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Exact numerical primordial primordial power spectra are computed and plotted for the best-fit Planck
2018 curved universe parameters. It is found that the spectra have generic cutoffs and oscillations within the
observable window for the level of curvature allowed by current cosmic microwave background
measurements and provide a better fit to current data. Derivations for the Mukhanov-Sasaki equation
for curved universes are presented and analyzed, and theoretical implications for the quantum and classical
initial conditions for inflation are discussed within the curved regime.
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I. INTRODUCTION

Cosmological inflation [1–3] is the current most popular
theory for explaining the observed flatness and homo-
geneity of our present-day universe, while simultaneously
providing a powerful framework for predicting the mea-
sured spectrum of anisotropies in the cosmic microwave
background [4,5]. Nevertheless, small and unsatisfactory
features in the cosmic microwave background (CMB)
power spectra arguably still remain [6], and there are
ever-increasing tensions observed between datasets that
measure the early universe and those that measure late-time
properties [7–12]. The hunt is on to find extensions to the
concordance cosmology (cosmological constant with cold
dark matter—ΛCDM) which are capable of resolving some
or all of these discrepancies.
One extension that is often considered is to reintroduce a

small amount of late-time curvature, creating a KΛCDM
cosmology [13,14]. Planck 2018 data without the lensing
likelihood [15] give relatively strong evidence for a closed
universe [4]. Adding in lensing and Baryon acoustic
oscillation data [16–18] reduces this evidence considerably,
but it remains an open question as to why the CMB alone
strongly prefers universes with positive spatial curvature
(with possible implications for tension resolution).
Nevertheless, at the time of writing, universe models with
percent-level spatial curvature remain compatible with
current datasets.
There are theoretical reasons to consider the effect of

curvature on the dynamics of inflation. If one is to invoke
an inflationary phase in order to explain the observed

present-day flatness, one cannot assume that the universe
was flat at the start of inflation, and the presence of any
curvature is arguably incompatible with eternal inflation.
Furthermore, the observation of any amount of present-day
curvature strongly constrains the total amount of inflation,
providing a powerful justification for just-enough-inflation
theories [19–24].
In the traditional curved KΛCDM cosmology, a simple

ðAs; nsÞ parametric form for the primordial power spectrum
is usually assumed [4,5],

PKΛCDM
R ðkÞ ¼ As

�
k
k�

�
ns−1

: ð1Þ

In this work, I examine the effect on the fit of curved
cosmologies to data if an exact numerical approach is used
to calculate the primordial power spectrum. In all cases, an
improved fit is found.
In Sec. II, the Mukhanov-Sasaki equation is derived in

the general case of curved universes and compared with the
flat-space equivalent. In Sec. III, the general Mukhanov
action is calculated and discussed with regards to its
quantization and consequent setting of initial conditions.
In Sec. IV, the primordial and CMB power spectra are
calculated for the best-fit Planck 2018 parameter values,
and the fit is compared against the concordance case.
Conclusions are presented in Sec. V.

II. THE MUKHANOV-SASAKI EQUATION

In this section for completeness, I derive the Mukhanov-
Sasaki equation [Eq. (12)] for curved universes by a
direct perturbative approach [25]. Similar computations
have been performed historically by [26–32]. The ana-
lytical calculations throughout this paper were perfor-
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med with the aid of computer algebra provided by
Maple™ 2017 [33,34], making use of the PHYSICS and
DIFFERENTIALGEOMETRY packages.
The action for a single-component scalar field minimally

coupled to a curved spacetime is

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
Rþ 1

2
∇μϕ∇μϕ − VðϕÞ

�
: ð2Þ

Extremizing this action yields the Einstein field equations
and a conserved stress energy tensor. Throughout this
paper, in accordance with the cosmological principle, we
shall assume that to zeroth order the solutions to these
equations are homogeneous and isotropic. We then per-
turbatively expand these equations about the homogeneous
solutions to first order in the Newtonian gauge, with the
perturbation to the scalar field written as δϕ. In spherical
polar coordinates, the metric is therefore

ds2 ¼ð1þ2ΦÞdt2−aðtÞ2ð1−2ΨÞðcijþhijÞdxidxj;

cijdxidxj ¼
dr2

1−Kr2
þ r2ðdθ2þ sin2θdϕ2Þ; ð3Þ

where K denotes the sign of the spatial curvature, taking
values of K ¼ þ1 for a closed (positively curved) universe,
K ¼ −1 for an open (negatively curved) universe, and
K ¼ 0 for a traditional flat universe. The covariant spatial
derivative associated with the metric on comoving spatial
slices is denoted with a Latin index as ∇i with no factors of
aðtÞ. The potentials Φ and Ψ along with δϕ are scalar
perturbations, while hij is a divergenceless, traceless tensor
perturbation with two independent polarization degrees of
freedom (d.o.f.).

A. Zeroth order equations

At zeroth order, the time-time component of the Einstein
field equations and the time component of the conservation
of the stress-energy tensor give the evolution equations of
the homogeneous background fields

H2 ¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ

�
−
K
a2

; ð4Þ

0 ¼ ϕ̈þ 3H _ϕþ V 0ðϕÞ; ð5Þ

where the Hubble parameter H ¼ _a=a, and primes denote
derivatives with respect to ϕ. A further useful relation is

_H ¼ −
1

2
_ϕ2 þ K

a2
; ð6Þ

which may be found by differentiating Eq. (4) and
eliminating the potential with Eq. (5). Equations (4) and
(5) may be used to remove all explicit potential dependency
from the first order equations, and Eq. (6) can be used to

remove all derivatives of H in place of ϕ, which is
performed without comment in all of the below.

B. First order equations

To first order, the time-time component of the Einstein
field equations gives

6H _Ψþ 2VΦþ V 0δϕþ _ϕδ _ϕ −
2

a2
∇i∇iΨ

− 6
K
a2

ðΦþΨÞ ¼ 0: ð7Þ

The time-space components of the Einstein field equations
all yield

_ϕδϕ − 2HΦ − 2 _Ψ ¼ 0: ð8Þ

The time component of the conservation equation shows

2V 0ΦþV 00δϕ−3 _ϕ _Ψ− _ϕ _Φ−
1

a2
∇i∇iδϕþδϕ̈þ3Hδ _ϕ¼ 0:

ð9Þ

The off-diagonal spatial components prove that

Φ ¼ Ψ; ð10Þ

and the gauge-invariant comoving curvature perturbation is
defined by the expression

R ¼ ΨþH
_ϕ
δϕ: ð11Þ

Using the time derivative of (8), alongside Eqs. (7)–(9) we
have four master equations. Substituting R for Φ and Ψ
into these using Eqs. (10) and (11) allows us to eliminate δϕ
and its first and second time derivatives, yielding the
Mukhanov-Sasaki equation

0 ¼ ðD2 − KEÞR̈þ
��

H þ 2
_z
z

�
D2 − 3KHE

�
_R

þ 1

a2

�
K

�
1þ E −

2

H
_z
z

�
D2 þ K2E −D4

�
R; ð12Þ

where

D2 ¼ ∇i∇i þ 3K; z ¼ a _ϕ
H

; E ¼
_ϕ2

2H2
: ð13Þ

Upon Fourier decomposition, one simply replaces the D2

operator in Eq. (12) with its associated scalar wave vector
expression [35]
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D2 ↔−k2þ3K; k∈R;k > 0∶ K¼ 0;−1;

D2 ↔−kðkþ2Þþ3K; k∈Z;k> 2∶ K¼þ1: ð14Þ

One may interpret the operatorD2 physically by examining
the Ricci three scalar to first order

Rð3Þ ¼ 6
K
a2

þ 4

a2
ðcij∇i∇j þ 3KÞR; ð15Þ

so the perturbation to comoving spatial curvature can be
seen by inspection to be 4

a2 D
2R.

The Mukhanov-Sasaki equation (12) in the curved case
demands some comment. First, it should be noted that for the
flat case K ¼ 0 it collapses down to its usual form, albeit
with an additional ∇i∇i multiplying each term. The same
observations apply for the small-scale limit k → ∞. The
addition of curvature considerably increases the complexity
of the evolution equations at low and intermediate k by
adding wave vector-dependent coefficients to all three terms
in front of R̈, _R, andR. As we shall see in Sec. IV, this has
consequences for the evolution of the comoving curvature
perturbation and the resulting primordial power spectrum.
The tensor equivalent to Eq. (12) is derived similarly,

yielding

ḧþ 3H _h −
1

a2
ð∇i∇i − 2KÞh ¼ 0; ð16Þ

for both polarization modes of the tensor perturbation. Here
the modification provided by curvature is significantly
simpler, and readers can confirm that it reduces to the
flat-space equivalent in the case that K ¼ 0 and for k ≫ 1.

III. THE MUKHANOV ACTION

In this section, I confirm the calculation in Sec. II by
arriving at Eq. (12) via the Mukhanov action. I follow the
notation of Baumann [36] (Appendix B), generalizing their
calculation to the curved case.
The simplest approach for deriving the perturbation to

the action in Eq. (2) is to write the metric in the ADM
formalism [37,38], where spacetime is sliced into three-
dimensional hypersurfaces

ds2 ¼ −N2dt2 þ gð3Þij ðdxi þ NidtÞðdxj þ NjdtÞ: ð17Þ

With the metric in this form, we find that the action from
Eq. (2) becomes

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
jgð3Þj

q
½NRð3Þ þ N−1ðEijEij − E2Þ

þ N−1ð _ϕ − Ni∇iϕÞ2 − N∇iϕ∇iϕ − 2NV�; ð18Þ

Eij ¼
1

2
ð_gð3Þij −∇iNj −∇jNiÞ; E ¼ Ei

i: ð19Þ

Focussing on first order scalar perturbations, we write

N ¼ 1þ α; Ni ¼ ∇iψ : ð20Þ
Working in the comoving gauge where δϕ ¼ 0, the spatial
part of the ADM metric is defined to be

gð3Þij ¼ a2ð1 − 2RÞcij: ð21Þ
The Lagrangian constraint equations are

α ¼ −
_R
H

þ K
a2

ψ

H
; ð22Þ

1

a2H
D2R − E _R ¼ 1

a2
D2ψ −

K
a2

Eψ : ð23Þ

We may formally solve Eq. (23) explicitly for ψ with the
rather cryptic expression

ψ ¼ R
H

− a2EðD2 − KEÞ−1
�
_R −

K
a2

R
H

�
: ð24Þ

By the construction of the ADM formalism, substituting the
first order solutions from Eqs. (22) and (23) into the action
from Eq. (18) gives the second order action. After some
effort integrating this by parts, we find

S ¼ 1

2

Z
d4x

ffiffiffiffiffi
jcj

p
a3

_ϕ2

H2

��
_R −

K
a2H

R
�

2

−
K
a2

�
_R −

K
a2H

R
��

ψ −
R
H

�

−
1

a2
∇iR∇iRþ 3

K
a2

R2

�
: ð25Þ

Substituting Eq. (24) into the above, and integrating by
parts one more time returns the unusual action

1

2

Z
d4x

ffiffiffiffiffi
jcj

p
a3

_ϕ2

H2

�
1

a2
RD2R

þ
�
_R −

K
a2

R
H

�
D2

D2 − KE

�
_R −

K
a2

R
H

��
: ð26Þ

Varying this action with respect to R recovers the
Mukhanov-Sasaki equation from Eq. (12).
The full curved action is worthy of comment. Setting

K ¼ 0 recovers the flat-space action, but with nonzero K
the action becomes nonlocal due to the presence of a
denominator with a derivative term.
In the flat case, the usual next step is to diagonalize the

action so that it has a canonical normalization1 by trans-
forming to conformal time dη ¼ adt and rephrasing in

1A canonically normalized quantum field ϕ with mass m has
action of the form S ¼ R

dtd3x _ϕ2 þ ϕð−∇2 þm2Þϕ.
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terms of the Mukhanov variable v ¼ zR. In the curved
case, this is impossible. The best one can do is to define a
wave vector-dependent Z and v via

v ¼ ZR; Z ¼ a _ϕ
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

D2 − KE

s
; ð27Þ

in which case, the action becomes

1

2

Z
dηd3x

ffiffiffiffiffi
jcj

p �
v02 − ð∇vÞ2

þ
�
Z00

Z
þ 2K þ 2KZ0

HZ

�
v2
�
: ð28Þ

The lack of canonical normalization implied by the
k-dependent Z has theoretical consequences for the initial
conditions for inflation, since for low to intermediate k one
cannot draw an analogy to the de Sitter case in order to
define initial conditions. The correct theoretical choice for
initial conditions in this case is far from clear, and it may be
that the only way to differentiate between competing
approaches is to choose the correct initial conditions via
confrontation with data.
The tensor part of the action is

1

16

Z
d4x

ffiffiffiffiffi
jcj

p
a3
�
_hij _h

ij þ 1

a2
hijð∇k∇k − 2KÞhij

�
; ð29Þ

which even in the presence of curvature remains canonically
quantizable in the traditional sense by switching to con-
formal time and making the variable redefinition vt ¼ ah.

IV. THE PRIMORDIAL POWER SPECTRUM

To compute the exact primordial power spectrum, the
Mukhanov variableR is evolved via the Mukhanov-Sasaki
equation (12) for a relevant range of wave vectors k. The
primordial power spectrum is then given by the limiting
value of R after horizon exit,

PRðkÞ ¼ lim
k≪aH

k3

2π2
jRj2: ð30Þ

The initial conditions for the evolution of the Mukhanov
variable represent the injection of quantum mechanics into
this system. For simplicity, I consider two types of initial
conditions: Bunch-Davies (BD) and renormalized stress-
energy tensor (RST), which are set at inflation start ti,

Ri ¼
1ffiffiffiffiffi
2k

p
zi
;

_Ri

Ri
¼

�−i k
ai
− _zi

zi
BD

−i k
ai

RST:
ð31Þ

BD initial conditions are theoretically only appropriate for
a de Sitter-like spacetime, which at inflation start for low-k

modes is not true, while RST initial conditions are designed
to be valid in all regimes [39].
The numerical integration itself is most efficiently

performed using a solver that is capable of accurately
navigating the many oscillations between initial conditions
and horizon exit. Such solvers have undergone recent
development [40–43], and in this work I use the latest
of these provided by Agocs et al. [42].
For the evolution of the background variables, I assume a

Planck 2018 TTTEEEþ lowlþ lowEþ lensing best-fit
concordance KΛCDM curved cosmology, a monomial
inflaton potential VðϕÞ ∝ ϕ4=3 and a reheating phase
modeled by continuing the inflaton evolution until inter-
section with late-time Friedmann horizon. Interestingly,
under this background setup, chaotic and Starobinsky
potentials are incompatible with the Planck best-fit cos-
mology when curvature is included. The full pipeline of
how these background evolutions are constructed will be
discussed in an upcoming paper [44]. The KΛCDM
parameters pin down all but 1 d.o.f. in the background
evolution, leaving a single primordial parameter determin-
ing the degree of primordial curvature at the start of
inflation, or equivalently the scale factor of the universe
at inflation start ai. For the curved case, the size of the
universe at the start of inflation is bounded from below by
the requirement that Hi > 0 and bounded from above
by the requirement that the horizon problem is solved,
i.e., that the amount of conformal time before inflation is
greater than the amount of time afterward. This amounts to
a constraint that 22klp < ai < 171klp. Beyond the lower
bound the primordial curvature diverges as H → 0 and the
universe begins in an emergent coasting state [45,46].
Solutions for this case however are incompatible with the
Planck best-fit parameters. The minimum amount of
primordial curvature at the upper bound is −2.1%, the
maximum amount of curvature is ∼ − 150, and the
“medium” amount of curvature in the figures is the geo-
metric mean of these two.
The primordial power spectrum for the BD case is

plotted in Fig. 1 and for RST initial conditions in Fig. 2.
Relative to the concordance KΛCDM, which assumes the
almost flat power spectrum from Eq. (1), including the
exact numerical calculation introduces oscillations and a
suppression of power at low k, independent of initial
conditions. Varying the remaining d.o.f. provided by the
amount of primordial curvature alters the oscillations and
level of suppression in a nonmonotonic manner.
In both Figs. 1 and 2, these predictions for the primordial

power spectrum are followed through to the CMB [47]. For
all allowed values of initial primordial curvature, incorpo-
rating the exact numerical solution results in an improved
Δχ2 relative to KΛCDM. Furthermore, the data are capable
of distinguishing a preferred vacuum state, with the best fit
preferring RST initial conditions over the traditional
Bunch-Davies vacuum.
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It should be noted that these Δχ2 values are not derived
from a true fitting procedure. First, in the absence of a
publicly available likelihood at the time of writing, the
approximate Δχ2 value is computed from the available

compressed Cl spectra and their error bars. Second (for
similar reasons), I have used the best-fit cosmological
parameters derived from the KΛCDM data with the default
spectrum, rather than a full fit with the modified power

FIG. 2. Same as Fig. 1, but using RST initial conditions instead of BD from Eq. (31). The oscillations in the primordial power
spectrum (left panel) are enhanced by RST initial conditions, resulting in a change in the Δχ2 for all cases, and a marginally better fit for
the best-fitting case (right panel).

FIG. 1. Left: representative best-fit primordial power spectra corresponding to the range of allowed primordial curvatures. Oscillations
and a generic suppression of power are visible at low k. The jagged edges of the curves at low k arise from the discreteness of the wave
vectors for closed universes indicated in Eq. (14). Right: the corresponding low-l effects on the CMB power spectrum. The
improvement in Δχ2 relative to KΛCDM is shown in the right-hand figure legend, with negative values indicating a better fit to the data.
The best-fit spectra without including the full primordial power spectrum calculation is highlighted in blue. Plots are shown for the entire
observational window for Planck-like data on the left, and the plot on the right highlights the deviating region for the CMB power
spectrum. There is no appreciable deviation from the traditional power spectrum at higher k and l values.
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spectrum. Given the degeneracies between cosmological
parameters, it is possible that the Δχ2 could be significantly
enhanced under a full fitting.
This work will be followed by paper detailing a Bayesian

fit [48] for these KΛCDM universes with exact power
spectra [44]. It remains to be seen whether the improved
Δχ2 will be strong enough to balance the Occam penalty
arising from the introduction of an additional constrained
primordial parameter.
To see how these results vary as the amount of late-time

curvature is altered in Fig. 3, the fit from Fig. 1 is compared
with the corresponding fit for the Planck data excluding
CMB lensing, which has a significantly higher curvature of
ΩK ¼ −4.5% (as opposed to −0.9%). In this case, the
location of the suppression of power and the oscillations are
barely changed, although as expected [14] the depth of the
suppression is greater for the case with more negative
curvature.
It should be noted that at the time of writing there is

renewed interest in curved cosmologies in light of the
controversial work by Di Valentino et al. [49] (and also
[50]). In these analyses, it is pointed out the Planck CMB
primary data are in 2.5σ and 3σ tension with CMB lensing
and baryon acoustic oscillation (BAO) data if curvature is
included as a free parameter. Such results do not prove that
the universe is curved, but arguably weaken the evidence
for a flat universe since inconsistent datasets should not be
combined. The cause of this tension could be an improb-
able statistical fluctuation, or could indicate a systematic
error in one or more of the datasets. For example, it has
been suggested recently that while BAO likelihoods are

curvature agnostic, the compression strategies applied to
the observational data do depend on curvature [51], and the
default is to assume a flat cosmology for performing this
compression. These kind of baked-in flatness assumptions
(if present) could bias the curvature constraint provided by
BAO. Similarly, the CMB lensing likelihood expands to
first order about a fiducial flat cosmology, and a full cross-
check expanding about the best-fit ΩK ¼ −4.5% cosmol-
ogy has not yet been performed.

V. CONCLUSIONS

In this work, the Mukhanov-Sasaki equations and
actions for curved cosmologies were derived and discussed.
It was found that including an exact numerical calculation
for the primordial power spectrum gives a better fit to the
data, and that current datasets are capable of distinguishing
between alternative definitions of the quantum vacuum. It
remains to be seen whether a more complete Bayesian
fitting procedure yields compelling evidence for universes
with curvature, or the ability to distinguish quantum vacua.
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FIG. 3. Primordial power spectra varying the amount of late time curvature. With CMB lensing data, the best-fit cosmology has
ΩK ¼ −0.9%, while without CMB lensing ΩK ¼ −4.5%. Varying the amount of late time to this degree does not affect the location of
the cutoff, but does adjust the suppression of power. The inclusion of the full numerical power spectrum in both cases results in an
improved fit. Initial conditions are Bunch-Davies and both are chosen to have the “minimum primordial curvature.”
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