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We show that a combination of the simplest α attractors and KKLT inflation models related to Dp-brane
inflation covers most of the area in the (ns, r) space favored by Planck 2018. For α-attractor models, there
are discrete targets 3α ¼ 1; 2;…; 7, predicting seven different values of r ¼ 12α=N2 in the range
10−2 ≳ r≳ 10−3. In the small r limit, α-attractors and Dp-brane inflation models describe vertical β
stripes in the (ns, r) space, with ns ¼ 1 − β=N, β ¼ 2; 5

3
; 8
5
; 3
2
; 4
3
. A phenomenological description of these

models and their generalizations can be achieved in the context of pole inflation. Most of the 1σ area in the
(ns, r) space favored by Planck 2018 can be covered models with β ¼ 2 and β ¼ 5=3. Future precision data
on ns may help to discriminate between these models even if the precision of the measurement of r is
insufficient for the discovery of gravitational waves produced during inflation.

DOI: 10.1103/PhysRevD.100.123523

I. INTRODUCTION

Current and future cosmic microwave background radi-
ation (CMB) missions, such as BICEP2/Keck [1,2], CMB-
S4 [3–5], SO [6], LiteBIRD [7], and PICO [8], may
potentially detect the tensor to scalar ratio at a level r ¼
5 × 10−4ð5σÞ and improve constraints on ns by a factor of 3
relative to Planck, to achieve σðnsÞ ¼ 0.0015 [8]. A
thorough investigation of all phenomenologically viable
inflationary models that can explain the future CMB data is
necessary for a correct interpretation of the meaning of a
detection/nondetection of the primordial gravitational
waves. It is therefore important to perform a careful
investigation of the motivation, phenomenological consis-
tency, and predictions of such models.
Of course, one may argue that it is premature to plan for

the long journey when the goal is nearby, and the B-mode
detection at r≳ 10−2 is possible. For example, power-law
axion monodromy potentials during inflation have poten-
tials proportional to φp with p < 2 [9–11]. These potentials
were derived in string theory, future data may validate
them if B modes are detected relatively soon. Some of them
like V ∼ ϕ and V ∼ ϕ2=3 are shown in Fig. 1. The multifield
version of axion monodromy models [12] may have smaller
values of ns, which would improve the agreement with the

data. If these or other models are validated by the B-mode
searches that are presently underway, such as BICEP2/
Keck [2], this early detection of the primordial gravitational
waves will be a tremendous success.
At present the error bars for the B-mode detection are too

large to come to any conclusion in this respect, σðrÞ ∼ 0.02
[2]. But during the next 5–10 years it will become
σðrÞ ∼ 0.005, or even σðrÞ ∼ 0.003, depending on the level
of delensing that can be achieved in the future [1,2].
Therefore, the future missions will be needed to clarify
any results of the current B-mode experiments.
Another set of simple models which are inside the Planck

2018 2σ bounds on ns are α-attractor models; see, for
example, the gray stripe in Fig. 1, which shows the prediction
of the simplest T model with potential V ∼ tanh2 φffiffiffiffi
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FIG. 1. The figure from the latest CMB-S4 Science Case paper
[5]. The gray area shows predictions of the simplest α-attractor
model V ∼ tanh2 φ

M for 47 < N < 57. The green area is for the
hilltop model with V ∼ 1 − ðφ=MÞ4. This model is theoretically
inconsistent for M ≫ 1, which is the only range of M where it
could match observational data [13].
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47 < N < 57, and also Fig. 2 where the red lines show

predictions of the simplest Emodel withV ∼ ð1 − e−
ffiffiffi
2
3α

p
φÞ2,

and theyellow lines correspond to the T-modelV ∼ tanh2 φffiffiffiffi
6α

p

forN ¼ 50 andN ¼ 60.1 According to Planck 2018 [14], the
α-attractor models with α≲ 10 provide a good fit to the
Planck data. We show these models in Figs. 2 and 3.
However, one should be prepared to any outcome of

B-mode experiments, especially if we have legitimate targets
at r≲ 10−2. This is the main subject of our investigation. A
short summary of some of our results can be found in [17].

Our goal here is to discuss the simplest but physically
motivated models, where a single parameter, or a combi-
nation of two parameters, is sufficient to fit all presently
available data, and to identify some “future-safe” models,
which have a fighting chance to describe and parametrize
all data to be obtained in the next one or two decades.
Note that a comprehensive analysis of many inflationary
models was performed in Encyclopædia Inflationaris [18]
and in the context of a CORE mission in [19], based on
Planck 2013 and 2015, respectively, and an update of
Encyclopædia Inflationaris based on Planck 2018 [14] is in
preparation. A more recent analysis of single-field infla-
tionary models in [20] has emphasized the importance of
the decrease in the measurement uncertainty of the scalar
spectral index.
To explain our motivation in a more detailed way, we

should note that it is possible to describe any set of the three
main parameters of inflationary perturbations, As, ns, and r,
by tuning three parameters of a simple model V ¼ aϕ2 þ
bϕ3 þ cϕ4 [21,22]. Similarly, one can study a chaotic
landscape of multifield potentials, and evaluate statistical
probability of any outcome, without necessarily making
sharp predictions; see, e.g., [23–30]. One can also try to
find multifield models predicting controllable amount of
non-Gaussianity compatible with the Planck 2018 con-
straints; see, e.g., [31–36] and references therein. These are
legitimate possibilities.
However, it is difficult not to be excited and intrigued by

the fact that dozens of models which were popular 10 years
ago are already ruled out, whereas some of the models
proposed more than three decades ago, such as the
Starobinsky model [37], the Higgs inflation model
[38,39], and the Goncharov-Linde (GL) model [40,41],
require just a single parameter to successfully account for
all presently available data. All of these models are shown
in Fig. 2.2 from PICO [8].
On the other hand, a discovery of the gravitational waves

in the range r≳ 5 × 10−3 would rule out all three of these
models, whereas a nondiscovery of the gravitational waves
in the range r≳ 2 × 10−3 would rule out the first two
models in this list. How the predictions of the Starobinsky
model change if one adds to it some terms of higher order in
R?What will happen to the Higgs inflation if the potentials
in these theories have terms higher order in ϕ? Many
models of string theory inflation predict r well below the
level 5 × 10−4 to be reached by PICO. Do we have any
other reasonable targets with r≲ 10−2, or we just have
optimistic expectations, similar to the expectations that the
low energy supersymmetry will be discovered at LHC?
The starting point of our investigation is the results of

Planck 2018 [14]. In Table 5 in [14], there is a selection of
models which show the implications of data for the most
popular single-field slow-roll inflationary models, with a
small number of free parameters. Many of these models,
such as the monomial models with V ∼ ϕ2 or ϕ4, are

FIG. 2. Yellow lines show predictions of the T models with

V ∼ tanh2 φffiffiffiffi
6α

p . Red lines are for E models, V ∼ ð1 − e−
ffiffiffi
2
3α

p
φÞ2, for

N ¼ 50 and N ¼ 60. These two basic α-attractor models together
cover a significant part of the area favored by Planck 2018 and
BICEP2/Keck (BK15).

FIG. 3. This is the most relevant part of Fig. 2, which shows
α-attractor models with α≲ 10. Thick yellow lines correspond to
the simplest T models, thick red lines, slightly to the right,
correspond to the simplest E models. A combination of these two
models covers the main part of the central red (blue) 1σ ellipses
favored by Planck 2018 and BK15. Red ellipses show the results
taking into account all available CMB-related data. This subset of
the data was used in Planck 2018 for evaluation of inflationary
models. Blue ellipses additionally take into account the data
related to baryon acoustic oscillations.

1In this paper, we use the Planck mass units MP ¼ 1.
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already ruled out, but there are three classes of models
which provide a very good fit to the Planck data.
The first class of models includes the Starobinsky model,

the Higgs inflation model, the GL model, and the large
class of α attractors substantially generalizing all of these
models [42–44]. We will describe these modes in detail in
Secs. II and III. Predictions of α attractors, in the small α
limit, are given by

1 − ns ¼
2

N
; r ¼ 12α

N2
: ð1Þ

Examples include T models with potentials V ∼ tanh2n φffiffiffiffi
6α

p

and E models with potentials V ∼ ð1 − e−
ffiffiffi
2
3α

p
φÞ2n. The

parameter α in these models has a nice geometric inter-
pretation in terms of the underlying hyperbolic geometry.
In general, α may take arbitrary values. However, in

Sec. III, we will discuss seven especially interesting
discrete values 3α ¼ 7, 6, 5, 4, 3, 2, 1, which are U-duality
benchmarks associated with M-theory, string theory, maxi-
mal N ¼ 8 supergravity. They correspond to seven differ-
ent values of r in the range 10−3 ≲ r≲ 10−2, which can be
viewed as B-mode targets for the next round of CMB
experiments.
Some of these targets have other reasons to be examined.

At 3α ¼ 6, we would probe string theory fiber inflation
[45,46], at 3α ¼ 3 we would probe the Starobinsky model
[37], the Higgs inflationary model [38,39], as well as the
conformal inflation model [47]. Finally, at 3α ¼ 1, we
would probe the case of the maximal superconformal
symmetry, as explained in Appendix. There is yet another
target, at α ¼ 1=9, r ∼ 5 × 10−4, which corresponds to the
GL model [40,41] shown by a purple dot in Fig. 2.2 from
PICO [8]. This is a supergravity inflationary model
involving just a single superfield, which provided the first
example of chaotic inflation with a plateau potential.
The second class of models favored by Planck 2018

includes the hilltop inflation models with potentials

V ∼ 1 − φk

mk þ… [48,49]. However, the simplest models

V ∼ 1 − φk

mk have the potential unbounded from below and
describe the Universe collapsing immediately after infla-
tion [13]. Form≲ 1, one can improve these models without
modifying their inflationary predictions, but such models
predict too low ns for k ¼ 2 and 4, so they are already ruled

out. Meanwhile, in the largem limit, all models V ∼ 1 − φk

mk,
for any k, have universal predictions for ns and r coinciding
with the predictions of the simple model with a linear
potential V ∼ ϕ, as shown by the dark blue line at the right
upper part of the green area in Fig. 1. According to [13],
this universality, which could be an attractive feature of
hilltop inflation, is directly linked to the fundamental
inconsistency of these models.
This does not mean that the full class of hilltop models is

ruled out. However, consistent generalizations of the
models V ∼ 1 − φk

mk for m≳ 10 typically have very different

predictions. One such model discussed in [13] is relatively
well motivated (the Coleman-Weinberg model), but it does
not seem to match the Planck data too well. Another model,

with V ∼ ð1 − φ4

m4Þ2, provides a better fit to the data, but it is
not well motivated. Both of these models in the large m
limit predict much greater values of r than the model

V ∼ 1 − φ4

m4. Neither of them makes predictions reproducing
the green area, which was supposed to describe hilltop
inflation in the Planck, CMB-S4, and PICO figures. We
will not discuss these models here and refer the readers to
[13] for a detailed investigation of hilltop inflation after
Planck 2018.
The third class of models favored by Planck 2018

includes Dp-brane inflation models with V ∼ 1 − mk

φk þ…

[18,50,51], where k ¼ 7 − p; see Sec. IV. Their simplest

FIG. 4. A combined plot of the predictions of the simplest α-
attractor models and Dp-brane inflation for N ¼ 50 and 60. From
left to right, we show predictions of T models, E models, Dp − Dp
brane inflation with p ¼ 3, 4, 5, 6. They are shown by yellow, red,
purple, green, orange, and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account CMB-related data. Blue area shown in the lower figure
additionally takes into account the data related to BAO.
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versions with V ∼ 1 − mk

φk , which were called BI (brane

inflation) in [18], are inconsistent for the same reason as the
simplest hilltop models [13]. Consistent generalizations of

these models with potentials V ∼ ð1þ mk

φkÞ−1 ¼ φk

φkþmk were
proposed in [52] in the context of D3 brane inflation. These
models were generalized and called KKLTI inflation
(KKLT) in [18] and further developed in [51].
Predictions of α attractors and four D-brane models with

p ¼ 3, 4, 5, 6 (i.e., with k ¼ 4, 3, 2, 1) can be represented
by five vertical attractor stripes with r ≪ 1 and

1 − ns ¼
β

N
; β ¼ 2;

5

3
;
8

5
;
4

3
;
3

2
: ð2Þ

As one can see from Fig. 4, they cover most of the 2σ area
in the (ns, r) space favored by Planck 2018. Moreover, to
cover most of the 1σ area favored by Planck 2018, it is
sufficient to consider α attractors and two D-brane models
with p ¼ 3 and 5 [13,51].
Attractor β stripes (2) shown in Fig. 4 appear not only for

α-attractors and D-brane models, but also in a general pole
inflation context introduced in [53], see also [54] and
Secs. II and V of this paper. Pole inflation describes the
cosmological attractors with the pole order q in the kinetic
term of the inflaton field; see (3). In particular, α attractors
are the pole inflaton models with q ¼ 2, whereas D-brane
inflation potentials (both KKLTI and BI) with k ¼ 4, 3, 2, 1
belong to the class of the pole inflation potentials with
q ¼ 5

3
; 8
5
; 4
3
; 3
2
, respectively. These models describe cosmo-

logical attractors which in the small r limit predict
1 − ns ¼ β

N, where β ¼ q
q−1.

These results canbecomparedwith thephenomenological
parametrization of inflationary models based on an
assumption that in “natural” models of inflation one may
expect 1 − ns ¼ pþ1

N , where p is some phenomenological
parameter [3,55,56]. In our paper, we use β instead of pþ 1
to avoid confusion with p ¼ 3, 4, 5, 6 in Dp-brane inflation,
where theuse of the letterp inDp is a long accepted standard.
As we will see, pole inflation provides a convenient

theoretical framework for the phenomenological paramet-
rization used in [3,55,56]. In particular, we will show that
the characteristic scale of inflation introduced in [3] is
directly related to the residue aq at the pole of the inflaton
kinetic term; see Sec. VI. On the other hand, our results
obtained in Sec. V show that we may not need to have a
large continuous range of parameters β: the predictions of
the cosmological attractors described by the two stripes
β ¼ 2 and β ¼ 5=3 completely cover the 1σ region in the
(ns, r) space favored by Planck 2018; see Fig. 5.
While we are unaware of any specific targets for r in

D-brane inflation models and general pole inflation models
with q ≠ 2, the search of the B modes, in combination with
the improvement of the precision in the measurements on
ns, may be very important to distinguish different versions

of these models from α attractors and to get a better
understanding of the postinflationary evolution of the
Universe, including reheating, affecting the required value
of the e-foldings N in all of these models.2

II. INFLATIONARY α-ATTRACTOR MODELS

We would like to explain here that in general class of
α-attractor models the information about observables ns and
r is codified in their kinetic terms, under specific conditions.
For example, the models have to be in their attractor regime,
etc. The reason why α attractors have specific benchmarks,
to be discussed later, is this fact that the observational data
are defined by kinetic terms of the theory. Kinetic terms for
scalars are often defined by the symmetries of the theory,
which may be broken by the potential. For example, the
kinetic terms of scalars in maximal N ¼ 8 supergravity is
defined by U-duality symmetry, E7ð7Þ.
It is convenient to explain this feature using the “pole

inflation” version of α attractors [53].

A. α attractors and pole inflation: E models

There are many different ways to introduce α attractors.
In the context of this paper, it is useful to start with the pole
interpretation of these models [53],

FIG. 5. Predictions of pole inflation models with q ¼ 2
(α attractors) and q ¼ 5=2. Two yellow lines show predictions
of the simplest T models for N ¼ 50, 60. Two red lines show
predictions of the simplest E models. Two purple lines are for
the quartic KKLTI model (66), two magenta lines show the
predictions of the model (70). The set of these simple q ¼ 2 and
q ¼ 5=2 attractors completely covers the sweet spot of the Planck
2018 data.

2The standard assumption is that N can be in the range from 50
to 60 (or from 47 to 57), but this range can be more broad,
depending on the mechanism of reheating. For example, for
quintessential α attractors with gravitational reheating, the
required value of the e-foldings N can be greater than in more
conventional models by ΔN ∼ 10, which increases the predicted
value of ns by about 0.006 [57]. This additional increase can be
greater than the Planck 1σ error bar for ns.
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L ¼ Lkin − V ¼ −
1

2

aq
ρq

ð∂ρÞ2 − VðρÞ: ð3Þ

Here the pole of order q is at ρ ¼ 0 and the residue at the
pole is aq. If the potential is regular near the pole,

V ¼ V0ð1 − cρþ…Þ; c > 0; ð4Þ

one finds that inflation occurs in a small vicinity of the pole.
Inflationary predictions ns and r depend on q, on aq, on the
number of e-foldings N, and, in general, on the constant c
in the potential.
As an example, let us first consider the simplest and the

most important case q ¼ 2, with a2 ≡ 3α
2
. In that case, one

can make a change of variables ρ ¼ e−
ffiffiffi
3α
2

p
φ. The theory (3)

after the transformation represents a canonical field φ with
action

L ¼ Lkin − V ¼ −
1

2
ð∂φÞ2 − Vðe−

ffiffiffi
3α
2

p
φÞ: ð5Þ

We called these models E models, because of the expo-

nential change of variables ρ ¼ e−
ffiffiffi
3α
2

p
φ. Inflation occurs at

large positive values of the canonically normalized field φ,
where the potential is given by

V ¼ V0ð1 − ce−
ffiffiffi
3α
2

p
φ þ…Þ: ð6Þ

It approaches the plateau from below. The canonical kinetic
term − 1

2
ð∂φÞ2 is invariant under the constant shift of the

inflaton, and the constant c can be absorbed into a
redefinition of the exponential term. Therefore, the theory

at
ffiffiffiffi
3α
2

q
φ ≫ 1 is equivalent to the one with a potential

V ¼ V0ð1 − e−
ffiffiffi
3α
2

p
φ þ…Þ: ð7Þ

But this is not a good potential because it is unbounded
from below at φ → −∞. The simplest example of a
consistent inflationary potential in this context is provided
by V ¼ V0ð1 − ρÞ2. In the canonical variables, it is given by

V ¼ V0ð1 − e−
ffiffiffi
3α
2

p
φÞ2: ð8Þ

For α ¼ 1, this potential coincides with the potential of the
Starobinsky model. The main difference is that the action of
the original Starobinsky model by design represents the
Einstein action with an additional term R2, with a very large
coefficient in front of it. But if one is allowed to add the large
term ∼R2, one may also consider general terms FðRÞ, which
may change the structure of the potential. The situation is
similar to what happens in the theory of a scalar field
m2ϕ2=2 if one replaces it by an arbitrary potential VðϕÞ:
inflation remains possible for an appropriate choice of VðϕÞ,

but inflationary predictions depend on the choice of the
potential. This is related to the so-called η problem.
Meanwhile, in the context of α attractors, the asymptotic

expression for any potential VðρÞ growing but remaining
nonsingular at ρ → 0 continues to be given by Eq. (7). This
explain stability of the predictions of α attractors with
respect to considerable modifications of VðρÞ, including
possible quantum corrections [58].
Some part of this stability is a general property of the

theories (3), but the possibility to absorb the constant c in
(4) into a shift of the field φ is a unique property of the
models with q ¼ 2. In this case, the residue of the pole,
introduced in [53], a2 ¼ 3α

2
¼ 1

jRK j has a geometric origin. It

was explained in [59,60] that the Kähler curvature of the
underlying moduli space is RK ¼ − 2

3α.
One can also absorb the constant c in the potential into ρ

for an arbitrary q,

ρ̃≡ cρ: ð9Þ

In such case,

L ¼ −
1

2
aq

ð∂ρÞ2
ρq

− V0ð1 − cρþ…Þ

¼ −
1

2
cq−2aq

ð∂ρ̃Þ2
ρ̃q

− V0ð1 − ρ̃þ…Þ: ð10Þ

For q ≠ 2, removing c from the potential results in the
rescaling of the residue of the pole,

ãq ¼ cq−2aq: ð11Þ

Thus, we could have started with a potential with c ¼ 1 and
a redefined residue of the pole, as shown in Eq. (11),

L ¼ −
1

2
ãq

ð∂ρ̃Þ2
ρ̃q

− V0ð1 − ρ̃þ…Þ: ð12Þ

Note that only in q ¼ 2 case where we have the hyperbolic
geometry, the residue of the pole a2 ¼ 3α

2
¼ 1

jRK j ¼ ã2 has a

geometric meaning, and we see that removing the constant
c from the potential does not change the residue. In all other
cases, the original value aq or the rescaled one ãq is not
associated with any geometry and can be used for the
purpose of a convenient description of the inflationary
predictions of these models.
Explicit expressions for the spectral index ns, the tensor-

to-scalar ratio r, and the amplitude of perturbations As in
leading order in 1=N at small α were derived in [53] for
q ≠ 1. We use the following notation here for the order of
the pole q in Eq. (3):

q ¼ β

β − 1
; β ¼ q

q − 1
; ð13Þ
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and we find

ns¼1−
β

N
; r¼8ãβ−1q

�
β−1

N

�
β

; As¼
2V0

3π2r
: ð14Þ

Thus, at q ¼ 2, all dependence on the parameter in the
potential c in (3) in r disappears without the need to redefine
the residue of the pole, it is by preserving the one defined by
geometry! For q ¼ β ¼ 2, a2 ≡ 3α

2
, these predictions are

ns ¼ 1 −
2

N
; r ¼ 12α

N2
; As ¼ Vα

N2

18π2
; ð15Þ

where Vα ¼ V0

α . This means that for sufficiently small α and
large N all β ¼ q ¼ 2 α-attractor models have the same
values of ns and a value of r which is independent on the
potential, and depends only on α. We will explain in Sec. III
that these β ¼ 2 α-attractor models originate from the
hyperbolic geometry, with the curvature R ¼ − 2

3α [59].
As long as the prediction ns ¼ 1 − 2

N provides a good fit
to the Planck 2018 data, the single parameter that we need
to adjust is Vα ∼ 10−10, which provides the amplitude of
perturbations consistent with Planck normalization. And
then, by adjusting α we can describe any value of r found
by the B-mode searches.
Meanwhile, the situation with q ≠ 2 is slightly more

complicated. The values of r and As for q ≠ 2 depend on c,
i.e., on the functional form of the potential, see (9), (11),
and (14), even though this dependence can be absorbed into
the field redefinition. For a more detailed discussion of
related issues, see [53,54] and Sec. V.

B. T models

From this perspective, it may be important that the
original α-attractor models derivable from supergravity
always have the pole of order q ¼ 2, due to hyperbolic
geometry [15,16,42–44,60].

Hyperbolic geometry ⇒ q ¼ 2 ð16Þ

Prior to discussing it, it is important to introduce yet
another class of α attractors, T models. The simplest
example is given by the theory

1ffiffiffiffiffiffi−gp L ¼ R
2
−

ð∂μϕÞ2
2ð1 − ϕ2

6αÞ2
− VðϕÞ: ð17Þ

Here ϕðxÞ is the scalar field, the inflaton. Once again, the
kinetic term is singular, but now the singularity is at
jϕj ¼ ffiffiffiffiffiffi

6α
p

. Instead of the variable ϕ, one can use a
canonically normalized field φ by solving the equation
∂ϕ
1−ϕ2

6α

¼ ∂φ, which yields ϕ ¼ ffiffiffiffiffiffi
6α

p
tanh φffiffiffiffi

6α
p . The full theory,

in terms of the canonical variables, becomes

1ffiffiffiffiffiffi−gp L ¼ R
2
−
ð∂μφÞ2

2
− V

� ffiffiffiffiffiffi
6α

p
tanh

φffiffiffiffiffiffi
6α

p
�
: ð18Þ

Asymptotic value of the potential at large φ > 0 is given by

VðφÞ ¼ V0 − 2
ffiffiffiffiffiffi
6α

p
V0
0e

−
ffiffiffi
2
3α

p
φ: ð19Þ

Here V0 ¼ VðϕÞjϕ¼ ffiffiffiffi
6α

p is the height of the plateau potential,
and V 0

0 ¼ ∂ϕVjϕ¼ ffiffiffiffi
6α

p . As in the E models, the coefficient

2
ffiffiffiffiffiffi
6α

p
V 0
0 in front of the exponent can be absorbed into a

redefinition (shift) of the field φ. Therefore, all inflationary

predictions of this theory in the regime with e−
ffiffiffi
2
3α

p
φ ≪ 1 are

determined only by two parameters, V0 and α.
The amplitude of inflationary perturbations As in these

models matches the Planck normalization for V0

α ∼ 10−10.

For the simplest model V ¼ m2

2
ϕ2, belonging to a class of

T models with the potential symmetric with respect to
ϕ → −ϕ, one finds

V ¼ 3m2α tanh2
φffiffiffiffiffiffi
6α

p : ð20Þ

Then the condition V0

α ∼ 10−10 reads m ∼ 0.6 × 10−5.
We should note that even though the predictions for large

N and small α are rather well defined, the value of N itself
does depend on the mechanism of reheating and postinfla-
tionary equation of state,which is reflected in the uncertainty
of the choice betweenN ∼ 50 andN ∼ 60. Also, predictions
of different versions of α attractors converge to their target
(15) in a slightly different way. In Fig. 2, one can see that the
predictions of the simplest T models and E models coincide
in the two opposite limits, α → 0 and at α → ∞.Meanwhile,
for intermediate values of α, the E models predict somewhat
higher values of ns. As a result, a combination of these two
models cover a significant part of the range of ns and r
favored by Planck 2018; see Figs. 2 and 3.
As we already mentioned, predictions of the models

E models (8) for α ¼ 1 coincide with the predictions of
the Starobinsky model. Similarly, the predictions of the
T model with the potential V ∼ tanh4 φffiffiffiffi

6α
p for α ¼ 1 nearly

coincide with the predictions of the Higgs inflation.
However, unlike Higgs inflation, predictions of α attractors
at small are rather stable with respect to the change of the
potential VðϕÞ and allow much greater flexibility with
respect to the tensor to scalar ratio r by changing α. In this
respect, α attractors are more “future safe,” allowing to
describe and parametrize various outcomes of the B-mode
searches.
On the other hand, predictions of α attractors at greater

values of α and r allow some variability; see the behavior of
ns and r at all α for N ¼ 60 in Fig. 6, taken from [61]. At
α≳ 1, they are not given by the attractor equation (15), they
approach the predictions of the potential V ∼ φ2n in the
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limit α → ∞. If inflationary B modes are detected above
r ∼ 10−3 and precision in ns improves, one may use these
choices of α-attractor models to find the best one.
One of the important features of α attractors is the fact that

they depend on one parameter α, and therefore this parameter
can be, eventually, inferred from the observational data, or

better bounds on it can be obtained. Consider, for example,
the description of the Tibet’s experiment probing primordial
gravitational waves, see Fig. 7 here, in [62,63]. They show
the scheduled AliCPT sensitivity of the measurements on r
superposing it with the theoretical predictions of three simple
inflationary models.
Note that the simple targets here, below the predictions

of the most studied string theory axion monodromy model
[9–11] shown by the dashed green line, are given for
T models with for r ≈ 2.3 × 10−2 with α ¼ 7 and r ≈ 10−2

with α ¼ 3.

C. Geometry of α attractors

Geometric features of inflationary α attractors originate
from supergravity [59,60]. In case of N ¼ 1 supergravity,
we can start with the Kähler potential in the form K ¼
−3α lnð1 − ZZ̄Þ, ZZ̄ < 1, and the metric in the line element
ds2 ¼ gZZ̄dZdZ̄ is

gZZ̄ ¼ ∂Z∂Z̄KðZ; Z̄Þ ¼ 3α

ð1 − ZZ̄Þ2 : ð21Þ

The meaning of “scalars are coordinates of the moduli
space” is the following: we identify the kinetic terms of the
complex scalar Z from the moduli space metric (21),

−Lkin ¼ gZZ̄∂Z∂Z̄ ¼ 3α
∂Z∂Z̄

ð1−ZZ̄Þ2 ; gZZ̄ ¼ 3α

ð1−ZZ̄Þ2 ;

ð22Þ

and the part of the action, gravityþ, kinetic term for scalars,
in units MP ¼ 1, is

L ¼ 1

2
R −

3α

ð1 − ZZ̄Þ2 ∂Z∂Z̄: ð23Þ

Once we have a geometry and a metric, we can define the
curvature which in our case is a negative constant

RK ¼ gZZ̄∂Z∂Z̄ðlog gZZ̄Þ ¼ −
2

3α
: ð24Þ

Since the corresponding geometry is a Kähler geometry,
gZZ̄ ¼ ∂Z∂Z̄KðZ; Z̄Þ, the curvature RK ¼ − 2

3α is known as
a Kähler geometry curvature.
We now switch from Cartesian coordinates Z ¼ xþ iy

to polar coordinates on the disk, with some rescaling

xþ iy ¼ 1ffiffiffiffiffiffi
3α

p reiθ: ð25Þ

The moduli space metric becomes

ds2 ¼ gZZ̄dZdZ̄ ¼ dr2 þ r2dθ2

ð1 − r2
3αÞ2

; r2 < 3α; ð26Þ

FIG. 6. Values of ns and r for simplest T models (20) and
E models (8). Here n ¼ 1

2
; 3
4
; 7
8
; 1; 3

2
; 2; 3, starting from the right,

increasing to the left, with the purple line for n ¼ 1 in the middle,
for N ¼ 60 [61]. The predictions of these models interpolate
between the predictions of various polynomial models φ2n at
very large α and the vertical attractor line ns ¼ 1–2=N for α ≤ 1.
Note that E models tend to have slightly higher values of ns than
T models at r > 10−3.

FIG. 7. The black and red curve represents the AliCPT 2σ limits
on r where in the simulations they have considered residual
foreground of 1% (black) and 10% (red). The black dashed line is
the limit from BICEP/Keck Array and Planck Collaborations,
2016. The yellow dashed line shows the already excluded φ2

model, the green dashed line shows the predictions from the
axion monodromy model with potential φ3=2 [11]. The blue
dashed and dotted lines are for the simplest α-attractor model
tanh2 φffiffiffiffi

6α
p [42] with α ¼ 7, α ¼ 3, respectively. The number of

e-folds is taken to be N ¼ 60.
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where the original geometric constraint ZZ̄ < 1 becomes
r2 < 3α. Here r has a clear interpretation of the radial
coordinate of the disk, whereas θ is an angular coordinate
of the disk. The boundary cycle

r2 ¼ 3α ð27Þ
is not part of the disk model of the hyperbolic plane, it is
called absolute.
The Poincaré disk is often depicted in Escher pictures;

see Fig. 8 here and [60] for more details on this. The radius
of the Poincaré disk, which we call REscher, is defined as

R2
Escher ≡ 3α; ð28Þ

since the radial coordinate r is constrained by

r2 < R2
Escher: ð29Þ

REscher is related to the Kähler curvature as

RK ¼ −
2

R2
Escher

: ð30Þ

In particular, for 3α ¼ 1, we recover the unit size Poincaré
disk with R2

Escher ¼ 3α ¼ 1 and metric (26)

ds2j3α¼1 ¼
dx2 þ dy2

ð1 − x2 þ y2Þ2 ¼
dr2 þ r2dθ2

ð1 − r2Þ2 : ð31Þ

The scalar kinetic term in (22) in polar variables becomes

−Lkin ¼
ð∂rÞ2 þ r2ð∂θÞ2

ð1 − r2
3αÞ2

: ð32Þ

At θ ¼ 0, which corresponds to a stabilization of the
angular variable during inflation, this is a slice of the

Escher’s picture, at fixed angular direction. It is useful to
compare this kinetic term for the scalars with the expression
in (17) where r≡ ϕffiffi

2
p and in (18) where ϕ ¼ ffiffiffiffiffiffi

6α
p

tanh φffiffiffiffi
6α

p ,

so that φ is a standard canonical field of a single-field
inflationary model.

III. FROM THE MICROSCOPIC THEORY OF
α ATTRACTORS TO B-MODE TARGETS

A. N = 1 d = 4 supergravity predictions for
observables in α attractors

Supergravity moduli space must be described by the
Kähler geometry; it is a necessary condition for supersym-
metry. A class of N ¼ 1 supergravities beyond the general
class of α attractors is based on a Kähler potential

K ¼ −3α lnð1 − ZZ̄Þ; α > 0: ð33Þ

The corresponding metric defining the kinetic term for
scalars is a second derivative of the Kähler potential
gZZ̄ ≡ ∂Z∂Z̄K ¼ 3α

ð1−ZZ̄Þ2. Thus microscopic inflationary

models of α attractors are based on hyperbolic geometry.
This means that the theory has a kinetic term for complex
scalars, which are coordinates of the Poincaré disk,
ZZ̄ < 1; the kinetic term is of the form shown in
Eq. (22). And as explained above, we can define the
Kähler curvature as R ¼ gZZ̄∂Z∂Z̄ðlog gZZ̄Þ, which in our
case is a negative constant R ¼ − 2

3α. The scalars in these

models are coordinates of the coset space SUð1;1Þ
Uð1Þ . For related

supergravity models of inflation in no-scale supergravity,
see [64] and references therein.
The potential is usually a function of the disk coordinate

Z and is chosen so that the inflationary trajectory is
stabilized at Z ¼ Z̄, θ ¼ 0, and the real part of the complex
scalar Z is an inflaton.

Z ¼ Z̄ ¼ ϕffiffiffiffiffiffi
3α

p ¼ tanh
φffiffiffiffiffiffi
6α

p ; ð34Þ

and the kinetic term −3α ∂Z∂Z̄
ð1−ZZ̄Þ2 jZ¼Z̄ becomes

−
1

2

ð∂ϕÞ2
ð1 − ϕ2

6αÞ
¼ −

1

2
ð∂φÞ2: ð35Þ

Microscopically, we have a clearly identified fundamental
parameter: a negative curvature of the hyperbolic moduli
space, R ¼ − 2

3α. T models have a potential VT ∼ ðZZ̄Þn ∼
tanh2n φffiffiffiffi

6α
p .

E models are simpler when the half-plane variables T ¼
1þZ
1−Z are used. The moduli space metric in this case and the
kinetic term are

FIG. 8. A computer generated picture by D. Dunham inspired
by Escher’s picture circle limit III presents a Poincaré disk model
of a hyperbolic geometry. The Möbius symmetry of the geometry
is illustrated here via a configuration of fishes.
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ds2¼ 3α
dTdT̄

ðTþ T̄Þ2¼ gTT̄dTdT̄; Lkin¼−3α
∂T∂T̄

ðTþ T̄Þ2 ;

ð36Þ

and the potential is

VE ∼ ð1 − TÞ2n ∼ ð1 − e−
ffiffiffi
3α
2

p
φÞ2n: ð37Þ

The kinetic terms in disk or half-plane variables with an
arbitrary α have a simple embedding into minimal N ¼ 1
d ¼ 4 supergravity as shown in [42–44]. Therefore, these
models compatible with the data are also compatible with
N ¼ 1 supergravity, so in this context minimal N ¼ 1
supergravity implies

ns ≈ 1 −
2

N
; r ≈

12α

N2
; ð38Þ

where α can take arbitrary values. In particular, N ¼ 1

supergravity is compatible with any value of r≲ 7 × 10−2,
which is the current experimental bound on r.

B. U-duality benchmarks

A U-duality symmetry is a fundamental symmetry in
M-theory, string theory, maximal d ¼ 4 N ¼ 8 super-
gravity. In d ¼ 4, N ¼ 8 supergravity U-duality E7ð7Þ
symmetry acts on scalars and on vectors of the theory.3

It was observed in [15] that one can start with M-theory in
d ¼ 11 with its maximal supersymmetry, N ¼ 1, and
compactify this theory on a specific G2 manifold.
Alternatively, one can start with type IIB string theory in
d ¼ 10 with its maximal supersymmetry, N ¼ 2, and
compactify it on a T2 × T2 × T2 manifold, or one can start
directly in d ¼ 4 with its maximal supersymmetry, N ¼ 8.
In all these cases, one ends up with a theory which depends
on seven complex scalar fields, each being a coordinate of
the hyperbolic disk,

Lkin ¼ −
X7
i¼1

∂Zi∂Z̄i

ð1 − ZiZ̄iÞ2
: ð39Þ

For each disk, we have 3αi ¼ 1. As long as all maximal
supersymmetry is preserved, there is no potential in unga-
uged supergravity.
The origin of the seven hyperbolic disks is easiest to

explain in the case of N ¼ 8 supergravity in d ¼ 4, which
has a duality symmetry E7ð7Þ. For M-theory and string
theory, the explanation is available in [15]. N ¼ 8 super-
gravity in d ¼ 4 has duality symmetry E7ð7Þ. When the

maximal N ¼ 8 supersymmetry is broken to the minimal
N ¼ 1 supersymmetry, one finds a decomposition into
seven hyperbolic disks,

E7ð7ÞR ⊃ ½SLð2;RÞ�7; ð40Þ

since ½SLð2;RÞ�7 is a subgroup of E7ð7Þ. The corresponding
kinetic terms are shown in Eq. (39). To view this set of
kinetic terms as a viable model of a single-field inflation,
one can proceed by cutting/identifying some of the moduli,
so that the resulting kinetic term of a single disk becomes

Lkin ¼ −3α
∂Z∂Z̄

ð1 − ZZ̄Þ2 ; 3α ¼ 7; 6; 5; 4; 3; 2; 1; ð41Þ

replacing seven units size disks, each with 3αi ¼ 1, as
proposed in [15].
Later, in [16], a dynamical mechanism, which we called

“disk merger,” was proposed, replacing the cutting/identi-
fying moduli procedure suggested in [15]. The choice of
the potential (Kähler and superpotential) depending on
seven complex scalars was found with unbroken minimal
N ¼ 1 supersymmetry, which dynamically either removes
some of the disks or identifies some of them with each
other. All possibilities were listed, and the result confirmed
earlier kinematic choices made in [15] and shown in Fig. 9.
All models with the potentials for the inflaton field

preserved the kinetic terms originating from the seven disks
of M-theory/string theory/maximal supergravity. The result
is a single disk kinetic term, which can only take the seven
values above as shown in (41). Now we have to remember
that all observables in α attractors depend only on the
kinetic geometric terms for the scalars, not on a choice of
the inflaton potential. Therefore, the predictions from maxi-
mal supersymmetry spontaneously broken tominimal super-
symmetry depend on the choice of N so that our seven
benchmarks are

ns¼ 1−
2

N
; r¼ 28

N2
;
24

N2
;
20

N2
;
16

N2
;
12

N2
;
8

N2
;
4

N2
: ð42Þ

When our models are derived from maximal supersym-
metry, spontaneously broken to the minimal one, we do
not have anything above α ¼ 7=3 and below α ¼ 1=3. The
α-attractor realizations of the potential of the Starobinsky
model, and of the Higgs inflation potential, is an inter-
mediate one, α ¼ 3=3 ¼ 1.
All seven cases, which we show in Fig. 9, are testable

and falsifiable if B modes are not detected at r≳ 10−3 since
for α ¼ 1=3 and the largest value of N ¼ 60, we find

r ¼ 4

N2
∶ r ¼ 4

602
≈ 10−3: ð43Þ

The earliest U-duality benchmark starts with the seven disk
merger, with 3α ¼ 7 at smallest value of N ¼ 50,

3This U-duality symmetry together with maximal supersym-
metry is believed to be the reason why in perturbative N ¼ 8
supergravity the UV properties are better than expected naively,
and N > 4 supergravities may be even UV finite, if U-duality
symmetry has no anomalies; see, for example, [65–67].
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r ¼ 28

N2
∶ r ¼ 28

502
≈ 10−2: ð44Þ

Therefore, these models compatible with the data are also
compatible with N ¼ 8 supergravity (and M-theory and
string theory) and have the following property: U duality
and maximal supersymmetry lead to

10−3 ≲ r≲ 10−2: ð45Þ

In the range 10−3 ≲ r≲ 10−2, there are U-duality bench-
marks for the B-mode detection, based on the simplest
T model which is shown by two yellow straight lines on

ns − r plot in Fig. 9. Note that all α-attractor models in the
small α limit asymptotically give the same predictions as
the simplest T model, as we show in Fig. 6. The region
10−3 ≲ r≲ 10−2 is still preasymptotic. The spread of lines
shown in Fig. 6 in the left panel is small in this region for
more general T models. However, in the right panel in
Fig. 6, one can see that the general class of E models has a
certain shift toward higher values of ns, as compared to the
T models.
Therefore, a possible detection of the B modes in the

range 10−3 ≲ r≲ 10−2 to the right of the two yellow lines
in Fig. 9 could be associated with the predictions of the
E models in this region, as we show in Fig. 6. For these
E models, U-duality origin of the kinetic term is intact. The
slight shift of the benchmarks to the right originates from
the slight dependence of the predictions of the theory on
the choice of the potential, since we are in the region where
E models have not reached the attractor point yet.

C. Special benchmarks

All 3α ¼ 7, 6, 5, 4, 3, 2, 1 are on equal footing with
regard to the origin of their kinetic term from theories with
maximal supersymmetry. However, few of these have an
additional meaning, which are as follows:

(i) The predictions of 3α ¼ 6, α ¼ 2 theory are known
to be the same as in the string theory model of fiber
inflation [45,46]. This is the second from the top
benchmark in Fig. 9.

(ii) The predictions of 3α ¼ 3, α ¼ 1 theory are known
to be the same as in Starobinsky model [37] and in
Higgs inflation model [38,39] and in conformal
inflation model [47]. This is the third from the
bottom benchmark in Fig. 9.

(iii) The case 3α ¼ 2, α ¼ 2
3
has the interesting property

that the moduli space curvature jRj ¼ 2
3α ¼ 1. It is

also one of the possible candidates for the character-
istic scale of the potential [68]. This is the second
from the bottom benchmark in Fig. 9.

(iv) The case 3α ¼ 1, α ¼ 1
3
is special. First, it is the last

one in the seven-disk story [15,16] which follows
from U duality and maximal supersymmetry:
M-theory in d ¼ 11, string theory in d ¼ 10, and
maximal supergravity in d ¼ 4. Moreover, kinetic
term with α ¼ 1

3
, a unit disk geometry, can also be

derived from the maximal superconformal theory in
d ¼ 4, as we explained in [60] and in Appendix C
of this paper. This is the last from the bottom
benchmark in Fig. 9.

IV. D-BRANE INFLATION MODELS

The string theory origin of D-brane inflation model
is associated with the KKLMMT model [52], where
D3-brane-D3-brane interaction was studied in the context
of the volume modulus stabilization. Earlier proposals

FIG. 9. U-duality benchmarks in α-attractor inflationary mod-
els originating from theories with maximal supersymmetry:
M-theory, string theory, maximal supergravity. Simplest T model
is shown on the upper figure; simplest E models are shown on the
lower figure. The seven-disk model [15,16] allows seven discrete
values: 3α ¼ 7 shown by a red line, 3α ¼ 6 (orange), 3α ¼ 5
(yellow), 3α ¼ 4 (green), 3α ¼ 3 (blue), 3α ¼ 2 (purple), and
3α ¼ 1 (black). All other values of α originate from minimal
supergravity models. Red ellipses show the Planck 2018 results
taking into account the CMB-related data including BK14. This
subset of the data was used in Planck 2018 for evaluation of
inflationary models.
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for D-brane inflation relevant to our current discussion
were made in [69–71].
D-brane inflation models have a potential [14]

VD-brane ∼ 1 −
mk

ϕk þ � � � : ð46Þ

Here the ellipsis stays for higher order terms. These models
are studied in detail in [18,72] and in Planck 2013 [50].
In the small m limit, predictions of these models for ns do
not depend on m and on the omitted higher order terms,
i.e., they exhibit an attractor behavior,

ns ¼ 1 −
2

N
kþ 1

kþ 2
: ð47Þ

D-brane inflation models with the potential ignoring higher
order terms are called BI models (from brane inflation) [18].

VBI ∼ 1 −
mk

ϕk : ð48Þ

This potential is unbounded from below, so it does not
describe a consistent cosmological evolution.
Consistent generalizations of these models were pro-

posed in [52] in the context of D3 brane inflation. These
models were generalized and called KKLTI in [18] and
further developed in [51]. They have potentials

VKKLTI ∼
φk

mk þ φk ¼
�
1þmk

φk

�
−1
; k ¼ 7 − p: ð49Þ

The derivation of these potentials following [18,52] involves
the inverse harmonic function for Dp-brane potentials in
Euclidean 9 − p dimensions. Note that the Dp-brane poten-
tials of this type can contribute to the three-dimensional
vacuumlike potential energy density and lead to inflation
only for p ≥ 3, i.e., for k ≤ 4.
The cosmological evolution of these models was

described in detail in [18,72], and studied more recently
in [13,51]. At very large m, they have the same predictions
as the models with V ∼ φk, but atm ≪ 1 and r≲ 10−3 they
have the same predictions (47) as the BI models. For
example, for a quartic KKLTI model, k ¼ 4, β ¼ 5

3
for

D3-branes with p ¼ 3, we find for small m that

ns ≈ 1 −
5

3N
; r ≈

4m
4
3

ð3NÞ53 : ð50Þ

For the quadratic KKLTI model, k ¼ 2, β ¼ 3
2
for D5-branes

with p ¼ 5, we find for small m that

ns ≈ 1 −
3

2N
; r ≈

ffiffiffi
2

p
m

N
3
2

: ð51Þ

As one can see from Fig. 10, quartic and quadratic
versions of D-brane inflation in Fig. 10 with a nonsingular

potential bounded from below are among the simplest
string theory motivated models to be tested by the B-mode
searches. Their predictions for ns in the small m limit are
positioned to the right of the α attractors in the ns − r plane.
At small r, the combination of these models describes β
stripes with β ¼ 2; 5

3
, and 3

2
. A combination of these three

classes of models almost completely covers the area in the
(ns, r) space favored by Planck 2018 at the 1σ level.
There are no specific predictions for the value of the

parameter m in these models. If anything, presently
available string theory examples of this kind have m≪1

and r ≈ 10−6 − 10−10, as suggested in the discussion of the
KKLMMT model [52] in Appendix C and in examples in
[18]. However, we are at early stages of development of
such models, so it might be possible to have greater values
of r in such models. There are no obvious constraints on m
and r in the string theory motivated supergravity versions
of these models [51]. Moreover, the potentials described in
this section can be obtained in other way. For example,

a quadratic model V ∼ φ2

m2þφ2 was proposed in [73] as an

example of a flattening mechanism due to the inflaton
interactions with heavy scalar fields. In the next section, we
will show that similar potentials can be also obtained in the
context of pole inflation; these models do not impose any
constraints on the values of m and r.

V. GENERAL DP-BRANE AND POLE INFLATION
MODELS WITH q ≠ 2

A. Pole inflation models with q ≠ 2

The hyperbolic two-dimensional geometry naturally
leads to a pole inflation with a pole of order q ¼ 2 and
the residue of the pole defined by the Kähler curvature of

FIG. 10. Predictions of α-attractors and KKLTI models. Two
yellow lines are for the quadratic T model of α attractors atN ¼ 50
and N ¼ 60. Two purple lines are for the quartic KKLTI model,
two orange lines show the predictions of the quadratic KKLTI
model. Predictions of all of these models converge to their
asymptotic values for r≲ 10−3 indicated by the blue dashed line.
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the complex manifold. Meanwhile, the one-dimensional
slice of the geometric scalar manifold, where the sinflaton
partner of the inflaton is stabilized, corresponds to a one-
dimensional Riemannian manifold of the form

ds2 ¼ gρρðρÞdρ2 ¼ dφ2; gρρðρÞ ¼
1

2

aq
ρq

; ð52Þ

which we encounter in the pole inflation models of Sec. II.
In the case that q ¼ 2, the Kähler manifold metric of the
Poincaré disk

gZZ̄ ¼ 3α

ð1 − ZZ̄Þ2 ð53Þ

is given in Eq. (22), and therefore a2 ≡ 3α
2
is associated with

the Kähler manifold curvature a2 ¼ −RK . The same
curvature is obtained using the half-plane coordinates with
the metric

gTT̄ ¼ 3α

ðT þ T̄Þ2 ; ð54Þ

as given in Eq. (36).
Note that a one-dimensional Riemannian manifold of the

kind shown in Eq. (52) does not have an intrinsic curvature,
it is always locally isometric to a straight line. Indeed, a
local change of variables from ρ to φ leads to a trivial metric
gφφ ¼ 1.4 Formally, the Riemann curvature tensor has a
single component R1111, but this element is required to be
equal to 0 due to the antisymmetric property of the Riemann
curvature tensor Rijkl under the interchange of the indices.
Therefore, interpretation of the single field pole inflation

with q ≠ 2 may rise some questions because there is no
geometric structure associated with the one-dimensional
pole-type metric. Nevertheless, this framework is quite
useful since it provides a simple unified interpretation of a
rather large class of cosmological attractors, including
hilltop models and D-brane inflation.
Following our discussion in Sec. II, we start with the

Lagrangian (3)

L ¼ Lkin − V ¼ −
1

2

aq
ρq

ð∂ρÞ2 − VðρÞ: ð55Þ

For q ¼ 2, this theory describes α attractors. Consider now
the case q ≠ 2. Then the canonical variable φ is related to
ρ ≥ 0 as follows:

ρ ¼
���� ð2 − qÞφ

2
ffiffiffiffiffiaq

p
����

2
2−q
: ð56Þ

The absolute value appears because the equation to be
solved is � ∂ρ

ρq=2
¼ ϕ, with one of the signs, and the solution

for ρ must be positive. However, already at that stage, the
situation becomes somewhat delicate.
For q ¼ 2, the solution of the corresponding equation is

ρ ¼ e−
ffiffiffiffi
a2

p
φ ¼ e−

ffiffiffi
3α
2

p
φ. This transforms the field ρ in the

original range of values 0 < ρ < þ∞ into a canonical field
φ defined in the full unconstrained range −∞ < φ < þ∞.
By solving equations of motion using φ variables, one can
never reach infinitely large values of φ within finite time.
Therefore, the same should be true for the field ρ: neither
the values of ρ ¼ þ∞ nor the point ρ ¼ 0 can be reached
within finite time.
Meanwhile, for q < 2, the canonical field φ can reach the

point φ ¼ 0 within finite time, and therefore the point
ρ ¼ 0 is also accessible. This means that the coordinate
system covering 0 < ρ < ∞ is incomplete; see [74] for a
related discussion.
This is not necessarily a problem. For example, for

q ¼ 3=2, one has ρ ¼ φ4

16a2q
. Therefore, the potential VðρÞ

becomes a certain function of or φ4, which can be easily
continued to φ < 0, thus making it possible to consider
the full range of values −∞ < φ < þ∞. This simple
procedure works for q ¼ 2 ∓ 1=n, resulting in ρ ∼ φ�2n.
One can use a similar procedure for general values of
q < 2, as long as it does not lead to anomalous behavior of
VðφÞ at φ ¼ 0.
For q > 2, the transformation to canonical variables

makes the change ρ ¼ 0 → φ ¼ þ∞ and ρ ¼ þ∞ →
φ ¼ 0. Thus, the field cannot reach the singularity at
ρ ¼ 0, which would require an infinitely long journey
for the canonical field φ, but it can reach ρ ¼ þ∞, which
is, therefore, not a true physical infinity. A potential VðρÞ
slowly growing when ρ approaches 0 looks like an infinite
plateau at large φ, but one should check whether the
potential has an acceptable behavior (e.g., whether it is
differentiable) at φ ¼ 0, prior to performing its continu-
ation to φ < 0.
Let us consider some simple potentials and check how

they look in canonical variables.

VðρÞ ¼ V0ð1 − cρÞ ⇒ V0

�
1 −

�
φ

m

� 2
2−q
�
; ð57Þ

where

m ¼ 2
ffiffiffiffiffiaq

p

j2 − qjc2−q
2

: ð58Þ

In particular, for q ¼ 1, one has a quadratic hilltop potential
V ¼ V0ð1 − φ2=m2Þ. For q ¼ 3=2, one has a quartic hilltop
potential V ¼ V0ð1 − φ4=m4Þ. For q ¼ 5=2, one has a
quartic BI D-brane potential V ¼ V0ð1 −m4=ϕ4Þ. For
q ¼ 3, one has a quadratic BI D-brane potential
V ¼ V0ð1 −m2=ϕ2Þ. As we already discussed, all of these
potentials are unbounded from below, and therefore they

4Note that globally such a change of variables may not be well
defined, which may lead to confusing situations, some of which
will be discussed below.
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should be discarded. Nevertheless, it is remarkable that all
of them can be easily obtained from the simple linear
potential V0ð1 − cρÞ in the context of pole inflation.
One can improve these potentials and make them

positively definite by doing the same as we did in the
derivation of the Starobinsky model, or the E models in the
context of α attractors. One can introduce the positively
defined potential

VðρÞ ¼ V0ð1 − cρÞ2 ⇒ V0

�
1 −

�
φ

m

� 2
2−q
�

2

: ð59Þ

For q ¼ 1, one has the usual Higgs-type potential

V ¼ V0

�
1 −

φ2

m2

�
2

: ð60Þ

which leads to inflation for m ≫ 1 [75–77], but its
predictions do not provide a particularly good fit to the
Planck 2018 data. For q ¼ 3=2, one has the squared hilltop
potential introduced in our previous paper [13],

V ¼ V0

�
1 −

φ4

m4

�
2

: ð61Þ

This theory provides a good fit to the Planck 2018 data
[13], but previously it did not have any physical or
mathematical motivation. Now we see that this model is
a generalization of the E models with q ¼ 2 for pole
inflation with q ¼ 3=2. However, the attractor nature of this
model is not helpful here since this hilltop model in the
attractor regime withm < 1 predicts too small values of ns.
This model is compatible with the Planck 2018 data only
for m ≫ 1, where its predictions are very different from the
predictions of the simple hilltop inflation models V ¼
V0ð1 − φ4=m4Þ [13].
For q ¼ 7=4, one has the squared hilltop potential

introduced in our previous paper [13],

V ¼ V0

�
1 −

φ8

m8

�
2

: ð62Þ

This theory provides only a marginal fit to the Planck 2018
data in the attractor regime with m < 1, where it predicts
ns ¼ 1 − 7

3N. This value is smaller than the α-attractor
prediction ns ¼ 1 − 2

N by about 0.006.
One may study a more complicated possibility,

VðρÞ ¼ V0e−cρ ⇒ V0e−ð
φ
mÞ

2
2−q : ð63Þ

These potentials, in different notation, are used in [3,55].
Note that these functions for q < 2 look like the hilltop
models with potentials that do not have a minimum, but
instead become superexponentially small at large ϕ. They

might be useful for a description of quintessential inflation.
For q > 2, these functions describe plateau potentials with
an extremely flat minimum, such that the mass of the field
vanishes at φ ¼ 0.
Until now, we assumed that when the field approaches

ρ ¼ 0, the potential grows linearly. However, one may also
consider the models where the potential VðρÞ is symmetric
with respect to the change ρ → −ρ. This would mean that
the simplest potential VðρÞ at small ρ is

VðρÞ ¼ V0ð1 − c2ρ2Þ þ � � � ⇒ V0

�
1 −

�
φ2

m2

� 2
2−q
�
þ � � � :

ð64Þ

For example, for q ¼ 1 one has a quartic hilltop potential
V ¼ V0ð1 − φ4=m4Þ. Meanwhile, in the theory (57) with a
linear term in the potential VðρÞ, the resulting potential for
q ¼ 1was V ¼ V0ð1 − φ2=m2Þ. This illustrates a distinctive
feature of the attractors with q ≠ 2. For α attractors (q ¼ 2),
elimination of the linear term in the potential VðρÞ changes
α, and therefore r, but it does not affect ns. Meanwhile, for
q ≠ 2 elimination of the linear term in the potential VðρÞ
changes ns, moving the predictions from one β stripe to
another.

B. D-brane inflation and pole inflation with q > 2

By construction, all pole inflation models are attractors.
Here we will consider a subclass of these models closely
related to D-brane inflation. As we already mentioned, a
simplest representative of this class is the quartic BI
inflation potential V ¼ V0ð1 −m4=ϕ4Þ, which corresponds
to the theory with q ¼ 5=2. This potential is unbounded
from below, but one can consider some of its consistent
generalizations, such as the potential

VðρÞ ¼ V0

1þ cρ
⇒ V0

�
1þ

�
φ

m

� 2
2−q
�−1

: ð65Þ

For q ¼ 5=2, one finds the KKLTI D3-brane inflation
potential

V ¼ V0

�
1þm4

φ4

�
−1

¼ V0

φ4

φ4 þm4
: ð66Þ

For q ¼ 8=3, one finds the KKLTI D4-brane inflation
potential

V ¼ V0

�
1þm3

φ3

�
−1

¼ V0

φ3

φ3 þm3
: ð67Þ

For q ¼ 3, one finds the KKLTI D5-brane inflation
potential
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V ¼ V0

�
1þm2

φ2

�
−1

¼ V0

φ2

φ2 þm2
: ð68Þ

Finally, for q ¼ 4, we have the KKLTI D6-brane inflation
potential

V ¼ V0

�
1þm

φ

�
−1

¼ V0

φ

φþm
: ð69Þ

The potentials (67) and (69) could seem unphysical
because they become negative and are unbounded from
below for φ < 0. However, this is not a real problem. In
the D-brane context, φ is a measure of the distance
between the branes, which is positive. One can describe
the theory by a potential symmetric with respect to the
change φ → −φ, using the procedure discussed in the
previous subsection, i.e., effectively replacing ϕ by
the positive distance

ffiffiffiffiffi
ϕ2

p
.

Now we are using several different parameters, closely
related to each other: p, k, β, and q. Relations between
these parameters for the four different Dp-brane models
discussed above is explained in Table 1.
Thus, the potentials mentioned above have two inde-

pendent interpretations, as the D-brane inflation potentials,
and as potentials of the cosmological attractors in the
context of the pole inflation. This can be very useful for
interpretation of the models with m > 1. Indeed, as we
already mentioned, the parameter m in D-brane inflation
typically is very small, m ≪ 1; see [18,52,72]. Meanwhile,
there is no such constraint for general pole inflation models.
In other words, the models (66)–(69) represent consistent
pole inflation attractors for any m, independently of their
string theory interpretation. Note that these potentials are
symmetric with respect to the change ϕ → −ϕ, and in this
sense they are similar to the T models of α attractors. The
predictions of this set of models, in combination with the
simplest T models and E models of α attractors, are shown
in Fig. 4 in the Introduction.
Another set of consistent pole inflation models is

described by the potential (59) with q > 2, generalizing
E models. In particular, for q ¼ 5=2, one has a potential

V ¼ V0

�
1 −

m4

φ4

�
2

: ð70Þ

It is singular at φ ¼ 0, and it has a minimum at φ ¼ m. It is
instructive to show the predictions of the simplest α
attractors (q ¼ 2) simultaneously with the predictions of
the q ¼ 5=2 attractors which we just discussed; see Fig. 5.
As one can see from this figure, the set of the simplest
q ¼ 2 and q ¼ 5=2 attractors completely covers the dark
blue 1σ area of the Planck 2018 data for ns and r.
Moreover, a combination of the T models (yellow lines)

and the model (70) (magenta lines) is already sufficient to
cover the sweet spot of the Planck data. In the small r
limit, any single choice of the family of α attractors
(T or E models) in combination with any family of
attractors with q ¼ 5=2 form two stripes which are suffi-
cient to describe the presently available data.

VI. ON PHENOMENOLOGICAL
PARAMETRIZATIONS OF THE

CMB DATA

In our investigation, we were trying to identify the
simplest inflationary models motivated by fundamental
physics, which would provide a good match to the Planck
data. All models that we have analyzed in this paper have
an unusual property: in the small r limit, their predictions
form vertical β stripes in the (ns, r) space,

1 − ns ¼
β

N
: ð71Þ

Few years ago, this property could seem very unusual indeed.
Among dozens of models analyzed in Encyclopædia
Inflationaris [18], which was written prior to the invention
of α attractors, only two models possess this property: hilltop
inflation and D-brane inflation, in the limit m ≪ 1.
An alternative approach developed in [3,55,56] is to be

agnostic with respect to fundamental physics, postulate the
equation (71)

1 − nsðNÞ ¼ β

N
ð72Þ

up to subleading corrections in an expansion in 1=N and
then study consequences of this hypothesis. (We replaced
pþ 1 used in this equation in [3] by β to avoid confusion
with the Dp-brane notation.)
The proposal made in [3,56] is to solve Eq. (72). The

solution of this equation for the slow-roll parameter ϵ is

ϵðNÞ ¼ β − 1

2N
1

1� ðN=NeqÞβ−1
: ð73Þ

Here Neq is an integration constant. If Neq ≪ N, which is
expected at sufficiently small r, this can be brought to the
form

ϵðNÞ ¼ ðβ − 1ÞNβ−1
eq

2Nβ ; ð74Þ

TABLE I. Relation between the parameters p, k, β, and q for
the Dp-brane inflation models.

p k β q

3 4 5=3 5=2
4 3 8=5 8=3
5 2 3=2 3
6 1 4=3 4

RENATA KALLOSH and ANDREI LINDE PHYS. REV. D 100, 123523 (2019)

123523-14



which yields

rðN; β; NeqÞ ¼ 16ϵðNÞ ¼ 8ðβ − 1ÞNβ−1
eq

Nβ : ð75Þ

Since the models with nsðNÞ ¼ 1 − β
N studied in [3,55,56]

can be also obtained in the context of pole inflation, we can
compare the expression for r obtained in Eq. (14),

r ¼ 8aβ−1q

�
β − 1

N

�
β

; ð76Þ

with the expression for rðN; β; NeqÞ in (75). This gives

Neq ¼ ðβ − 1Þaq ¼
aq

q − 1
: ð77Þ

Here β ¼ q
q−1, q is the order of the pole in Eq. (3), and aq is

the residue, redefined to absorb the arbitrary constant c in
the potential, as explained in Sec. II.
Thus, the theory of pole inflation provides a simple

interpretation of the important but somewhat obscure
parameter Neq in terms of the residue at the pole.
The next step in [3] is the introduction of the character-

istic scale of inflationary potential M. The definition the
characteristic scale implicitly used in [3] is5

M2 ¼ 4

β − 1
Neq: ð78Þ

However, Eq. (78) is a definition of a new concept, the
characteristic scale M, which was not explained and
explicitly presented in [3]. It is interesting therefore that
Eq. (78), up to the coefficient 4, has a simple interpretation
in terms of pole inflation. Indeed, Eq. (78), in combination
with (77), yields

M2 ¼ 4aq: ð79Þ

Note that the choice of the coefficient 4 in (78) and in
front of aq in Eq. (79) is just a matter of preference or
convenience. Since all equations in this section apply to
models with arbitrary values of q and β, it may be better to
use a definition of the characteristic scale motivated by
the theory of α attractors, where β ¼ q ¼ 2 and aq ¼ 3α

2
.

If instead of M2 ¼ 4aq, we identify the square of the
characteristic scale M2 with the pole residue aq,

M2 ¼ aq; ð80Þ

we will have

M ¼
ffiffiffiffiffiffi
3α

2

r
; ð81Þ

and the asymptotic behavior of the inflaton potential for all
α attractors will be described by a simple intuitively
appealing equation

V ¼ V0ð1 − e−φ=M þOðe−2φ=MÞÞ: ð82Þ

Another advantage of this definition, used in [17,68], is that
M would have a simple interpretation in terms of the
negative curvature of the hyperbolic moduli space [59,60]

R ¼ −M−2: ð83Þ

Now we have an additional argument in favor of this
definition:M2 would coincidewith the residue at the poleaq.
Yet another physically interesting definition would be

M2 ¼ 2aq; ð84Þ

which would imply

M ¼
ffiffiffiffiffiffi
3α

p
: ð85Þ

In that case, M would be given by the radius of the Escher
disc discussed in Sec. II C. At N ¼ 60, it would mean that
for α attractors the Planckian value of this characteristic
scale is r ¼ 4

602
≈ 10−3. This value of r would also coincide

with the lowest U-duality benchmark for α attractors; see
the black line in Fig. 9 and a discussion in Appendix.
If we are planning to use the results of the B-mode search

for finding the characteristic scale of inflation [3], it would
be important to find the best physically motivated definition
of this quantity. For example, the difference by the factor of
2 between the possible definitions of M for α attractors
given in (79) and (80) leads to the change by the factor of 4
between the values of r for M ¼ 1. Once we make a well-
motivated choice of M for α attractors (β ¼ 2), one can
multiply it by any function FðβÞ such that Fð2Þ ¼ 1. This
modification is not required, but it may be useful if one
wants to associate the Planckian characteristic scaleM ¼ 1

with the same value of r ∼ 10−3 for models with all relevant
values of β, e.g., in the range 2 < β < 5=2.

VII. SUMMARY

This investigation, involving also a series of our recent
papers [13,17,51], started soon after the Planck 2018 data
release [14]. The main goal of this paper was to conclude
this series of investigations by developing a unified
description of the models favored by Planck 2018.
As we mentioned in the Introduction, Ref. [14] described

three different classes of models of such type. The first
class of models includes the Starobinsky model, the Higgs5R. Flauger (private communication).
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inflation model, the GL model, and the large class of α

attractors with potentials V ∼ 1 − e−
ffiffiffi
3α
2

p
φ þ � � �, which

embedded and generalized all of these models [42–44].
The second class includes the hilltop inflation models with

potentials V ∼ 1 − φk

mk þ… [48,49]. The third class of
models favored by Planck 2018 includes Dp-brane inflation
models with V ∼ 1 − mk

φk þ � � � [18,50,51].
These three classes of models have some similarity: for

m ≪ 1 (α≲ 1), they have an attractor regime: their pre-
dictions for ns do not depend on the higher order terms in
the inflaton potential, on m and on r: ns ¼ 1 − β

N. In the
α-attractors models, one has β ¼ 2, hilltop models have
β ¼ 2 k−1

k−2 > 2, and D-brane models have β ¼ 2 kþ1
kþ2

< 2.
Despite these similarities, theoretical motivation and

observational status of these models are very different.
The hilltop inflation in the attractor regime is strongly
disfavored by Planck 2018 data, unless one considers
models with k≳ 7. Outside the attractor regime, for
m≳ 1, one cannot neglect the higher order terms, which
are necessary to avoid global collapse of the Universe in
such models. We are unaware of any natural version of
hilltop inflation that would make predictions reproducing
the green area in the Planck, CMB-S4, and PICO Figs. 1
and 2; see a detailed discussion of this issue in [13].
As for α attractors, they have a compelling theoretical

motivation in the context of supergravity, and their pre-
dictions easily cover the left-hand side of the 1σ area in the
(ns, r) space favored by Planck 2018. Meanwhile, we found
that the right-hand side of the 2σ area is completely covered
by predictions of models with phenomenological potentials
(66)–(69), which can be associated with D-brane inflation.
These predictions, shown in Fig. 4 in combination with
the predictions of α attractors, form a series of stripes with
β ¼ 2; 5

3
; 8
5
; 4
3
; 3
2
. The last four values of β correspond to

Dp-branes with p ¼ 3, 4, 5, 6.
We should note, that realistic versions of D-brane

inflation models constructed so far havem ≪ 1 and predict
very small r, in the range of 10−6 − 10−10 [18,52]. This
may change with the further development of such models.
Interestingly, the phenomenological potentials associated
with D-brane inflation (66)–(69), with arbitrary values ofm
and r, also appear in the theory of pole inflation [53,54]
describing the cosmological attractors with the pole order q
in the kinetic term of the inflaton field. In this context,
α attractors are the pole inflaton models with q ¼ 2. The
D-brane inflation potentials with k ¼ 4, 3, 2, 1 correspond-
ing to β ¼ 5

3
; 8
5
; 4
3
; 3
2
belong to the class of the pole inflation

potentials with q ¼ 5
2
; 8
3
; 3; 4, respectively; see Sec. V.

Unlike α attractors with q ¼ 2, pole inflation for q ≠ 2
does not have deep roots in supergravity. In this respect,
it may not have an equally good interpretation in terms of
fundamental physics, but such interpretation may be found
in the future. At the very least, pole inflation with q ≠ 2

provides a very powerful tool for development, interpre-
tation, and classification of a broad class of cosmological
attractors. In particular, it allows to generate all inflaton
potentials used in the phenomenological parametrization of
inflationary models developed in [3,55,56]. This method
immediately allows to explain the attractor nature of such
potentials and find many new potentials of desirable type.
For example, the hilltop inflation potential ð1 − φ4

m4Þ2 (61)
and the plateau potential ð1 − m4

φ4Þ2 (70) could seem rather

ad hoc. However, in the context of the pole inflation
approach, these two models represent the simplest q ¼ 3=2
and q ¼ 5=2 counterparts of the q ¼ 2 α-attractor E model

ð1 − e−
ffiffiffi
3α
2

p
φÞ2 generalizing the Starobinsky model. And

even though models with q ¼ 5=2 may not have a clear
motivation in string theory and supergravity, the ease with
which a combination of the simplest T model (20) (q ¼ 2,
yellow lines) and the model (70) (q ¼ 5=2, magenta lines)
covers the sweet spot of the Planck data in Fig. 5 is quite
remarkable.
In addition, the pole inflation approach provides a unique

way to derive simple general expressions for ns, r, and As
(14), as well as Eq. (77) for the parameter Neq introduced
in [3,56], in terms of the residue at the pole aq; see Sec. VI.
We find that the characteristic scale of inflation M
introduced in [3] has a particularly simple relation to the
residue at the pole,M2 ¼ 4aq, see (79), but we believe that
from the point of view of the theory of α attractors it would
be more natural to define this scale as M2 ¼ 2aq (84), or
simply as M2 ¼ aq (80).
Let us briefly summarize the main results of our

investigation of the inflationary models favored by
Planck 2018. We found that some of these models, such
as the simplest versions of hilltop inflation and D-brane
inflation, are theoretically inconsistent. However, consis-
tent versions of D-brane inflation, in combination with the
simplest α-attractor models, can successfully describe most
of the area in the (ns, r) space favored by Planck 2018.
These two classes of models are complementary to each
other: α attractors tend to describe the left side of the area in
the (ns, r) space favored by Planck 2018, whereas D-brane
models describe the right-hand side of this area; see Figs. 4,
10, and 5. We found that the pole inflation approach to the
theory of cosmological attractors can provide a unified
phenomenological description of the models favored by the
Planck 2018, including α attractors and D-brane inflation.
Turning from the investigation of these models to the

future observational missions, it is important to identify a
set of specific targets for r and ns to be tested. If B modes
are detected above r ≈ 10−2, the well-motivated models of
inflation, such as the monodromy inflation [9–11], may be
validated relatively soon. However, if this does not happen,
we should clarify what is known about r≲ 10−2. Our
conclusions are specific for the range 10−3 ≲ r≲ 10−2,
where we can present the B-mode targets valid for U-duality
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symmetric class of α attractors, and for r≲ 10−3, where we
present B-mode targets for which the future precision
measurements of ns will be decisive; see Fig. 9.
In the general class of α attractors not related to super-

gravity, or in the models based on minimal N ¼ 1 super-
gravity, α is an arbitrary parameter, and r can take any value
below the current experimental bound r≲ 6 × 10−2.
The parameter 3α is related to the Kähler curvature of
the hyperbolic geometry, RK ¼ − 2

3α. Thus, the search for
inflationary B modes may go beyond investigation of our
spacetime: it may help us to explore geometry of the
internal space of scalar fields responsible for inflation.
In particular, it is possible that the earliest moments of

the Universe are described by maximal supersymmetry
theories, including N ¼ 8 supergravity with E7ð7Þ U
duality, spontaneously broken to the minimal N ¼ 1
supergravity. If spontaneous symmetry breaking occurs
in the potential, then the inflaton kinetic terms—and
therefore the potential-independent predictions of α
attractors—may reflect the geometric nature and the sym-
metries of the original theory [15,16].
U-duality symmetric α attractors have 3α ¼ 7, 6, 5, 4, 3,

2, 1, which leads to seven different predictions for r in the
range 10−3 ≲ r≲ 10−2. If B modes are detected at one of
the discrete levels corresponding to 3α ¼ 7, 6, 5, 4, 3, 2, 1,
as shown in Fig. 9, it will provide an evidence for the
fundamental structure of the theory with maximal super-
symmetry discussed above.
Some of these targets may have a different origin. In

string theory fiber inflation [45,46], one may encounter
α ¼ 2. The Starobinsky model [37], the Higgs inflationary
model [38,39], as well as the conformal inflation model
[47] correspond to α ¼ 1. α ¼ 1=3 is suggested by the
maximal superconformal symmetry [17]; see Appendix.
Yet another target, α ¼ 1=9, corresponds to the GL model
[40,41].
In addition to a set of targets for r, now we have a set of

new targets for ns ¼ 1 − β=N, including β ¼ 2 for α
attractors, and β ¼ 5

3
; 8
5
; 3
2
; 4
3
for D-brane inflation. Note that

these targets contain some uncertainty. First of all, in some
models, the attractor regime ns ¼ 1 − β=N is reached only
for r≲ 10−3. Second, the value ofN depends on the process
of reheating. However, these general issues can be addressed
for each particular model. With the expected improvement
of precision of determination of ns, the possibility to
distinguish various classes of models from each other by
comparing their predictions of ns becomes most interesting
and informative [20]. This may become especially relevant
in the context of the cosmological attractors discussed in our
paper, where the predictions ofns in the small r limit become
tightly confined within each β stripe.
In particular, as we already mentioned, α attractors (pole

inflation with q ¼ 2) tend to describe the left-hand side of
the area in the (ns, r) space favored by Planck 2018,
whereas D-brane models and pole inflation with q > 2

describe the right-hand side of this area; see Figs. 4, 10, and
5. Therefore, even a modest increase of precision in
measurement of ns may provide crucial evidence support-
ing one of these classes of models.
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APPENDIX: MAXIMAL SUPERCONFORMAL
THEORY AND 3α= 1 BENCHMARK

The origin of all seven benchmarks in Fig. 9 is explained
in detail in [15,16]. It was pointed out there that in N ¼ 8
supergravity there is a duality symmetry E7ð7Þ, which is
broken to the minimal N ¼ 1 supersymmetry, and the
corresponding subgroup of duality is E7ð7ÞR ⊃ ½SLð2;RÞ�7,
which describes seven hyperbolic disks. The corresponding
kinetic terms are shown in Eq. (39). When all but one disk
coordinates are frozen dynamically, one is left with a single
disk geometry with SLð2;RÞ symmetry, which is isomor-
phic to SUð1; 1Þ symmetry. In such case, the scalar fields
are coordinates of the coset space SLð2;RÞ

Uð1Þ , or SUð1;1Þ
Uð1Þ , and the

kinetic term is the one for a single unit size hyperbolic disk

Lkin ¼ −
∂Z∂Z̄

ð1 − ZZ̄Þ2 ¼ −
∂T∂T̄

ðT þ T̄Þ2 : ðA1Þ

The relation to maximal superconformal theory of the
kinetic term in (A1) was pointed out in [60] with regard

FIG. 11. On both panels, there are Escher’s pictures of a heaven
and hell in disk and half-plane variables, Z and T, respectively.
The one on the left corresponds to a hyperbolic geometry with the
metric in the disk coordinates, as we derive from maximal
superconformal theory in Eq. (A3). The one on the right
corresponds to a hyperbolic geometry with the metric in the
half-plane coordinates, as we derive from maximal superconfor-
mal theory in Eq. (A4).
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to disk and half-plane variables and Escher’s pictures in
Fig. 11. Here we would like to explain this in a more
detailed way.
Extended superconformal theories were studied in

[78–80]. The maximal N ¼ 4 superconformal theory has
a global duality symmetry SUð1; 1Þ ×Oð6Þ. The scalars
parametrize the coset space SUð1;1Þ

Uð1Þ . The maximal super-

conformal theory has a local SUð4Þ as well as a local Uð1Þ
symmetry. A scalar kinetic term has the form

1

2
Dμϕ

αDμϕαþhc; ϕαϕα ¼ 1; ϕα¼ ηαβϕ�
β; ðA2Þ

where the scalars are doublets under SUð1; 1Þ symmetry,
α ¼ 1, 2. It was shown in [78] that the local Uð1Þ gauge
symmetry can be gauge fixed by the choice Imϕ1 ¼ 0, so
that there is only one independent complex scalar, a
coordinate of the unit size Poincaré disk, Z ¼ ϕ2

ϕ1
, and

1

2
DμϕαDμϕα þ hcjImϕ1¼0 ¼ −

∂Z∂Z̄
ð1 − ZZ̄Þ2 : ðA3Þ

In [80], the choice of the gauge-fixing condition was
Imðϕ1 − ϕ2Þ ¼ 0, the independent complex scalar is a

coordinate of the half-plane T ¼ ϕ1þϕ2

ϕ1−ϕ2
, and the kinetic

term is

1

2
DμϕαDμϕα þ hcjImðϕ1−ϕ2Þ¼0 ¼ −

∂T∂T̄
ðT þ T̄Þ2 : ðA4Þ

There is a simple relation between the disk and half-plane
coordinates, known as Cayley relation,

Z ¼ T − 1

T þ 1
; T ¼ 1þ Z

1 − Z
: ðA5Þ

Thus, from the point of view of the maximal super-
conformal theory, two Escher’s pictures in Fig. 11 corre-
spond to two different choices of gauge fixing the local
Uð1Þ symmetry. This, in turn, leads to two different
coordinate choices for the hyperbolic geometries with
the same curvature R ¼ −2 for the unit size Escher disk
with 3α ¼ 1. T models are simple to formulate in Z
variables with potentials VT ∼ ðZZ̄Þn, E models are simple
in T variables with potentials VT ∼ ð1 − TÞ2n.
It is important that the maximal N ¼ 4 superconformal

theory has a scalar kinetic term (A3), which corresponds to
a precise value of the unit size Escher disk.
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