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We discuss the difference between various gauge-invariant quantities typically used in single-field
inflation, namely synchronous ζs, comoving ζc, and unitary ζu curvatures. We show that conservation of ζc
outside the horizon is quite restrictive on models as it leads to conservation of ζs and ζu, whereas the reverse
does not hold. We illustrate the consequence of these differences with two inflationary models: ultra-slow-
roll (USR) and braiding-ultra-slow-roll (BUSR). In USR, we show that out of the three curvatures, only ζs
is conserved outside the horizon, and we connect this result to the concepts of a separate universe and the
usage of the δN formalism. We find that even though ζs is conserved, there is still a mild violation of the
separate universe approximation in the continuity equation. Nevertheless, the δN formalism can still be
applied to calculate the primordial power spectrum of some gauge-invariant quantities such as ζu, although
it breaks down for others such as the uniform-density curvature. In BUSR, we show that both ζu and ζs are
conserved outside the horizon, but take different values. Additionally, since ζu ≠ ζc, we find that the
prediction for observable curvature fluctuations after inflation does not reflect ζc at the horizon crossing
during inflation and moreover involves not just ζu at that epoch but also the manner in which the braiding
phase ends.
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I. INTRODUCTION

Observations of the cosmic microwave background
temperature anisotropies [1,2] are in excellent agreement
with an early universe with primordial perturbations that
are adiabatic and have a nearly scale-invariant power
spectrum. Currently, the most compelling explanation for
these initial perturbations is the inflationary paradigm,
where the universe expanded nearly exponentially fast
and matter perturbations were seeded by the vacuum
fluctuations of one or more fields. The simplest scenario
is described by a single scalar field that slowly rolls down a
potential well toward the end of inflation, leading after-
wards to reheating and the production of the Standard
Model particles.
Predictions on the power spectra and bispectra of infla-

tionary models can be obtained using different gauge-
invariant variables, such as the unitary curvature ζu,
comoving curvature ζc, synchronous curvature ζs, or uni-
form-density curvature ζρ, among others. The usage of each
one of these variables has its own advantages. For instance,
unitary curvature describes the spatial curvature of the
spacetime in a frame where the scalar field evolution

provides a clock that breaks temporal but preserves spatial
diffeomorphism invariance. In this frame, it is easy to
generically describe single-field inflationary models with
the effective field theory of inflation [3], where the only
explicit perturbation fields come from the spacetime metric.
In addition, synchronous curvature is useful for the concept
of a local background or separate universe [4], which can
be used to straightforwardly estimate the effects of long-
wavelength perturbations on the local universe. The sep-
arate universe concept itself is closely related to the δN
technique which is often used to calculate non-Gaussianity
from inflation using the e-folding of a local background
[5–10]. Finally, comoving curvature and uniform-density
curvature are common variables used to connect infla-
tionary fluctuations to observables.
In typical slow-roll inflationary models found in the

literature, all the previous variables mentioned above either
coincide or have the same qualitative behavior, and there-
fore they all provide the same information and we can
simply choose the most convenient one. However, in
general single-field models this is not the case. In this
paper, we exploit this difference and analyze one of the
main features of typical inflationary models—conservation
of curvature outside the sound horizon—for ζu, ζc, and ζs.
We find that, in general, conservation of ζc is the most
restrictive condition as it will imply conservation of both ζs
and ζu, but the reverse will not hold. In addition, we
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identify sufficient conditions on inflationary models in
order to have conserved curvatures given that either ζu or ζs
is conserved. Throughout this paper, we focus on single-
field inflation models, which usually predict adiabatic
perturbations and conserved curvatures, whereas multifield
models will not predict a conserved curvature in general.
In order to illustrate the difference between these three

curvatures, we explicitly discuss two inflationary models.
First, we consider ultra-slow-roll (USR) inflation [11], in
which ζc ¼ ζu grows in time outside the horizon, but ζs is
conserved. Second, we build a new model dubbed braiding
ultra-slow-roll (BUSR) inflation, in which ζu and ζs are
conserved (but different), whereas ζc grows outside the
horizon.
Furthermore, we discuss some conceptual and observa-

tional consequences of having different curvatures for USR
and BUSR. First, we discuss the concept of a separate
universe, where superhorizon perturbations can be reab-
sorbed into the background equations such that the total
perturbed universe still looks homogeneous and isotropic in
a local Hubble-sized patch [6]. As shown in [4,12], a
separate universe is valid when synchronous observers see
a local approximate Friedman-Robertson-Walker (FRW)
universe, which requires conservation of ζs outside the
horizon. Here we show that USR does have ζs conserved
but still violates a separate universe via the continuity
equation. In addition, we discuss the δN formalism. This
formalism is typically assumed to require the validity of a
separate universe, although here we show that it can still be
used in USR for obtaining observables in terms of
appropriate variables, but subtleties can arise when using
the formalism for other variables. In particular, we find that
the standard δN prescription (see [13]) yields the correct
value for ζu but the incorrect value for ζρ in USR.
Finally, we explore the observational consequence of

BUSR in detail. In general, inflationary models provide
initial conditions for the matter distribution of the universe
during early times, which are typically in turn provided by
the value of ζu at the horizon crossing. This value then
determines the value of ζcðtendÞ at the end of inflation,
which is then propagated forward to radiation and matter
domination outside the horizon, ultimately becoming the
initial condition for structure formation. This translation
between unitary and comoving curvature is straightfor-
wardly done when both curvatures are conserved and take
the same value outside the horizon. However, in BUSR we
have that ζc ≠ ζu due to a nontrivial coupling called
braiding, which corresponds to derivative interactions
between the metric and the inflationary field. In this paper,
we analyze the difference between ζu at the horizon
crossing and ζcðtendÞ in BUSR. We consider a realistic
scenario where braiding vanishes before the end of inflation
in order to avoid spoiling the subsequent reheating process
[14,15]. In this case, we will have that ζuðtendÞ ¼ ζcðtendÞ;
however, for some wavelengths ζu evolves outside the

horizon, and hence ζcðtendÞ will not be given by ζu at the
horizon crossing. In particular, we find that for sufficiently
superhorizon perturbations at the time the braiding van-
ishes, ζu remains frozen and its value at the horizon
crossing becomes ζcðtendÞ. Meanwhile, for wavelengths
that have only been outside the horizon for a few e-folds
before this epoch, ζu evolves, which ultimately leads to a
suppression of the power spectrum at the end of inflation
for these and smaller scales.
This paper is structured as follows. In Sec. II we give a

general fluid description for generic inflationary models,
then we introduce some relevant gauge-invariant fields
that are typically used for inflation, and finally we review
the concept of a separate universe. In Sec. III we discuss the
general relationship between the conservation of the curva-
ture in unitary, comoving, and synchronous gauge in single-
field inflationary models. In Sec. IV we give examples of
inflationary models that illustrate the differences in curva-
tures discussed in the previous section. In Sec. V we discuss
the conceptual and observational consequences of having
curvatures evolving differently for the models presented in
Sec. IV, including the consequence for a separate universe,
the δN formalism, and the evolution of curvatures outside
the horizon. Finally, in Sec.VIwe summarize our results and
discuss their relevance. Throughout this paper we will be
using Planck units, with c ¼ 1 and 8πG ¼ 1.

II. GENERAL DESCRIPTION

A. Effective fluid decomposition

Let us start by considering an inflationary model in a
spatially flat cosmological FRW background, with small
scalar perturbations. In this case we can write the metric as

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2B;idxidt

þ aðtÞ2½ð1 − 2ΨÞδijþ2E;ij�dxidxj; ð1Þ

where t corresponds to the cosmic time and xi are the three-
dimensional spatial Cartesian coordinates. Also, here sub-
script commas denote derivatives throughout, aðtÞ is the
background scale factor, whereas Φ, Ψ, B, and E are the
four metric perturbations. We shall often refer to Ψ as
the curvature perturbation in the 3þ 1 slicing defined by the
lapse perturbationΦ and the shift B;i. All these perturbation
fields depend on space and time. Even though there may be
nontrivial interactions between the fields driving inflation
and the metric, we can always write the equations of motion
in an Einstein-like form:

Gμ
ν ¼ Tμ

ν; ð2Þ

whereGμ
ν is the Einstein tensor andTμ

ν is an effective stress
tensor from all the possible inflationary fields. Similar to
Eq. (1) we can decompose Tμ

ν into a background and
perturbative part in the following fluidlike way:
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T0
0 ¼ ρþ δρ;

Ti
0 ¼ −ðρþ pÞḡij∂jðv − BÞ;

T0
i ¼ ðρþ pÞ∂iv;

Ti
j ¼ ðpþ δpÞδij − p

�
ḡil∂l∂j −

1

3
δijḡlk∂k∂l

�
π; ð3Þ

where ḡij ¼ a2δij is the spatial background metric. Here we
have retained linear terms in the perturbations when raising
and lowering indices. Here, ρ and p are some effective
background energy density and pressure. In addition, δρ, v,
δp, and π are the four effective fluid perturbations describing
the energy density, velocity potential, pressure, and aniso-
tropic stress, respectively.
According to the decomposition given in Eqs. (1) and

(3), the background equations will be given by the (00) and
trace ðijÞ components of Eq. (2):

3H2 ¼ ρ; ð4Þ

2 _H ¼ −ðρþ pÞ; ð5Þ

where H ¼ _a=a is the Hubble rate, where dots denote
derivatives with respect to t. Similarly, the perturbed
equations of motion in Fourier space will be given by
the (00), ð0iÞ, and combinations of the trace-free and trace
ðijÞ components:

2
k2

a2
½ΨþHða2 _E − BÞ� þ 6Hð _ΨþHΦÞ ¼ −δρ; ð6Þ

2 _Ψþ 2HΦ ¼ −ðρþ pÞv; ð7Þ

Ψ −Φþ ða2 _E − BÞ_þHða2 _E − BÞ ¼ −pπ; ð8Þ

2Ψ̈þ 2H _Φþ 4 _HΦþ 6Hð _ΨþHΦÞ ¼ δpþ 2

3

k2

a2
pπ: ð9Þ

Here, all the perturbation fields depend on the comoving
wave number k and time t, although this explicit depend-
ence has been omitted.

B. Gauge

In single-field inflation, temporal diffeomorphism invari-
ance is broken by the time evolution of the scalar field in
the background, leaving a preferred temporal foliation
called unitary slicing where the field is spatially unper-
turbed. The curvature perturbation generated during infla-
tion in this slicing is the dynamical quantity that controls
adiabatic fluctuations after but does not generally corre-
spond to the curvature fluctuations seen by specific
observers whose clocks are synchronized differently. To
relate observables in other frames, let us consider the
following change of coordinates:

xμ → xμ þ ξμðxÞ; ð10Þ

where ξμ is an arbitrary infinitesimal function of xμ. Under
Eq. (10), the linear metric perturbations transform as

Φ → Φ − _ξ0; Ψ → ΨþHξ0;

E → E − ξ; B → Bþ ξ0 − a2 _ξ; ð11Þ

where we have defined ξi ¼ ∂iξ. Fluid perturbations,
including the effective fluid defined in the previous section,
transform as

δρ → δρ − ξ0 _ρ; δp → δp − ξ0 _p;

v → vþ ξ0; π → π: ð12Þ

Similarly, the linear perturbation of a scalar field such as the
inflaton φ transforms as

δφ → δφ − _̄φξ0; ð13Þ

where φ̄ðtÞ describes the background value of the scalar
field and δφ is its linear perturbation.
For single-field inflationary models coupled to a mass-

less spin-2 field metric (as in general relativity), there will
be only one physical scalar degree of freedom propagating
that can be taken to be the unitary curvature. It is convenient
to define observables such as unitary curvature in terms of
gauge-invariant combinations of the variables that are then
valid in any gauge. The gauge-invariant form of the various
curvature observables that we shall use below are given by

(i) Unitary curvature: ζu ¼ Ψ −Hvφ,
(ii) Comoving curvature: ζc ¼ Ψ −Hv,
(iii) Synchronous curvature: ζs ¼ Ψ −Hvm,
(iv) Uniform density curvature: ζρi ¼ Ψþ δρi=ρ0i,

where the velocity potentials are as follows: v for the total
effective fluid, vφ ≡ −δφ= _̄φ for the scalar field, and vm for
nonrelativistic test particles that are initially at rest with
respect to the background expansion. Note that, for any
kind of matter component i present in the system, one could
define an associated uniform-density curvature ζρi , where
ρi is the energy density of the given matter species i [as
opposed to some effective energy density, as the one
defined in Eq. (6)].
Here and throughout primes denote derivatives with

respect to the background e-folds, that is, 0¼d=dlna¼
H−1d=dt. Note that the sign of the curvature fluctuation is
opposite to [16] and much of the literature.
All these definitions are constructed in such a way that

they describe the spatial curvature perturbationΨ in a given
coordinate system. The unitary curvature ζu describes the
spatial curvature as seen by observers that follow the time
slicings determined by the perturbations of the scalar field,
and thus see δφ ¼ 0. The comoving curvature ζc describes
the spatial curvature as seen by observers that comove with
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the total effective fluid velocity and hence see v ¼ 0.
Analogously, ζs describes the curvature seen by observers
that trace nonrelativistic matter and see vm ¼ 0. Finally ζρi
is the curvature on surfaces of spatially uniform density
in some matter species i. Since ζρi depends on the matter
species in question and is mainly used in cases where
there are multiple fields, we do not consider it further
in this section. Its conservation requires a small non-
adiabatic stress and velocity divergence in the component
(see, e.g., [6]).
The relationships among the remaining three curvatures,

for any single-field inflationary model, are given by

ζc ¼ ζu −Hðv − vφÞ; ð14Þ

ζc ¼ ζs −Hðv − vmÞ: ð15Þ

In addition, we also use a spatially flat gauge, a time slicing
where the spatial metric fluctuations vanish: Ψf ¼ Ef ¼ 0.
The dynamical field is then given by the scalar field
perturbation δφf. This choice is widely used in inflation
and, as we will see later, it is particularly useful to calculate
the inflationary primordial bispectrum of perturbations
using the so-called δN formalism. The relationship between
the unitary curvature ζu and the scalar field in spatially flat
gauge δφf is generically at linear order given by

ζu ¼
δφf

φ̄0 : ð16Þ

Next, we show that whereas typical calculations for
inflation are performed using ζu or ζc, the concept of a
separate universe is defined using ζs.

C. Separate universe

In the separate universe approach, each super-Hubble
sized region of the universe can be considered as a separate
FRW universe, with a different effective matter content but
locally homogeneous. In particular, long-wavelength per-
turbations can be absorbed into the background so that the
perturbed equations of motion take the same form as those
for an FRW universe, and thus the local effect of long-
wavelengths cosmological perturbations reduces to a sim-
ple change in the background cosmological parameters.
We can define a separate universe condition that deter-

mines when the local universe looks close enough to an
actual FRW universe, so that we can apply the separate
universe approach. In order to do that, we recast the
perturbations in terms of their associated local quantities.
Without loss of generality, we can define a local scale factor
aW , effective density ρW, and spatial curvatureKW such that
the (00) equation in (2) including the background and linear
perturbation contributions takes the form

G0
0 ¼ Ḡ0

0 þ δG0
0 ≡ −3ðH2

W þ KW=a2WÞ
¼ −ρW ¼ −ðρþ δρÞ: ð17Þ

In this case, the local Hubble factor will be defined as
HW ¼ d ln aW=dτ, with dτ ¼ ð1þΦÞdt. Explicitly, HW ¼
H þ δH, where ðδH=HÞ¼−Ψ0−Φ−Σ=3 is the deviation
from the background Hubble factor, with Σ¼ðk=aÞ2ða2E0−
B=HÞ quantifying the effective shear of the perturbed
expansion of the universe [6,12]. In addition, the curvature
is given by

KW ¼ −
2

3
k2Ψ: ð18Þ

Similarly, we rewrite the trace of the Gi
j equation as

Gi
i −G0

0 ¼ 3

�
−

2

aW

d2aW
dτ2

−
2

3

�
k
a

�
2

Φ
�

¼ ðρW þ 3pWÞ; ð19Þ

where we have defined pW ¼ pþ δp. Also, we rewrite the
matter continuity equation as

1

a3W

dða3WρWÞ
d ln aW

þ 3pW ¼ ðρþ pÞx2Hv; ð20Þ

where we have defined the horizon-to-wavelength ratio

x≡ k
aH

: ð21Þ

Equations (17)–(20) are completely general but we see that
in the case of infinitely long wavelengths, i.e., k → 0, we
have that KW → 0, ðk=aÞ2Φ → 0 and ðk=aÞ2Hv → 0, and
hence the perturbed equations take the same form as a set of
Friedmann equations (4) and (5). In this case, we can
interpretHW and ρW as the local windowed average Hubble
rate and energy density of the universe on scales much
smaller than 2π=k. Therefore, this effective local universe
with an infinitely long-wavelength perturbation would look
like a homogeneous and isotropic universe. For finite k
though, we can define a precise separate universe condition
to be that freely falling observers that are initially at rest
with respect to the background expansion see an approxi-
mate local FRW effective universe. This frame definition
coincides with our definition of the synchronous gauge,
where vm ¼ 0, which implies that Φs ¼ 0, since the matter
stress-energy tensor conservation equation∇μTμν;m ¼ 0 for
a nonrelativistic perfect fluid with pm ¼ δpm ¼ 0 gives

Hv0m ¼ −Φ ð22Þ

in any frame. Therefore, for synchronous observers,
Eq. (19) looks exactly like one of the Friedmann equations,
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whereas Eq. (17) will look like a Friedmann equation if the
effective spatial curvature KW is approximately constant.
This places the following condition on ζs ¼ Ψs:

jðln ζsÞ0j ≪ 1: ð23Þ

Analogously, the continuity equation will approximate to
one in FRW when the source term in the right-hand side
(RHS) of Eq. (20) becomes negligible. A sufficient con-
dition for this would be that the source term is much smaller
than any of the terms on the left-hand side (LHS) of the
equation. In particular, we could have

jðρþ pÞx2Hvsj ≪ jδρsj; ð24Þ

where vs is the synchronous perturbed effective velocity
and δρs is the synchronous energy density [which is one
contribution to the first term on the LHS of Eq. (20)]. From
the equations of motion (6) and (7), this condition can be
rewritten as

jx2ζ0sj ≪ jx2ζs þ 3ζ0s þ Σsj: ð25Þ

As long as there are no cancellations on the RHS of
Eq. (25), this condition will be satisfied if (23) is satisfied
and when jΣsj≲ jx2ζsj. Note that the evolution of Σs can be
determined from Eq. (8), which can be rewritten in
synchronous gauge as

Σ0
s þ

�
3þH0

H

�
Σs ¼ −x2ðζs þ pπÞ; ð26Þ

which is sourced by the effective anisotropic stress π and
ζs. For minimally coupled single-field inflationary models
we have that π ¼ 0 and hence jΣsj ∼ jx2ζsj. For standard
slow-roll models typically considered in the literature
Eq. (25) will then be automatically satisfied whenever
Eq. (23) holds. However, in Sec. IVA, we will mention the
ultra-slow-roll model, where even though jΣsj ∼ jx2ζsj,
cancellations occur on the RHS of Eq. (25). In this case,
Eq. (25) will not follow from Eq. (23), and the source term
on the RHS of Eq. (20) will not become negligible. In
general, we will say that the separate universe approach
holds when (23) holds and the source term on the RHS of
Eq. (20) is negligible.

III. CURVATURE CONSERVATION

In this section we analyze the difference between the
three previously mentioned curvatures for single-field
inflation, and we discuss situations where a given curvature
observable is conserved, whereas others are not. For
concreteness, let us consider the most general diffeomor-
phism-invariant action for a single scalar field coupled to
the metric with second-order derivative equations of
motion, known as the Horndeski action [17,18],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½ϕ; gμν�
�
; ð27Þ

where Li are Lagrangians given by

L2 ¼ G2;

L3 ¼ −G3□φ;

L4 ¼ G4Rþ G4;X½ð□φÞ2 − ð∇μ∇νφÞð∇μ∇νφÞ�;

L5 ¼ G5Gμν∇μ∇νφ −
1

6
G5;X½ð□φÞ3

− 3ð∇μ∇νφÞð∇μ∇νφÞ□φ

þ 2ð∇ν∇μφÞð∇α∇νφÞð∇μ∇αφÞ�; ð28Þ

with Giðφ; XÞ, i ∈ ð2; 5Þ as arbitrary functions of φ and the
kinetic term X ≡ −∇νφ∇νφ=2.
During inflation, we can characterize the expansion of

the universe through HðtÞ by defining the slow-roll
parameters: ϵ ¼ −H0=H, and higher derivatives. The equa-
tions determining the evolution of the perturbations will be
described by four effective parameters fαM; αT; αB; αKg,
which can be functions of time [19]. In this case, the
effective fluid velocity potential v can differ from vφ when
the so-called braiding parameter αB is nonzero, according
to the following expression:

vφ − v ¼ αB
2Hϵ

ðΦþHv0φÞ: ð29Þ

The braiding parameter is explicitly defined as

αB ¼ ½φ0ðXG3;X −G4;φ − 2XG4;φXÞ
þ 4XðG4;X þ 2XG4;XX −G5;φ − XG5;φXÞ
þ φ0XH2ð3G5;X þ 2XG5;XXÞ�
=½G4 − 2XG4;X þ XG5;φ − φ0H2XG5;X�: ð30Þ

Next, we proceed to rewrite the relationship between the
three curvatures for the specific case of Horndeski models.
Combining Eqs. (29) and (7), we rewrite Eq. (14) solely in
terms of the curvature fields as

ζc ¼ ζu −
Γ
ϵ
ζ0u; Γ≡ αB

2 − αB
: ð31Þ

Similarly, we also rewrite Eq. (15) solely in terms of
curvatures. We use Eqs. (7) and (5) to rewrite v in terms of
the metric perturbations Ψ and Φ. Combining these
equations with (22), we find that the difference in velocities
ðv − vmÞ can be rewritten in terms of ζ0s and obtain the
following expression:

ζc ¼ ζs þ
ζ0s
ϵ
: ð32Þ
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We emphasize that whereas the relation given in Eq. (32) is
valid for any single-field model, the one in Eq. (31) is only
valid for Horndeski models, and hence conclusions will be
restricted to this class of models.

A. Unitary and comoving

The relation between ζc and ζu is given by Eq. (31),
where αB is the braiding parameter that depends on the
background, and is nonvanishing when the action has
kinetic mixing between the metric and the scalar field
(e.g., when there is X□φ). For minimally coupled scalar
fields, there is no braiding and therefore comoving and
unitary curvatures coincide. Next, we study the relation
between these two curvatures for general inflationary
Horndeski models when αB ≠ 0 in the regime of long-
wavelength linear perturbations.
If ζuðxÞ is conserved for long-wavelength modes, then

we can write [20]

ζ0u
ζu

¼ c2sOðx2Þ; ð33Þ

where cs is the sound speed of the scalar field. Note then
that for conservation of unitary curvature we require
ðcsxÞ ≪ 1 instead of just x ≪ 1. From Eq. (31) we obtain
that ζcðxÞ will thus be given by

ζc
ζu

¼ 1 −
Γ
ϵ
c2sOðx2Þ: ð34Þ

On the one hand, we see that ζc will also be conserved as
long as the term Γ ¼ αB=½ð2 − αBÞ� is order one or higher in
the slow-roll parameter ϵ. In that case, both curvatures ζc
and ζu will freeze to the same value outside the horizon. We
note that jΓ=ϵj≲ 1 is a sufficient condition to have
conservation of ζc but it is not necessary.
On the other hand, for Γ ∼ 1 or larger this is not the case.

For instance, when jαBj ≫ 1, Eq. (34) is given by

ζc
ζu

¼ 1þ c2s
ϵ
Oðx2Þ; ð35Þ

and since jϵj ≪ 1 during inflation, we expect ζc to freeze
out much later than ζu. In typical inflationary models, ϵ
grows in time, and then if there is a scale at which ζu
freezes, then ζc will also eventually freeze. However, there
could be transition regimes in which ϵ decays in time, in
which case the difference between ζu and ζc becomes large,
and ζc could even grow in time during this regime.
Conversely, we can use Eq. (14) to study the behavior of

ζu when ζc is conserved. Suppose ζcðxÞ is conserved for
long-wavelength modes, that is,

ζ0c
ζc

¼ Oðx2Þ: ð36Þ

Note that here and below the order counting in x keeps
track of the k dependence, although there is generically a k-
independent prefactor, typically cs, which we omit for
simplicity. In that case, all conclusions will hold general-
izing the Hubble horizon to the sound horizon, and we use
the terms interchangeably where no confusion should arise.
Next, we analyze whether ζu will be conserved as a
consequence. In order to do this, we write an explicit
expression for ζu as a function of ζc and ζ0c. We start by
calculating the difference ðv − vφÞ in terms of the comov-
ing curvature ζc. This velocity difference is a gauge-
invariant quantity but we can make a gauge choice to
simplify its calculation. In particular, in comoving gauge
ðv − vφÞ ¼ −vφ;c, and vφ;c can be obtained from Eqs. (29)
and (7) to be

vφ;c ¼
1

u

Z
d ln au

ζ0c
H
; ð37Þ

where u≡ expð−2 R d ln a½ϵ=αB�Þ, and therefore, from
Eq. (14) we find

ζu ¼ ζc −
H
u

Z
d ln au

ζ0c
H

: ð38Þ

If comoving curvature is conserved according to Eq. (36),
we see that for jϵ=αBj ≪ 1 we have u ≈ 1, and therefore
we expect ζu ∼ ð1þOðx2ÞÞζc. On the other hand, if
jϵ=αBj ≫ 1, then u decays on the δ ln a ∼ jαB=ϵj ≈ jΓ=ϵj ≪
1 scale compared with the e-fold timescale over which
ζ0c=H varies. Putting together these estimations we get

ζu
ζc

¼ 1þOðx2Þ ×
�Γ=ϵ; jΓ=ϵj ≪ 1

1; jΓ=ϵj≳ 1
: ð39Þ

Therefore, if ζc is conserved for x ≪ 1, we conclude that
ζu ≈ ζc, and hence ζu will also be conserved for any Γ and
ϵ, unlike the converse.
We note that Eq. (37) is valid up to some integration

constant that has been ignored, as it depends on the initial
velocity, and we have assumed that all perturbations vanish
initially, at least in their Hubble time average. We also
emphasize that the conditions that we have discussed for
conservation are sufficient but not necessary.

B. Comoving and synchronous

In this section we study the relationship between
comoving and synchronous curvatures for long-wavelength
perturbations. On the one hand, from Eq. (32) we have that
if ζsðxÞ is conserved, that is,

ζ0s
ζs

¼ Oðx2Þ; ð40Þ

then comoving curvature will be given by
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ζc
ζs

¼ 1þOðx2Þ
ϵ

: ð41Þ

As a result, as discussed in the previous section, depending
on how ϵ behaves in time, ζc could even grow. Therefore,
conservation of ζs does not imply conservation of ζc
for x ≪ 1.
On the other hand, if ζc is conserved, we can calculate the

velocity difference ðvm − vÞ in terms of ζc. Similar to the
previous section, even though ðvm − vÞ is gauge invariant,
we can make a gauge choice to simplify calculations. In
comoving gauge, we can combine the momentum conser-
vation equation for nonrelativistic matter (22) together with
Eq. (7) to generically obtain that ζ0c ¼ Hv0m;c, which can be
generalized to any gauge as

vm − v ¼
Z

d ln a
ζ0c
H

; ð42Þ

so that Eq. (15) implies

ζs ¼ ζc −H
Z

d ln a
ζ0c
H
: ð43Þ

From this general expression we see that if comoving
curvature is conserved for long-wavelength modes accord-
ing to Eq. (36), then ζs will also be conserved. Therefore, we
conclude that conservation of ζc generically implies con-
servation of ζs, unlike the converse.
Similar to the previous section, Eqs. (42) and (43) are

valid up to some integration constants that have been
ignored as we have assumed that all perturbations vanish
initially.

C. Unitary and synchronous

In this section, we study the relationship between unitary
and synchronous curvatures for long-wavelength modes.
We do this by using the results of the previous two sections.
On the one hand, if unitary curvature is conserved, then,

according to the results of Sec. III A, comoving curvature
will also be conserved as long as jΓ=ϵj ≲ 1. In this case,
according to the results of Sec. III B, synchronous curva-
ture will also be conserved and its value will coincide with
ζu. This is a sufficient condition that can be generalized.
Indeed, combining Eqs. (31) and (32), we have

ζs þ
ζ0s
ϵ
¼ ζu −

Γ
ϵ
ζ0u: ð44Þ

From here we see that if we assume that unitary curvature is
conserved, then the leading order time dependence on the
right-hand side is ðΓ=ϵÞc2sOðx2Þ. Notice that unlike for ζc,
the left-hand side contains a term ζ0s=ϵ. Thus even if ϵ
decays quickly, ζs will still be conserved in the sameway as
ζu as long as Γ≲ 1. As we will see in the next section,

although they are then both constant, the values of ζs and ζu
do not necessarily coincide.
On the other hand, if ζs is conserved, then, according to

Eq. (41), ζc will also be conserved if j1=ϵj ≪ 1, and hence
ζu will also be conserved as shown in Eq. (39), regardless
of whether the given model has a braiding interaction (large
or small) or not. Note that, again, this is a sufficient but not
necessary condition to have ζu conserved.
We summarize the results of this section in Fig. 1.

Arrows indicate whether conservation of the curvature at
the tail suffices to ensure that at the tip. Labels such as Γ=ϵ
indicate any additional quantity besides c2sx2, which should
be ≲1 to establish this sufficient condition.
Next, we show examples of inflationary models that

illustrate explicitly the inequivalence between the three
curvatures studied in this section.

IV. INFLATIONARY MODELS

In this section we discuss two particular examples of
single-field inflationary models that highlight the difference
between the three spatial curvatures previously discussed:
ζu, ζc, and ζs. In Sec. IVAwe first describe the ultra-slow-
roll model, which exhibits a clear difference in the behavior
of ζs and ζu ¼ ζc. In this case, ζs is conserved for super-
horizon perturbations, whereas ζu is not conserved and even
grows. In Sec. IV B we present a new model dubbed
braiding-ultra-slow-roll inflation, which has ζu and ζs
conserved outside the horizon (although their values differ),
whereas ζc grows in time (or even becomes undefined).
In order to find the evolution of linear perturbations in

both models, we start by solving the Mukhanov-Sasaki
equation for Horndeski models,

d2u
dτ2

þ
�
c2sk2 −

1

z
d2z
dτ2

�
u ¼ 0; ð45Þ

where τ is conformal time related to physical time by adτ ¼
dt and u describes the physical scalar degree of freedom

FIG. 1. Summary of Sec. III on conservation relationships
between ζu, ζs, and ζc for superhorizon linear perturbations in
single-field inflation. Labels on arrows denote additional varia-
bles that must be ≲Oð1Þ for conservation of one curvature to
suffice for conservation of the other (see text).
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given by u≡ zζu, where z≡ a
ffiffiffiffiffiffiffiffi
2Qs

p
withQs describing an

effective Planck mass for scalar perturbations. Also, cs
describes the sound speed of waves for u. Explicitly, for
Horndeski models with αT ¼ αM ¼ 0 (which will be the
case for both USR and BUSR models), the factors Qs and
c2s are given by

Qs ¼
ð2αK þ 3α2BÞ
ð2 − αBÞ2

; ð46Þ

c2s ¼
ð2 − αBÞð2ϵþ αBÞ þ 2α0B

ð2αK þ 3α2BÞ
; ð47Þ

where αB is given by Eq. (30) and αK is defined as

αK ¼ ½ðX=H2ÞðG2;X þ 2XG2;XX − 2G3;φ − 2XG3;XφÞ
þ 6φ0XðG3;X þ XG3;XX − 3G4;Xφ − 2XG4;XXφÞ
þ 6XðG4;X þ 8XG4;XX þ 4X2G4;XXXÞ
− 6XðG5;φ þ 5XG5;Xφ þ 2X2G5;XXφÞ
þ 2φ0XH2ð3G5;X þ 7XG5;XX þ 2X2G5;XXXÞ�
=½G4 − 2XG4;X þ XG5;φ − φ0H2XG5;X�: ð48Þ

The solution to Eq. (45) for u inside and outside the horizon
can be found explicitly for known z and c2s functions.
Generic solutions have also been discussed in [20].

A. Ultra–slow roll

Ultra-slow-roll inflation [11] is a single-field model,
where the scalar field is minimally coupled to the metric,
and is one of the few examples that violate the standard
consistency relations as the curvature in unitary gauge is
not conserved for superhorizon modes [21–26]. This model
has regained attention lately where it has been considered
as a transient phase to generate large non-Gaussianities and
possibly primordial black holes [27–29]. Explicitly, USR is
a canonical scalar field model with

G2ðφ; XÞ ¼ X − VðφÞ; G4ðφ; XÞ ¼
1

2
; ð49Þ

and G3ðφ; XÞ ¼ G5ðφ; XÞ ¼ 0, and a potential VðφÞ. The
two independent background equations of motion are
given by

3H2 ¼ _̄φ2

2
þ Vðφ̄Þ; ð50Þ

̈φ̄þ 3H _̄φþ Vφ̄ ¼ 0: ð51Þ

In USR, the potential is driving inflation in Eq. (50), but it
is extremely flat so that its contribution to Eq. (51) is
negligible. The solution to these equations is then such that
φ̄0 ∝ a−3 and the slow-roll parameter is ϵ ¼ φ̄02=2 ∝ a−6.

USR then describes an inflationary model that quickly
approaches exact de Sitter.
Next, we solve the evolution for perturbations using

Eq. (45). The effective parameters of this model are αK ¼
2ϵ and αB ¼ αT ¼ αM ¼ 0, and thus c2s ¼ 1 and Qs ¼ ϵ.
The solution for H almost constant and in a Bunch-Davies
vacuum is given by

u ¼ 1ffiffiffiffiffi
2k

p
�
1þ i

x

�
eix: ð52Þ

Unitary curvature is then given by ζu ¼ u=ðaφ̄0Þ. In
the superhorizon limit, where x ≪ 1, the solution approx-
imates to

ζu ≈
1

φ̄0
iHffiffiffi
2

p
k3=2

�
1þ 1

2
x2 þOðx3Þ

�
;

ζ0u ≈ ζu½3 − x2 þOðx3Þ�: ð53Þ

We then see that ζu ∝ a3 and ζ0u ∝ a3 outside the horizon.
Note that since the braiding parameter vanishes in this
model, then ζu ¼ ζc.
Next, from Eq. (43) we can analyze the behavior of

synchronous curvature ζs. Since both ζu and ζ0u grow in the
same way in time, both of these terms will contribute
equally to ζs, and their leading orders in x will actually
cancel out. For this reason, it is convenient to rewrite ζs as

ζs ¼ H
Z

d ln aϵ
ζu
H

: ð54Þ

This integral can be performed explicitly using the full
solution (52) and obtain for superhorizon modes

ζs ≈ −8iϵx−3ζuðx ¼ 0Þ½1þOðx3Þ�; ð55Þ

and therefore its amplitude is approximately constant in
time, with ζ0s ¼ ϵðζu − ζsÞ ≈ ϵζu ∝ a−3. We therefore con-
clude that in USR ζc ¼ ζu grows in time outside the
horizon, whereas ζs is conserved.

B. Braiding ultra–slow roll

As previously shown, the difference between ζu and ζc is
determined by the quantity Γ=ϵ. We will then construct a
model that gives a large ratio Γ=ϵ, which will hence
exemplify a clear case where ζu ≠ ζc. In order to do this,
we use the method described in [30,31] to construct a
single-field model with a de Sitter phase, i.e., with ϵ → 0
and a nonvanishing braiding parameter αB. This can be
achieved by the following choice of Horndeski functions:
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G2ðφ; XÞ ¼ −
�
ΛðφÞ − 15

8
H2

i α̂B

�

þ 3

2
H2

i ð−3α̂B3ðφÞX þ α̂BX2Þ;

G3ðφ; XÞ ¼ Hiα̂B3ðφÞX; G4 ¼
1

2
; ð56Þ

and G5ðφ; XÞ ¼ 0. Here, ΛðφÞ is an arbitrary potential
term, Hi > 0 is an arbitrary parameter that will later
determine the Hubble rate of the de Sitter solution, α̂B is
a free constant, and α̂B3ðφÞ is the function that determines
the value of the braiding parameter αB. Note that the kinetic
term X in G2 is not canonically normalized.
For this model, the background equations of motion are

given by�
H
Hi

�
2

¼
�
Λðφ̄Þ
3H2

i
−
5

8
α̂B

�
−
3

4
α̂B3ðφ̄Þ _̄φ2

þ H
Hi

α̂B3ðφ̄Þ _̄φ3þ1

8

�
3α̂B−

4α̂B3;φðφ̄Þ
3Hi

�
_̄φ4; ð57Þ

�
H
Hi

�
2

ϵ ¼ 3

4
_̄φ2½ _̄φ2α̂B − 3α̂B3ðφ̄Þ� −

1

2

α̂B3;φðφ̄Þ
Hi

_̄φ4

þ 1

2

H
Hi

α̂B3ðφ̄Þ _̄φ3

�
3 −

Hi

H

̈φ̄
Hi _̄φ

�
: ð58Þ

We will start by considering a particular phase of this
model, where α̂B3 ¼ α̂B and Λ are both constant. In this
case, it is useful to write explicitly the equation of motion
for the scalar field as well, in order to illustrate the behavior
of the model. Combining Eqs. (57) and (58) we obtain

̈̄φ
Hi _̄φ

¼ 3ð2ðH=HiÞ _̄φþ _̄φ2−3Þð−2ðH=HiÞþ α̂B _̄φ
3Þ

−6þ8ðH=HiÞ _̄φþ6 _̄φ2þ2α̂B _̄φ
4

: ð59Þ

We can also solve Eq. (57) to get two solutions of Hubble
parameter H�,

H�
Hi

¼ _̄φ3α̂B
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_̄φ6α̂2B
4

þ Λ
3H2

i
þ α̂B

8
ð3 _̄φ4−6 _̄φ2−5Þ

s
: ð60Þ

If the sum of the last two terms inside the square root is
positive, Hþ will always be positive, while H− will be
negative. A negative H corresponds to a contracting
universe in which we are not interested. Also note that
the solution Hþ is no less than H−. If Hþ is negative, then
so is H−, so in the following we will focus on the Hþ
solution.
In the phase that we are interested in, we see that the

equations of motion are independent of φ̄ itself, and hence
only _̄φ determines the evolution of the system. We find that
_̄φ ¼ 0 is always an attractor solution as we can see from
Eq. (59), but it is trivial because the scalar field will stop

evolving in time once it hits this solution. Additionally, if
we choose Λ ¼ 3H2

i , we find another attractor solution
_̄φ ¼ 1, which can be checked by substituting _̄φ ¼ 1 into
Eq. (59). In this case, for α̂B < 2,Hþ ¼ Hi and the solution
gives a de Sitter background with ̈φ̄ ¼ 0, so that the scalar
field velocity stays constant if initially set to _̄φI ¼ 1.
For a more concrete example, we choose α̂B ¼ 1, and we

find three attractor solutions _̄φ ¼ 1; 0;−
ffiffiffi
6

p
. Note that the

number and values of real solutions depend on the choice of
α̂B. There are also two repellers _̄φ ≈ 0.677;−0.898. For this
parameter choice, the three attractors are shown in Fig. 2,
where the behavior of this model can be seen for φ̄ < φ0

(larger values of φ̄ describe the behavior of an extended
model that will be introduced in Sec. V B). In this case, we
see that solutions with _̄φ ¼ 1 evolve toward the right with
increasing field values, whereas solutions with _̄φ ¼ −

ffiffiffi
6

p
evolve toward the left with decreasing field values.
In what follows, we focus on the _̄φ ¼ 1 attractor and the

H ¼ Hi branch. In this case, the evolution is such that
ϵ ∝ a−3, for any value of α̂B. This behavior in ϵ is similar to
that of USR inflation but in this case it relies on the
presence of the braiding parameter, and thus we dub this
model BUSR inflation.
Next, we analyze the evolution of linear perturbations

outside the horizon. This model always has αM ¼ αT ¼ 0,
and on the de Sitter attractor we additionally find αK ¼ 6α̂B
and αB ¼ α̂B. Therefore, we solve the Mukhanov-Sasaki
equation using

Qs ¼
3α̂Bð4þ α̂BÞ
ð2 − α̂BÞ2

; c2s ¼
1

3

ð2 − α̂BÞ
ð4þ α̂BÞ

: ð61Þ

Note that in order to avoid ghost and gradient instabilities
we will need Qs > 0 and c2s > 0 [19], and thus we will
impose 0 < α̂B < 2. Both of these coefficients are con-
stants and thus z ∝ a; the solution for u will have the same
form as Eq. (52), simply generalizing k to csk. We then

FIG. 2. The phase space evolution of the BUSR model through
the transition of G3ðφ; XÞ. The blue streams show the direction of
the time evolution. The thick blue line shows the attractor
solution starting with _̄φ ¼ 1. The two vertical gray lines indicate
the position of φ0 and φ1.
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obtain the unitary curvature as ζu ¼ ðu=aÞð2QsÞ−1=2 and
see that it will be conserved outside the sound horizon, that
is, for csx ≪ 1,

ζu ≈
1ffiffiffiffiffiffi
Qs

p iHi

2ðcskÞ3=2
�
1þ 1

2
ðcsxÞ2 þOðx3Þ

�
; ð62Þ

ζ0u ≈ −ζu½ðcsxÞ2 þOðx3Þ�: ð63Þ

We emphasize that since this model has a finite braiding
parameter αB and ϵ ∝ a−3, thenwe see fromEq. (31) that the
unitary curvature will grow as ζc ∝ ζ0u=ϵ ∝ a. Therefore,
this inflationary model offers an extreme case where the
difference between ζu and ζc can be arbitrarily large.
Next, we analyze the evolution of ζs. From Eq. (44) we

know that in the limit of de Sitter BUSR, where ϵ → 0, we
have that

ζ0s ≈ −Γζ0u; ð64Þ

and therefore ζs ≈ −Γζuðx ¼ 0Þ½1þOðϵ=ΓÞ� (up to some
boundary terms). We thus conclude that for superhorizon
modes ζ0s ∝ ΓðcsxÞ2 and ζs will be conserved outside the
sound horizon. Note that, as found in the previous section,
if Γ≲ 1, then ζs will freeze out at the same time or
before ζu.
Finally, we calculate the dimensionless power spectrum

for modes that have left the horizon already. We present
here a standard quantity quoted in the literature; the power
spectrum of ζu at the horizon crossing. Since ζu is
conserved outside the horizon, this result will hold until
the end of inflation. From Eq. (62) we find that

PζuðkÞ ¼
k3

2π2
jζuj2 ¼

1

8π2
H2

i

Qsc3s
; ð65Þ

which is perfectly scale invariant. We can rewrite this in
terms of α̂B as

Pζu ¼
H2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2 − α̂BÞð4þ α̂BÞ

p
8π2α̂B

; ð66Þ

and therefore for α̂B ≈ 1 we have that H2
i determines the

amplitude of this power spectrum. For an amplitude of
order Pζu ∼ 10−9 as constrained by temperature anisotro-
pies of the cosmic microwave background, we would need
Hi ∼ 10−4 (corresponding to an energy scale offfiffiffiffiffiffi
Hi

p
∼ 1016 GeV). Lower or higher energy scales can be

achieved by adjusting the value of α̂B. For instance, for
Hi ∼ 10−6 (energy scale 1015 GeV) then we must have
α̂B ∼ 10−5. We also note that from the general equations of
motion (57) and (58) we see that we can always rescale Hi
to get an appropriate value for the dimensionless power
spectrum PζuðkÞ, and the evolution of the system in terms

of e-folds does not change for the same initial condition
_̄φ ¼ 1, as long as we also rescale α̂B3;φ appropriately. Note
that in order to obtain a physically meaningful quantity, we
must calculate ζc at the end of inflation, as this quantity is
generically used to set the initial conditions for matter
inhomogeneities after inflation. In Sec. V B we will
consider a realistic model and calculate this quantity.

V. OBSERVABLES

In this section, we discuss the consequences of the
previous results on the inflationary primordial power
spectrum and bispectrum.

A. Separate universe and δN formalism

Here we discuss the relationship between the separate
universe concept introduced in Sec. II C and the so-called
δN formalism, which we illustrate with the USR model
discussed in Sec. IVA.
The δN formalism [5–10] is a common technique to

calculate the inflationary bispectrum of spatial curvature in
a given hypersurface and obtain consistency relations for
single-field inflationary models (although it can be ex-
tended to more general cases with multiple fields [32–34]
or anisotropic backgrounds [35,36]). In this formalism,
superhorizon perturbations can be reabsorbed into the
background equations such that the total perturbed
universe still looks homogeneous and isotropic in a local
Hubble-sized patch. In this case, the spatial curvature can
be calculated as a change in e-folds between the effective
local and the background universes. Although the usage of
the δN formalism is typically associated with the concept of
a separate universe, we show that, in some models,
violations of a separate universe in the matter continuity
equation may be present. In this case, as long as the local
Hubble rate approximates that of a Friedmann universe,
then the δN formula can still be used to accurately compute
the power spectrum or bispectrum for appropriate gauge-
invariant quantities but subtleties can arise when calculat-
ing δN to a uniform-density surface.
Formally, we can always write the difference in spatial

curvature between some initial and final time slices as [5]

ΨðtÞ −ΨðtiÞ ¼ −δNðt; tiÞ −
1

3
ΣIðt; tiÞ; ð67Þ

where we have defined δN such that

δNðt; tiÞ≡ NWðti; tÞ − Nðti; tÞ; ð68Þ

NWðti; tÞ≡
Z

t

ti

HWð1þΦÞdt0; ð69Þ

Nðti; tÞ≡
Z

t

ti

Hdt0; ð70Þ
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where HW is the total window-averaged Hubble expan-
sion that includes the background and linear perturbations,
whereas H is the background Hubble expansion. Similarly,
we have defined ΣI as

ΣIðt; tiÞ≡
Z

t

ti

dt0HΣ; ð71Þ

where Σ is the effective shear of the perturbed expansion of
the universe, defined in Sec. II C.
Equation (67) can be used to easily calculate the spatial

curvature in terms of background quantities, and hence
without solving the perturbed equations of motion. This
can be done by first considering an initial time ti that
corresponds to a spatially flat hypersurface and thus by
definition ΨðtiÞ ¼ 0, whereas the final time can correspond
to a more general hypersurface A of interest (e.g., unitary,
comoving, or uniform density). In addition, we will assume
that the shear is negligible in these slices so that we simply
obtain that

ΨAðtÞ ¼ζAðtÞ ¼ −δNðt; tiÞ; ð72Þ

where A is a subscript for the arbitrary hypersurface A that
is usually chosen to be a unitary (A ¼ u) or comoving
(A ¼ c) hypersurface. In most single-field models studied
in the literature, the shear in spatially flat and other slices
decays in time and can indeed be neglected. Finally, when
spatially flat observers see an effective local (i.e., in
Hubble-sized patches) homogeneous and isotropic back-
ground, it means that superhorizon perturbations can be
reabsorbed in such a way that the full perturbed equations
take the same form as FRW equations of motion in a
spatially flat gauge (this is known as the spatial-gradient
expansion where the leading order perturbations in x ≪ 1
follow FRW-like equations of motion). In this case, super-
horizon perturbations can be treated as a homogeneous
perturbation to a fiducial background universe on each
Hubble horizon scale, leading to the intuitive idea of a
separate universe where each Hubble-sized patch evolves as
an independent effective FRW universe. Computationally,
NW can be calculated using just the background equations
but changing the initial conditions to reflect the presence
of long-wavelength perturbations. Note that these initial
conditions do not necessarily result in the same solutions as
the global background since they can span a more general
class of homogeneous and isotropic background models.
Specifically, for second-order derivative single-field theo-
ries, the spatial curvature can be expressed as

ζAðtÞ ¼ −Nðφi; _φi; tAÞ þ Nðφ̄i; _̄φi; tAÞ; ð73Þ

where φ̄i and _̄φi denote the initial conditions for the
background scalar field and its derivative, whereas φi and
_φi denote the initial conditions for the total scalar field

including perturbations and its derivative in a spatially flat
gauge. Furthermore, N denotes the number of e-folds
between the initial and final times according to the
Friedmann equation, and both e-folds are calculated to a
final time tA such that one reaches the desired hypersurface
(e.g., for obtaining the uniform-density curvature, tA is
chosen such that both N quantities reach the same desired
value of the energy density at that time).
Equation (73) is known as the δN formula that can be

used at all orders in perturbations and allow us to calculate
the nonlinear evolution of ζA by knowing only the back-
ground evolution of the theory. In particular, it can be used
to obtain ζA at quadratic order for small perturbations. For
instance, for models where δ _φ is negligible, we can Taylor
expand the formula and obtain

ζAðtÞ ¼ −Nφδφi −
1

2
Nφφδφ

2
i −Oðδφ3Þ; ð74Þ

which can then be used to calculate, e.g., the squeezed
bispectrum for the spatial curvature on comoving slices
ζc [9].
Overall, the validity of the δN formula relies on

neglecting the shear as well as having the ability to express
the equations of motion for perturbations in an FRW-like
form so that NW can be calculated using the background
equations of motion.
Next, we use the USR model to illustrate how the δN

formula can still be used to calculate the spatial curvature in
some slices even though the separate universe condition is
technically broken. Nevertheless, the δN formula will
indeed break for other choices of slices.
Let us suppose we are interested in calculating the spatial

curvature in unitary slices, that is, ζu. First, we check the
conditions of negligible shear. In USR, we find that in a
spatially flat gauge at linear order jΣfj ∼ ϵζu

1 for super-
horizon modes, and since ϵ ∝ a−6 we conclude that indeed
the shear is negligible in the sense that jΣf=ζuj ≪ 1.
Similarly, we also find jΣu=ζuj ∼ x2 ≪ 1. This shows that
the first conditions for the validity of a separate universe are
indeed satisfied for USR. We also mention that in the case
of uniform-density curvature we obtain similar results:
jΣρ=ζρj ∼ x2 ≪ 1 and jΣf=ζρj ∼ ϵx−2 ∝ a−4.
On the other hand, we note that the condition of a

separate universe defined in synchronous gauge is closely
related to the ability of reabsorbing the superhorizon
perturbations into the background in a spatially flat gauge.

1By definition Σf ¼ −x2ðHBfÞ. Also, from Eqs. (7) and (29)
we have Φf ¼ −ϵHvφ;f ¼ ϵζu for USR and, due to Eq. (52), we
thus have the exact solution of Φf in USR [recall ζu ¼ u=ðaφ̄0Þ].
Since _Bf þHBf ¼ −Φf from Eq. (8), we can perform an explicit
integration with Φf as a source, which contributes mainly at the
horizon crossing, and obtain for superhorizon modes that
x2HBf ≈ 3Φf , and therefore jΣfj ∼ jϵζuj.
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In Sec. IVA we found that USR does satisfy the condition
j_ζs=ðHζsÞj ≪ 1 but the local continuity equation (20) does
not take an FRW-like form as the source term is not
negligible. Indeed, it is possible to check that the leading
order contribution of the terms in the RHS of Eq. (25) for
superhorizon modes cancel out, hence breaking this con-
dition. In particular, we obtain that the source term evolves
as x2ζ0s ∝ a−5 and the perturbed energy density has the
same scaling δρs ∝ a−5, which is different from what we
would have expected on the background of this model, as
ρ ∝ a−6. We find the same behavior in a spatially flat
gauge, where there is a technical violation such that in a
spatially flat gauge the continuity equation cannot be
written in an FRW-like form, whereas both the (00)
equation in (17) and the acceleration equation (19) can
indeed be written as FRW. In this gauge, we again find
that δρf ∝ a−5.
As a consequence, in USR we find that the δN formula

does yield the correct result when calculating ζu (as NW ≈
N with an error falling as δHf=H ∝ δρf ∝ a−5) but the
incorrect result for the spatial curvature in uniform-density
slices ζρ. The latter happens because the uniform-density
condition for the final surface is misapplied in the separate
universe approximation, whereas the expansion itself is still
FRW to good approximation.
The result for ζu (same as ζc in this model) can be found

in [21]. Here we calculate ζρ to linear order in perturbations
in USR to explicitly illustrate the problem with the δN
formula. On the one hand, from the result in Eq. (52), it is
known from a gauge transformation that ζρ ¼ δρf=ρ0 ≈
−H2x2ðφ̄0=ρ0Þðu=aÞ for superhorizon modes. This expres-
sion is always valid for infinitesimal transformations and
yields a growing curvature ζρ ∝ a, which is the correct
result for USR [37]. On the other hand, if we use the δN
formula with the background FRW solutions, we would
absorb the spatially flat δρf into the background, a constant
ρ surface, and evolve to another constant ρ surface
leaving δN ¼ 0 ¼ ζρ.
The results presented so far in this section show that the

δN formalism can sometimes be used even if a separate
universe is violated. Nevertheless, due to this violation, the
formalism will indeed break down when applied to certain
gauge-invariant quantities and will return the wrong value.
We used USR to illustrate this, as this model violates a
separate universe via the continuity equation, which causes
the formalism to give the wrong value for the uniform-
density curvature ζρ. However, we also show that the
formalism does return the correct value for the unitary-
curvature ζu.
Finally, for completeness, we comment on the observ-

able consequence of nonconservation of ζu. On the one
hand, if ζu is indeed conserved outside the horizon, then the
resulting squeezed bispectrum will satisfy the standard
consistency relation [38,39] given by

lim
k1→0

Bζuðk1; k2; k3Þ ¼ ½nsðk3Þ − 1�Pζuðk1ÞPζuðk3Þ; ð75Þ

where ki are three wave numbers such that k2 ∼ k3 ≫ k1.
Here, Pζu ¼ ð2π2=k3ÞPζu is the power spectrum with a tilt
ðns − 1Þ defined as

nsðkÞ − 1 ¼ d lnPζuðkÞ
d ln k

: ð76Þ

On the other hand, if ζu is not conserved outside the
horizon, the squeezed bispectrum will have a different
relation to the power spectrum. In the case of USR, the
squeezed bispectrum can be obtained with the δN formal-
ism, and it is given by [21]

lim
k1→0

Bζuðk1; k2; k3Þ ¼ 6Pζuðk1ÞPζuðk3Þ: ð77Þ

However, this relation does not necessarily describe the
observable squeezed bispectrum after inflation since the
USR phase must end. Its ending changes the local e-folds
measured by the observer and the bispectrum accordingly
through the δN formalism [28,29].

B. Observable curvature power spectrum

In this section, we analyze the observational conse-
quences of inflationary braiding models with a large
difference between unitary and comoving curvatures.
In general, inflationary models provide initial conditions

for the seeds of structure formation during early times,
which are then used to propagate forward the matter
evolution and predict observables such as the cosmic
microwave background temperature anisotropies and gal-
axy distributions. For single-field minimally coupled infla-
tionary models, these initial conditions are typically
obtained by calculating ζu at the horizon crossing, which
then determines ζc during radiation or matter domination
outside the horizon. This ultimately becomes the initial
condition for structure formation. This translation between
unitary and comoving curvatures is straightforwardly done
as both curvatures are the same, and both are usually
conserved outside the horizon.
The previously described picture will not be valid

anymore in inflationary models with nonminimal couplings
if they lead to relevant differences between unitary and
comoving curvatures, or if the evolution of these curvatures
is not conserved outside the horizon. In such cases, a
careful analysis throughout the evolution of inflation until
its end must be done to obtain appropriate initial conditions
for comoving curvature after inflation.
As we have previously shown, inflationary models with

nonvanishing braiding interactions can lead to a large
difference between unitary and comoving curvatures.
However, a realistic inflationary model must end and lead
to reheating but, as it has been discussed in [14,15],
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braiding interactions could potentially spoil the reheating
process. For this reason, we will consider BUSR described
in Sec. IV B and analyze the behavior of unitary curvature
in a setting where braiding vanishes before the end of
inflation. In this scenario, we have that, by construction,
unitary and comoving curvatures will coincide at the end of
inflation, but we will show that the time evolution of the
braiding parameter may lead to a nontrivial evolution of
unitary curvature outside the horizon, and therefore its
value at the horizon crossing may not set the appropriate
initial conditions for ζc after inflation. Additionally, we will
allow for a time evolution of the potential interactions of
BUSR, in order to allow the scalar field to roll down the
potential and end the inflationary period.
We start by considering the full BUSR model given by

the Horndeski functions in Eq. (56). We will make α̂B3
evolve in time toward zero, while keeping α̂B constant. In
this case, we keep the kinetic term X2 in G2 the same as
before and change the linear X term together with G3. This
is to ensure stability of the model throughout its evolution.
We will also allow Λ to evolve in time, in order to allow for
a potential interaction. In this case, BUSR will evolve
toward a model with a vanishing braiding parameter as well
as a potential-dominated scalar field, as it is considered in
common inflationary models.
In particular, we will consider α̂B3 to be a steplike

function, starting at α̂B3 ¼ α̂B (as in the model of Sec. IV B)
and ending at zero. For concreteness, we model α̂B3 as

α̂B3ðφÞ ¼
α̂B
2

�
1þ tanh

�
φ0 − φ

d0

��
; ð78Þ

where φ0 represents the field value where the braiding
transition happens and d0 the width of the transition.
Generically, we would also introduce a potential interaction
such that

ΛðφÞ ¼ VðφÞ þ 15

8
H2

i α̂B; ð79Þ

where the first term can be any appropriate inflationary
potential, and the second term is added to cancel out the
cosmological constantlike term inG2ðφ; XÞ in Eq. (56). For
simplicity, we will model VðφÞ with the same tanh function
but with a different width and field location, such that
before the step we have Λ ≈ 3H2

i and after the step V ≈ 0.
Explicitly, we consider

ΛðφÞ
3H2

i
¼ 1

2

�
1−

5

8
α̂B

��
1þ tanh

�
φ1−φ

d1

��
þ5

8
α̂B; ð80Þ

where φ1 represents the field value where the transition in V
happens and d1 its width.
Next, we numerically study the evolution of the model

starting from BUSR with initial conditions on the attractor

_̄φI ¼ 1 and φ̄I chosen appropriately such that α̂B3 ≈ α̂B. For
concreteness, let us fix the parameters of the model to
Hi ¼ 2.1 × 10−4, α̂B ¼ 1, φ0 ¼ 4.7 × 104, d0 ¼ 3.3 × 103,
φ1 ¼ 5.7 × 104, and d1 ¼ 3.8 × 103. In this case, φ1 > φ0,
and thus the braiding interaction will first vanish, and soon
afterwards the scalar field will start rolling down the
potential until the end of inflation. We make this choice
in order to disentangle effects coming from changing the
braiding interaction and those from the potential.
In Fig. 2 we show the evolution of the scalar field φ̄ and

its time derivative _̄φ throughout the transition of αB.
Starting near _̄φ ¼ 1 on the top left of the plot, we see that
flows join the attractor (blue thick curve) as time evolves.
Once φ̄ ≈ φ0, the transition in G3 occurs, which makes _̄φ
decrease. Then, for φ̄ ≈ φ1 we see that the behavior
changes as the scalar field starts rolling down the potential
and its kinetic energy increases.
In Fig. 3 we show the evolution of the Hubble rateH and

the slow-roll parameter ϵ as a function of e-folds from the
braiding transition time (defined as when φ̄ ¼ φ0). In the
top panel, we see that H starts near the attractor value
H ¼ Hi. Afterwards, the transition in G3 alters the evolu-
tion, and H decays toward the value ðH=HiÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 5=8α̂BÞ
p

≈ 0.6 for α̂B ¼ 1. This value of H would
be a new de Sitter phase if the potential V was constant, and
it is obtained from Eq. (57) with _̄φ → 0 (i.e., a potential
dominated phase). Afterwards, the scalar field starts rolling
down the potential and H decays even further toward zero.
In the bottom panel, we see the evolution of ϵ, which

starts in a de Sitter phase with ϵ ≈ 0. Then, the transition in

FIG. 3. Evolution ofH and ϵ ¼ −H0=H as a function of e-folds
through the transition of G3ðφ; XÞ. Here, N ¼ 0 corresponds to
the time when the transition happens (defined as when φ̄ ¼ φ0).
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G3 causes a quick change in H which makes ϵ grow.
Afterwards, ϵ decays again as the system goes toward the
aforementioned would-be de Sitter phase with constant
potential, but due to the scalar field rolling down the
potential V, ϵ grows again reaching ϵ ¼ 1, marking the end
of the accelerated expansion of the universe, and hence the
end of inflation. Note that for the values chosen here, the
step in G3 is slow enough that the terms involving α̂B3;φ are
always negligible in the evolution of H and ϵ.
Next, we study the evolution of linear cosmological

perturbations in this model. Unitary curvature satisfies
Eq. (45). The main coefficients determining the evolution
of ζu are thus c2s and Qs. In turn, these two quantities
depend on the EFT coefficients αB and αK. Whereas αB
decays to 0 by construction, αK follows closely the
behavior of the kinetic energy of the scalar field; that is,
it decays during the braiding transition and grows again
when the potential dominates the evolution and the scalar
field rolls down.
In Fig. 4, we explicitly show the evolution of c2s and Qs

as a function of e-folds when the system undergoes the step
in G3. In the top panel we see that c2s decays during the step
of G3. Indeed, the faster the step, the more it decays.
Therefore, a fast enough step would lead to a short gradient
instability that would potentially spoil the evolution of
small-scale perturbations. For this reason, we limit our-
selves to cases where the transition in G3 is slow enough to
ensure c2s > 0 at all times. After the braiding transition, c2s
converges toward the value c2s ¼ 1=3 of the final model
with G2ðφ; XÞ ¼ ð3=2ÞH2

i α̂BX
2 − VðφÞ. In the bottom

panel, we see that Qs decays during the transition of G3

and then grows again when the potential dominates.
Overall, Qs follows a similar behavior to the kinetic energy
of the scalar field.
Next, we analyze the behavior of ζu in more detail. From

Eq. (45), the equation of motion for ζu is given by

ðHa3Qsζ
0
uÞ0

Ha3Qs
þ ðcsxÞ2ζu ¼ 0; ð81Þ

and thus from here we generically have that

ζ0u ¼−
1

Ha3Qs

�Z
d lnaðHa3QsÞðcsx2Þζuþ const

�
; ð82Þ

where we have added an arbitrary integration constant.
While this relation is exact, it only implicitly determines ζu.
However, as we shall see next, this expression is useful to
analyze ζu in the superhorizon limit. Here, we see that the
evolution depends crucially on the behavior of ðHa3QsÞ.
Figure 5 shows the time evolution of ðHa3QsÞ−1 (with an

arbitrary normalization) and the evolution of k3jζuj2 for two
modes with xt ¼ k=ðatHtÞ taking values xt ≈ 0.6 and
xt ≈ 0.04, where a and H are evaluated at the time of
the braiding transition (corresponding to N ¼ 0). In the top
panel, we see that ðHa3QsÞ−1 decays monotonically for the
value of d0 chosen here, although the decay rate decreases
during the braiding transition. If the transition in G3 is
faster, that is, for smaller d0, then ðHa3QsÞ−1 may even

FIG. 4. Evolution of c2s and Qs as a function of e-folds through
the transition of G3ðφ; XÞ. Here, N ¼ 0 corresponds to the time
when the transition happens (defined as when φ̄ ¼ φ0).

FIG. 5. Evolution of 1=ðHa3QsÞ and k3jζuj2 for a mode with
xt ≈ 0.6 (blue line) and a mode with xt ≈ 0.04 (yellow line) as a
function of e-folds through the transition of G3ðφ; XÞ. Here,
N ¼ 0 corresponds to the time when the transition happens
(defined as when φ̄ ¼ φ0).
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grow temporarily during the transition. In the bottom panel,
we show the evolution of two modes that have already left
the horizon before the braiding transition. Whereas very
long modes will have a power spectrum at the end of
inflation with a value given by Eq. (66) (as shown in the
yellow line for a mode with xt ≈ 0.04), other modes will
keep decaying due to the braiding transition (as shown in
the blue line for a mode with xt ≈ 0.6). This decay will
ultimately cause a suppression on the amplitude of the
power spectrum on short scales. In the figure, we show the
blue mode that leaves the horizon less than 1 e-fold before
the braiding transition, and its amplitude k3jζuj2 at the end
of inflation is about 10% smaller than that for modes that
leave the horizon well before the transition.
We can understand the behavior of ζu found in these

numerical solutions by using Eq. (82). On the one hand, we
see that during the de Sitter BUSR phase,Qs, cs, andH are
nearly constants, and for modes outside the horizon the
integrand of Eq. (82) scales as a and, as a consequence, this
integral will be dominant over the integration constant.
Thus, we find that ζ0u ≈ −ðcsx2Þζu, in agreement with our
previous calculation in Eq. (63). On the other hand, during
the braiding transition, we see that ðHa3QsÞ becomes
roughly constant [this is model dependent as for a given
parameter choice ðHa3QsÞ could be decaying, constant, or
growing], and thus the behavior of the integrand will be
such that it decays as a−2 or even faster. In this case, the
total term inside the square brackets in Eq. (82) goes to a
constant, and we will get that ζ0u ∼ const. We can then
match these two behaviors at the time t� where the braiding
transition starts (for our figures, t� would be between N ¼
−2 and N ¼ −1), and obtain that during the transition, the
behavior of ζu outside the horizon will be roughly given by
ζuðNÞ ¼ ζu�½1 − ðcs�x�Þ2ðN − N�Þ�. This result shows that
for modes that leave the horizon well before the transition
(i.e., x� ≪ 1) then the decay rate of ζu during the transition
will be very small. Similarly, for shorter modes that leave
the horizon near the transition (e.g., x� ∼ 1), then the decay
rate will be much larger. This agrees with the qualitative
behavior shown in Fig. 5 but because ðHa3QsÞ is not
exactly constant, the x� dependence on the slope of ζuðNÞ
is closer to x3=2� than to x2.
Finally, we explicitly calculate the power spectrum at the

end of inflation from these mode functions. Figure 6 shows
Pζu as a function of xt ∝ k. Here we see that the power
spectrum is scale independent for all modes that left the
horizon much earlier than the transition of G3, that is, for
xt ≲ 10−1. However, for modes that leave the horizon right
before the braiding transition, there is a suppression of the
power spectrum that goes up to 15%. From this figure, we
find that the decay of Pζu goes roughly as x3=2t , consistent
with the mode function evolution described above. Note,
however, that this scaling depends on the choice of α̂B and
the width of the braiding transition. Faster steps will lead to

a faster decay of Pζu . We therefore conclude that most
modes that left the sound horizon in the BUSR phase would
indeed have the same primordial amplitude except for a
small, but model dependent, number of e-folds in k around
the sound horizon at the time of the braiding transition.

VI. DISCUSSION

In this paper we analyze the difference between three
gauge-invariant quantities typically studied in single-field
inflationary models: synchronous curvature ζs, unitary
curvature ζu, and comoving curvature ζc. We focus on
models with second-order derivative equations of motion
and study the evolution of these three curvatures outside the
horizon. Generically, we find that conservation of one of
these curvatures does not imply conservation of the other
two, unless the given model satisfies certain conditions.
Conservation of comoving curvature is the most restrictive
one, as it will imply conservation of both unitary and
synchronous curvatures.
In order to explicitly illustrate the difference of these

three curvatures, we provide two specific examples of
inflationary models. First, we discuss the USR model and
show that here unitary and comoving curvatures are not
conserved outside the horizon (and they are equal), but
synchronous curvature is. Second, we construct an infla-
tionary model dubbed BUSR, in which there is a nontrivial
coupling that corresponds to indirect derivative interactions
(called braiding) between the scalar field and the metric. In
this model, we show that unitary and synchronous curva-
tures are conserved outside the horizon (although they are
different), but comoving curvature is not.
Finally, we discuss the consequences of having different

curvatures conserved. First, we clarify that the concept of a
separate universe is strictly associated with the synchro-
nous frame since it requires that freely falling observers
cannot distinguish that they live in a long-wavelength
inhomogeneity through local measurements. Whereas it
is typically assumed that conservation of ζs implies a
separate universe, we show that this is not always the case.

FIG. 6. Dimensionless power spectrum Pζu at the end of
inflation as a function of xt ¼ k=ðatHtÞ. xt < 1 represent modes
that were outside the horizon at the time of the transition of
G3ðφ; XÞ.
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The USR model is an example where ζs is conserved
outside the horizon, but the continuity equation of matter
does not approximate to that of a Friedmann universe, and
therefore the separate universe approximation is technically
broken.
In addition, we discuss the fact that a separate universe is

typically considered to be a necessary requirement for the
validity of the δN formalism, which is in turn used to
calculate the primordial power spectrum and bispectrum of
inflationary models. We show that although the USRmodel
does mildly violate a separate universe, the δN formalism
can still be used to accurately obtain observables for unitary
curvature (even though this is not conserved), but the
formalism will break down when calculating observables
for uniform-density curvature ζρ.
Finally, we discuss the consequence of a difference in

unitary and comoving curvatures, as unitary curvature at the
horizon crossing is typically used as an initial condition for
comoving curvature after inflation.We use the BUSRmodel
and start in a phase where ζu ≠ ζc due to braiding inter-
actions, but allow the model to evolve toward a phase where
braiding eventually goes away. This process allows inflation
to end and the reheating to start with ζc ¼ ζu, reflecting a
strong evolution of ζc both after the horizon crossing
and at the transition to vanishing braiding interaction.
The transition can also introduce evolution of the unitary

curvature outside the horizon, and thus, at least for some k
modes, it would be incorrect to identify ζu at the horizon
crossing as the initial condition of ζc after inflation. In
general, one should explicitly track the evolution of all k
modes until the end of inflation (which are the actual
quantities we are interested in obtaining) instead of naively
assuming that all modes will be conserved after the horizon
crossing. In the particular model considered here, this effect
leads to a suppression of power that is confined to scales that
are no larger than a few e-folds compared to the (sound)
horizon at the time of the braiding transition, whereas larger
modes that froze out well before the transition would be
unaffected.
These examples help clarify the concepts of conservation

of curvature, separate universe, δN, and gauge transforma-
tions that are often conflated in the literature.
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