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A network of cosmic strings would lead to gravitational waves which may be detected by pulsar timing or
future interferometers. The details of the gravitational wave signal depend on the distribution of cosmic string
loops, which are produced by intercommutations from the scaling network of long strings. We analyze the
limits imposed by energy conservation, i.e., by the fact that the total amount of string flowing into loops
cannot exceed the amount leaving the long strings. We show that some recent suggestions for the cosmic
string loop production rate and distribution are ruled out by these limits. As a result, gravitationalwaves based
on such suggestions, in particular “model 3” used in LIGO data analysis, are not to be expected.
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I. INTRODUCTION

The Universe may contain a network of cosmic strings
formed at a symmetry breaking transition in the early
Universe or by brane inflation in string theory. (For reviews,
see Refs. [1,2].) In the simplest cases, which wewill discuss
here, strings have neither ends nor vertices, so the network
(in a spatially infinite universe) consists of infinite strings
and closed loops.
The strings are continually intercommuting, so loops may

break off of infinite strings or rejoin to them, and loops may
also fragment or join with each other. However, the net effect
is a production of loops, so string energy leaves the infinite
string network and flows into the loop distribution. Loops
then oscillate, emitting gravitational waves and eventually
decaying. These processes allow for the cosmic string net-
work to reach a scaling regime, in which all linear measures
evolve (on average) in a way proportional to the cosmic time
t. The energy density of the scaling network evolves as
radiation in the radiation era and matter in the matter era, so
the string network is always a subdominant component and
does not cause the problems that monopoles would.
Gravitational waves are the leading way to look for a

cosmic string network [3–12]. The observable gravitational

waves come mostly from the loop distribution, and there-
fore it is of great importance to understand this distribution.
Many distributions have been inferred from simulations or
proposed on theoretical grounds. Here, we discuss some
important constraints on the rate of loop production and the
resulting distribution of loops, arising from the fact that the
energy in loops comes from energy originally in the long
string network, so energy conservation couples the loop
production rate to the loss of energy in the long strings.
In the next section, we discuss the definition of the long

string network and the loop production and distribution
functions. In Sec. III, we derive and apply the constraints
resulting from energy conservation in the production of
loops and compare with specific models of loop produc-
tion. In Sec. IV, we point out that the problem is more
general than a conflict of numerical values but applies to
any attempt to derive a rapidly diverging loop production
function from a simulation, and in Sec. V, we point out that
these constraints apply also to certain loop distribution
functions. We conclude in Sec. VI.
A dictionary for translating between the parameters and

functions used here and those in some other papers is given
in Appendix A.

II. LOOPS AND LONG STRINGS

The separation between loops and infinite strings is not
completely straightforward because a sufficiently long loop
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cannot be cleanly distinguished from an infinite string.
Loops much larger than the horizon are continually
reconnecting to infinite strings and breaking off from them
again. A very long loop consists of many causally dis-
connected segments, and the dynamics of each segment
may connect the loop to an infinite string [13], so the
typical lifetime of such a loop between intercommutations
drops inversely with the loop length.
Loops much smaller than the horizon, however, are very

unlikely to join with other strings because these loops are
much smaller than the distance between strings,which grows
with the expansion of the Universe. Small loops, once
formed, may fragment into smaller loops, but simulations
show that this process does not continue indefinitely but
rather yields a distribution of non-self-intersecting loops.1 It
is thus possible to make a reasonably clear distinction
between loops,meaning small loops on non-self-intersecting
trajectories and that we do not expect to rejoin larger
structures, and long strings, in which we include both
superhorizon loops and strings that really are infinite.
Simulations, of course, have no infinite strings.

Simulators generally use periodic boundary conditions,
meaning that all strings are in loops. Typically, all strings
that cross the horizon are part of a single large loop that
crosses through the periodic boundary conditions many
times. Again it is possible to distinguish small loops from
long strings, meaning loops above a certain size. In our
simulations [15,16], we define loops existing at a certain
time as closed strings of any length that will not self-
intersect or rejoin in the future,2 but the exact definition will
not be important here, especially as we will mainly be
concerned with loops far below the horizon size.
We will describe loops at time t by a loop distribution

function, nðl; tÞ, that gives the density of loops per unit
volume per unit loop length existing at time t. We will
describe loop production by a function fðl; tÞ giving the
number of loops produced per unit time per unit volume per

unit loop length. Loops in self-intersecting trajectories are
excluded from both of these functions. We also exclude
loops that will join to long strings or other loops, but this is
of little consequence for loops much smaller than the
typical interstring distance because it is very unlikely that
they will find any other string to join.
All lengths here are invariant; i.e., a loop of length l has

energy μl, where μ is the energy per unit length (tension) of
the string, and we work in units where the speed of light is
set to 1. The energy density in long strings [i.e., everything
that is not counted in nðl; tÞ] will be denoted ρ∞.

III. ENERGY CONSERVATION

The breaking off of loops conserves energy, so that the
total invariant length of string before and after an inter-
commutation is the same.3 This leads to a constraint [17]
because the energy flowing into loops must flow out of long
strings. The long-string energy density also decreases due
to dilution of strings and redshifting of the string velocity
due to the expansion of the Universe. The resulting
evolution equation for the energy density of long strings is

dρ∞
dt

¼ −2Hð1þ hv2∞iÞρ∞ − μ

Z
∞

0

lfðl; tÞdl; ð1Þ

whereH is the Hubble constant and hv2∞i is the rms average
velocity of the long strings. Equation (1) constrains the total
rate of loop production.
In this paper, the parameter l refers to the invariant length

of the loop at the time of production, i.e., its total energy
divided by μ. Some of this energy is in the overall kinetic
energy of the loop (with respect to the Hubble flow). If the
loop is long-lived compared to the Hubble time, this kinetic
energy will be lost to redshifting, so what matters is the rest
energy [16]. For very short loops, which will be of most
concern to us here, l is the natural variable.4

No model of the string network is necessary for Eq. (1),
but we can go further if we assume that the network is in a
scaling regime in a cosmological era in which the scale
factor a ∝ tν so that ν ¼ 1=2 in the radiation era and 2=3 in
the matter era. In that case, we define a scaling measure of
the loop length, x ¼ l=t, and definenðxÞ ¼ t4nðl; tÞ to be the
number of loops per unit x in volume t3, fðxÞ ¼ t5fðl; tÞ to
be the number of loops per unit x produced in time t in
volume t3, and the “interstring distance” γ ¼ ffiffiffiffiffiffiffiffiffiffiffi

μ=ρ∞
p

=t. In a
scaling regime, γ is constant, and nðxÞ and fðxÞ depend only
on x and not on t. In that description, Eq. (1) becomes

1Fragmentation is less common than one might at first think.
Loops are formed by the combination of right-moving and left-
moving excitations on the string. When a loop forms, many small
excitations have already passed through each other without
forming loops, so they will not do so on future oscillations.
Others have not yet passed and may thus form a smaller loop in
the first oscillation, but this loop forms with no causal depend-
ence on the fact that it is part of a larger loop at the time of
formation. The only small loops that form because of being on a
larger loop are those which include at least one of the kinks
arising from the larger loop’s formation [14]. Simulations show
this phenomenon to be quite rare.

2After a loop has oscillated three times, we remove it from the
simulation, so we would miss rejoinings after that stage. But we
have experimented with allowing many more oscillations before
removal, and this makes no significant difference to any quantity
reported by the simulation. We run long enough beyond the
reported simulation ending time to allow loops of up to half the
horizon size to undergo the necessary number of oscillations to be
correctly classified as loops.

3We neglect a tiny amount of particle radiation here. Taking
account of it would only strengthen our conclusions.

4If we let m be the loop rest energy, the total rest mass
appearing in loops is

R
∞
0 mfðm; tÞdm, which is less than

μ
R
∞
0 lfðl; tÞdl, leading to a stronger constraint on fðm; tÞ than

on fðl; tÞ.
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Z
∞

0

xfðxÞdx ¼ 2

γ2
ð1 − νð1þ hv2∞iÞÞ≡ B: ð2Þ

Any proposed scaling loop production function fðxÞ
must obey Eq. (2). In our simulations5 [15] (values from
other groups are very similar), we find γ ¼ 0.30 and
hv2∞i ¼ 0.40 in the radiation era and γ ¼ 0.51 and hv2∞i ¼
0.35 in the matter era, so6

B ≈
�
6.7 radiation;

0.77 matter:
ð3Þ

Reference [18] discusses loop production functions
(further analyzed as part of Ref. [19]) which grow rapidly
toward small scales until they are cut off at some value xc,
which is intended to represent the effect of gravitational
smoothing on long strings. Specifically, they consider the
possibility that7

fðxÞ ¼ cx−βΘðx − xcÞ; ð4Þ

with β > 2. Integrating Eq. (4) gives

Z
∞

0

xfðxÞdx ¼ c

ðβ − 2Þxβ−2c
: ð5Þ

Following Ref. [20], Refs. [18,19] say that we should
take

xc ¼ ϒðGμÞ4−β; ð6Þ

with ϒ ∼ 20, and suggest that we choose β and c to match
the results of Ref. [21]. Thus, β ¼ 2.6 in the radiation
era and 2.41 in the matter era.8 With Gμ ¼ 10−7 as
suggested by Ref. [19], Eq. (6) gives xc ≈ 3 × 10−9

(radiation), 1 × 10−10 (matter). To find a corresponding
value of c, we use Eq. (2.22) of Ref. [19],9 which in our
notation gives

nðxÞ ¼ c
β − βcrit

x−β; ð7Þ

where βcrit ¼ 4 − 3ν ¼ 5=2 (radiation), 2 (matter). Our
nðxÞ corresponds to

ð1 − νÞ4 SðαÞ
α

¼ ð1 − νÞ4C0α
−p−1 ð8Þ

in the notation of Ref. [21], where C0 ¼ 0.21 (radiation),
0.09 (matter). In our notation,

nðxÞ ¼ ð1 − νÞ4−βC0x−β: ð9Þ

Setting Eqs. (7) and (9) equal gives

c ¼ ðβ − βcritÞC0ð1 − νÞ4−β; ð10Þ

and the numbers above give c ¼ 0.008 in the radiation era
and 0.006 in the matter era.
Putting these values in Eq. (5) gives

Z
∞

0

xfðxÞdx ≈
�
2000 radiation;

200 matter;
ð11Þ

larger than the values in Eq. (3) by a factor more than 200 in
both cases. In fact, the situation is much worse than that
because nonobservation of gravitational waves limits Gμ to
be no more than of order 10−11 [7,9,10,22], and then the
discrepancy is 6 × 105 in the radiation era and 9 × 104 in
the matter era.
Thus, it is impossible to have the loop production

function of Eq. (4) with parameters at all similar to those
used by Refs. [18,21] and discussed in Ref. [19].

IV. NETWORKS WITHOUT
GRAVITATIONAL SMOOTHING

Suppose we had a huge computer and could run large
simulations (without gravitational effects) for as long as we
wished. We could continue deep into the scaling regime10

and discover the scaling loop production function. What
could it be? Suppose it were a power law for small x.
There would be no gravitational cutoff. So, we would have
just fðxÞ ¼ cx−β, and if β > 2,

R
xfðxÞdx would diverge at

5The definition of loops and loop production used in our
simulations is exactly as described above. However, it would be
difficult to report long string statistics in a way which depends on
the future evolution of the string. Instead, we report our ρ∞ and
hv2∞i including all string that has not been identified as being in
non-self-intersecting loops. Some string in loops may later rejoin,
and some string is in loops that we have not yet identified.
However, we can recognize both of these phenomena later. The
maximum error they could have introduced is less than 1%.

6Reference [15] defined scaling quantities in terms of the
horizon distance, and consequently the B found there was larger
by factor ð1 − νÞ−3. See Appendix A.

7Equation (2.15) of Ref. [19] includes a second term repre-
senting reduced but nonzero production of loops at scales below
xc. Including it would increase the energy flow into loops and so
make the conflict here worse.

8These are the central values given in Ref. [21]. For other
possibilities, see Appendix B.

9Since we are matching Ref. [21], in which there is no
gravitational backreaction, we do not need the more general
form of Eq. (2.17) of Ref. [19].

10Without gravitational effects, we cannot have true scaling
because energy will collect in tiny loops. But we would expect
scaling in the long string network and in loops above some
continually decreasing lower limit size.
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x ¼ 0. Such a scenario would violate any energy con-
servation bound, so no such result is possible. We cannot
evade this conclusion by proposing cutoffs due to
gravitational scales because the hypothesized simulation
does not include gravitation.
Our hypothetical simulation would have to give some

fðxÞ that obeyed energy conservation and so did not rise
too quickly at small scales. It would give an nðxÞ that would
go as x−βcrit at small x. If we had such a simulation, we could
then apply gravitational effects to give an updated nðxÞ,
which would then go as x−βcrit down to some x where
gravitational effects became important and then fall below
that line.
But we do not have such a simulation. Instead, we must

make do by extrapolation from smaller simulations. In
Ref. [21], the authors fit nðxÞ to a power law over the range
in which they felt nðxÞ was accurately determined. What
can we do with this information? It would be an error to
extrapolate this power law and conclude that in a much
larger simulation it would continue forever, because we
know that is impossible. Neither would it make sense to
extrapolate the power law until some gravitational cutoff,
because the simulation does not include gravitation. We
know that in the nongravitational world, there will even-
tually be some new behavior, but we do not know what it is.
Since it is wrong to extrapolate the power law form of nðxÞ
in the simulated world, it would be wrong to extrapolate in
the real world. Thus, it does not make sense to use the
power law nðxÞ from a simulation to derive nðxÞ in the
real universe at any smaller x than those for which the
simulation finds scaling behavior.

V. CONSTRAINTS ON THE
LOOP DISTRIBUTION

The argument above constrains not only the loop
production function but also the loop distribution. The
number of loops can be found by integrating the production
function, accounting for the decrease in loop size due to
gravitational backreaction. In a scaling regime [16],

nðxÞ ¼
R
∞
x ðx0 þ ΓGμÞβcrit−1fðx0Þdx0

ðxþ ΓGμÞβcrit : ð12Þ

For x ≫ ΓGμ,

nðxÞ ¼
R∞
x x0βcrit−1fðx0Þdx0

xβcrit
: ð13Þ

If the integral in the numerator does not depend on the
lower limit as x → 0, we find nðxÞ ∼ x−βcrit . If nðxÞ diverges
more rapidly than this as x decreases, the divergence must
come partly from the numerator. The only way to have
nðxÞ ∼ x−β with β > βcrit is to have fðxÞ ∼ x−β. In other
words, a distribution nðxÞ ∼ x−βcrit may arise from loops
produced at earlier times, but nðxÞ may only diverge more

rapidly than this if the tiny loops in question were produced
very recently by a similarly diverging production function.
But no argument based on simulation could support such a
production function.
More directly, any scaling loop production function must

obey Eq. (3) to conserve energy, so the integral in that
equation must converge. In a simulation that does not
include gravitational radiation effects, the relationship
between fðxÞ and nðxÞ is given by Eq. (13). Since
βcrit ≥ 2, the integral in the numerator of Eq. (13) must
also converge even if x is taken to 0. Thus, for small enough
x, nðxÞ ∼ x−βcrit and cannot diverge any faster.
Thus, no simulation can find nðxÞ ∼ x−β with β > βcrit

for arbitrarily small x. The loop distribution suggested in
Ref. [18] with β ¼ 2.6 in the radiation era11 cannot be
supported by the simulations of Ref. [21]. Therefore, there
is no reason to use gravitational wave predictions based on
this spectrum, in particular “model 3” of Ref. [9].
This criticism does not affect “model 1” and “model 2”

of Ref. [9]. Both of these models involve a loop production
function which is peaked at a certain range of scales not
depending on any gravitational cutoff. In such a model,
Eq. (5) gives some finite number independent of xc, and the
only issue is that that number should agree with Eq. (2). In
model 1, loops are all produced at the same scale (relative
to the age of the Universe), and the production rate is
adjusted to make Eq. (2) hold. Model 2 takes the loop
density from Ref. [16], which is based on the production
function found in Ref. [15], and we checked in Ref. [15]
that indeed the fðxÞ found there obeys Eq. (2).

VI. CONCLUSION

To predict observable signals, such as gravitational
waves, from a cosmic string network requires knowledge
of the distribution of loops at times when the signals may be
emitted. To obtain that knowledge, we use simulations, but
we cannot simulate the cosmologically necessary range of
scales, so we must extrapolate from simulations. However,
it does not make sense to use loop production functions that
do not conserve energy nor to use loop distributions that
can result only from such unrealistic production functions.
Of particular concern are loop production functions of

the form cx−β with β > 2. If not cut off, such a function
leads to an infinite flow of energy into loops. A cutoff will
make the flow finite, but the actual gravitationally based
cutoffs proposed for this purpose yield an energy flow
much larger than is available from the scaling network of
long strings. With modern limits on Gμ, the discrepancy is
more than 105. This is much too large to be explained by

11Note that nðxÞ ∼ x−2.5 is within the error bars of Ref. [21],
and if that is the true shape of nðxÞ, there is no problem with
energy conservation. But the conclusion in that case is very
different. We can get nðxÞ ∼ x−2.5 from a wide range of loop
production functions, even a δ function [1,16,19].
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any effects such as small-scale structure or field-theoretic
excitations on long strings. Thus, loop production functions
of this form, and loop distribution functions arising from
them, should not be used to calculate observable effects.
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APPENDIX A: DICTIONARY OF NOTATIONS

Different papers use different symbols to denote the
same concept, and furthermore even when the concept is
the same, some papers use the cosmic time t to define
scaling units, while others use the horizon distance
dh ¼ t=ð1 − νÞ. As a result, powers of 1 − ν are needed
to convert between values given in the different papers.
Table I lists the notations and the conversion factors for this
paper and several recent works.

APPENDIX B: RANGE OF EXPONENTS IN nðxÞ
Reference [21] gave error bars on the possible exponents

derived from their simulation. In our notation,

β ¼
�
2.60þ0.21

−0.15 radiation

2.41þ0.08
−0.07 matter:

ðB1Þ

In the main text, we considered only the central values
of this parameter; here, we will consider whether other
possibilities for the exponent will allow these distributions
to escape the bounds above.
First, consider the radiation era. The error bars above

allow the possibility that β ¼ 2.5. If that is correct, nðxÞ
could arise from a wide range of distribution functions
including those discussed in Refs. [15,16]. We cannot
then include gravitational effects without knowing more
about the loop production function. In particular, such an
nðxÞ from simulations cannot be used as evidence for a
diverging loop distribution in the real Universe with
gravitation.
Another possibility is that β ¼ 5=2þ ϵwith ϵ ≪ 1. From

Eq. (10), it appears that c would be very small and so the
energy conservation bounds could be obeyed. However, in
such a regime, we should consider the loop production
function more carefully. Without gravity, the relationship
between nðxÞ and fðxÞ in the radiation era is [15]

nðxÞ ¼ x−5=2
Z

∞

x
x03=2fðx0Þdx0 ðB2Þ

in our notation. As we discussed in Sec. II above, loops
larger than the horizon rarely survive and should not be
counted in fðxÞ. Thus, Eq. (7) must be modified. For
1 > x > xc, we have [19]

nðxÞ ¼ cx−5=2
Z

1

x
x03=2−βdx0 ¼ c

ϵ
½x−β − x−5=2�: ðB3Þ

When we match this to Eq. (9), we find

c ¼ 2β−4
ϵC0

1 − xϵ
: ðB4Þ

This depends on the value of x used to determine c. To
attempt to comply with energy conservation bounds, we
would like to make c the smallest possible. Since c is an
increasing function of x, we will use the smallest x in
the range used in Ref. [21] to determine β, which is
about 5 × 10−3.
As we decrease ϵ, c will decrease, but never below

its ϵ → 0 limit, −C0=ð2
ffiffiffi
2

p
ln xÞ. With x ¼ 5 × 10−3 and

TABLE I. Notations used here and in some recent papers. The quantities in the different columns in each row are the same when
evaluated using the conventions and notation of the papers listed.

This paper BOS [15] RSB [21] ARSS [19]

μ μ U U String tension
x ð1 − νÞ−1x ð1 − νÞ−1α γ Loop length
γ ð1 − νÞ−1γ γ∞ Interstring distance
fðxÞ ð1 − νÞ5fðxÞ t5P Loop creation rate
nðxÞ ð1 − νÞ4nðxÞ ð1 − νÞ4SðαÞ=α t4F Loop distribution
β pþ 1 3 − 2χ Exponent in loop creation/distribution
B ð1 − νÞ3P Energy flow into loops
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C0 ¼ 0.21, we find12 c ¼ 0.014. Putting this in Eq. (5) with
β ¼ 2.5 gives13

R
∞
0 xfðxÞdx ≈ 1000 for Gμ ¼ 10−7, still

many times larger than the value in Eq. (3).

In the matter era, the situation is different because the
power of x that multiplies fðxÞ in the energy flow is the
same one that multiplies fðxÞ in the calculation of nðxÞ. If
we make β small enough, it is indeed possible to obey the
energy conservation constraint. However, the requisite β is
about 2.15 if we take Gμ ¼ 10−7 or 2.10 if we take
Gμ ¼ 10−11. (Including only a finite range of x makes
little difference here.) These β lie far outside the range
given by Eq. (B1).

[1] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
Other Topological Defects (Cambridge University Press,
Cambridge, England, 2000).

[2] J. Polchinski, Introduction to cosmic F- and D-strings, in
String theory: From gauge interactions to cosmology.
Proceedings, NATO Advanced Study Institute, Cargese,
France, June 7-19, 2004 (Springer, Dordrecht, The Nether-
lands, 2004), pp. 229–253.

[3] S. A. Sanidas, R. A. Battye, and B.W. Stappers, Constraints
on cosmic string tension imposed by the limit on the
stochastic gravitational wave background from the European
pulsar timing array, Phys. Rev. D 85, 122003 (2012).

[4] P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux,
Cosmological backgrounds of gravitational waves and
eLISA/NGO: Phase transitions, cosmic strings and other
sources, J. Cosmol. Astropart. Phys. 06 (2012) 027.

[5] S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi,
and J. Silk, Forecast constraints on cosmic string parameters
from gravitational wave direct detection experiments, Phys.
Rev. D 86, 023503 (2012).

[6] L. Sousa and P. P. Avelino, Probing cosmic superstrings
with gravitational waves, Phys. Rev. D 94, 063529 (2016).

[7] J. J. Blanco-Pillado, K. D. Olum, and X. Siemens, New
limits on cosmic strings from gravitational wave observa-
tion, Phys. Lett. B 778, 392 (2018).

[8] C. Ringeval and T. Suyama, Stochastic gravitational waves
from cosmic string loops in scaling, J. Cosmol. Astropart.
Phys. 12 (2017) 027.

[9] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Constraints on cosmic strings using data from the
first advanced LIGO observing run, Phys. Rev. D 97,
102002 (2018).

[10] Z. Arzoumanian et al. (NANOGRAV Collaboration), The
NANOGrav 11-year data set: Pulsar-timing constraints on
the stochastic gravitational-wave background, Astrophys. J.
859, 47 (2018).

[11] S. Burke-Spolaor et al., The astrophysics of nanohertz
gravitational waves, Astron. Astrophys. Rev. 27, 5
(2019).

[12] X. Siemens, J. S. Hazboun, P. T. Baker, S. Burke-Spolaor,
D. Madison, C. Mingarelli, J. Simon, and T. Smith, Physics
beyond the standard model with pulsar timing arrays,
arXiv:1907.04960.

[13] T. W. B. Kibble, String-dominated universe, Phys. Rev. D
33, 328 (1986).

[14] C. Thompson, Dynamics of cosmic string, Phys. Rev. D 37,
283 (1988).

[15] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Large
parallel cosmic string simulations: New results on loop
production, Phys. Rev. D 83, 083514 (2011).

[16] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, The
number of cosmic string loops, Phys. Rev. D 89, 023512
(2014).

[17] T. W. B. Kibble, Evolution of a system of cosmic strings,
Nucl. Phys. B252, 227 (1985); Erratum, Nucl. Phys. B261,
750 (1985).

[18] L. Lorenz, C. Ringeval, and M. Sakellariadou, Cosmic
string loop distribution on all length scales and at any
redshift, J. Cosmol. Astropart. Phys. 10 (2010) 003.

[19] P. Auclair, C. Ringeval, M. Sakellariadou, and D. Steer,
Cosmic string loop production functions, J. Cosmol.
Astropart. Phys. 06 (2019) 015.

[20] J. Polchinski and J. V. Rocha, Cosmic string structure at the
gravitational radiation scale, Phys. Rev. D 75, 123503
(2007).

[21] C. Ringeval, M. Sakellariadou, and F. Bouchet, Cosmo-
logical evolution of cosmic string loops, J. Cosmol.
Astropart. Phys. 02 (2007) 023.

[22] L. Lentati et al., European pulsar timing array limits on an
isotropic stochastic gravitational-wave background, Mon.
Not. R. Astron. Soc. 453, 2576 (2015).

12The reason this is larger than the 0.008 that we found above
is that taking account of the finite range of x where fðxÞ
contributes to the nðxÞ found in Ref. [21] is more important
than reducing ϵ to any (positive) value.

13The upper limit on x never makes any significant difference
in Eq. (5) in the radiation era.

BLANCO-PILLADO, OLUM, and WACHTER PHYS. REV. D 100, 123526 (2019)

123526-6

https://doi.org/10.1103/PhysRevD.85.122003
https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1103/PhysRevD.86.023503
https://doi.org/10.1103/PhysRevD.86.023503
https://doi.org/10.1103/PhysRevD.94.063529
https://doi.org/10.1016/j.physletb.2018.01.050
https://doi.org/10.1088/1475-7516/2017/12/027
https://doi.org/10.1088/1475-7516/2017/12/027
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.1103/PhysRevD.97.102002
https://doi.org/10.3847/1538-4357/aabd3b
https://doi.org/10.3847/1538-4357/aabd3b
https://doi.org/10.1007/s00159-019-0115-7
https://doi.org/10.1007/s00159-019-0115-7
https://arXiv.org/abs/1907.04960
https://doi.org/10.1103/PhysRevD.33.328
https://doi.org/10.1103/PhysRevD.33.328
https://doi.org/10.1103/PhysRevD.37.283
https://doi.org/10.1103/PhysRevD.37.283
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.89.023512
https://doi.org/10.1103/PhysRevD.89.023512
https://doi.org/10.1016/0550-3213(85)90439-0
https://doi.org/10.1016/0550-3213(85)90596-6
https://doi.org/10.1016/0550-3213(85)90596-6
https://doi.org/10.1088/1475-7516/2010/10/003
https://doi.org/10.1088/1475-7516/2019/06/015
https://doi.org/10.1088/1475-7516/2019/06/015
https://doi.org/10.1103/PhysRevD.75.123503
https://doi.org/10.1103/PhysRevD.75.123503
https://doi.org/10.1088/1475-7516/2007/02/023
https://doi.org/10.1088/1475-7516/2007/02/023
https://doi.org/10.1093/mnras/stv1538
https://doi.org/10.1093/mnras/stv1538

