantity

K =K/|K| = K2, (3.4)

which is either —1, 0 or +1 for open, flat, and closed cases
respectively.

B. Linear perturbation theory

To complete the matching between Bianchi anisotropies
and FLRW perturbations, we will also need equations from
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perturbation theory in synchronous gauge (usually fixed
completely with an additional comoving condition on
cold dark matter) and in conformal time, which will
now be briefly summarized. More details can be found
in Refs. [30-32].

By definition, only the spatial part of the metric is
perturbed in synchronous gauge. In the SVT decomposi-
tion, such perturbations can be parametrized as follows:

89 = 2a*[~pg)® + Dy + DyEj + Eyjl,  (3.5)
where D; is the covariant derivative compatible with
1S and

S

<D,-Dj—’§A>, A=D/D. (3.6)

At linear order, the perturbed components of the Einstein
tensor can also be decomposed into scalar, vector, and
tensor modes [31]. Working in conformal time [recall
Eq. (2.33)], such components are given by

Scalar modes:

a?5G) = 6H¢/ — (A + 3K)2¢ - D'DIDjy,  (3.7a)

a’8G} = =2D,¢/ —=D'D;y, (3.7b)
. 1 ; i
a*sG' = {83 +2H0, + 3 (A—6K)|D'jy +D'jo

: 1 1
+20 {(/)” +2HY — 5 (A +3K)p gD"Dlelw] :

(3.7¢)

Vector modes:
a’6G! = —% (A +2K)E!, (3.8a)
azéGj- = gf\’fISD(k [E;.’) + ZHE;)]. (3.8b)

Tensor modes:
a’6Gh = E" + 2HE'; — (A = 2K)E.  (3.9)

We also give the Ricci scalar associated with the spatial
metric. For isotropic backgrounds and at linear order, it is
sourced only by scalar perturbations:

4
a*5(®R) = 4(A +3K)¢p + §A(A +3K)y.  (3.10)
In order to proceed with the identification, we will also
need to perturb the energy-momentum tensor, here taken to
be that of a perfect fluid for simplicity. As it turns out, the

linearized tensor in synchronous gauge is exactly what one
would obtain by setting I' =1 in (2.43) and linearizing
p and p around their background values (denoted below by
an overbar). This leads to

~T) = p + bp, (3.11)
T! = (p+ p)is, (3.12)
T = (p +6p)s;. (3.13)

Note that the velocity #; is considered as a first-order
perturbation, and as such it is split into scalar and vector
parts as

b =Div+ V. DV, =0. (3.14)

We thus have everything needed to write the perturbed
Einstein equations. The first of them follows from the time-
time component, and corresponds to the (perturbed)

Friedmann equation:
—6H¢' + (A + 3K)2¢ + D'DID;jyr = ka*Sp.
Then, we have the trace-free components of the space-

space Einstein equations. These are independently given
for scalar

[85 +2H8,,+%(A—6K) Dy +Dp=0, (3.15)
vector
D(,E;’) + 2HD(,~E}) =0, (3.16)
and tensor modes
E}”' + 2HE}[ - (A- 2K)E; =0. (3.17)

Next, we have two constraint equations for the scalar
and vector modes of the velocity perturbation. These are
given by

—2D;¢/ — DID;jy' = ka*(p + p)D;b, (3.18a)

1 .
-5 (A+2K)E, =ka*(p+p)V,.  (3.18b)

Finally, from the conservation of the energy-momentum
tensor we have the Euler equation

[a*(p + p)b;] = —a*0;5p. (3.19)
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and the conservation equation

8p' + (8p +6p)3H = (p+ p)(3¢' = D;iv*).  (3.20)

C. Harmonics

Since perturbative modes evolve independently for linear
perturbations, it is convenient to expand the metric pertur-
bation on a basis of tensor harmonics. In this section we
summarize how these harmonics are built (see [18] for
more details).

Let us first introduce the usual orthonormal spatial basis
associated with spherical coordinates

n=20

Z?
ng = r='(x)9,.

ny=r'(y)cschd,. (3.21)
They allow us to introduce the standard helicity (vector)
basis,

1
n,=—(n ingy), 3.22
+ \/Z( o Fingy) ( )
which is in turn used to define an extended helicity (tensor)
basis [18]
ﬁislf (n) = ngé‘ - -ni‘tn"ﬁl coenli), (3.23)
In what follows, we shall occasionally use a multi-index
notation

(3.24)

such that the helicity basis is written simply as ﬁif or

as ﬁis.

The generalized helicity basis has a series of important
properties which are collected in Ref. [18]. For our present
purposes, we stress that it is both a complete basis for
symmetric and trace-free tensors, as well as a natural basis
for separating the angular from the radial dependence of
spin-valued tensors.

Cosmological perturbations can be expanded in a basis
of spatial eigenfunctions of the Laplace operator A. Any

tensor-valued perturbation Qg"”(x;k) satisfying [18]

[A+K = K(j—|m)(+|m|+ 1]/ =0 (3.25)

will be loosely called a harmonic. Here, j represents the
tensorial rank of the harmonic, and m the rank of the
primitive tensor from which this harmonic is derived. Thus,
for instance, ngg,o) is a rank-2 tensor derived from (two
derivatives of) a scalar function. The case j = |m|

represents a “fundamental” harmonic, in the sense that it
is not derived from lower-rank tensors, and it is also
divergence-less. Harmonics with j > |m| are derived from
the fundamental ones. In what follows, it will be convenient
to give the expression above in terms of the mode v,
defined as

2 =k 4 (1+|m)K (3.26)

in terms of which (3.25) becomes

{A+02 = K[(1=|m|)(1+ m]) + j(j + D]}y 0™ = 0.
(3.27)

Let us summarize the main definitions and results of [18]
in which these harmonics and their decomposition into
angular and radial functions are discussed. A point x in space
is specified by its distance (y) and direction (1) from a given
origin. However, cosmological perturbations are character-
ized independently by their spatial (x) and angular (n)
dependencies, which requires the use of both orbital and
spin eigenfunctions [33,34]. Since what is observed is the
total angular dependence, one introduces a set of total
angular momentum normal modes [34] which splits pertur-
bations in their effective radial and angular dependencies:

G (rmiv) = cpal™ (r.v), Y2 (), (3.28)
where
c, =i\/4n(20 + 1), (3.29)

sY”(n) are spherical harmonics of spin s and Sa(fjm are

radial functions. These radial functions are zero whenever
one of the following conditions is violated:

Jzmax(|m|.[s[), £ =max(|m||s]).  (3.30)
Moreover, these functions are conventionally normalized at
origin through the condition

1

(jm)
Jjm |X:0_2j+1 ‘j.

(3.31)

It is also convenient to decompose the radial functions into
even (electric) and odd (magnetic) types as

iSa(fjm) _ ‘Yel(fjm) + 1‘ '(fjm)

(3.32)
Formal expressions and identities satisfied by the radial
functions are collected in [18]. ‘

Next we introduce the harmonics Qﬁ’, ™ in the
¢-representation. These are constructed by a s]imple com-
bination of the normal modes with the generalized helicity
basis as
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(3.33)

J
zf’Q(]m) = Z Sg(jm)s

s=—]

G i)t (m),

where ¢! are numerical coefficients introduced in [18].
Overall, when following reference [18], the reader should
make use of the replacements y — y/¢., k- k€.,
and v - 7.

D. Plane waves and pseudo plane waves

Finally, we build generalized plane-wave harmonics
from summation over ¢:

Z x 0" (. m;)

f>|m|

(3.34)

where {7 are coefficients that can be fixed up to an overall
arbitrary constant (see Appendix E). Likewise, a plane-
wave normal mode is

E: G (r.myw),

f>\m\

(3.35)

such that (3.33) also holds without the # indices, that is
after summation on #. Usual plane waves correspond to the
case {7 = const, but the previous definitions allow for
pseudo plane waves when (7' # const. The plane-waves
harmonics were built using the zenith direction as a
reference, but we can rotate them so as to define harmonics
with respect to the wave vector v = 1@, as detailed in
Sec. 6.2 of [18]. The perturbations defined in (3.5) are
expanded on the basis (3.34) as

¢”/é§

w009 w),

v.n) oS W),

d31/ m 2.m
DiEj = Y /WH(T)@”//)QSJ‘ ‘).

m==x1
(2 (2.m)
Eij g Z 3HT (erl)Qij (V) (336)
=,/ (27)

For applications related to observations, most notably
those of CMB, it is convenient to work with the propa-
gating direction 72 related to the line-of-sight direction n
through

n=-n. (3.37)
We can also define harmonics, with related normal modes
and radial functions, associated with this convention. They
are trivially related to the previous ones by

0y (r. ~fise) = (-

J

1% Q1" G msv).

The associated normal modes ;G and radial functions
ixa(f/m) are related to the previous ones as detailed in

Sec. 7.1 of [18].

E. Supercurvature modes

Quite generally, square-integrable cosmological pertur-
bations can be constructed by superposing tensor harmon-
ics characterized by vZ,. > 0. For closed spaces one further
requires v, — 1 to be an integer larger or equal to |m|, see

g., [18]. In the case of open spaces (K = —£?), this
requires (kZ.)? > (1 + |m|) [see (3.26)]. While the inclu-
sion of modes in this range is enough to describe pertur-
bations that decay at infinity, it has been argued [35] that
the most general Gaussian perturbations also require the
inclusion of modes having

-1 < (£.)* <0 (3.38)
In the scalar case (m = 0) this corresponds to 0 <k*> <772,
For this reason, these are known as supercurvature modes.

Supercurvature harmonics are not square integrable.
Since they correspond to purely imaginary v, they can
be defined from analytic continuation of the radial func-
tions Sa(,;’ ™) of the usual harmonics (i.e., those with v > 0).
In [35] only the scalar harmonics were considered, but the
procedure of analytic continuation can be followed for all
types of harmonics. In fact the analytic continuation is not
restricted to (3.38) but can be extended at least to the whole
subset of the complex plane defined by

-1 <Im(vf.) <1 = Re[(vf.)?] = —1. (3.39)
For that, one only needs to know how to formally build the
radial functions—see [18]. Hereafter, we call the case
(vf.)? = =1 the maximal supercurvature mode as it
corresponds to k = 0 for scalar harmonics.

Given that v can be complex, the electric and magnetic
parts of the radial functions are not necessarily real-

valued functions. In particular the relation ;a//"* (y,v) =

_,a@?™ (y.v), which holds in the flat case, is not valid
anymore and we must rely on Eq. (3.35) of [18].

IV. LINEARIZATION OF BIANCHI SPACE-TIMES

Our goal now is to derive the linearized dynamical
equations for the Bianchi models in Table II, which will be
ultimately matched to the Einstein and fluid equations
presented in the last section. Such matching requires
contrasting Egs. (3.1) and (2.32), which in turn depends
on the knowledge of the cobasis e’ in a given coordinate
system. Since the cobasis is the dual to the invariant basis
e;, which is in turn defined by the KVFs through
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Eq. (2.12b), we start this section by recalling the KVFs and
invariant basis for the selected Bianchi models.

A. KVF and invariant basis

An ingenious method to find the KVFs of Bianchi
models with FLRW limit was proposed in PC10, and
can be summarized as follows: starting from a maximally
symmetric space, one identifies its translational (7';) and
rotational (R;) KVFs, as well as their commutators. Next,

one looks for constants p{ such that the newly defined
vectors

&=T,+pR,; (4.1)
satisfy Eq. (2.2). From these vectors one then obtains the
invariant basis e; [through Eq. (2.12b)] and their associated
cobasis e’ which, once multiplied by a time-dependent
tensor y,;(¢), and following the prescription of Sec. I A,
leads to the metric (2.32).

The beauty of this method is that one naturally sees
which Bianchi models can emerge from a given maximally
symmetric space. Moreover, coordinate systems for the
KVFs are naturally inherited from the coordinate systems
of the underlying symmetric space. We now summarize
these vectors and their associated invariant basis. Their
cobasis can then be obtained from the prescription given in
Appendix C.

1. Models I and V11,

Bianchi models I and VII, are the only models emerging
from flat Euclidean space. As such, their Killing vectors
and invariant fields can be expressed in terms of natural
(Cartesian) coordinates of the flat Euclidean metric:

gMs = dx? + dy? + dz% (4.2)
The set of KVFs and invariant basis for model I corre-
sponds to simple spatial translations:

&) =0, =0,

1 1

(4.3)

It is trivial to check that &V satisfies (2.2) with C¥;; = 0,
and that (2.12b) is satisfied automatically.

The isometries of model VII, correspond to two simple
translations, and a translation followed by a rotation.
Choosing this rotation to be around the z axis, we then
have for the KVFs:

gV = o (4.4a)
gV =5, (4.4b)
gV — 9. — £71(xd, — y0,). (4.4c)

One can check that these vectors satisfy (2.9) with N! =

N? =¢;' and A =0. The invariant basis which solves
(2.12b) is

vl i a
eV :M{eﬁ-), (4.5)

where M/ are the components of the rotation matrix
around the z axis by the angle z/7:

cos(z/¢;) —sin(z/€s) 0O
M = | sin(z/¢;) cos(z/¢) O .  (4.6)
0 0 1

Since rotation matrices are orthogonal, we also have
M'; = M}/ such that for the cobasis

— Mi]_e]

- (4.7)

i
€(vi)

2. Models V and V11,

These are the two models emerging from a maximally
symmetric open space (i.e., a space with negative curva-
ture). A possible coordinate system for the KVFs and
invariant basis are spherical hyperbolic coordinates
(x,0,¢), in terms of which the metric of the underlying
space writes

gV = dy? + £2sinh? (y/£,) Q. (4.8)

In these coordinates, the KVFs and invariant basis for
model V are given respectively by

§§V) = sin@ cos ¢0,
+ ¢z cos@coth(y/£.) — 1] cos Dy

+ ¢7'[cot§ — coth(y/Z,) csc O] sinpd,,  (4.9a)
§<2V) = sin@sin ¢$d,
+ ¢7[cos @ coth(y/Z..) — 1] sin ¢,
+ ¢7'[coth(y/7,) csc O — cot O] cos ¢pd, (4.9b)
£Y) = cos00, — £7' coth(y/£,) sin00,.  (4.9¢)

and

123534-11



THIAGO S. PEREIRA and CYRIL PITROU

PHYS. REV. D 100, 123534 (2019)

v sin d cos ¢ o
~ cosh(y/¢,) — cos@sinh(y/£.)
—1 -
£: cosOcoth(y/?.) — 1] cos ¢pdy

cosh(y/¢.) —cos@sinh(y/%.)

— 7' sing cscOesch(y/£.)0,,
oV sin @sin ¢ P
2 cosh(y/¢,) — cos@sinh(y/£,.) *

£7 [cosOcoth(y/t,) — 1]
cosh(y/¢.) —cos@sinh(y/%,.)

+ 7' cospescBesch(y /)0,

oY) cos@cosh(y/¢,.) —sinh(y/¢,)
3 cosh(y/¢.) — cos@sinh(y/£,) *

_ ¢-'esch(y/€.)sin@

cosh(y/¢.) —cos@sinh(y/%.)

sin g0y

Dp.

As emphasized in [36], it proves useful to use a different
system of coordinates to recast these expressions in much
simpler forms, and we report the detailed expressions in
Appendix B.

The other possibility corresponds to model VII,,. In this
case the KVFs and invariant basis can be related to the
expressions above simply as [3]

gy =g (4.10a)
gV — gV, (4.10b)

(4.10c)

and

(VIL,)

e = melV) (4.11)

with M given formally by the same expression (4.6), but
with z defined as in (B1).

3. Model IX

This is the only model emerging from a closed max-
imally symmetric space (i.e., a three-dimensional sphere)
with metric

g™ = dy? + sin?(y /£, )d*Q. (4.12)

The KVFs and invariant basis are given by

EEIX) = cos ¢ sin 00,

+ ¢ cot(y/Z.) cos O cos ¢ + sin ¢|dy

— 7 cot(y/€..) cscOsingp — cos ¢ cot 6]9,,
Ijgx) = sin ¢ sin 60,

+ ¢ eot(y /€ .) cos @sin ¢h — cos P|Dy

+ 7 cot(y/£.) csc O cos ¢ + sin g cot 0] 9.
fglx) = c0s 00, — £ [cot(y/¢) sin 0Dy + 0],

and by

eglx) = cos ¢ sin 60,

+ 1 cot(y/£.) cos O cos ¢ — sin p]dy

— ;! cot(y/?.) cscOsin g + cos ¢ cot 0],
egx) = sin¢sin 00,

+ 7 [cot(y/£,) cos @ sin ¢ + cos p]Dy

+ 7 cot(y/€.) csc B cos ¢ — sin g cot 6],
e = cos 00, — £ [cot(y/£,) sin 00, — AR

respectively.
Before proceeding, note that the transformation (6, ¢) —

(r — 0,7+ ¢) is such that (é‘SIX), el(.lx)) - (—ef.lx), —EEIX)),

while the metric remains invariant. Thus, the role of KVFs
and invariant basis can be reversed in model IX. Such
inversion also happens in Bianchi I, as one can trivially
check. As we will see, this has practical implications in the
identification of homogeneous perturbations with spatial
anisotropies in these two models.

B. Linearized Bianchi equations

We now parametrize y;; in (2.32) as

vij(1) = [ezﬂm]ijv (4.13)
and we linearize equations in the time-dependent traceless
matrix f3;;(t), and also in ;. When find that for the Bianchi
types which admit a FLRW limit, the metric reduces to a
maximally symmetric space metric when f;; = 0 (and thus
Yij = 0ij), that is we find

g =5 @ (4.14)
Consequently, we also recover in that case that the Ricci
scalar takes a FLRW form. This means in particular that the
traceless part of the spatial Ricci vanishes, and the value of
the Ricci scalar (spatial curvature scalar) indicates to which
FLRW type (open, closed, or flat) it corresponds. This is
reported in Table IT where the values of (A, N', N2, N3) are
given as functions of the two length scales introduced in
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(2.10). Neglecting sources of anisotropic stress, the back-
ground equations are

2

H2+K:%ﬁ, (4.15)
p+3H(p+p) =0, (4.16)
where
PN (O
K =~6AA; = NN+ NN (4.17)

These are formally the same as the dynamical equations for
a background FLRW metric. The curvature scale 7. =

1/ \/m appears in the FLRW limit of the Ricci scalar
whereas the spiral scale 7, (whose meaning will be made
clear later) does not.

The shear is given at linear order by

(4.18)

A~ — 7
Gij = Pij»

and the linear parts of the equations (in f;; and ;) are

1

5 @*8(VR) = xa’sp, (4.19a)
i+ 2Hpy = Sijs (4.19b)
3Ajﬂ}i + éijkﬁ;zﬁkl =P, (4.19¢)
5,0/ + 3H(5p + 5p) = _(ﬁ + ﬁ)Di@i
2A'P;
=— (4.19d)
Ka
[a*(p + p)Bi]' = 0. (4.19)

The right-hand side of Eqgs. (4.19a) and (4.19b) corre-
spond to the isotropic and anisotropic contribution to the
spatial curvature due to terms linear in f;;. They are given
respectively by

a*3(BR) = 2(6A;A; — 2N*NY + N*NT)p,..  (4.20)

and by

S,y = NHRIU  aRHRIE — 24 2, A0
) ZNkkﬁl{iNj}l _ %Nkkﬁllﬂij
+ N, MK — 4Nkl]’\‘7k{iﬁj}l
_ 2RI, + % NHAkg,.

+ 2Ak€kl(z’ﬂj)rﬁrl - 2Alﬁkl€kr(iﬁj)r . (4-21)

Repeated indices are summed, and we have introduced the
notation {---} for symmetric and trace-free tensors with
respect to §;;, such that all indices on the right-hand side are
now manipulated with the Kronecker delta.

C. Homogeneous sv¢ modes

In order to identify f;; with homogeneous metric
perturbations, we proceed by decomposing the former in
a similar fashion to the decomposition of Jg;;. Just as the
scalar, vector, and tensor modes appearing in (3.5) are
defined with respect to their transformation properties
under rotations around k—the wave vector of the pertur-
bation—we can introduce scalar, vector, and tensor modes
of the shear (henceforth svr modes) with respect to their
transformations under rotations around some direction e; of
the invariant basis [3]. For models I and IX it does not
matter which direction we choose, since any rotation will
preserve C",-j in these models. On the other hand, the
constants of structure in models V, VII,, and VII, have a
residual symmetry given by rotations around the vector
A « e5. Since the construction in this section is general to
all Bianchi models, we shall omit a subscript in the
covectors e; to designate the model they belong to, so as
to alleviate the notation. We thus choose the latter as a
fiducial direction and introduce a complex basis

(e] Fief)
e3) Ta

in terms of which we introduce the following tensor
polarization basis:

(£) (

(4.22)

0
gy (e3) = (=eel +5,,/3),

+2 3
qgj )(e3) = —\/;e,(;)eﬁ.;). (4.23)
In what follows, we will omit the dependence on ej
whenever there is no chance of confusion. Note also that,
because e; and e* form a general triad frame, ql(.;") will in
general depend on the spacetime point, whose explicit
dependence we shall also omit.
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The above polarization tensors allow us to write the
shear as

2
— (m)
Bij = Z Bm i

m=—

(4.24)

with the values of m corresponding to scalar (m = 0),
vector (m = =+1), and tensor (m = +2) modes. Note that
all modes are constructed such that

a;" = (=1)"q;)", (4.25)
and hence the reality of ;; implies
Biemy = (=1)"B,,- (4.26)

This means that, in practice, we only need to consider
physical effects for the case m > 0.

Because the Bianchi models we are considering all have
a maximally symmetric 3-space as their isotropic limits, the
first line of Eq. (4.21) vanishes for all models of Table II, as
one can easily check. We can thus write

2
Sy= > S" By

m=—

(4.27)

The isotropic spatial curvature, on the other hand, splits
into a background plus perturbation as

a2(3)R = a2<3)RFLRW + 5(&2(3)R), (428)
where
2
8(a>®R) = RMB,), (4.29)
m==2
and
m) _ ij,(m)
R( ) - R]qij s
Ri; = 2(6A,A; — 2N*N* + NFNiT). (4.30)
Likewise, the tilt P; can be decomposed as
- (m)
Pi=> B, P, (4.31)

m=-—

TABLE III. Bianchi svf modes and the quantities R Sm) and PE’”> for all Bianchi models considered in this work. For models I

and IX, PE’") =0, and is thus not shown. This reproduces Table II of PC10 up to variations of conventions in definitions.

m: 0 +1 -1 +2 -2
g 1 0 0 00 1 0 0 -1 -1 - 0 -1 i 0
Y %(0 1 0) %(o 0 i) <o 0 1> g(—i 1 o> g(l 1 0)
00 -2 1 i 0 -1 i 0 0 0 0 0 0 0
VIl 2280 0 0 0 —4 4
AR (M) 0 0 0 0 0
0 0 0 0 0
\Y £280m 0 0 0 0 0
2R (M) -8 0 0 0 0
\/§ch('") 0 3 =3 0 0
-4/2 0 0 0 0
VI, 280 0 0 0 —4/h - 4i/vh —4/h +4i/Vh
£ER(M -8 0 0 0 0
NN 0 3-i/vh 3—i/Vh 0 0
0 3i+1/vh 3i—1/vVh 0 0
-4v2 0 0 0 0
I Sm) 0 0 0 0 0
R(m) 0 0 0 0 0
IX £280m -8 -8 -8 -8 -8
2R (M) 0 0 0 0 0
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with

P = 3qu§-;") +eqy Ny,

i (4.32)

The svt modes for the tensors S;;, R;;, and P; for all
Bianchi models are summarized in Table III.

V. BIANCHI AND FLRW MODES RELATED
A. Matching the perturbations

We are now ready to find the correspondence between
Bianchi degrees of freedom and FLRW metric perturba-
tions. In other words, we can now identify the modes in the
expansion (3.36) which we must consider in (3.5) so as to
obtain the matching

691] g 2a2/}ij. (51)
Since p;; is traceless, one can already set ¢ — 0. On the
Bianchi side, we have seen that the shear can be decom-

posed as in Eq. (4.24). As we detail in Appendix E, we
show that

52 Q (2m) ()(7

c nv,. ("),

" (z.n) = (5.2)

where the constants &, are defined as (see [18] for details)

& k¢
b=l —— 53
il;[ V <mec)2 - Ki? ( )
with the understanding that &, = 1. Defining
m ¢
HY =B 52 (5.4)

implies that the identification (5.1) is made with the discrete
sum

Vmaﬂ (zm)(l/mﬁé:’;})'

591] Z H

Let us stress already that the identification of model IX is a
special case since there are only tensor modes. That is, the

(5.5)

Bianchi modes ql(-;-”) with m = 0, 1, —1 do not map to scalar
and vector harmonics, but instead to sums of tensor
harmonics. We shall treat this case separately.

We still need to specify with which modes v,, and with
which set of constants {7 the matching (5.2) holds. The
matching of the positive and negative m are necessarily
related since negative values can be obtained by the reality
condition (4.25). Using Eq. (6.8) of [18] for the complex
conjugation of a harmonic, we can check that we obtain

(02" (W E) = (=102 (b E7)

provided that the conditions

&= (=ng (5.6)

Vo = —Ups
are satisfied.

In order to find for each m the mode v,, and the set of
coefficients {7 which define the pseudo plane wave, we
first determined the v,, by comparing equations (4.19b)
and (4.19¢) to the linearized Einstein equations given in
Sec. III B, and asking the constraints (5.6) to be satisfied.
The shear evolution in Bianchi models maps to either
tensor, vector, or traceless scalar perturbations in synchro-
nous gauge and we report details of the matching in
Appendix D. For the flat and open cases (corresponding
to types I, V, VII,, VII,), the modes must be

—+— 5.7
U =7 =+ f (5.7)
with k,, = v, in the I and VII,, cases. For the closed case
(Bianchi IX) we obtain
3
+—. 5.8
Vi ‘. (5.8)

Given that the v,, can be complex in the open case, it is
understood that the radial functions are obtained through
analytic continuation corresponding to the presence of a
supercurvature mode (see Sec. IIIE). Technically, this
implies that the electric and magnetic radial functions
are no more real valued.

We must also specify the coefficients {7 since some
models are matched with pseudo plane waves. In
Appendix E we detail how these constants are found for
models VII, V, and VII;, and they are (up to a global
constant factor)

G = (D)™, (5.9a)
+m __ ptm (5 f2+ (U:tme)z
= )(f+1)¢mi/\/ﬁ' (5.9b)

Using the identity (E11), it can be recast in the form

¢ .

. — 1)+ mi \/E
g = 1 ] (—V W= DEMNL s 19)

p=m+1 (P + 1) + ml/\/E

The case m = 0 is special since in (5.9) one finds
) 1+ (vf,)?

0=1, 0 = (—) Y—=—L 5.11
s A e o AL
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TABLE IV. Summary of modes (k,, or v,,) and pseudo plane-
wave constants (£7') found in this section. It is understood that the
C‘} for the V and VII, models are (5.11).

vork £m
I Ky = 0 5
VI, k=12 (1)
IX Uiy = :I:;—[ 8%, |m| = 2 only

m(__3\f—m 1
( ()" (=)

VI, Vp =24t i) [l
S € 0 | N C Y

Note that there is a factor v/1 + (1yZ.)> = 0 in all ratios
C‘}/ Cg. One could think that this is problematic since
the ratios ¢7'/C" enter the very definition of a pseudo

plane wave (3.34). For instance, in QEJZ-O) one would

encounter £0/¢9~1/y/1+ (vy¢,)*. However the factor

1 + (vyZ.)? is nothing but k given the relation (3.26),
and it appears that there is a compensating divergence in the
radial functions. More precisely it can be checked that
Saé”") ~ /1 + (vt,)?* for k — 0 (except 00:(()00) - 1). In
practice, one must keep track of all factors of k and take the
limit £ — O at the end. More rigorously, one could have
redefined radial functions to be

m .
C—;’;‘Ya;”") (5.12)
<
as these quantities would never possess any (apparent)
divergences.

The results for models VI, and V can be obtained by
letting £, - o0 (or h —» 0) and £, - oo (or h — ),
respectively. For model VI, this reduces to Cfflm‘ =

(£1)”. In the Bianchi V case, we also find (5.11) when
m = 0, and when m # 0 we get

Cim = (1) (i) (5.13)

As for models I and IX, we find (£ = 62 that is the sum is
reduced to the lowest term with # = 2. In the case of model
I, one could alternatively consider that (" = (£1)” since
for £ > 3 all radial functions vanish for k,, = 0. The pseudo
plane waves harmonics needed for the matching in the
various models are summarized in Table IV.

Let us comment that the scalar mode (m = 0) is special.
Indeed we found that the v and { g are the same for models
Vand VII,, and also the same for models I and VII;,. This is
because there is a spiraling structure in models VII, and

TABLE V. Transformation rules for harmonics (defined with
the zenith direction) under the inversion of a single axis.

X = —X y—= =y 7= —Z
Factor (—1)" yes yes
g (—1)fgm yes
ng"l) N Qg./l—m) yes yes

o1"0)~ 9" o

VII, (with typical spiral scale 2z¢/|m|) which is absent
for the scalar mode (m = 0).

Note that the prefactor &,/&,, is always compensated by
an opposite factor &,,/&, in the ;¢ which enter in the
definition of harmonics from radial functions (3.33). This
was expected since this prefactor was precisely added to

remove any divergence so as to reach constant matrices for
(m)

the ¢;; .

B. Transformation properties

When writing the constants of structure in canonical
form in Table II, we have used the possibility of a global
rotation and of parity inversion. Hence, once we have
identified the harmonics corresponding to the s»f modes,
we must explore the effect of global rotations and parity
inversion to exhaust all possible FLRW metric perturba-
tions matching Bianchi models.

In Table I of [18] are gathered the transformation rules of

the harmonics ng) (v,n%) (defined with respect to the

zenith axis) under inversion of a single individual axis (x, y,
or z) axis. For the pseudo plane waves used in the matching
(with j = 2), the transformation rules can be deduced (see
Sec. 6.4 of [18]) and we summarize them in Table V for
clarity of the following discussion.

1. Isotropic constants of structure

When the constants of structure of a given model are
invariant under arbitrary rotations (such as in models I and
IX), any mode s, v, or ¢ (or, equivalently, any basis ql(»;") for
|m| =0, 1 or 2) can be constructed from any other by
appropriate linear combinations of rotated modes. One can
easily verify that

0 m m
qy(es) < > g (e)) + 4\ (e2).
m==42

(5.14)

where we use ¢! (e) = (=¢3 F ie?)/v2 and e[ (e,) =
(—e? +ie!)/+/2. Similar combinations can be used to

produce the q,(-j-il)(e3). As a consequence all modes have

the same dynamics and this is checked in Table IIT where
the S™) are the same for all m in models I and IX. Thus, the
anisotropies of every Bianchi I model can be seen as
combinations of homogeneous gravitational waves, which
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are exhausted by the fives parameters f,,) which, given
(4.26), are 5 degrees of freedom of the model. Any global
rotation leads only to a transformation of the f,, by a
constant phase.

The freedom in the point of view about the nature of the
modes results from the nonuniqueness in the definition of
SVT modes when perturbations do not decay at infinity [37].
However, since Bianchi [X arises as perturbations of a closed
FLRW universe, which has compact spatial sections, there is
no such freedom of interpretation and the s, v modes must be
considered as sums of tensors modes. In other words, they are

obtained from sums of rotations of q,(-jj-tz) (V).

In practice, when exploring the implications of Bianchi
models on observables, one might choose to lose complete
generality and to focus on the effect of a single gravitational
wave. Hence, one starts from the tensor mode aligned with
the zenith direction ﬂ(ﬂ)f :ZQE.]Z.'ﬁ) (v4,) and explores the
range of Euler angles for the rotation of the plane-wave
axis. When doing so, one does not need to explore the
freedom of the y Euler angle, (i.e., of rotations of the wave
around its wave vector v) since this is degenerate with the
phases in the f,,).

a. Bianchi 1. In the simple I models, one has v,, = 0 and
only £ = 2, so we infer from Table V that the tensor mode
with zenith direction is invariant under inversion of the z
axis. Also since v,, = v_,, we deduce that an inversion of
either the x or the y axis interchanges the m and —m
contributions, leaving the whole metric perturbation invari-
ant. Hence the svf modes are invariant under inversion of
any axis and in particular of global parity.

b. Bianchi 1X. The case of Bianchi IX is different.
Indeed, since v_, = —v, one loses the parity invariance as
seen on Table V. The tensor mode with zenith axis is only
invariant by simultaneous inversion of two axes among
x,y, z. Physically, this happens because such tensor mode
in Bianchi IX is a standing circularly polarized wave [2];
intuitively this is like a spiraling structure in the zenith
direction (and which has a spiraling effect on observables
[14]), and any rotation which flips this spiraling direction
leaves the system invariant. As found in [2] and summa-
rized in Appendix C, the difference between the type IX
and type I is related to the fact that the canonical choice of

Initial Bianchi mode

e, e,

e,

FIG. 1.

Ry(m) or (z,2) = (—z,—x)

constants of structure selects only one type of chirality for
the circularly polarized wave (one could invert all signs of
the constants of structure). The Bianchi IX is a sum of
(rotated) tensor harmonics of the same chirality [2]. To
exhaust all possible perturbations of the type IX one then
needs to consider a global parity transformation which
changes the chirality.

2. Anisotropic constants of structure

For anisotropic constants of structure, that is, for models
V, VII,, VII,, one has the 5 degrees of freedom of the
amplitude f,,), on top of which we must also allow for a
general direction of the special axis used when writing the
constants in canonical form. This brings 2 other degrees of
freedom (the angles of the special axis direction) since any
rotation around the special axis is degenerate with phases in
the f3,,). It is then instructive to look at the properties under
inversion of the axis, since it highlights the effects that
modes have on observables. As we now detail, a global
parity inversion is needed to explore the whole range of
VI, and VII, types but this is not needed for the V type.

a. Bianchi V. The associated modes have the property
V_y, = Uy, and ™ = 7. Hence from Table V we find that
it is invariant under inversion of either the x or the y axis.
However it is not invariant under inversion of the z axis.
This is because Bianchi V has a focusing effect on
observables in the special z direction [14,36]. This contrasts
with the cases of Bianchi VII; and VII,,. Since a rotation of
angle 7 around e.g., the x axis inverts the y and z axis, one
deduces that global parity inversion does not bring new
models when exploring all possible directions.

b. Bianchi VIl,. We still have the property ;" =
(=1)%¢™ but we now have v_,, = —v,,. So from Table V
we find that the perturbation is invariant under the joint
inversion of any two of the three x,y, z axes. This is the
same symmetry as the one already found in the IX case. In
fact, the Bianchi VII; modes with m # 0 are also equivalent
to a standing circularly polarized standing wave, whose
wavelength is free and controlled by #,. And as for the IX
case, a global parity inversion, that is a change of sign in the
constants of structure, inverts the chirality of the stand-
ing wave.

Parity or z = —=2

€.

il

€, €y

Schematic representation of the transformation properties of the spiraling and focusing structures, under inversions of some

axes. The type VIl has only a spiraling structure (represented by the blue screw thread), whereas the type V has only a focusing effect

(represented by the red arrow). Type VII;, has both features.
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c¢. Bianchi VII,. The VII;, models possess both the
properties of models V (that is a focusing direction) and
VI, (a spiraling structure from a circularly polarized
standing wave in the m # 0 modes). An inversion of the
z axis inverts the focusing direction but not the spiraling
structure. An inversion of either the x or y axis inverts the
chirality of the spiraling structure but leaves the focusing
direction unchanged. Hence a global parity inversion
(a change of sign in the constants of structure), combined
with a rotation of angle z around the x axis, inverts the
chirality of the standing wave while keeping the same
focusing direction. The transformation properties of modes
in Bianchi VII,, are illustrated in Fig. 1.

VI. COSMOLOGICAL IMPLICATIONS

We now illustrate the power of the identification to
compute theoretical predictions for observables in various
Bianchi models. Indeed, up to now the effect of a Bianchi
space-time on the CMB was computed with independent
codes from the ones used for the usual stochastic pertur-
bations around a FLRW background [16,17]. With the
identification (5.1) of Bianchi modes as FLRW perturba-
tions in synchronous gauge, it is possible to compute the
linear transfer functions from initial conditions to observ-
able multipoles in the same framework. The modes
identified as a Bianchi perturbations shall not correlate
statistically with other FLRW perturbations since the one-
point average of usual fluctuations vanishes. However it
should contribute in the three point function since the two-
point function average of usual fluctuations are related to
the nonvanishing power spectrum. In the next section we
review the dynamics of a Bianchi perturbations and recall
that only some modes are regular [14] and thus credible as a
possible large scale anisotropy. Then we detail the compu-
tation of the CMB multipoles and show that it requires only
to adapt the usual Boltzmann hierarchy to take into account
the fact that we have pseudo plane waves instead of usual
plane waves.

A. Bianchi perturbation dynamics

Since our method is a based on a small shear approxi-
mation, it is important to discuss the existence of solutions
to Eq. (4.19b) which are finite at high redshifts. Such
solutions were extensively discussed in Refs. [3,14], and so
we will just give a brief summary. The main equation is

Bl + 2HB, — Sy =0 (6.1)
which follows from (4.19b) with (4.24) and (4.27).

Being a homogeneous second-order differential equa-
tion, all solutions are linear combinations of two solutions.
In the case S = 0, one solution is a pure constant with
no observable effect, while the other is diverging at
early times. Hence, these modes are considered as being

irregular [14], and they are usually rejected on the basis that
they would not pass observational tests at early times.
Furthermore, it is also difficult to find a natural mechanism
to generate their initial conditions.

In the VII, and VII, models, we have S(*2) # 0, hence
these modes have a different dynamics. In a matter
dominated era, one has a « 5> and thus 2H = 4/n. The
regular solution of (6.1) for the tensor modes in these
models is then

j 2
/}(iz) o(.]l(a):t”) , . ? /1 :l:l(fs/fc)

wLn

(6.2)

Given that @, is complex valued, this solution has to be
understood from the analytic continuation of the spherical
Bessel function j;. When £ > ., the solution is regular
as long as n < /¢ .y, but in that case it is a constant
solution and we recover the dynamics of a Bianchi V. In the
opposite regime where ¢ < .., the solution is regular for
n < ¢, (corresponding to the isotropic curvature scale
remaining superhorizon) and the solution results in damped
oscillations. Type IX also has a regular solution with damped
oscillations, since S = —8/£2 and one finds that (6.2)

holds with @, = v/8/7, in a matter dominated era.

Given the matching with FLRW perturbations, we can
interpret these regular solutions as frozen tensor modes
which become dynamical when their wavelength becomes
subhorizon. Note that the nonregular modes could still be
interesting for cosmological models with a homogeneous
(or very large scale) anisotropic stress which would then
source the right-hand side of (6.1), since in this case one
could set vanishing initial conditions and still have obser-
vational signatures (see, e.g, [38]).

B. CMB

1. Boltzmann hierarchy

We define CMB multipoles exactly like in Sec. 7.2 of
[18] (which is also the notation used in [33,34]). Moreover,
we use the notation of Sec. 7.3 of [18] for gravitational and
collisional terms. When using pseudo plane waves (that is
with {' # const), as is the case for the harmonics which
realize the matching with the Bianchi models, the
Boltzmann hierarchy [Egs. (7.30) of [18]], is modified
by the rules

C'
m m _>J
SKj — SKj —_—

j—1
5
m J
Kj+1 Zm -
J+1

m
Ky =

s

(6.3)

It is also implied that the v which appears in the definition
of ;7' [Eq. (3.19) of [18]] is v,,. The modification (6.3)
arises because, for pseudo plane waves, the recursive
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relations for the normal modes, e.g., Eq. (7.29) of [18], are
now satisfied for the combination ;G\ ¢™. Consequently,

we find that the integral solutions [Eqgs. (7.33) of [18]] are
modified by an extra factor {'' /¢ 7 on their right-hand sides,

that is

"o Cm "m
/ dne"Z ®Cm + gm) CmO jJ >()()7
ET(no) [0 gy

J _ -7 E =
2j+1_/> dne Z ’C’”“ ).
B (no) o

J _ -7 E
e e 2. C’”ﬁ ¥

with y =59 — 1.

The line of sight integral solution (6.4) is only formal
because the sources depend on the multipoles themselves
and to compute them one needs to rely on the hierarchy.
However in practice it is sufficient to solve the Boltzmann
hierarchy for a small number of multipoles, since the
sources are restricted to multipoles with j < 2, and to then
use the integral solutions for all multipoles.

The case of tensor modes (m = 2), which are also the
only regular modes, is interesting. The temperature quadru-
pole is sourced by an integrated Sachs-Wolfe effect (ISW)
from tensor modes, and is damped by collision. When
Compton scattering is inefficient, the radial functions
account for the effect of free streaming, and this reveals
the focusing and spiraling patterns of the Bianchi modes if
present in the perturbation. Scattering of the temperature
quadrupole also generates the electric quadrupole of
polarization, and subsequent free streaming feeds higher
multipoles of both the electric and magnetic types.

We notice on the structure of the Boltzmann hierarchy
that the scalar mode (m = 0) of the Bianchi V and VII,
cases is special. Indeed, in that case («J¢7/() = 0, which
implies that the temperature monopole does not feed the
temperature dipole. This is expected since a homogeneous
monopole cannot have a divergence. However, there is a
homogeneous divergence of radiation velocity which feeds
the monopole. This is because these Bianchi models are

(6.4)

tilted and the fluid velocity (proportional to 77,(-0)) is not
normal to the foliation of the hypersurfaces.

2. Comparison with [13]

Our results can be compared with those of [13] using a
different method. From (5.9b) [or (5.11) when m = 0] and
the identity (E11), we get

_ o 57
_Kfé’fl

= —il(£ = 1)/ . +mi/ ] R,

m
Sj:ff 1

(6.5a)

- ¢y
sF b1 = sKeit om L
‘+1
= 1[(f + 2)/l’ﬂc - mi/l’ﬂs]s’??+l’ (65b)
where
_ f2 _ S2 f2 _ m2
K= \/< 2/52 ) (6.6)

With these identities, the coupling between multipoles with
neighbor values of ¢ take a simpler form, and the hierarchy
has the structure

0,00 = > (Fu.en + Gy + s -0y,
'=t+1
O,ER = Y ,Fu.El— MBS + Bl — /E.
'=t+1
0,B) = Y ,Fu.Bl + MUIE) — 7B, (6.7)
'=t+1
with
m 2mv,, 2 m?> im
M=z " ae+n (Z*Z)'

Up to variations in conventions, the hierarchy (6.7) is the
same as the one obtained in [13]. Eventually, as we want to
decompose the angular dependence of the observed CMB
directly on spin-weighted spherical harmonic (without
numerical prefactors) the CMB multipoles are related to
the previous ones by (7.35) of [18], that is

V¥4

CMBgym _

®’;‘(;10)(—i)f

(6.8)

For a complete comparison with [13] we also then need a
parity inversion which brings factors of (—1)? [respectively
(=1)?*'] in the temperature and electric type multipoles
(respectively the magnetic type multipoles) since those
authors use multipoles defined with respect to the observed
direction.

The difference between our method based on FLRW
perturbations, and the method of [13] based on Bianchi
spaces directly, is manifest for the Bianchi VII, and VII,.
The invariant basis of these models are related to the
invariant basis of the associated FLRW through (4.11) or

(4.7). In the method of [13], one works fully in the basis

eVl VII,

; Core; " Hence the CMB sources are very simple at
emission, as they are proportional to the matrices (4.23),
but higher order multipoles are populated thanks to the
nontrivial propagation of light in this basis. In our point of
view, we work in the underlying FLRW basis e! (e}') when

dealing with the case VII, (VII,). Hence the sources appear
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to have some large scale spiraling structure, but propaga-
tion is trivial as the direction of propagating photons is
constant. To make it short, either the sources are simple but
light propagation nontrivial as in [13], or sources are
nontrivial but light propagation is simple, eventually
leading to the same Boltzmann hierarchy. All these
differences disappear for the Bianchi I and IX cases (see
Sec. VIB 3) given their very simple structures.

3. Special case of Bianchi I and IX

The case of Bianchi IX is much simpler than other
models since we can see that there is no coupling to £ = 1
nor £ = 3. Of course we have m = 2 so we need at least
¢ > 2 but we need also Z < 2 because v = 3/¢,. So we
have a set of equations for the multipoles with £ = 2 only
which is

87763:2 _ g§t2 + ®C§t2 _ 1_/(,,351:27
0,ES? = —2¢:'BE2 + FCE? — VB,

0,B5% = 267 E5* — 7'B57. (6.9)

The radial functions needed for an integral solution are
simply

0€2 — 5 N (6103)
1
e = Scos(2/2,). (6.10b)
_ 1
P = Ssin(2r/2,). (6.10¢)

Physically, polarization is rotated with respect to the
invariant basis, and a quadrupole in E (generated from
scattering out of the temperature quadrupole) converts to a
quadrupole in B and back [14].

The Bianchi I case is even simpler, and from the limit
. — o0, C, - o in (6.5), we also check that there are no
couplings to Z + 1, and magnetic type multipoles are not
fed from free streaming of electric type multipoles. Hence
the system of equations is simply

aﬂgzim — gzim + @CQim _ ,l_/@zim,

9,E3" = FC5m — TE3™, (6.11)

Also the radial functions needed for the integral solutions
(6.4) are pure constants (1/5 for séézm)) as seen from the
limit Z. — o0 in (6.10), in agreement with the simple
structure of the previous system which is trivially integrated

on 7.

C. General cosmological observables

All cosmological observables (weak lensing conver-
gence or shear, lensing field, galaxy number counts, red-
shift drifts, etc.) are of the form of an integral on the
background past light cone. However, when considering
the effect of a Bianchi perturbation, one must take into
account the fact that it corresponds to a pseudo plane wave,
and one must consider the effect of the weights {7, Quite
similarly to the integral solution (6.4) for CMB, one finds
that the general solutions for the multipoles of cosmologi-
cal observables, when rephrased in terms of integrals on
sources multiplied by radial functions [Eq. (7.40) in [18]],
need only be modified by

gm ST (m)
saj b d Z:_m saj .
j/

(6.12)
Hence from the knowledge of the radial functions, which
must be computed from analytic continuation given that v is
complex for some Bianchi perturbations, it is immediate
that we obtain theoretical predictions for all observables
using the same framework as the one for stochastic linear
perturbations.

In general, since we use the zenith direction for the
reference axis, one needs to allow for a general orientation
of that Bianchi special direction, as discussed in Sec. V B.
Rotations can be performed directly at the level of the
computed observables, that is rotating the angular multi-
poles of observables. Similarly for models which are not
invariant by a global parity transformation (VII,, VII, and
IX), we can perform the parity transformation at the level of
multipoles. For even type multipoles (e.g., temperature or
electric type polarization), this is a factor (—1)¢ and for
magnetic type ones a factor (—1)7F!.

Finally, when computing multipoles, one can restrict
the computation to m > 0 since the negative m are con-
strained by the fact that the metric perturbation must be
real [relations (4.25) and (4.26)]. The CMB multipoles
satisfy X" = (—1)"X%*, with X =0, E, B, and one
encounters the same relations for all cosmological observ-
able multipoles.

VII. CONCLUSION

Bianchi models with isotropic limit, namely, models I,
VIl,, VII,, V and IX, are not alternative cosmologies.
Rather, they are natural manifestations of linear and
homogeneous cosmological perturbations in FLRW uni-
verses. The exact correspondence between nearly isotropic
Bianchi and perturbed FLRW models allows for the
computation of all angular multipoles of cosmological
observables within the same FLRW framework. The modes
v,, required for the exact correspondence are summarized
in Table IV, and our main results can be summarized as
follows:
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(1) For models I, IX the dynamics involves only #Z = 2
multipoles, hence the Boltzmann hierarchy is not
really a hierarchy as it reduces to (6.9) and (6.11).
Nonetheless one could use existing tools [39,40] for
solving the Finstein-Boltzmann set of equations,
even though that would amount to use a sledge
hammer to kill a fly.

(i) For the model VII, the v,, are real, and it corre-
sponds to the effect of standing circularly polarized
waves. Once again, existing tools are readily usable
in that case.

(iii) However, since the correspondence of Bianchi
models V and VII, with perturbed FLRW is through
supercurvature modes, that is with complex modes
V,,, one must rely on an analytic continuation of the
radial functions needed in the expressions of the
normal modes (3.28). In addition, the correspon-
dence is not with usual plane waves, but with pseudo
plane waves, which are specified by the weights {7
in the sum (3.34). This requires one to modify the
usual Boltzmann hierarchy of [34] with the rules
(6.3). It also modifies the integral solutions for any
cosmological observable, but this is simply equiv-
alent to the redefinition (6.12) for radial functions, as
seen explicitly on the CMB case in Egs. (6.4).

The power of the this approach is that one could compute

the nonstochastic part due to a Bianchi type perturbation
with all the sophistication of the usual linear perturbation
theory around FLRW spacetimes. For instance, that would
allow one to include consistently the anisotropic stress of
photons and neutrinos that should normally enter in the
right = -hand side of (6.1). This method would avoid the
need to split numerical codes between a part dedicated to
Bianchi related effects, and another for stochastic pertur-
bations, as done in [16,17]. Furthermore, using the integral
solutions to the CMB multipoles, that is the line of sight
method of [33,34], would fasten the computations. Indeed,
exactly like it has allowed one to solve the Boltzmann
hierarchy of the stochastic component for a limited number
of source multipoles, the integral solution method would
also allow one to keep only a small number of multipoles
when solving for the sources instead of the full hierarchy
(typically .« = 1000 for the analysis of [16]). More
importantly, this allows the possibility of computing con-
sistently the multipoles of various cosmological observ-
ables for the same linear Bianchi perturbation, opening the
possibility of joint constraints on global anisotropy.
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APPENDIX A: 1+3 SPLITTING OF EINSTEIN
EQUATIONS

The Gauss-Codazzi relation is [27]

R = (3)R;w/1rf + 2K}4MKU]D
- 4(D[2Ko-][u)ezz] + 46[141(1’]/)1(/)[165]

+ 46’[},1'(1,][,166] — 4(D[}4KU][/1)66]7

uvio

(A1)

where a dot derivative stands for e#V,,.
For a homogeneous projected tensor, one has [28]

p

— E LT, .. .
DkTi]---i,, - Fklell...lj_lllj+|...lp'
=1

(A2)

Hence, using the definition of the Riemann tensor from the
commutation of two such derivatives, we infer after using
(2.31), the Riemann tensor associated with the spatial
metric

OR; M = - % Ccr..C

1

1
o+ 3 C,l.crh+C,lcl

1
+C,L NP+ €y CPH zc/pcjkp

1
+-C,ChP + CF G

. (43)

The three-Ricci tensor and three-Ricci scalar can then be
deduced, and we obtain:

1 1
OR; = _Eckilckjl - ECkilCljk
1
+ ZCik]Cjkl + C(ij)pckpk’ (A4)
3) 1 k1 jik ki p
*R:—ZC,-jkC —EC,»jkC +C kC i (AS)

Whenever the placement of indices on the constants of
structure is not C' jk» 1t implies that indices are either
lowered by h;; or raised by h". In particular using the
general decomposition (2.6) the Ricci and Ricci scalar are
given

1
OIRij = hij | =240A% = NgN* + = (N)?

+2Nikaj —N”Nllz —2€k[<le')lAk, (A6)
. | .
GR = —6A,A" — N;;NV + 3 (N2 (A7)
Note that the traceless part of the Ricci scalar is
ORyj) = =Ny NE + 2N KNy, — 2e;N ' AF, (AB)

and it vanishes whenever N/ = 0.
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From (A2) we find that for spatial (projected) symmetric
trace-free tensors T+1--#»

DTy, = —(n+2)ATy; ; —nely; Ty, N,
(A9a)

: (n—=1)
curlT;, ;= —Alej, Ti, " = 2 NiT,.

+ (2” - ])ngilTizﬂsz)k’

"

(A9b)

D,T

Jhia i)

(A9¢)

_ 1 k
= nAGTi i) = neui Ty i, Ny

where we have introduced the curl in curved space

CurlTij___k = ers(iDrTj...k)s‘ (AlO)
In particular for a homogeneous projector vector V¥, and a
symmetric trace-free homogeneous projected tensor 7+

DT} = =3A;T) — ¢;; THNP*. (A12)
This last relation can be used for spatial derivatives on
extrinsic curvature (on separating its trace part) in (Al).
Furthermore, the Gauss-Codazzi relation is used in practice
by also converting the dot derivative to Lie derivative on the
extrinsic curvature. In general, the dot derivative of a
homogeneous tensor is transformed to a Lie derivative
using

p

LT; i = Til.“i[, + Z K/ Ti isjivr.i, (A13)
i=1
We need quite often the relations
2
Eehlj :§9hu+20',], (Al4a)
. 2 .
LhY = —gﬁh” — 26", (A14b)
., 2 r
Ee()',-j :Gij+§96ij+26ikcg o (A14C)
Lot =&, (Al4d)
L 2 0
LoV = 6" — 590’1 — 200}/ (Alde)

A contraction of the Gauss-Codazzi relation leads to the
Raychaudhuri equation

o y
0=—30"—0" —Ryee’, with o' =007 (AlS)

The general Friedmann equation (constraint) is another
contraction of the Gauss-Codazzi relation and is

2
CR = — 592 + 0% +2G,,ete. (A16)

The tilt constraint is found for yet another contraction
leading to

ne'G, = D;K) = —3Akc;; — e;,,6"Nb.  (A17)

And finally for the shear evolution we get

o.-ij + 90,‘] = N<U>N]]§ — 2Nk

(ke 2A8%,iNY + G

)
(A18)

It can be easily recast with a Lie derivative using
Egs. (A14).

APPENDIX B: OPEN CASE COORDINATES
AND BASIS

Here we give expressions for the KVFs and invariant
basis of the Bianchi V and VII;, model using the (x,y, z)
coordinates of Ref. [36]. These are related to the spherical
hyperbolic coordinates in (4.8) by

x = £.exp(+z/¢.)sinh(y/¢,.) sin 6 cos ¢,
y = £.exp(+z/¢.)sinh(y/Z.) sin @ sin ¢,

z = —=¢.In[cosh(y/¢.) — sinh(y/Z,) cos 0]. (B1)

In terms of these variables, the metric of the open space
becomes

ds? = dz? + exp(—2z/¢.)(dx* + dy?).  (B2)

Because these variables are more adapted to the symmetries
of the Bianchi V models, the KVFs and invariant basis
simplify considerably. The KVFs are

& =0,
& =0,

g;/ = (x/l’ﬂc)ax"' (y/fc)av +az- (B3)

These solve (2.9) with N =0, as one can check. The
corresponding invariant basis is given by

&) = exp(:/¢,)3,.
&) = exp(:/¢.)d,.
el =0.. (B4)

As for the VII,, case, the KVFs are

123534-22



BIANCHI SPACETIMES AS SUPERCURVATURE MODES ...

PHYS. REV. D 100, 123534 (2019)

VI,
=0y

VI _ g

2 y

v, [ X y y X
=|(—+= ———110, , B5
: (fc * &) Ot <fc ﬂ) &+0;  (B3)

whereas the invariant basis is trivially found from (B4)
and (4.11).

APPENDIX C: INVARIANT COBASIS

In any case, denoting p,v... components in basis or
cobasis associated with coordinates (x, y, z or y, 8, ¢), the
invariant cobasis of a given Bianchi type is related to the
invariant basis through

e, =g"g.e’ (C1)
Here ¢'/ are the components of the inverse metric in the
invariant cobasis, and g, the components of the metric in
the coordinate basis. For Bianchi types I, V, IX, by
construction ¢ = /. Hence finding the cobasis from
the basis is straightforward. For instance from the invariant
basis in spherical coordinates in the Bianchi V case (B4),
one infers trivially the invariant cobasis. For the Bianchi
VII,, case, since the invariant basis is related to the one of V
by (4.11), finding the invariant cobasis of VII,, from the one
of V is also straightforward from (4.7).

APPENDIX D: MATCHING EQUATIONS
(FINDING THE v,,)

In this section we gather all the details of the identi-
fication between FLRW and Bianchi models at the level of
equations, allowing to determine which modes v,, are
needed to realize the matching (5.2).

1. Tensors

The matching between tensor modes is the easiest to
make. For that we just need to look for tensors such that the
definition

+2
ij ﬂ(iz)%('/ ) (Dl)

holds. The two main equations in this case are Eqs. (3.17)
and (4.19b). Their direct comparison leads to

S#) = 12, + K, (D2)
where we have used (3.27) with j = |m| = 2. Using the
results of Table III, it is now straightforward to find the

mode v4, which connects these two equations. For flat
(K = 0) models we find

[ (3)
Uiy = D
Ul xE (VID).
For open models, K = —£7% and we find
L (V).
Uiy = {ff L (D4)
7 +7. (VIL).

Note that we can obtain models I and V as limits of models
VII, and VII,, respectively, by taking £, to infinity while
keeping 7. fixed [see Eq. (2.11)].

For the closed model (K = #7%) we have

3
Vpp = F+—

- (X

(D5)

or |k| = v/67-'. One can show that this corresponds to a
tensor wave whose length equals one-half the curvature
radius of a closed universe [2]. Finally, we note that in all

cases the momentum constraint P§m> = 0 is obvious, since
tensor perturbations do not induce momentum.

2. Vectors

In principle the matching of the vector modes follows
similarly, that is, we introduce modes E iil) satisfying

(1) __ (1)
D(iEj) zﬁ(il)%‘j

(D6)
and then use it to compare Egs. (3.18a) and (4.19b), from
which we deduce the v | with the help of (3.27). But since
the former does not contain a Laplacian term, and the latter
has 8 = 0 for flat and open models (the closed case is
discussed below), this comparison will lead us nowhere.
We can instead find v, by comparing the constraint
equation (3.18a) with the tilt (2.49), provided we have an

explicit solution to Eq. (D6). Such solution can be con-

structed by writing EEil) as a linear combination of the

invariant basis and using Eq. (A2) to fix the coefficients.
Since D;e;) =0 in model I (see Sec. IVA), nontrivial
solutions can only be constructed in models VII, VII,,, and
V. As it turns out, a solution to these models can be written
jointly as [3]

+1 fs/fc + i
EY = P 1) (m) (eﬁl)h)i- (D7)

One can easily check that model VII; is recovered when
. — oo (and thus 2 — 0), and model V in the limit
£ — oo (and thus h — o).

If we now use (4.31) to decompose the right-hand side
of (3.18a) and use (3.27) with j = |m| = 1, we find
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2
PP = (M5 -k ey o

This, together with (D7) and the results of Table III, allows
us to find the v, for each model. For flat models this gives

{ oo (D9)
Vi = D9
£ +1, (VIL).
For open models, on the other hand, we find
L ’ (V)3
vy, = {””" L (D10)
iZ_I'fT’ (VIL,).

From (D8), one notices that models VI, V, VII,, are titled,
and consequently the fluid velocity has some homogeneous
vorticity. The form of this vorticity is deduced using

curlP ilP (D11)
which is consistent with (E4).

Finally, since Bianchi IX have compact spatial sections,
the splitting into sv¢ modes is unique [2,3]. Thus, all modes
of the shear map uniquely to tensor perturbations of FLRW
spacetimes, and there are no vector perturbations (see also
Appendix E).

3. Scalars

Since the shear is traceless, the correspondence with
metric perturbations assumes that ¢ = 0 in (3.5). Following
the same logic as for tensor and vector modes, we now look
for modes y such that

0
Dijw Eﬂ(o)flgj)- (D12)
The relevant equations to compare are Egs. (3.15) and
(4.19b). Using (3.27) for j —2 = |m| = 0, we arrive at

SO =~ [(ry)? - K]. (D13)

U.)|>—-

From Table III we see that all open and flat models have
S = 0. Thus
0
vy = { i
‘.

For the open models, v, corresponds to the maximal
supercurvature mode.

We stress that one will run into difficulties when finding
explicitly the harmonic which leads to (D12). Let us
consider first the flat case, corresponding to Bianchi types
I or VI, and for which k£ = v, = 0. One finds immediately

(L VIL).

(V. VII,). (D14)

that D/D;; = 0. Hence, the moment constraint (3.18)
which reads

pP; = _DjDijl//I
2

=—-Z(A+K)Dy'

: (D15)

is satisfied. However, this also implies that if (D12) is a
harmonic with j = 2, m = 0, it cannot be deduced from the
STF derivative of a harmonic with j =1, m =0, as in
(2.22) of [18]. The best construction we can find consists in
defining

0=k

k2 ’ (D16)

= k(e%/llo)i

from which we can build D;;y, and eventually we take the
limit £ — 0.

For open models, the situation is slightly improved.
Indeed, we can define a vector field

Wi=-Cbo (evn,) (D17)

such that

= Boyas) - (D18)
One can check by direct covariant differentiation [using
Eq. (A2)] that

Wi - 2/))(0> AWZ - —ZKZZW,
Since (1)? = —1/¢% = K for open models, it follows from
the second equation that W; is a solution of (3.27) for

j—1=m=0. That is, W, is a harmonic vector.
Using (D17) in (D15), we obtain

(D19)

2
Pg()) K [(v0)> = 4K]Z (e, )i (D20)

where we have once again invoked (3.27), this time for
Jj—1=|m| =0. We check that the above expression is
satisfied for v, = i/7,, in agreement with (D14). Note that
the vector harmonic W; cannot be deduced from a scalar
harmonic using (2.22) of [18] as is usually the case. Indeed,
using vy = i/#, (which corresponds to k = 0) in (A.3) of
[18], one obtains rather immediately that the scalar har-
monics j = 0, m = 0 for that mode is a pure constant, and
hence any derivative of it vanishes. But contrary to the flat
case, one needs not consider a scalar harmonics with £k > 0
and then form the vector (j = 1, m = 0) and tensor (j = 2,
m = 0) harmonics before considering the limit k& — 0,
since we can start our construction directly from (D17)
using (D18).
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4. Consistency checks

As a final consistency check, we verify whether the
curvature perturbation and the fluid conservation equations
are consistently matched with their Bianchi counterparts in
the homogeneous limit found in the last sections. Starting
with the curvature perturbation, we recall that the identi-
fication of the scalar mode assumes ¢ = 0. It then follows
from (3.10) that

4
a*6(PR) = gA(A +3K)y,

=2D'DID;W. (D21)
where, in going from the first to the second line, we have
used the identity

2 .

For flat models, K = 0 = §(®)R), which gives k = vy = 0,
in agreement with our previous findings. For open models,
the second line of (D21) can be rewritten as

4 ‘
a’5(PR) = -3 [(v0)* = 4K|D'W;,

— Sy - 2K, (D22)

3
where we have also used (D19). Using v, =i/¢, from
(D14) and the definition (4.29), we find that £2ZR(®) = -8,
in accordance with Table III.

As for the fluid conservation equations, the matching
follows straightforwardly. Indeed, Eqgs. (3.19) with 9;6p -0
and (4.19e) are formally the same, whereas Egs. (3.20)
and (4.19d) are formally matched for ¢p = 0.

APPENDIX E: FINDING THE {7

We give here the technical details of the method used in
computing the constants (7' needed in the matching
relation (5.2).

1. Method

Before getting into the details, we first note that relations
(4.5) and (4.11) allow us to unify the description of the
method using only the invariant basis of models I, V, IX.
Hence, let us define

q" = q Mt (E1)

with M"j = 6; for models I, V and IX and M"j = M'; for
models VII, and VII;,, where M was introduced in (4.6). In

0 _ (0)

all cases, g;;" =¢q;;’. In this appendix, indices i,j,...

belong to the invariant cobasis of models I, V, IX, which
are in turn associated respectively with the flat, open and
closed FLRW. For instance, we have

ql(;'n >e</11h ® ey, = EIE}")eQ ® ey. (E2)

From (E1) we find the convenient property
~(m im ~(m
.4 =24 (E3)

Hence when computing spatial derivatives (D;) of the qg}")

in the Bianchi VII, case, it is convenient to use the right-
hand side of (E2). Indeed, the constants of structure
associated with the type V invariant basis have NV = 0

and we need only the first lines of Egs. (A9), while the z

dependence of the components E]S;") is handled simply via

(E3). Said differently, we avoid the complication of the
terms involving the N/, as their effect is equivalent to the
simple relations (E3). A similar and even simpler method
applies for the type VII, which is related to the type I
exactly as in (E2). Since the invariant basis associated with
the I type has vanishing constants of structure, we must
only consider the derivative of the components (E3).
Hereafter we used this method extensively.

Relation (5.2) can now be proven by proving that the
relation and all its derivatives (the covariant derivatives D;
associated with the background metric) hold at y = 0.
Checking that the relation (5.2) holds at y = 0 is trivial as

we chose the qg;"> precisely on that property. Checking that

the derivatives of (5.2) are equal at y = 0 is less obvious.
However, instead of proving that all derivatives are equal
at y = 0, given the general decomposition of a derivative
[e.g., Eq. (3.22) of [18]] it is equivalent to check only the
equality of STF combinations of derivatives at the origin,
in addition to showing that the curl and the successive
divergences associated with D; (see [18] for definition) of
both sides of (5.2) at y = 0 are equal.

2. Types 1,VII,,V,VII,

Let us consider first the I, VI, V, VII,, cases. We first
check that the curl of an harmonic is also an harmonic [see
Refs. [18,41] and Eq. (3.16) of [18]], and similarly for
plane waves, since

o my im
curl’/pQg >(1/) = r X fQS'; )(V), (E4)

where the curl is defined as in (A10), but with D; replaced
by D;. Hence the same relation is satisfied by pseudo plane
waves. Considering the fact that the derivative D; asso-
ciated with the FLRW metric is found from the spatial
derivative D; of the Bianchi metric evaluated at lowest
order in f#;; (meaning in practice that we can lower and raise
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indices of A; and N/ with o;j and 57), we can use (A9c) to
obtain

curlgy}’ =" g7, (ES)

with the value (5.7) for v,,. Hence we get

curlql(.;.") = éc lQ,jzm (E6)
=0 5 =0
Next, we must also check that
~(m) B 52 (2m)
D(l’l "'Di" qjk) = 5 "Di” ij> (E7)
=0 m =0

The right-hand side is evaluated using the very definition of
derived harmonics [18] (but modified by the fact that we
consider pseudo plane waves)

28 em
= k2L o™, (B8)

(2m)
D(il"'Di(_zQ‘ . > "

lp—1ly
together with the normalization at origin. More specifically,
at y = 0, only the term £ = j in the sum (3.34) contributes,
and we then use either Eq. (2.39) or Eq. (B.30) of [18]. We
then find for the right-hand side of (E7)

(ik)

p288¢ o o om)
:Cm i : i,«_zqt,« 1

21

The left-hand side of (E7) is found by induction using the
method detailed in Sec. E 1, and we find

(m)
D<’1 Dl/—zq

ir_1ie)
14
:II<P‘
p=3 ‘

c

=0
I mi z 2 glm)
+ Z) e<i1 . -'ei/_qu{ llf>

Comparing this with (E8) allows us to check that for m # 0,
(E7) holds if

(E9)

7=0

(f—l)—l—mi/\/ﬁ'

=) s (E10)
Using the identity
A + (Wt )] = [(£ = D)V + mi]
x [(£ 4+ 1)Vh—mi]  (Ell)

it is recast in the condition (5.9b). However (E10) is only
proven for £ — 1 > 2 with this method. To show it is valid
for # — 1 = 1 one must check that divergences are equal.
For pseudo plane waves the divergence is

Sl G-t

(jm) i Jj— j—1,m

vaI/ W q(jm) om iy
J

(E12)
where U™ is defined in Eq. (2.26) of [18]. A direct
computation then shows that

:ép}Q

Dig!
jk /1/:0 gﬂ’l

, (E13)
x=0

implying that (E10) can also be used to determine %' /{7
Finally, for m = 0 the equality

_ &

)(:0 m

DIDg 2 pipkQ (E14)

7=0

implies that ¢¥/¢5 = —iy/1 + (147,)?/2 and thus we find
(5.11). Note that since (vyZ.)> = —1, divergences must be
handled as discussed in Sec. (5.11). The global factor
freedom in the {7 is fixed if we choose (5.9a) which
satisfies manifestly the necessary condition (5.6).

3. Type IX
We now summarize the results of Ref. [2] so as to
determine the {7 in the IX model. Let us consider a
homogeneous, symmetric and trace-free tensor 7' on the
closed FLRW background

T =Tjelx ® ely. (E15)

We can prove [using e.g., (A9c)] that it must satisfy

2
DZT]k = gelg)(jcurlTk)p, (E16a)
3
CuI‘lTl-j = ZTU <E16b)
The first of these equations imply that 7;; is a Killing

tensor, D;T ) = 0, and in particular D’TU = 0. From the
definition of the curl, one can also show that

3 3
—ATy + 5Ty

curl(curlT;;) = 7

D;(D*T jy1.
If we now combine these identities together we finally
arrive at

6
Hence, exactly as discussed in detail in [2], we find that
the homogeneous tensors on a closed FLRW are tensor
harmonics with k> =6/#2 and hence 12, = (3/¢,)>.
Comparison with (E4) then shows that it corresponds to
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mv,, = 6/¢,., and thus with |m| = 2 the modes needed in
the matching are

3
Dizzif.

- (E18)

Hence, all modes qg;") which define the Bianchi IX as a

perturbation to a closed FLRW are tensor harmonics, or
linear combination of possibly rotated tensor modes, with
m =2 and v, = 3/¢, (along with its complex conjugate
which from Table V amounts to adding the harmonic

rotated by an angle z around the y axis so as to form a
standing wave of given chirality).

Had we chosen opposite signs for the Bianchi IX
constants of structure, there would be a minus sign in
the right-hand side of (E16b), and thus an extra minus sign
in (E18). We would find that homogeneous tensors corre-
spond instead to (sums of rotations of) m = —2 harmonics
with v_, = 3/¢,. (with their complex conjugate to form
standing waves). One construction is related to the other
one by a global parity transformation, and corresponds to
switching the KVF with the invariant basis [2,3].
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