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Extragalactic foregrounds are known to constitute a limiting systematic in temperature-based cosmic
microwave background (CMB) lensing with AdvACT, SPT-3G, Simons Observatory, and CMB S4.
Furthermore, since these foregrounds are emitted at cosmological distances, they are also themselves
lensed. The correlation between this foreground lensing and CMB lensing causes an additional bias in
CMB lensing estimators. In this paper, we quantify for the first time this “lensed foreground bias” for the
standard CMB lensing quadratic estimator, the CMB shear, and the CMB magnification estimators, in the
case of Simons Observatory and in the absence of multifrequency component separation. This percent-level
bias is highly significant in the cross-correlation of CMB lensing with LSST galaxies and comparable to the
statistical uncertainty in the CMB lensing autospectrum. We discuss various mitigation strategies and show
that “lensed foreground bias-hardening” methods can reduce this bias at some cost in signal to noise. The
code used to generate our theory curves is publicly available.1
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I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground (CMB) probes the projected mass distribution in the
Universe, all the way to the surface of last scattering. This
effect is measured at high significance from the WMAP
satellite [1,2], the Atacama Cosmology Telescope (ACT)
[3–8], the South Pole Telescope (SPT) [9–13],
POLARBEAR [14–16], the Planck satellite [17–19], and
BICEP 2 / Keck Array [20]. These measurements contain
valuable information on the nature of dark energy and the
masses of the neutrinos, through their effect on the growth
of structure and the expansion history in the Universe. Via
delensing [21–23] of the CMB polarization B modes, these
lensing measurements will also be crucial in the search for
primordial gravitational waves.
As the statistical signal to noise (SNR) in upcoming

CMB lensing detections increases with AdvACT [24],
SPT-3G [25], Polarbear-2 and Simons Array [26],
Simons Observatory [27], and CMB S4 [28], a similar
improvement in systematics control becomes necessary. In
temperature-based CMB lensing reconstruction, extraga-
lactic foregrounds such as the cosmic infrared background
(CIB), the thermal and kinematic Sunyaev-Zel’dovich (tSZ
and kSZ) effects, and the radio point sources (radio PS)
constitute the main limiting systematics. If not accounted
for, they are known to produce highly significant biases to

CMB lensing [29–33]. These biases arise from the non-
Gaussian statistics of these foregrounds, and their correla-
tion with CMB lensing. Since these foregrounds dominate
on small scales, they limit the range of temperature
multipoles that can be used for lensing reconstruction to
l < 3000–3500. Various mitigation methods exist. For
quadratic CMB lensing estimators, the lensing field is
reconstructed from two powers of the temperature map, one
“gradient leg” and one small-scale leg. Mitigation methods
typically aim at removing the foreground from one or two
of these powers of the map. Masking removes the brightest
point sources in the temperature map and is an effective
way to control radio PS [30]. Multifrequency component
separation [34] or the cleaned gradient method [35] can
reduce the amplitude of CIB and tSZ at some cost in noise,
but cannot reduce the kSZ bias. In the case of halo lensing,
the gradient can also be foreground cleaned by inpainting a
Gaussian CMB realization at the localization of the halo
[36]. In some cases, the foregrounds are left intact in the
two legs of the quadratic estimator, and the mitigation
occurs by nulling the overall response of the estimator to
the foreground. “Bias-hardened” estimators reduce the
contamination from foregrounds whose statistics is known
(e.g., Poisson) [29,37,38]. Splitting the CMB lensing
quadratic estimator into magnification-only and shear-only
estimators [33,39,40] provides a useful foreground null
test. Discarding the magnification-only part appears
to significantly reduce the contamination from all extra-
galactic foregrounds, at a cost in SNR which can be
compensated by including smaller temperature multipoles
in the shear estimator [33]. The “multipole estimators,”
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which generalize this decomposition, are expected to share
the same property [33]. These various methods are based on
different principles. Multifrequency foreground cleaning
and the cleaned gradient method partially remove the
foreground from the temperature map (or one of the
two, for the cleaned gradient method), so that the fore-
grounds do not enter the lensing estimator or do not bias it.
Masking works because a large part of the non-Gaussianity
of some foregrounds (radio PS, CIB, tSZ) comes from
localized peaks associated with individual galaxies or
halos. Masking or inpainting these foreground peaks does
not completely remove the foreground from the temper-
ature map, but it reduces its non-Gaussianity (bispectrum
and trispectrum). With bias hardening and the shear/multi-
pole estimators, the foreground is left intact in the temper-
ature map and fed to the lensing estimator. However, the
estimator is modified so as to be insensitive to the fore-
ground bispectrum and trispectrum. The best solution to the
lensing biases from the non-Gaussianity of extragalactic
foregrounds likely involves combining these different
methods.
However, extragalactic foregrounds produce another bias

to CMB lensing, discussed in [41] but not yet quantified, to
the best of our knowledge. This bias is not a consequence of
the non-Gaussianity of the foregrounds, but of the fact that
extragalactic foregrounds are themselves lensed, by an
amount correlated with CMB lensing [41–43]. Indeed,
extragalactic foregrounds are emitted at cosmological
distances and should therefore be distorted by lensing,
just as the CMB and galaxy shapes are. CMB lensing
quadratic estimators will generically reconstruct not only
the lensing of the CMB, but also the lensing of the
foregrounds [42]. The correlation of CMB lensing and
foreground lensing enhances this bias to CMB lensing.
This bias is present even if the extragalactic foregrounds are
perfectly Gaussian, as long as they are lensed by an amount
correlated with CMB lensing. In this paper, we quantify
this bias for the first time, and we show that it is significant
for an experiment like Simons Observatory. This bias will
be even larger for the CMB S4 temperature-based lensing.
However, the polarization-based quadratic estimators will
carry a larger weight for CMB S4, and extragalactic
foregrounds are expected to be less important there.

II. REVIEW: CMB LENSING RECONSTRUCTION
WITH QUADRATIC ESTIMATORS

A. CMB lensing convergence

We consider the CMB to be emitted at a single redshift at
the last scattering surface. For a source image at a single
redshift and in the Born approximation, the lensing con-
vergence is obtained as

κCMB
L ¼

Z
χCMB

0

d χWκð χ; χCMBÞδmðk⃗ ¼ L= χ; χÞ; ð1Þ

whereWκð χ; χSÞ is the lensing kernel for a source image at
distance χS:

Wκð χ; χSÞ ¼
3

2

�
H0

c

�
2

Ω0
m

χ

að χÞ ð1 − χ= χSÞ: ð2Þ

In the Limber and flat sky approximations, the CMB
lensing power spectrum thus becomes

CκCMB
L ¼

Z
dχ
χ2

Wκðχ; χCMBÞ2Pm

�
k¼Lþ1=2

χ
;zðχÞ

�
; ð3Þ

where Pm is the nonlinear matter power spectrum, com-
puted using the Halofit [44] implementation in CLASS [45].

B. Quadratic CMB lensing estimators

Throughout this paper, we adopt the flat sky approxi-
mation and decompose the various maps (CMB, fore-
ground, convergence) in Fourier modes rather than
spherical harmonics. We denote by T0 an unlensed map
(CMB or foreground), and T the corresponding lensed
map. Lensing produces off-diagonal correlations in the
observed temperature map,

hTlTL−li ¼ fl;L−lκL þOðκ2Þ; ð4Þ

where the response function fl;L−l is completely deter-
mined by the unlensed power spectrum:

fl1;l2 ≡
�
2L
L2

�
· ½l1C0

l1
þ l2C0

l2
�: ð5Þ

In particular, we shall call this response fCMB when C0 is
the unlensed CMB power spectrum, ff when C0 is the
unlensed foreground power spectrum, and fff

0
when C0 is

the cross spectrum of two correlated unlensed foregrounds,
such as CIB and tSZ.
This coupling of Fourier modes is used to construct

unbiased CMB lensing quadratic estimators as

QL½T; T� ¼ NL

Z
d2l
ð2πÞ2 TlTL−lFl;L−l; ð6Þ

where the weight function Fl;L−l can in principle be chosen
arbitrarily, and the corresponding normalization is then
fixed in order to obtain a unit response to CMB lensing:

NL ¼
�Z

d2l
ð2πÞ2 Fl;L−lfCMB

l;L−l

�−1
: ð7Þ

In particular, the response function fCMB
l;L−l is that of the

CMB, so that the estimator has a unit response to lensing
when applied to lensed CMBmaps. In practice, the weights
Fl;L−l are typically chosen so as to minimize the variance
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of the estimator [46]. These weights can be chosen differ-
ently, for example to null the response to point sources or
the survey mask as in “bias hardening” [18,19,37,38,47],
to discard the information in shear or magnification
[33,39,40,48–51], or to discard contaminated modes in
one of the legs of the estimator [35]. In this paper, we will
consider the following quadratic estimators:

Fl;L−l ¼

8>>>>><
>>>>>:

fCMB
l;L−l

2Ctotal
l Ctotal

jL−lj
QE

CCMB
l

2ðCtotal
l Þ2

d lnCCMB
l

d lnl cosð2θL;lÞ Shear

CCMB
l

2ðCtotal
l Þ2

d lnl2CCMB
l

d lnl Magnification

; ð8Þ

where CCMB is the unlensed CMB power spectrum and
Ctotal is the total map power spectrum, including lensed
CMB, foregrounds and detector noise. In what follows, for
convenience, we further symmetrize these lensing weights
with the substitution Fl;L−l → ðFl;L−l þ FL−l;lÞ=2.
As shown in Fig. 2 of [33] and explained in [33], the

noise power spectrum of the shear and magnification
estimators shows a spike at L ∼ 3000. In all the calculations
below, the error bars indeed display this spike at that
multipole, as expected. This is due to the lensing weights
Fl;L−l for the shear and magnification only being optimal
in the large-scale lens regime L ≪ l, where large-scale
lensing modes are reconstructed from small-scale temper-
ature modes. Outside of this regime, the lensing weights
Fl;L−l are effectively arbitrary and lead to a null response
to lensing at L ∼ 3000, causing the spike in the noise power
spectrum.

III. EXTRAGALACTIC FOREGROUNDS
AND THEIR LENSING

Intuitively, the lensed foreground bias should depend on
several properties of the foreground. First, the size of the
bias depends on the amplitude of the foreground power
spectrum. For example, if the foreground power spectrum is
multiplied or divided by some factor, the bias to the CMB
lensing estimators is also multiplied or divided by the same
factor, since these estimators are quadratic in the temper-
ature. Second, the bias also depends on the shape of the
foreground power spectrum. For instance, if a foreground
component had the same exact power spectrum as the
CMB, then the CMB lensing estimators would have a unit
response not only to the CMB lensing but also to the
foreground lensing. The shape of the foreground power
spectrum thus determines how much the CMB lensing
estimators respond to the foreground lensing. Finally, the
redshift distribution of the foreground sources determines
the amplitude of the foreground lensing convergence, and
the size of its correlation with the CMB lensing conver-
gence. In this section, we estimate each of these foreground
properties.

A. Experimental configuration
and foreground power

Throughout the paper, we consider a “CMB S3” experi-
ment, similar to Simons Observatory, with a beam full-width
at half maximum of 1.40 and a white noise level of 7 μK0 in
temperature at 143 GHz. The lensing reconstruction
for the quadratic estimator (QE), shear, and magnification
estimators uses all Fourier modes with lmin;T ¼ 30 ≤ l ≤
lmax;T ¼ 3500. We consider a temperature map at a single
frequency, 143 GHz, without multifrequency component
separation. This slightly pessimistic assumptionwill produce
slightly larger foreground biases, but it makes our results
independent of the particular choice of component separation
method. Furthermore, the shear estimator was shown to be
robust to foreground contamination [33], so itmaybeusedon
a single-frequency temperature map. In the lensing weights
defined above, the total power spectrum thus includes not
only the lensed CMB and thewhite detector noise but also all
the foreground power spectra. This realistic choice down-
weights the small scales where foregrounds dominate, and
will thus reduce the foreground bias.We do not include noise
from atmospheric emission, as this quantity varies with the
observing site.
Throughout this study, we use the model from [52] for

the power spectra of the extragalactic foregrounds at
143 GHz, as shown in Fig. 1. This model includes a point
source mask for all objects with flux larger than 15 mJy.
In order to quantify the bias from lensed foregrounds to

cross-correlations of CMB lensing with tracers, we also
consider the LSST gold sample of galaxies, as described
in the LSST Science Book [53], Chapters 3 and 13, with
limiting magnitude in the i band of ilim ¼ 25.3. This
galaxy sample contains ngal ¼ 46 × 100.31�ðilim−25Þ galaxies
per squared arcminute, has bias bðzÞ¼1þ0.84z, and
has redshift distribution dn=dz¼ngalðz=z0Þ2e−z=z0=ð2z0Þ,
where z0 ≡ 0.0417ilim − 0.744.

FIG. 1. Extragalactic foreground power spectra at 143 GHz
from [52], compared to the lensed CMB and the detector noise
(7 μK0 white noise, 1.40 beam FWHM at 143 GHz). A point
source cut of 15 mJy is assumed for radio PS, CIB, and tSZ
sources. In the absence of foreground cleaning, the foregrounds
are larger than the detector noise on scales l ≤ 3500, and
comparable to the lensed CMB at l ¼ 3500, where most of
the lensing information comes from.
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B. Effective redshift distribution
of foreground sources

Extragalactic foreground sources are associated with
galaxies and clusters over a range of redshifts. Intuitively,
the foreground redshift distribution relevant for lensing
should be related to the galaxy or cluster redshift distribu-
tions. Since the lensing estimators we consider are quadratic
in the temperaturemap, the relevant quantity should therefore
be related to the redshift distribution of the (unlensed)
foreground power spectrum dCf

l=dz. However, this quantity
depends on the multipole l considered: generically, the
large-scale power is mostly dominated by lower redshifts,
because the same objects at lower redshifts subtend a larger
angle on the sky. As a result, the relevant source redshift
distribution for foreground lensing is scale dependent, unlike
in galaxy lensing where it is simply the galaxy dn=dz. More
precisely, as shown in Appendix B of [42], the CMB lensing
estimators at multipole L respond to the following effective
convergence:

κfL ¼
Z

d χWκfð χ;LÞδmðk⃗ ¼ L= χ; χÞ; ð9Þ

where the effective lensing kernel Wκfð χ;LÞ depends on
the multipole L and is defined as

Wκfð χ;LÞ ¼
Z

d χSWfð χS;LÞWκð χ; χSÞ; ð10Þ

where Wκð χ; χSÞ is the usual lensing kernel for a source at
distance χS, defined in the previous section, and the
effective foreground redshift distribution Wfð χS;LÞ is

Wfð χS;LÞ ¼
dzS
d χs

NL

Z
d2l
ð2πÞ2 Fl;L−lf

f;z
l;L−l; ð11Þ

with

ff;zl1;l2
≡

�
2L
L2

�
·

�
l1

dCf
l1

dzS
þ l2

dCf
l2

dzS

�
: ð12Þ

This is similar to galaxy lensing, where the lensing kernel is
an integral over the source distribution. However, here, the
source distribution is scale dependent. As expected,

Eq. (11) involves the redshift distribution
dCf

l
dzS

of the
unlensed foreground power spectrum. One important con-
sequence is that the noise and resolution of the CMB
experiment, which determine the lensing weights Fl;L−l,

also determine how the
dCf

l
dzS

terms are weighted to produce
the effective foreground redshift distribution. For instance,
for a higher resolution CMB experiment, the CMB lensing
reconstruction relies on smaller scales, thus upweighting
dCf

l
dzS

at high l, which typically come from higher redshift
sources.
For the CMB S3 experiment we consider, and assuming

lmax T ¼ 3500, most of the CMB lensing signal to noise
comes from temperature multipoles l ∼ 3000. We therefore
ignore the L dependence of the foreground lensing kernels

and approximate them as Wfð χS;LÞ ∝ dCf
l¼3000

d χS
. The prob-

lem then simplifies to modeling
dCf

l¼3000

d χS
for each foreground

of interest. For the CIB, we use the value computed in [42],
following the CIB halo model from [54], using the
luminosity functions from [55,56]. For tSZ, we implement
the halo model in [57]. For the late time kSZ, we use the
redshift distribution from Fig. 6 in [58], corresponding to
their L60CSFz2 model. For the reionization kSZ, we
assume a single source redshift at z ¼ 8, consistent with
the redshift of a steplike reionization in Table A1 of

FIG. 2. Extragalactic foregrounds are themselves lensed, because they are emitted at cosmological distances. The exact foreground
redshift distributions [Eq. (11)] depend on the experimental configuration (resolution, sensitivity, masking, etc.) and the lensing
multipole L. We approximate these redshift distributions as Wfð χS;LÞ ∝ dCf

l¼3000

d χS
(left panel). From these approximate redshift

distributions, we infer the corresponding lensing kernels (right panel) from Eq. (10), showing which redshifts contribute to the
foreground lensing convergence. These lensing kernels determine the amplitude of the foreground lensing convergence and its
correlation with the CMB lensing convergence. Our approximations make these foreground lensing kernels independent of the
experimental configuration and lensing multipole L.
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Ref. [59]. For the radio PS, we adopt the redshift distri-
bution Eq. (26) in [60], describing the source sample from
[61], selected in NRAO VLA Sky Survey [62] at 1.4 GHz.
Because the frequency dependence of the synchrotron
emission is very mild, sources at 1.4 GHz and 143 GHz
mostly coincide and correspond to active galactic nuclei.
These approximate effective redshift distributions are
shown in Fig. 2, along with the corresponding foreground
lensing kernels. Our knowledge of the foreground redshift
distributions is somewhat uncertain. For this reason, the
foreground lensing biases we obtain are also uncertain and
should be considered reasonable values rather than exact
values.

C. Foreground lensing power spectra

We use again the Limber and flat sky approximations,
and we obtain the auto and cross-spectra of the fore-
ground lensing convergences:

Cκ1κ2
L ¼

Z
d χ
χ2

Wκ1ð χÞWκ2ð χÞPm

�
k ¼ Lþ 1=2

χ
; zð χÞ

�
:

ð13Þ

How small is foreground lensing compared to CMB
lensing? As we demonstrate in the next section, the relevant
quantity to assess the bias in the CMB lensing autospectrum
is C

κfκCMB

L =CκCMBκCMB
L , shown in the left panel of Fig. 3. To

assess the bias in cross-correlation with a tracer g, the
relevant quantity is C

κfg
L =CκCMBg

L , shown in the right panel of
Fig. 3 for the LSST gold sample. These plots show that the
amplitude of foreground lensing for L ¼ 100–1000 ranges
between 5% (for tSZ) and 85% (for the reionization kSZ) of
that of CMB lensing, depending on the foreground
considered.

IV. BIAS TO CMB LENSING FROM LENSED
FOREGROUNDS

In this section, we use the foreground power spectra
and redshift distributions from the previous section to
predict the bias to CMB lensing from lensed foregrounds.
Throughout, we make the simplifying approximation that
each foreground map f is lensed by one lensing conver-
gence field κf, computed from the redshift distribution of
the foreground. In reality, each redshift slice of the fore-
ground is lensed separately by the convergence field
corresponding to that source redshift. We believe that this
approximation is sufficient, given the uncertainty in the
foreground redshift distributions, and leave its exploration
to future work.
Furthermore, since the lensing convergence and the

foregrounds are both produced by the matter distribution
in the Universe, they are correlated. The correlation
between foregrounds and the CMB lensing convergence
is the origin of the usual foreground biases to CMB lensing
[29,30,32,33], and we shall therefore not discuss it further.
The correlation between foregrounds and the foreground
lensing convergence contributes additional bias in princi-
ple. However, this will be smaller than the previous one,
and we shall only mention it in this section.
We compute all the bias terms described in this section in

two independent ways, as described in Appendix B, and
find a good agreement everywhere.

A. Response of CMB lensing estimators
to lensed contaminants

Following Sec. VIII in [42], any quadratic combination
of lensed foreground maps effectively constitutes a (poten-
tially biased and suboptimal) foreground lensing estimator.
In particular, the CMB lensing estimators of the form
Eq. (6) are such quadratic combinations. As a result,
they generically have a nonzero response to the fore-
ground convergence κf. Indeed, when applied to a lensed

FIG. 3. Since foreground sources lie at lower redshift than the CMB, the lensing they experience is less than that of the CMB,
although of the same order of magnitude. The relevant reduction factor is C

κfκCMB

L =CκCMBκCMB
L for the primary bias on the CMB lensing

autospectrum [left panel, from Eq. (19)] and C
gκf
L =CgκCMB

L for the bias in cross-correlation with LSST galaxies [right panel, from
Eq. (17)].

BIAS TO CMB LENSING FROM LENSED FOREGROUNDS PHYS. REV. D 100, 123504 (2019)

123504-5



foreground map f, the quadratic estimators above have the
following response to foreground lensing:

hQL½f; f�i ¼ Rf
Lκ

f
L; with Rf

L ¼
R

d2l
ð2πÞ2 Fl;L−lf

f
l;L−lR

d2l
ð2πÞ2 Fl;L−lfCMB

l;L−l
;

ð14Þ

where the expectation value is at a fixed convergence field,
varying the realization of the unlensed foreground map, as
in the derivation of the standard quadratic estimator [46].
If the unlensed power spectra of the foreground and

CMB were identical, the responseRf
L would be unity on all

scales, and the CMB lensing estimator would also be an
unbiased foreground lensing estimator. If the foreground
power spectrum Cf is reduced by a factor of α, e.g., from
multifrequency component separation, then the response
Rf

L is also reduced by the same factor of α. It is thus
clear that the value of the response Rf

L depends on both
the amplitude and the shape of the foreground power
spectrum Cf, and can in principle take any value and sign.
In practice, Fig. 4 shows that Rf

L is of order 1% for
L≲ 1000, with different signs depending on the fore-
ground and choice of estimator (QE, shear, magnification).
The shear estimator does not reduce the response to
foreground lensing compared to the QE. This is not
surprising since foreground lensing is a true lensing effect,
which the shear is built to include. Furthermore, the lensing
responses for shear and magnification have opposite signs.
As a result, comparing shear and magnification provides a
useful null test to detect the presence of lensed fore-
ground bias.
As a result, if a lensed foreground is present in the

temperature map, the quadratic estimator will inevitably
partially reconstruct the lensing of the foreground:

hQL½Tþf;Tþf�i ¼ κCMB
L þRf

Lκ
f
LþOðκ2CMB;κ

2
f;κCMBκfÞ;

ð15Þ

where again the expectation value is at fixed lensing fields
(κCMB, κf) but marginalizing over the unlensed fields
(T0, f0). This term produces biases in CMB lensing auto-
and cross-correlation, as we explain below.
Furthermore, two distinct unlensed foreground compo-

nents f and f0 may have a significant correlation. This is the
case for example for CIB and tSZ. In this case, additional
biases to CMB lensing occur, coming from terms of the
form

QL½f; f0� þQL½f0; f� ¼ Rff0
l ½κfL þ κf

0
L �; ð16Þ

where the additional response Rff0
l is computed as in

Eq. (14), except that ff is replaced by fff
0
. This response is

typically smaller, reduced by a factor of order the corre-
lation coefficient between f and f0. We quantify these extra
terms below, in the case of CIB and tSZ.

B. Bias in cross-correlation

The response of CMB lensing quadratic estimators to the
foreground convergence naturally leads to a bias in cross-
correlation with any tracer g (e.g., galaxy or cluster number
density, or galaxy shear):

δCκCMBg
L

CκCMBg
L

¼ Rf
L

C
κfg
L

CκCMBg
L

: ð17Þ

When two correlated foregrounds are present, such as
CIB and tSZ, an additional bias from the cross term arises:

FIG. 4. The lensing responses Rf
L from Eq. (14) for the QE (left), shear (center), and magnification (right) estimators show what

fraction of the foreground lensing convergence leaks into the CMB lensing estimator. A response of unity would mean that the CMB
lensing estimator has a bias equal to one times the foreground lensing convergence. In practice, the responses for the various foregrounds
and estimators are found to be of order percent for L ≲ 1000. The sign varies depending on the multipole, the foreground, and the
estimator (dashed lines represent negative responses). The points with error bars are the simulation results, and the lines are the
analytical calculations, binned like the simulations. The points and curves for each foreground are slightly shifted horizontally to
improve the visibility of error bars.
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δCκCMBg
L

CκCMBg
L

¼ Rff0
L

½Cκfg
L þ C

κf0g
L �

CκCMBg
L

: ð18Þ

Figure 5 shows that these biases are typically of order 1%
of the cross-power spectrum CκCMBg

L , i.e., significantly larger
than the statistical uncertainty (lensing reconstruction noise
plus cosmic variance) for Simons Observatory lensing and
the LSST gold galaxy sample.

C. Bias in autocorrelation

In autocorrelation, several bias terms arise. These are
derived by expanding hQ½T þ f; T þ f�Q½T þ f; T þ f�i,
using the bilinearity of the quadratic estimators.
We call “primary” bias the terms where one quadratic

estimator is applied to two foreground maps and the other is
applied to two CMB maps: hQ½f; f�Q½T; T�i þ f ↔ T.
These terms are analogous to the cross-correlation case,
with an additional combinatorial factor of 2:

Primary bias∶
δCκCMBκCMB

L

CκCMBκCMB
L

¼ 2Rf
L

C
κfκCMB

L

CκCMBκCMB
L

: ð19Þ

Again, when two correlated foregrounds such as CIB and
tSZ are present, an additional primary bias arises from the
cross term:

δCκCMBκCMB
L

CκCMBκCMB
L

¼ 2Rff0
L

½CκfκCMB

L þ C
κf0 κCMB

L �
CκCMBκCMB
L

: ð20Þ

These terms are shown to be percent level biases in the
CMB lensing autospectrum in Fig. 6.
In autocorrelation, an additional “secondary” bias is

present, due to the terms where each quadratic estimator is
applied to one CMB map and one foreground map:
hQ½T; f�Q½T; f�i þ perm. The corresponding secondary
bias is derived in Appendix A:

Secondarybias∶

δCκCMBκCMB
L0

¼ 8N2
L

Z
d2L
ð2πÞ2

×
Z

d2l
ð2πÞ2Fl;L0−lFl−L−L0;L−lαL;l−LC

κCMBκf
L

× ½α−L;l−L0
CCMB
L0−lC

f
l−L

þα−L;L0þL−lCCMB
l−L Cf

l−L−L0�; ð21Þ
where we used the notation αL;l−L ¼ −2 L

L2 · ðl − LÞ, and
CCMB and Cf represent the unlensed CMB and foreground
power spectra. Again, when correlated foregrounds such as
CIB and tSZ are present, an additional secondary bias
appears, obtained by substituting Cff0 to Cf and ½CκCMBκf þ
CκCMBκf0 � to CκCMBκf in Eq. (21). Naïvely, this secondary bias
should be of the same order of magnitude as the primary
bias. However, in the limit L;L0 ≪ l, i.e., when recon-
structing large-scale lensing modes from small-scale tem-
perature modes, the terms in the square brackets cancel
exactly. As a result, the secondary bias is negligible
compared to the primary bias at low lensing multipoles.
However, the secondary bias dominates over the primary
bias at lensing multipoles of a few thousand. This is shown
in Fig. 7. Overall, as shown in Fig. 8, the sum of primary
and secondary lensed foreground biases constitutes a
percent-level bias in the CMB lensing autospectrum,

FIG. 5. The relative bias from lensed foregrounds on the cross
correlation of CMB lensing from Simons Observatory and the
LSST gold galaxies is 1% or larger, depending on the foreground,
when using the QE (top), shear (center), and magnification
(bottom) estimators. This percent-level systematic bias is larger
than the statistical uncertainty (grey shaded areas) of 0.6%, 0.8%,
and 0.9% on the amplitude of the cross-correlation for the QE,
shear, and magnification, respectively (assuming fsky ¼ 40% and
Lmax;κ ¼ 1000 and including cosmic variance). Dashed lines
represent negative biases. The spikes at L ≃ 3000 for the shear
and magnification estimators are due to spikes in their noise
power spectra at this multipole, as shown in Fig. 2 of [33].
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comparable with the statistical uncertainty (lensing
reconstruction noise plus cosmic variance) for a stage III
CMB experiment.
Finally, a “4-point” bias is also present, where both

quadratic estimators are evaluated on two foreground maps:

4-point bias∶ δCκCMBκCMB
L ¼ ðRf

LÞ2Cκfκf
L þ Nð1Þ-like term:

ð22Þ
Since the response to foreground lensing is small for
L≲ 1000, i.e., Rf

L ≪ 1, this 4-point bias is expected to

be much smaller than the primary and secondary biases on
these scales, and we will not discuss it further in this paper.
However, it may be large on smaller scales L≳ 1000.
All thebiases due to lensed foregroundsdiscussed so far are

present whether or not the foreground component is a
Gaussian random field. This is in contrast with the non-
Gaussian foregroundbiases usually discussed in the literature,
which are caused by the non-Gaussianity of the foregrounds,
and not the fact that they are lensed. There exist additional
biases due to the foregrounds being both non-Gaussian and
lensed. To lowest order in κf, these terms are of the form

hQ½f1; f2�Q½f3; f4�i ∼ hκfif1f2f3f4i
∼ hκfif1ihf2f3f4i ← foreground bispectrum

þ hκfif1f2ihf3f4i ← lensing-foreground-foreground bispectrum

þ hκfif1f2f3f4ic ← connected 5-point function: ð23Þ

FIG. 6. The primary relative bias from lensed foregrounds on the power spectrum of CMB lensing from Simons Observatory is of
order 1% or less, when using the QE (left), shear (center), and magnification (right) estimators. This percent-level systematic bias can be
as large as the statistical uncertainty (grey shaded areas) of 1%, 2%, and 2% on the amplitude of the CMB lensing power spectrum for the
QE, shear, and magnification (assuming fsky ¼ 40% and including cosmic variance). Dashed lines represent negative biases. The points
with error bars are the simulation results, and the lines are the analytical calculations, binned like the simulations. The points and curves
for each foreground are slightly shifted horizontally to improve the visibility of error bars.

FIG. 7. The secondary relative bias from lensed foregrounds on the power spectrum of CMB lensing is suppressed at low lensing
multipoles due to the cancellation in Eq. (21). However, for lensing multipoles of a few thousand, the secondary bias dominates over the
primary bias. The various panels show this for the QE (left), shear (center), and magnification (right) estimators. The grey shaded areas
represent the statistical uncertainty on the amplitude of the CMB lensing power spectrum (1%, 2%, and 2% for the QE, shear, and
magnification, assuming fsky ¼ 40% and including cosmic variance), and dashed lines represent negative terms. The points with error
bars are the simulation results, and the lines for QE are the analytical calculations, evaluated (not binned) at the simulation points. The
lines for shear and magnification are simply connecting the points, not analytical calculations. The points and curves for each foreground
are slightly shifted horizontally to improve the visibility of error bars.
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We expect these terms to be smaller than the usual non-
Gaussian foreground biases [29,30,32,37,38] by the fore-
ground lensing responseRf

L, but we leave the evaluation of
these terms to future work.

V. CONCLUSION

In this paper, we quantified for the first time to our
knowledge the bias to CMB lensing auto- and cross-
correlations due to the presence of lensed foregrounds in
the observed temperature map. For an experiment similar to
Simons Observatory, and in the absence of multifrequency
foreground cleaning, this lensed foreground bias is a percent-
level effect for both theCMB lensing power spectrum and for
the cross-correlation of CMB lensing with LSST galaxies.
This bias is thus marginally significant in autocorrelation
and highly significant in cross-correlation. For future
polarization-dominated CMB lensing experiments such as
CMB S4, we expect the lensed foreground bias to be a lesser
problem, since extragalactic foregrounds are expected to be
smaller in polarization than in temperature.
For the standard quadratic estimator and the magnifica-

tion estimators, the standard non-Gaussian foreground
biases are typically more important than the lensed fore-
ground bias. Any method that successfully controls the
former will thus automatically control the latter. On
the other hand, the shear estimator is mostly insensitive
to the standard foreground bias. As a result, the lensed
foreground bias is dominant. It needs to be reduced in order
to provide an unbiased lensing measurement.
Any mitigation method that reduces the level of fore-

grounds in CMB temperature maps will also reduce the
lensed foreground bias. This is the case of multifrequency
component separation, scale cuts in the temperature map,
masking or inpainting point sources (below the 15 mJy
assumed used in this paper), and the cleaned-gradient
estimators. This suggests that a combination of such
methods may be the best approach.
On the other hand, mitigation methods that rely on the

non-Gaussian structure of foregrounds will not in general
reduce the lensed foreground bias, since the lensed fore-
ground bias is present even if the foreground of interest is
perfectly Gaussian. Examples are the standard foreground
bias hardening and the shear estimator. Indeed, we have
shown that the shear estimator, designed to distinguish the
spatial symmetry of the lensing shear (quadrupole) from
those of the non-Gaussian foregrounds (monopole), is
sensitive to the lensed foreground bias. However, the
lensed foreground biases in shear and magnification have
opposite signs. Comparing shear and magnification estima-
tors therefore still provides a useful null test.
In Appendix C, we suggest a “lensed foreground bias

hardening” to reduce the lensed foreground bias. Contrary to
the usual bias hardening, this lensed foreground bias hard-
ening does not assume any knowledge of the often uncertain
non-Gaussianity of the foreground. However, it relies on a
knowledge of the power spectrum and source redshift
distribution of the foreground. The first estimator we derive
has zero response to the lensing of a given foreground
component, at the cost of an increased noise. To avoid a
potentially large noise cost, we derive a second estimator,

FIG. 8. The total (primaryþ secondary) relative bias from lensed
foregrounds on the power spectrum of CMB lensing from Simons
Observatory is of order 1%,when using theQE (top), shear (center),
and magnification (bottom) estimators. It is dominated by the
primary bias for L ≲ 1000, then by the secondary bias on smaller
scales. The grey shaded areas represent the statistical uncertainty on
the amplitude of the CMB lensing power spectrum (1%, 2%, and
2% for theQE, shear, andmagnification, assuming fsky ¼ 40% and
including cosmic variance), and dashed lines represent negative
terms. The points with error bars are the simulation results, and the
lines forQE are the analytical calculations, evaluated (not binned) at
the simulation points. The lines for shear and magnification are
simply connecting the points, not analytical calculations. The points
and curves for each foreground are slightly shifted horizontally to
improve the visibility of error bars. The spikes at L ≃ 3000 for the
shear and magnification estimators are due to spikes in their noise
power spectra at this multipole, as shown in Fig. 2 of [33].
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which instead minimizes the total variance from lensing
noise plus residual lensed foreground bias. We leave the
exploration of these forms of bias hardening to future work.
Finally, one may remove the lensed foreground bias by

subtracting their theory predictions, as computed in this
paper. An uncertainty on the theory prediction of the lensed
foreground bias of order 10% would be acceptable.
Quantifying the uncertainty in the foreground source
distributions assumed in this paper would be useful to
assess whether such accuracy is reachable. Furthermore,
our study makes an important simplifying approximation,
by assuming that each foreground map f is lensed as a
whole by a single convergence field κf, determined by the
foreground redshift distribution. In reality, each redshift
slice of the foreground emission is lensed separately by a
slightly different convergence field, determined by the
redshift of that slice. We believe that the error due to this
approximation is comparable to the uncertainty in the
foreground redshift distributions. A complete analysis of
foreground biases to CMB lensing including both the effect
of foreground non-Gaussianity and of realistic foreground
lensing would be a worthwhile endeavor. This could be
achieved by lensing realistic non-Gaussian simulations
such as the Websky

2 mocks [63].
Finally, we suggest that foreground lensing may be

considered a signal rather than a bias [41–43].
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APPENDIX A: DERIVATION OF THE
SECONDARY BIAS TO CMB LENSING

FROM LENSED FOREGROUNDS

We consider the autospectrum of QL½T þ f; T þ f�,
where T now represents the lensed CMB and f the lensed
foreground. The quadratic estimators are by definition

bilinear in their arguments and can thus be expanded.
We further Taylor expand T ¼ T0 þ T1 and f ¼ f0 þ f1 to
first order in the lensing convergence as follows:

Tl ¼ T0
l þ T1

l þOðκ2Þ; ðA1Þ

where

T1
l ¼

Z
d2L
ð2πÞ2 αL;l−LκLT

0
l−L ðA2Þ

and αl1;l2 ¼ −2 l1
l2
1

· l2. These expressions are valid for both

the lensed CMB and a lensed foreground. Finally, we keep
only the terms that are first order in κf × κCMB.
We thus get

δCκCMB
L0

¼ 8hQL0
½f0; f1�QL0

½T0; T1�i0
þ 8hQL0

½T0; f0�Q−L0
½T1; f1�i0

þ 8hQL0
½T0; f1�Q−L0

½T1; f0�i0; ðA3Þ

where h� � �i0 ≡ h� � �i=ð2πÞ2δDð0⃗Þ. The first line corre-
sponds to the primary bias, and we refer the reader to
the additional terms on lines 2 and 3 as secondary biases.
They can be expressed explicitly as

8hQL0
½T0; f0�Q−L0

½T1; f1�i

¼ 8N2
L

Z
d2L
ð2πÞ2

Z
d2l
ð2πÞ2 Fl;L0−lFl−L−L0;L−l

× αL;l−Lα−L;l−L0
CCMB0
L0−l Cf0

l−LC
κCMBκf
L ðA4Þ

and

8hQL0
½T0; f1�Q−L0

½T1; f0�i

¼ 8N2
L

Z
d2L
ð2πÞ2

Z
d2l
ð2πÞ2 Fl;L0−lFL−l;l−L−L0

× αL;l−Lα−L;L0þL−lCCMB0
l−L Cf0

l−L−L0
CκCMBκf
L : ðA5Þ

Equation (21) is then obtained by adding these two terms
together and makes apparent their exact cancellation in the
limit L;L0 ≪ l, where large-scale lensing modes are
reconstructed from small-scale temperature modes.

APPENDIX B: COMPARISON OF ANALYTICAL
AND NUMERICAL METHODS

1. Analytical evaluation methods

For the bias in CMB lensing cross-correlation, and for
the primary and secondary biases to CMB lensing, we
evaluate the response Rf

L from Eq. (14) by using the
fast Fourier transform (FFT). Indeed, each integral is a sum
of products and convolutions, which can be computed

2https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_
CMB_Mocks.
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efficiently by successive products and FFT steps. For the
secondary bias, we use the PYTHON package VEGAS

3 to
compute the 4d integral with a Monte Carlo method.
All these calculations are performed in the publicly
available repository https://github.com/EmmanuelSchaan/
LensedForegroundBias, building upon the ForQuE module.4

2. Simulations

In addition to the analytical calculations described
above, we also evaluate the foreground lensing responses,
primary and secondary biases using simulated maps of the
CMB, and foregrounds and their lensing convergences.
These calculations build upon the LensQuEst module.5 We
generate Gaussian random fields (GRF) for the unlensed
CMB T0 and the unlensed foreground f0. We simulate the
CMB lensing convergence κCMB and foreground lensing
convergence κf as correlated GRF. Using GRFs for these
simulated maps is sufficient, since the lensed foreground
biases we consider in this paper depend only on the
foreground power spectra, and not on the detail of their
non-Gaussian statistics.
We generate correlated GRFs as follows. To generate

GRF maps m1 and m2 with autospectra C11
L and C22

L and
cross-spectrum C12

L , we first generate a GRFm1 with power

spectrum C11
L , and then define m2 ≡ αm1 þm⊥, where

αL ¼ C12
L =C11

L and m⊥ is a GRF with power spectrum
C22
L − ðC12

L Þ2=C11
L . This produces GRF maps m1 and m2

with the correct auto- and cross-spectra.
At this point, we could simply lens the CMB and

foreground maps with their respective convergences, add
them, and apply the lensing estimators to the resulting map.
However, one would then need to perform N0 subtraction,
and the result would also be affected by a large noise from
the lensing reconstruction. Measuring the percent-level bias
due to lensed foregrounds, with a precision of say a few
percent, would then require a large amount of simulations.
Instead, we use the trick of lensing the CMB and

foreground maps only to first order. In other words, we
Taylor expand the lensed temperature map in powers of the
convergence field: T ¼ T0 þ T1 þOðκ2Þ, where T0 is the

unlensed map, and T1 ≡ ∇⃗ϕ · ∇⃗T0 is the first order lensing
correction. We perform the same operation for the fore-
ground map f.
Applying the lensing estimators directly on the total

map, CMB plus foreground, lensed to first order, would
still require a N0 subtraction, and would actually make the
noise worse [64]. Instead, we evaluate the lensing responses
and primary and secondary biases as follows:

Response∶ Rf
L ¼ hðQ½f0; f1� þQ½f1; f0�Þκfi

hκfκfi
; ðB1Þ

Primary bias∶
δCκCMBκCMB

L

CκCMBκCMB
L

¼ 2
hðQ½f0; f1� þQ½f1; f0�ÞκCMBi

hκCMBκCMBi
; ðB2Þ

Secondary bias∶
δCκCMBκCMB

L

CκCMBκCMB
L

¼ 2
hðQ½f0; T0� þQ½T0; f0�ÞðQ½f1; T1� þQ½T1; f1�Þi

hκCMBκCMBi

þ 2
hðQ½f1; T0� þQ½T0; f1�Þ:ðQ½f0; T1� þQ½T1; f0�Þi

hκCMBκCMBi
: ðB3Þ

Here Q represents any quadratic lensing estimator, such as
the QE, shear, and magnification estimators. This method
was found to be much less noisy than the naïve approach of
simply adding the lensed CMB and foregrounds and
applying the lensing estimators to the sum. Furthermore,
it does not involve any autospectrum, so no noise bias
subtraction is needed. This trick relies on the fact that the
quadratic estimators are by construction unbiased when
applied to T0 and T1.

For each foreground, we simulate 8060 flat square maps
of 30 degrees and 1200 pixels on the side. For the biases
from lensed tSZ × CIB, we ran only 6200 such simulations,
due to limits in computing time. This high resolution
ensures that Fourier modes up to 2lmax;T are correctly
sampled in the maps, in order to avoid aliasing when
nonlinear operations such as the first order lensing or the
quadratic estimators are performed on the maps.

APPENDIX C: BIAS HARDENING AGAINST
A LENSED FOREGROUND

In this section, we derive a modification to the standard
CMB lensing quadratic estimator which nulls its response
to foreground lensing. We do this in the case of the standard5https://github.com/EmmanuelSchaan/LensQuEst.

3https://pypi.org/project/vegas/.
4https://github.com/EmmanuelSchaan/ForQuE.
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quadratic estimator, but the same method can be general-
ized to the shear and magnification estimators. As in the
rest of the paper, we describe foreground lensing as a single
foreground map being lensed by a single convergence
map. This ignores the fact that each redshift slice of the
foreground map is lensed by a slightly different lensing
convergence field.
For a given lensing multipole L, the quantity κ̂L;l ≡

TlTL−l
fCMB
l;L−l

is an unbiased estimator of κCMB
L , with variance

σ2L;l ¼ 2Ctotal
l Ctotal

jL−lj
fCMB 2
l;L−l

. We denote
P

l ≡
R

d2l
ð2πÞ2 and consider

estimators of the form κ̂ ¼ P
l wlκ̂l.

1. Standard quadratic estimator

The standard quadratic estimator of [46] is simply the
minimum variance unbiased linear combination of these
estimators. Indeed, we look for weights wL;l satisfying8>><
>>:

P
l
wL;l ¼ 1 ðunit response to CMB lensingÞ

P
l
w2
L;lσ

2
L;l is minimal ðminimumvarianceÞ : ðC1Þ

This problem of minimization under constraints can be
solved with Lagrange multipliers. We thus minimize the
following quantity with respect to the lensing weights wL;l
and the Lagrange multiplier α:

L ¼
�X

l

w2
L;lσ

2
L;l

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

min: var:

þ α

�X
l

wL;l − 1

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
unit response to κCMB

L

: ðC2Þ

This gives

κ̂L ≡
P

lκ̂L;l=σ
2
L;lP

l1=σ
2
L;l

¼
R

d2l
ð2πÞ2 TlTL−l

fCMB
l;L−l

2Ctotal
l Ctotal

jL−ljR
d2l
ð2πÞ2

fCMB2
l;L−l

2Ctotal
l Ctotal

jL−lj

; ðC3Þ

which is indeed the standard quadratic estimator of [46].

2. Nulling the response to foreground lensing

In the presence of a lensed foreground, the estimator κ̂L;l
acquires a biasRf

L;lκ
f
L, whereR

f
L;l ¼ ffl;L−l

fCMB
l;L−l

. Here we would

like the combined estimator to have zero response to κfL. We
thus look for lensing weights wL;l such that
8>>>>><
>>>>>:

P
l
wL;l ¼ 1 ðunit response toCMBlensingÞ

P
l
w2
L;lσ

2
L;l isminimal ðminimumvarianceÞ

P
l
wL;lR

f
L;l ¼ 0 ðzero response to foreground lensingÞ

:

ðC4Þ

We thus minimize the following quantity with respect to the
lensing weights wL;l and the Lagrange multipliers α and β:

L¼
�X

l

w2
L;lσ

2
L;l

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

min:var:

þα

�X
l

wL;l−1

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
unitresponsetoκCMB

L

þβ

�X
l

wL;lR
f
L;l

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

zeroresponsetoκfL

:

ðC5Þ

The solution is

wL;l ≡ 1

ðS0S2 − S21Þ
ðS2 − S1R

f
L;lÞ

σ2L;l
; ðC6Þ

where the quantities Sn are the following functions of L:

Sn ≡
Z

d2l
ð2πÞ2 ðR

f
L;lÞn

fCMB 2
l;L−l

2Ctotal
l Ctotal

jL−lj
: ðC7Þ

More explicitly, the lensed foreground bias hardened
estimator is

κ̂L≡ 1

ðS0S2−S21Þ
Z

d2l
ð2πÞ2TlTL−l

fCMB
l;L−l

2Ctotal
l Ctotal

jL−lj
ðS2−S1R

f
L;lÞ;

ðC8Þ

This estimator indeed has a unit response to CMB lensing,
has a zero response to the foreground lensing, and reduces
to the standard quadratic estimator [46] if the responseRf

L;l

to foreground lensing is identically zero.
However, this lensed foreground bias hardened estimator

has a larger noise power spectrum than the QE, given by

N κ̂
L ¼ 1

ðS0S2 − S21Þ2
Z

d2l
ð2πÞ2

fCMB 2
l;L−l

2Ctotal
l Ctotal

jL−lj
ðS2 − S1R

f
L;lÞ2:

ðC9Þ

In principle, this approach could increase the noise by a
large amount, in order to subtract the small bias due to
foreground lensing.

3. Minimizing the total variance from noise
plus lensed foreground bias

An alternative approach is thus not to require the
response to foreground lensing to be exactly zero, but
instead to minimize the total variance of the lensing
estimator, including the additional variance due to the
foreground lensing. This would make sure that we are not
subtracting a ∼1% foreground lensing bias at a large cost in
signal to noise. In other words, we look for weights wL;l

such that
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8>><
>>:

P
l
wL;l ¼ 1ðunit response to CMB lensingÞ

P
l
w2
L;lσ

2
L;l þ 2

�P
l
wL;lR

f
L;l

��P
l
wL;l0

�
C
κfκCMB

L is minimal
: ðC10Þ

The second line minimizes the sum of the noise variance plus the primary lensed foreground bias. This ignores the
secondary lensed foreground bias, which is important on the smaller lensing scales. Again, we minimize the quantity:

L ¼
�X

l

w2
L;lσ

2
L;l

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

min:noise var:

þ 2

�X
l

wL;lR
f
L;l

��X
l

wL;l0

�
C
κfκCMB

L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
primary lensed foreground bias

þ α

�X
l

wL;l − 1

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
unit response to κCMB

L

: ðC11Þ

The solution is

wL;l ≡ 1

S0σ2L;l
½1þ C

κfκCMB

L ðS0Rf
L;l − S1Þ�: ðC12Þ

The corresponding estimator is then

κ̂L ≡ 1

S0

Z
d2l
ð2πÞ2 TlTL−l

fCMB
l;L−l

2Ctotal
l Ctotal

jL−lj
ðS0Rf

L;l − S1Þ: ðC13Þ

The estimator indeed has a unit response to CMB lensing. It reduces to the standard quadratic estimator [46] when
Rf

L;l ¼ 0. Its noise power spectrum is

N κ̂
L ¼ 1

S20

Z
d2l
ð2πÞ2

fCMB2
l;L−l

2Ctotal
l Ctotal

jL−lj
ðS0Rf

L;l − S1Þ2: ðC14Þ
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