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The recently proposed trans-Planckian censorship conjecture (TCC) can be used to constrain the energy
scale of inflation. The conclusions however depend on the assumptions about the postinflationary history of
the Universe. E.g., in the standard case of a thermal postinflationary history in which the Universe stays
radiation dominated at all times from the end of inflation to the epoch of radiation matter equality, TCC has
been used to argue that the Hubble parameter during inflation, Hinf , is below Oð0.1Þ GeV. Cosmological
scenarios with a nonthermal postinflationary history are well-motivated alternatives to the standard picture
and it is interesting to find out the possible constraints which TCC imposes on such scenarios. In this work,
we find out the amount of enhancement of the TCC compatible bound on Hinf if postinflationary history
before nucleosynthesis was non-thermal. We then argue that if TCC is correct, for a large class of scenarios,
it is not possible for the Universe to have undergone a phase of moduli domination.
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I. INTRODUCTION

The most studied picture of the early Universe is that
after the era of cosmic inflation, the Universe reheats,
becomes radiation dominated, and stays radiation domi-
nated all the way till big bang nucleosynthesis (BBN).
However, there are many reasons to entertain other pos-
sibilities for the history of the postinflationary Universe [1].
In particular, the dynamics and fate of moduli fields (such
as those arising from string compactifications) in the early
Universe have been studied for a very long time and in
such scenarios, after the end of inflation and before the
beginning of BBN, there can be an intermediate stage of
deviation from radiation domination.
The details of the dynamics of moduli fields depend

crucially upon the details of cosmic inflation, e.g., how the
moduli masses compare with the energy scale of inflation
etc. The observational upper limits on the tensor to scalar
ratio, r, determine the upper limits on Hubble parameter
during inflation Hinf or the scalar potential V (see [2] and
first row of Table I). The lower limit on the energy scale of
inflation arises from the requirement that the reheating
temperature must be well above that at the onset of BBN.
Thus, there is a huge uncertainty in the energy scale of
inflation and this translates into an uncertainty in our
understanding of nonthermal cosmological scenarios.
If the trans-Planckian censorship conjecture (TCC) [3] is

true, then, it can be used to put constraints on the energy

scale of inflation [4].1 It turns out that the inferred
constraint depends on the postinflationary history of the
Universe in a rather dramatic way (see, e.g., the second and
third row of Table I). E.g., in [4], the authors assume that
the postinflationary universe was radiation dominated (so
that the equation of state is p=ρ ≈ 1=3) and obtained the
bound r ≤ 10−30 which gets saturated for Hinf ≈ 0.25 GeV
i.e., V1=4 ≈ 109 GeV (see third row of Table I). In contrast,
Ref. [8] considered a less conservative evolution of the
universe at the end of inflation and found that if the
effective equation of state of the universe between end of
slow roll and big bang nucleosynthesis isw ¼ p=ρ ≈ −1=3,
then, one could have r ≤ 10−8 and this saturates when
Hinf ≈ 1010 GeV, i.e., V1=4 ≈ 1014 GeV (see second row
of Table I).
Since the value ofHinf for the two scenarios are so vastly

different, the various details of phenomenology as well as
those of the history of the Universe would be very different.
E.g., forHinf as low as 10−1 GeV, the vacuum instability in
Higgs potential at high scales will not be so problematic
[11,12] (see also [13]). This fact, and a look at the last
two rows of Table I suggests that, for a Universe which
undergoes a postinflationary history during which, the
equation of state parameter w of the dominant component
takes a value in between −1=3 and 1=3, the constraints
on Hinf would take some value in between 10−1 GeV
and 1010 GeV.
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In particular, for a cosmology in which the postinfla-
tionary history of the Universe is dominated by moduli,
w ¼ 0 and one expects that this will lead to enhancement
of the upper limit onHinf obtained using TCC (as compared
to [4]). The actual amount of this enhancement can have
thought-provoking implications for moduli dominated
cosmology. Recall that for moduli with gravitational
interactions, requiring that the reheating temperature be
above the temperature of BBN, the moduli massmmod must
be greater than about 10 TeV. One must also recall that a
moduli dominated Universe behaves like matter dominated
only when the moduli get displaced from the minimum
of the potential and undergo oscillations. But the modulus
gets displaced from the minimum of its potential if
Hinf > mmod. Thus, if Hinf < mmod, then, the moduli will
not be displaced from their potentials during inflation and
hence there will be no moduli dominated phase.
Thus, it is important to know whether the enhancement

in Hinf inferred from TCC, which will take place in a case
in which postinflationary history is matter dominated for
some duration before BBN, will make it sufficiently bigger
than about 10 TeV or not. In this paper, we answer this
question by carefully finding the amount of enhancement in
Hinf inferred from TCC for several choices of the duration
of pre-BBN matter dominated phase.
The paper is organized as follows: in the next section,

i.e., Sec. II, we remind the reader some very basic concepts
about TCC and moduli dominated cosmology. Then, in
Sec. III, we present the method we use to implement TCC
to find the constraint on Hinf for every possible choice
of duration of nonthermal history. In Sec. IV, present the
results we obtain and try to understand them in an
approximate analytical way. Finally, we conclude in
Sec. V with a discussion about what one learns from the
calculations of this paper.

II. TRANS-PLANCKIAN CENSORSHIP,
INFLATION AND COSMOLOGICAL MODULI

In this section, we remind the reader some basic concepts
relevant to the discussion in the rest of the article.

A. Trans-Planckian censorship conjecture
(TCC) and inflation

Let ai be the value of scale factor at t ¼ ti, the beginning
of inflation. There must be a length scale whose physical
wavelength (at the instant ti) is equal to Planck length. The
comoving wavelength of this mode would be

lco ¼
lpl

ai
: ð1Þ

The trans-Planckian censorship conjecture (TCC) [3,4]
demands that, the dynamics of the Universe must be such
that none of the modes whose physical wavelength at ti is
smaller than or equal to the physical wavelength of this
mode, should ever become super-Hubble. The basic moti-
vation for demanding this can be understood by recalling
that, during inflation, as the wavelength of any Fourier
mode of metric perturbation becomes much larger than the
Hubble radius, the mode function freezes and quantum
fluctuations on that length scale become classical [14–16].2
Thus, TCC dictates that quantum fluctuations at sub-
Planckian length scales should not become classical.
At the moment when inflation ends, let the scale factor

be af, then, the physical wavelength of the mode with
comoving wavelength given by Eq. (1) will be

lphy ¼ lcoaf ¼
lpl

ai
af; ð2Þ

then, if the Hubble radius at the end of inflation is H−1
f ,

then, TCC says that

lpl

ai
af < H−1

f ; ð3Þ

which is the form in which one can implement TCC.
Before proceeding, let us recall that, as of today, inflation

gets observationally constrained by the values of only the
following parameters: scalar spectral amplitude As, scalar
spectral index ns and (upper limits on) tensor to scalar
ratio r. The energy scale of inflation could be characterized
by either the Hubble parameter during inflation Hinf , or the
scalar potential V or the field excursion (also, recall that
the number of e-foldings of inflation required depends on
the assumed energy scale of inflation). The energy scale of
inflation has a large uncertainty: the upper limits come from
the observational upper limits on r and probably the lower
limit comes from the requirement of not spoiling BBN. In
the simplest picture of inflation, Hinf and V inf are related to
observables r; As in the following manner:

�
Hinf

Mpl

�
2

¼ 1

3

�
V1=4
inf

Mpl

�4

¼ π2

2
Asr; ð4Þ

TABLE I. In this table, w ¼ p
ρ is the equation of state parameter

of the cosmic fluid which dominates the energy density of the
universe after the end of slow-roll inflation and just before
the beginning of BBN. In a plot of logLphyðtÞ vs log aðtÞ, the
physical size of Hubble radius H−1ðtÞ is a straight line whose
slope is determined by w and this is given in the last column in the
table.

Sr. No. r <
Hinf

(in GeV)
V1=4

(in GeV) w ¼ p
ρ

slope
3
2
ð1þ wÞ

1 0.07 1013 1016 � � � � � �
2 10−8 1010 1014 − 1

3
1

3 10−30 10−1 109 þ 1
3

2

2In this context, see also Refs. [17,18].
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the excursion of inflaton during inflation, i.e., Δϕ is
given by

Δϕ
Mpl

¼ Oð1Þ ×
�

r
0.01

�
1=2

; ð5Þ

If TCC is true, Eq. (3) can be used to constrain the energy
scale of inflation [4]. But as we argued (and as we shall
see in greater detail), the energy scale of inflation inferred
from TCC depends on the postinflationary history of the
Universe. For a standard postinflationary history of the
Universe, the TCC implies a very low scale inflation (in this
context, see [19] and [20]).

B. Moduli and cosmology

Moduli are scalar fields generically present in consistent
4-D solutions of string theory. They are massless at some
leading order of description but their potential gets gen-
erated and stabilized by various effects such as fluxes,
perturbative/nonperturbative corrections and/or supersym-
metry (SUSY) breaking effects etc. present in specific
string constructions [21–23]. When these effects are taken
into account, they acquire masses of the order of SUSY
breaking scale or larger than that (except axions which
remain light due to their shift symmetry).
During inflation, a modulus whose mass mmod ≪ Hinf

will get displaced from the minimum of its potential
[24–26]. When the Hubble scale becomes equal to the
mass of the moduli, these fields start to oscillate around
their postinflationary minima with an initial amplitude
given by the difference between the inflationary and the
postinflationary low energy minima of the moduli. This
leads to an epoch in the history of the universe in which the
energy density of the postinflationary universe is domi-
nated by coherent oscillations of the moduli fields. The
shape of the scalar potential of the modulus field at its
minimum, determines the effective equation of state
parameter w ¼ p=ρ [27] in this intermediate stage. The
most robust constraint on this possibility comes from the
fact that this modified history of the Universe should not
spoil predictions of BBN [28].
AsH decreases and becomes of order of the decay width

of the moduli (Γmod), they decay and the universe again
enters the radiation dominated era. The decay of moduli
into relativistic SM particles and/or other light relativistic
degree of freedom will increase the entropy of the universe,
thus reheating the universe again. The requirement that the
decay of the moduli into SM particles shall not spoil the
constraints imposed on the abundances of light elements
produced by BBN leads to the condition that the reheating
temperature of universe after the decay of modulus is
greater than OðMeVÞ. For moduli with gravitational
couplings,

Γmod ∼
m3

mod

M2
pl

; ð6Þ

and since

H ∼
�
π2g�ðTÞ

90

�
1=2 T2

Mpl
; ð7Þ

in radiation dominated era (here g�ðTÞ ≈ 100 is the rela-
tivistic degree of freedom contributing to the energy
density). the condition H ¼ Γmod and the fact that T ≥
Tbbn ≈MeV tells us that

mmod ≥ 10 TeV: ð8Þ

Thus considerations based on BBN lead to a lower bound
on moduli masses, known as the “cosmological moduli
problem” bound. Given all of these details, the question
arises, if we consider a nonthermal postinflationary history
and then determine the constraint which TCC imposes on
Hinf , can Hinf ever be larger than the smallest possible
values of masses of moduli?3

III. STRATEGY OF CALCULATION

The question we wish to ask is, if we now introduce an
era of moduli domination, to what extent does the con-
straint on Hubble parameter during inflation change. For
the case for which w ≈ −1=3, Ref. [8] presented a clever
argument to quickly determine Hinf . Here we would like to
take a very conservative approach: after the end of slow-roll
inflation and before the beginning of big bang nucleosyn-
thesis, there is a some duration for which the Universe is
matter dominated, i.e., w ≈ 0. Since we are dealing with a
slightly more complicated history of the Universe, we need
to implement TCC numerically to find possible constraints
on Hinf . As we shall see, increasing the duration of matter
domination will lead to an increase in the TCC compatible
upper-limit on Hinf .

A. Basic formalism

To have a sufficiently robust approach to constraining
Hinf using TCC, we need to a way to numerically imple-
ment all the ideas. We now describe the details of our
approach. As we shall see, we still need to make a number
of concrete simplifying assumptions which we will state
later in the section. Let us define

x ¼ log

�
a
a0

�
; ð9Þ

3The postinflationary moduli dominated phase will also affect
inflationary number of e-folds, as studied in Refs. [29–33].
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here, a is the scale factor at any epoch and a0 is scale factor
now. Note that all the logarithms, unless otherwise stated,
are to base 10. Similarly, define

y ¼ log

�
L

H−1
0

�
; ð10Þ

here, L is any length scale of interest and the argument of
the log is the length scale L in units of Hubble distance
today. We shall be interested in the range of length scales
from Planck length lpl toH−1

0 (the Hubble distance today).
At this stage, it is useful to have a way to visualize what
we are doing, thus, it is advisable that the reader keeps
looking at Fig. 1 while reading this section. Thus, the range
of y values of interest will be

ymin ¼ log

�
lpl

H−1
0

�
; and ; ymax ¼ 0: ð11Þ

Similarly, the range of x values would be xmin ¼ ymin and
xmax ¼ 0. This implies that xmin ¼ ymin ≈ −60 (see the axes
in Fig. 1).
Since the Universe is expanding, given any length scale

today, its physical length at some time in the past would be
smaller. Consider the length scale which today has length
equal to H−1

0 , its y value at any time in the past (specified
by x) would be

yH0
ðxÞ ¼ H−1

0 x: ð12Þ

This is represented as the blue line marked “H−1
0 ” in Fig. 1.

Let ystdH ðxÞ be the y coordinate corresponding to Hubble
parameter in the standard model of cosmology (i.e., without
inflation or moduli domination etc). This quantity (which is
just log of Hubble distance at any time in units of H−1

0 )
evolves as

ystdH ðxÞ ¼ log ½ΩΛ þΩk10
−2x þ Ωm10

−3x þ Ωr10
−4x�−1

2;

ð13Þ

where, the Ωs are various density parameters today
and hence ΩΛ þ Ωk þΩm þΩr ¼ 1. Note the green line
in Fig. 1 marked “ystdH ðxÞ” (note that, in the figure, for
x > xendmod, the green line cannot be seen because it sits
below the red line, so, is hidden from view). Even in this
standard big bang model, there are special epochs, e.g., the
epoch of matter-radiation equality

xeq ¼ log
Ωr

Ωm
; ð14Þ

the epoch of the beginning of late time acceleration of the
Universe

xde ¼
1

3
log

Ωm

ΩΛ
: ð15Þ

Before proceeding, we must mention that for big bang
nucleosynthesis,

a
a0

¼ T0

T
≈ 10−10; ð16Þ

so that this epoch corresponds to xbbn ≈ −10. All these
three special epochs are represented by vertical dashed
lines marked by their names in Fig. 1, in particular, the line
corresponding to xbbn is of brown color.

1. Including moduli dominated phase

In order to analyze the behavior of the Universe with a
moduli domination phase, we shall consider a scenario in
which the history of the Universe for x > xeq is the same as
that in standard big bang cosmology but before that, the
early history gets modified in the manner summarized in
Table II. Thus, as compared to standard big bang cosmol-
ogy, we have introduced the following in the early universe:
for x < xendinf , the universe undergoes cosmic inflation,
after which the Universe gets dominated by radiation, at
x ¼ xinimod, the Universe gets dominated by moduli, this ends
at xendmod after which the radiation domination, and hence the
usual thermal history starts. Thus, we must have

FIG. 1. This figure provides a summary of all the quantities
presented in the paper. As expected, ystdH ðxÞ and ymodðxÞ are
identical for x ≥ xendmod, so the green line sits below the red line for
x > xendmod and hence cannot be seen.

TABLE II. A summary of the history of the Universe we are
interested in.

Sr. No. Range of x What happens

1 x < xendinf Inflation

2 xendinf < x < xinimod Radiation domination

3 xinimod < x < xendmod Moduli domination

4 xendmod < x < xeq Radiation domination
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xendinf < xinimod < xendmod < xbbn < xeq; ð17Þ

Obviously, we have to have xendmod < xeq, but note that we
must also have xendmod < xbbn. All of these additional epochs
are represented by additional vertical dashed lines marked
by their respective names in Fig. 1.
At the epoch of the end of moduli domination, with

x ¼ xendmod, and we must have

Ωmod ¼ Ωr10
−xendmod ; ð18Þ

whereΩmod is the density parameter of moduli, similarly, at
the epoch of beginning of moduli domination,

ΩE
r ¼ Ωmod10

xinimod ; ð19Þ

here, ΩE
r is the density parameter corresponding to the

radiation in the early Universe before moduli domination
began. It is now easy to see that for this case which involves
inflation as well as a phase of moduli domination, the
equivalent of Eq. (13) shall be

ymodðxÞ ¼

8>>>>><
>>>>>:

ystdH ðxÞ; x ≥ xendmod

log ðΩmod10
−3xÞ−1

2; xendmod ≥ x ≥ xinimod

log ðΩE
r 10

−4xÞ−1
2; xinimod ≥ x ≥ xendinf

log ðΩE
r 10

−4xendinf Þ−1
2; xendinf ≥ x

ð20Þ

This function ymodðxÞ is a logarithmic measure of
Hubble distance at any time (in units of Hubble distance
now) and is represented by the red line in Fig. 1. The thick
dots on the red line in Fig. 1 represent the epochs at which
the behavior ymodðxÞ transitions. Before proceeding, let us
note that we have kept ymodðxÞ for x ≤ xendinf to be a constant.
We are thus working with the approximation that the
Hubble parameter during inflation is treated as exactly
constant. At a later state, we will comment on how the
conclusions we draw could change if we do not make this
assumption.

2. Implementing TCC

In order to implement this, we would make two addi-
tional assumptions:
(1) At the time t ¼ ti, the mode corresponding to current

Hubble radius is just entering the Hubble sphere, i.e.,
inflation is “just enough” (note that this is epoch is
shown by a vertical line marked “x0inf”),

(2) The Fourier mode whose comoving wavelength is
given by Eq. (1) must saturate the TCC bound
Eq (3).

This suggests the following way of implementing TCC:
at the time ti (with x ¼ x0inf ), consider the mode whose
physical wavelength at this time is equal to lpl, this mode,

must be just inside the Hubble radius at the end of inflation.
Note that such a mode could be represented as a line
parallel to the blue line in Fig. 1 and passing through the
point ðx0inf ; yminÞ. Keeping this picture in mind, one realizes
that once the above assumptions are made, it is easy to see
how TCC can be implemented numerically to constrain
Hinf for any choice of xendmod and x

ini
mod. We have implemented

the following algorithm: for every choice of values of xendmod
and xinimod satisfying Eq. (17),
(a) Choose a large enough xendinf [which still satisfies

Eq. (17)],
(b) Find ymodðxÞ at x ¼ xendinf using Eq. (20),
(c) Now find the value of x at the epoch ti when x ¼ x0inf ,

i.e., when the mode corresponding to current Hubble
radius exits the Hubble radius during inflation, this
can be done by solving for x in the equation
yH0

ðxÞ ¼ ymodðxendinf Þ, call the solution of x for this
equation to be x0inf , note that this is where we are
making the assumption that Hubble parameter during
inflation is a constant,

(d) Find the mode whose physical wavelength at this
epoch x0inf is equal to Planck length: such a mode
would be described by the point ðx0inf ; yminÞ,

(e) Find the physical wavelength of this mode at any time,
this will be described by the equation

y ¼ ymin þ ðx − x0infÞ; ð21Þ

(f) Using this, find the physical wavelength of this mode
at the end of inflation i.e., set x to be xendinf in the above
equation and solve for y, call the corresponding value
of y to be yf.

(g) if yf > ymodðxendinf Þ, then TCC is not satisfied, in this
case, go back to step 1 above and try a smaller value of
xendinf . On the other hand, if yf < ymodðxendinf Þ, then TCC
is satisfied. Since we wish to saturate the TCC bound,
this is not good enough, we must go back to step 1 to
try a large value of xendinf until we find yf > ymodðxendinf Þ
within some accuracy.

Once we follow this procedure, for every choice of
values of xendmod and x

ini
mod, we can find x

end
inf . From this, we can

get ymodðxendinf Þ and this can be used to find the Hubble
parameter during inflation in units of Hubble parameter
today using Eq. (10).

IV. RESULTS

A. Numerical results

We set the values of cosmological parameters to their
best fit values [2] and then, for every choice of xendmod and
xinimod, we find ymodðxÞ and use the procedure described by
the last section to find TCC compatible ymodðxendinf Þ. We thus
have two free parameters, and we note that, once we fix
xendmod and xinimod, when we use TCC to fix Hinf , we do not
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have a choice in deciding how much is the number of
e-foldings of expansion of the Universe between the end
of inflation and beginning of moduli domination. Let us
now define

Δx ¼ xendmod − xinimod; ð22Þ

so, it is a positive quantity and it tells us that

aendmod

ainimod

¼ 10Δx: ð23Þ

If we fix xendmod to the value xbbn − 1, then, as we decrease
xinimod from xendmod − 1 to xendmod − 15, Δx changes from 1 to 15.
This means that the ratio aendmod=a

ini
mod changes from 10 to

1015. We found that the corresponding value of Hinf
changes from 0.442 GeV for Δx ¼ 1 to 96.79 GeV for
Δx ¼ 15. Thus, even though we have introduced a phase of
moduli domination in which the Universe expands by a
factor of 1015, i.e., 34.54 e-foldings, the increase in Hinf
(determined using TCC) is only a factor of 218.8 (see
Fig. 2). We thus find that as compared to the case in which
postinflationary history is purely radiation dominated, the
TCC compatible Hinf is two orders of magnitude higher in
the case in which the postinflationary history has a matter
dominated phase of sufficiently large duration. However,
even when this enhancement is taken into account, Hinf

does not become larger than mmod ≳ 104 GeV and this is
crucial (see the discussion in Sec. II).

1. Evolution of H during inflation?

Before proceeding, we would like to address possible
concerns about the assumption that the Hubble parameter

during inflation is taken to be exactly constant. This is
correct only approximately and hence one might wonder
whether doing a more careful analysis with inclusion of
time dependence of H will change the conclusions. First,
unless the corresponding increase in the value of TCC
compatible Hinf is by more than another factor of 103, Hinf
shall still not become large compared to mmod. Second, the
Hubble parameter cannot increase with time (unless one is
ready to violate the null energy condition), so it must
decrease during as inflation proceeds. This means that
ymodðxÞ in Fig. 1 will no longer be a straight horizontal
line but a curve for which y values will increase as we
increase x. This will imply that x0inf will be lower (and hence
shift to the left). Thus, a line parallel to the blue line and
passing through the point with new values of the coor-
dinates ðx0inf ; yminÞ will be above the red curve: this will
violate TCC (for the chosen value of xendinf ). In order to
satisfy TCC, we would then need to use a higher value of
xendinf resulting in a higher value of ymodðxendinf Þ and hence a
decrease in the inferred value of Hinf .
So, the conclusions of this section are: (a) the intro-

duction of moduli dominated phase enhances the inferred
value of TCC consistent Hinf as compared to a case in
which postinflationary history is purely thermal, (b) this
enhancement is by a factor of 102 for a duration of matter
dominated phase which lasts for 35 e-foldings, (b) however,
this increase is not large enough to displace the moduli
from the minima of their potentials.

B. An approximate analytical way
of understanding the result

The result we obtained seems a little surprising because a
casual look at Table I seems to suggest that having a
modulus dominated phase, with slope 3=2 should lead to
a TCC compatible value which is in between 1010 GeV
and 10−1 GeV, while we get 102 GeV. Thus, it is important
to try to gain a better understanding of why the enhance-
ment is not large enough, we do this by using rough
analytical arguments.
We define Ninf to be the number of e-folds during

inflation. The TCC tells us that

Hinf

Mpl
≤ e−Ninf : ð24Þ

If one considers the postinflationary Universe to be only
radiation dominated epoch till BBN, one can get (see [8])

Ninf ∼
1

3
ln
Mpl

H0

: ð25Þ

Using the TCC constraint, it gives Hinf < 0.1 GeV.
Now we try to estimate the change in Ninf due to an

intermediate matter dominated regime present in the

FIG. 2. The Hubble parameter during inflation, Hinf , as
determined by implementing the procedure described in the text
(and based on TCC) as a function of Δx which is a logarithmic
measure of the duration of moduli domination in the early
Universe. The presence of moduli dominated phase does increase
the inferred Hinf as compared to a case in which postinflationary
history is purely thermal.
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postinflationary history of the universe by using simple
trigonometry in Fig. 3. We define
(1) Nrh ¼ xinimod − xendinf , number of e-folds between the

end of inflation and the beginning of radiation
dominated era.

(2) Nmod;rh ¼ xendmod − xinimod, number of e-folds between
the beginning and the end of the modulus domi-
nated era.

(3) Neq ¼ xeq − xendmod, number of e-folds between the
end of the modulus dominated era and present time.

By using the last column of Table I, we can see in Fig. 3:
(1) In ΔBCK (corresponding to radiation dominated

era), slope of BC ¼ 2, implying HI ¼ CK ¼ 2BK ¼
2Nrh.

(2) In ΔCDG (corresponding to matter dominated era),
slope of CD ¼ 3

2
, implying FH ¼ DG ¼ 3

2
CG ¼

3
2
Nmod;rh.

(3) In ΔDEF (corresponding to radiation dominated
era), slope of DE ¼ 2, implying EF ¼ 2DF ¼ 2Neq.

(4) Since number of e-folds between the time of matter-
radiation equality and the present time is very small,
we assume point L to be sitting on top of E in Fig. 3.
Thus, for ΔAEI, we have slope of AE ¼ 1, imply-
ing EI ¼ AI.

In the last case, EI ¼ AI corresponds to EFþ FHþ HI ¼
ABþ BKþ KJþ JI. By simplifying this, we get

Neq ¼ Ninf − Nrh −
Nmod;rh

2
: ð26Þ

Next, we have

EN ¼ EFþ FHþ HIþ IN ¼ ln
Mpl

H0

: ð27Þ

By using Eqs. (26) and (27), we get

3Ninf þ
Nmod;rh

2
¼ ln

Mpl

H0

: ð28Þ

Finally, by adding Eqs. (26) and (28), we get

Ninf ¼
1

4

�
ln
Mpl

H0

þ Nrh þ Neq

�
: ð29Þ

We can calculate Neq by considering Neq ¼ lnð a0
aendmod

Þ∼
lnðTmod

rh
T0

Þ, where Tmod
rh is the reheating temperature of the

universe after the decay of the moduli and T0 is the present

temperature. Similarly, we can take Nrh ∼ lnð T inf
rh

Tmod
rh
Þ, where

T inf
rh is the reheating temperature of the universe after the

end of inflation. By comparing Eqs. (25) and (29), we can
see that there is negligible change in the value of Ninf due
to presence of intermediate moduli dominated era in the
postinflationary history of the universe. Of course, the more
accurate numerical analysis that we did earlier suggests a
little change, but this change is small. This explains the
numerical results of the previous sections.

V. DISCUSSION

Careful studies of explicit string compactifications as
well as some very general arguments lead to the possibility
that low energy effective field theories arising from con-
sistent theories of quantum gravity (which belong to the
string landscape) could be distinguishable from arbitrary
quantum field theories (which belong to the swampland)
[34–37]. The trans-Planckian censorship conjecture is one
such conjectured property of solutions which arise in
consistent theories of quantum gravity.
But typically, string compactifications also have geo-

metric moduli, axions and other open string moduli (e.g.,
brane positions etc). Studies of the evolution of such
moduli fields during and after inflation have suggested
that one could have a matter dominated era in the post-
inflationary history of the Universe before BBN. Given
this, it is extremely important to try to see whether this
conclusion gets affected by the trans-Planckian censorship
conjecture (TCC). TCC can lead to determination of the
energy scale of inflation but the scale implied by TCC
depends on the details of the dynamics of postinflationary
universe. We thus tried to find the energy scale of inflation
for a situation in which the postinflationary universe is
matter dominated. We found that, as compared to Hinf
obtained assuming the standard postinflationary thermal
history, the value of Hinf obtained in the case of matter
domination phase between inflation and BBN, can be two
orders of magnitude higher (depending on the number of
e-foldings of evolution of the universe during moduli
domination). In particular, we found that if moduli domi-
nation ended at a time when the scale factor of the universe
was 1=10 times of its value during BBN, and if it lasted for

FIG. 3. An simplified version of Fig. 1 useful for the analytical
arguments of Sec. IV B.
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about 35 e-foldings before that, the value of Hinf inferred
from TCC would be enhanced by ≈200.
On the other hand, it has been well known that for

moduli with gravitational couplings, the requirement that
reheating temperature must be higher than the temperature
of BBN implies that the moduli masses must be more than
about 10 TeV. Unless the moduli are lighter than Hinf , they
will not be displaced from their minimum during inflation
and there will be no matter dominated phase in the
postinflationary history of the universe before BBN.
We thus find that, the increase in the value of Hinf due to

the introduction of postinflationary matter dominated phase
is not large enough to displace the moduli from the bottom of
their potentials and so, there cannot be a moduli dominated

phase. It thus seems that if TCC is correct, and hence the
energy scale of inflation is determined by the requirement of
saturation of TCC, then, there can be no moduli dominated
phase in the early history of the Universe.
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Note added.—One day after our paper appeared on arXiv,
Ref. [38] appeared which addressed the same issue.

[1] G. Kane, K. Sinha, and S. Watson, Cosmological moduli
and the post-inflationary Universe: A critical review, Int. J.
Mod. Phys. D 24, 1530022 (2015).

[2] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. X. Constraints on inflation, arXiv:1807.06211.

[3] A. Bedroya and C. Vafa, Trans-Planckian censorship and the
swampland, arXiv:1909.11063.

[4] A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa,
Trans-Planckian censorship and inflationary cosmology,
arXiv:1909.11106.

[5] Y. Cai and Y. S. Piao, Pre-inflation and trans-Planckian
censorship, arXiv:1909.12719.

[6] T. Tenkanen, Trans-Planckian censorship, inflation and dark
matter, arXiv:1910.00521.

[7] S. Das, Distance, de Sitter and trans-Planckian censorship
conjectures: The status quo of warm inflation, arXiv:1910
.02147.

[8] S. Mizuno, S. Mukohyama, S. Pi, and Y. L. Zhang,
Universal upper bound on the inflationary energy scale
from the trans-Planckian censorship conjecture, arXiv:
1910.02979.

[9] S. Brahma, Trans-Planckian censorship, inflation and ex-
cited initial states for perturbations, arXiv:1910.04741.

[10] R. G. Cai and S. J. Wang, Mass bound for primordial black
hole from trans-Planckian censorship conjecture, arXiv:
1910.07981.

[11] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice,
F. Sala, A. Salvio, and A. Strumia, Investigating the near-
criticality of the Higgs boson, J. High Energy Phys. 12
(2013) 089.

[12] J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L.
Senatore, A. Strumia, and N. Tetradis, The cosmological
Higgstory of the vacuum instability, J. High Energy Phys.
09 (2015) 174.

[13] G. Goswami and S. Mohanty, Higgs instability and de Sitter
radiation, Phys. Lett. B 751, 113 (2015).

[14] D. Polarski and A. A. Starobinsky, Semiclassicality and
decoherence of cosmological perturbations, Classical Quan-
tum Gravity 13, 377 (1996).

[15] D. H. Lyth and D. Seery, Classicality of the primordial
perturbations, Phys. Lett. B 662, 309 (2008).

[16] C. Kiefer and D. Polarski, Why do cosmological perturba-
tions look classical to us? Adv. Sci. Lett. 2, 164 (2009).

[17] J. Martin and R. H. Brandenberger, The trans-Planckian
problem of inflationary cosmology, Phys. Rev. D 63,
123501 (2001).

[18] R. H. Brandenberger and J. Martin, Trans-Planckian issues
for inflationary cosmology, Classical Quantum Gravity 30,
113001 (2013).

[19] L. Knox and M. S. Turner, Inflation at the Electroweak
Scale, Phys. Rev. Lett. 70, 371 (1993).

[20] N. Okada and D. Raut, Inflection-point Higgs inflation,
Phys. Rev. D 95, 035035 (2017).

[21] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi,
De Sitter vacua in string theory, Phys. Rev. D 68,
046005 (2003).

[22] V. Balasubramanian, P. Berglund, J. P. Conlon, and F.
Quevedo, Systematics of moduli stabilisation in Calabi-Yau
flux compactifications, J. High Energy Phys. 03 (2005) 007.

[23] B. S. Acharya, K. Bobkov, G. L. Kane, J. Shao, and P.
Kumar, The G(2)-MSSM: An M theory motivated model of
particle physics, Phys. Rev. D 78, 065038 (2008).

[24] M. Dine, L. Randall, and S. D. Thomas, Supersymmetry
Breaking in the Early Universe, Phys. Rev. Lett. 75, 398
(1995).

[25] M. Dine, L. Randall, and S. D. Thomas, Baryogenesis from
flat directions of the supersymmetric standard model, Nucl.
Phys. B458, 291 (1996).

[26] B. S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao, and
S. Watson, Non-thermal dark matter and the moduli
problem in string frameworks, J. High Energy Phys. 06
(2008) 064.

MANSI DHURIA and GAURAV GOSWAMI PHYS. REV. D 100, 123518 (2019)

123518-8

https://doi.org/10.1142/S0218271815300220
https://doi.org/10.1142/S0218271815300220
https://arXiv.org/abs/1807.06211
https://arXiv.org/abs/1909.11063
https://arXiv.org/abs/1909.11106
https://arXiv.org/abs/1909.12719
https://arXiv.org/abs/1910.00521
https://arXiv.org/abs/1910.02147
https://arXiv.org/abs/1910.02147
https://arXiv.org/abs/1910.02979
https://arXiv.org/abs/1910.02979
https://arXiv.org/abs/1910.04741
https://arXiv.org/abs/1910.07981
https://arXiv.org/abs/1910.07981
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1016/j.physletb.2015.10.027
https://doi.org/10.1088/0264-9381/13/3/006
https://doi.org/10.1088/0264-9381/13/3/006
https://doi.org/10.1016/j.physletb.2008.03.010
https://doi.org/10.1166/asl.2009.1023
https://doi.org/10.1103/PhysRevD.63.123501
https://doi.org/10.1103/PhysRevD.63.123501
https://doi.org/10.1088/0264-9381/30/11/113001
https://doi.org/10.1088/0264-9381/30/11/113001
https://doi.org/10.1103/PhysRevLett.70.371
https://doi.org/10.1103/PhysRevD.95.035035
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1088/1126-6708/2005/03/007
https://doi.org/10.1103/PhysRevD.78.065038
https://doi.org/10.1103/PhysRevLett.75.398
https://doi.org/10.1103/PhysRevLett.75.398
https://doi.org/10.1016/0550-3213(95)00538-2
https://doi.org/10.1016/0550-3213(95)00538-2
https://doi.org/10.1088/1126-6708/2008/06/064
https://doi.org/10.1088/1126-6708/2008/06/064


[27] M. S. Turner, Coherent scalar field oscillations in an
expanding Universe, Phys. Rev. D 28, 1243 (1983).

[28] M. Kawasaki, K. Kohri, and N. Sugiyama, Cosmological
Constraints on Late Time Entropy Production, Phys. Rev.
Lett. 82, 4168 (1999).

[29] K. Dutta and A. Maharana, Inflationary constraints on
modulus dominated cosmology, Phys. Rev. D 91, 043503
(2015).

[30] K. Das, K. Dutta, and A. Maharana, Inflationary predictions
and moduli masses, Phys. Lett. B 751, 195 (2015).

[31] M. Cicoli, K. Dutta, A. Maharana, and F. Quevedo, Moduli
vacuum misalignment and precise predictions in string
inflation, J. Cosmol. Astropart. Phys. 08 (2016) 006.

[32] A. Maharana and I. Zavala, Postinflationary scalar tensor
cosmology and inflationary parameters, Phys. Rev. D 97,
123518 (2018).

[33] A. Di Marco, G. Pradisi, and P. Cabella, Inflationary scale,
reheating scale, and pre-BBN cosmology with scalar fields,
Phys. Rev. D 98, 123511 (2018).

[34] T. D. Brennan, F. Carta, and C. Vafa, The string landscape,
the swampland, and the missing corner, Proc. Sci.,
TASI2017 (2017) 015 [arXiv:1711.00864].

[35] U. H. Danielsson and T. Van Riet, What if string theory
has no de Sitter vacua?, Int. J. Mod. Phys. D 27, 1830007
(2018).

[36] E. Palti, The swampland: Introduction and review, Fortschr.
Phys. 67, 1900037 (2019).

[37] C. Roupec and T. Wrase, de Sitter Extrema and the
swampland, Fortschr. Phys. 67, 1800082 (2019).

[38] M. Torabian, Non-standard cosmological models and
the trans-Planckian censorship conjecture, arXiv:1910
.06867.

TRANS-PLANCKIAN CENSORSHIP CONJECTURE AND … PHYS. REV. D 100, 123518 (2019)

123518-9

https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevLett.82.4168
https://doi.org/10.1103/PhysRevLett.82.4168
https://doi.org/10.1103/PhysRevD.91.043503
https://doi.org/10.1103/PhysRevD.91.043503
https://doi.org/10.1016/j.physletb.2015.10.041
https://doi.org/10.1088/1475-7516/2016/08/006
https://doi.org/10.1103/PhysRevD.97.123518
https://doi.org/10.1103/PhysRevD.97.123518
https://doi.org/10.1103/PhysRevD.98.123511
https://doi.org/10.22323/1.305.0015
https://doi.org/10.22323/1.305.0015
https://arXiv.org/abs/1711.00864
https://doi.org/10.1142/S0218271818300070
https://doi.org/10.1142/S0218271818300070
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1002/prop.201800082
https://arXiv.org/abs/1910.06867
https://arXiv.org/abs/1910.06867

