
 

Implications of a frame dependent dark energy for the spacetime metric,
cosmography, and effective Hubble constant

Stephen L. Adler *

Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA

(Received 24 June 2019; revised manuscript received 26 September 2019;
published 3 December 2019; corrected 24 September 2020)

In earlier papers we showed that a frame dependent effective action motivated by the postulates
of three-space general coordinate invariance and Weyl scaling invariance exactly mimics a cosmological
constant in Friedmann-Robertson-Walker (FRW) spacetimes but alters the linearized equations governing
scalar perturbations around a spatially flat FRW background metric. Here we analyze the implications of a
frame dependent dark energy for the spacetime cosmological metric within both a perturbative and a
nonperturbative framework. Both methods of calculation give a one-parameter family of cosmologies
which are in close correspondence to one another, and which contain the standard FRW cosmology as a
special case. We discuss the application of this family of cosmologies to the standard cosmological distance
measures and to the effective Hubble parameter, with special attention to the current tension between
determinations of the Hubble constant at late time, and the Hubble value obtained through the cosmic
microwave background angular fluctuation analysis.
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I. INTRODUCTION

The experimental observation of an accelerated expan-
sion of the universe has been interpreted as evidence for
a cosmological term in the gravitational action of the
usual form

Scosm ¼ −
Λ

8πG

Z
d4xðð4ÞgÞ1=2; ð1Þ

with Λ ¼ 3H2
0ΩΛ in terms of the Hubble constant H0 and

the cosmological fraction ΩΛ. This functional form incor-
porates the usual assumption that gravitational physics is
four-space general coordinate invariant, with no frame
dependence in the fundamental action.
In a series of papers [1–4], motivated by the frame

dependence of the cosmic microwave background (CMB)
radiation, and ideas about scale invariance of an underlying
prequantum theory, we have studied the implications of the
assumption that there is an induced gravitational effective
action that is a three-space general coordinate and Weyl
scaling invariant, but is not four-space general coordinate
invariant. This analysis leads to an alternative dark energy
action given by

Seff ¼ −
Λ

8πG

Z
d4xðð4ÞgÞ1=2ðg00Þ−2; ð2Þ

which in Friedmann-Robertson-Walker (FRW) spacetimes
where g00 ¼ 1 exactly mimics the cosmological constant
effective action of Eq. (1).
To set up a phenomenology for testing for the difference

between standard and frame-dependent dark energy
actions, we made the ansatz that the observed cosmological
constant arises from a linear combination of the two of
the form

SΛ ¼ ð1 − fÞScosm þ fSeff

¼ −
Λ

8πG

Z
d4xðð4ÞgÞ1=2½1 − f þ fðg00Þ−2�; ð3Þ

so that f ¼ 0 corresponds to only a standard cosmological
constant, and f ¼ 1 corresponds to only an apparent
cosmological constant arising from a frame dependent
effective action. In [4] we gave detailed results for the
scalar perturbation equations around a FRW background
arising when dark energy is included through the action of
Eq. (3). Our aim in this paper is to analyze the implications
of the ansatz of Eq. (3) for the spacetime cosmological
metric, with applications to standard cosmological distance
measures and the effective Hubble parameter. We will
carry out the calculations in two ways, first by using the
linearized perturbation equations around a FRW back-
ground derived in [4], and then by a nonperturbative
method, giving results that are in close correspondence.
Both methods yield a one-parameter family of cosmolo-
gies, parametrized by the initial value at cosmic time t ¼ 0*adler@ias.edu

PHYSICAL REVIEW D 100, 123503 (2019)

2470-0010=2019=100(12)=123503(12) 123503-1 © 2019 American Physical Society

https://orcid.org/0000-0002-5140-5679
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.123503&domain=pdf&date_stamp=2020-09-24
https://doi.org/10.1103/PhysRevD.100.123503
https://doi.org/10.1103/PhysRevD.100.123503
https://doi.org/10.1103/PhysRevD.100.123503
https://doi.org/10.1103/PhysRevD.100.123503


of one of the metric components, with the standard FRW
cosmology included as a special case.
This paper is organized as follows.1 In Sec. II we state our

metric in nonperturbative and perturbative forms, and
explain why when f ≠ 0 the model of Eq. (3) cannot be
reduced to a standard cosmological constant by redefinition
of the time variable. We also introduce some notations that
will be used frequently later on. In Sec. III we solve for the
metric dynamics implied by Eq. (3) using the perturbative
formalism. In Sec. IV we repeat this calculation by a
nonperturbative method and show that the results closely
correspond to those of Sec. III. In Sec. V we give results
for the standard cosmographic distance measures and the
effective Hubble parameter, and apply our results to
the recently much discussed “Hubble tension.” In the
Appendix A we give details of the perturbative derivation
of the metric dynamical equation, which is also obtained as a
by-product of the nonperturbative analysis. In Appendix B
we give formulas for comparing our model with results from
baryon acoustic oscillation (BAO) measurements.

II. HOMOGENEOUS ISOTROPIC METRIC,
WHY THE f ≠ 0 CASE DOES NOT REDUCE

TO f = 0, AND SOME NOTATIONS

Our starting point is the observation that the general form
for the line element in a homogeneous, isotropic, zero
spatial curvature universe in which physics is invariant
under three-space general coordinate transformations, but
not invariant under four-space general coordinate trans-
formations, is

ds2 ¼ α2ðtÞdt2 − ψ2ðtÞdx⃗2 ¼ g00dt2 þ gijdxidxj; ð4Þ

with metric components

g00 ¼ α2ðtÞ; gij ¼ −δijψ2ðtÞ;
g00 ¼ 1=α2ðtÞ; gij ¼ −δij=ψ2ðtÞ: ð5Þ

A. Why the f ≠ 0 case cannot be reduced to f = 0
by redefining the time variable

An evident feature of Eq. (4) is that if we define a proper
time τ by2

dτ ¼ αðtÞdt; τ ¼
Z

t

0

duαðuÞ; ð6Þ

with inversion tðτÞ, and denote ψðtÞ as written in terms of τ
by ψðtðτÞÞ ¼ ψ ½τ�, then Eq. (4) takes the form

ds2 ¼ dτ2 − ψ2½τ�dx⃗2: ð7Þ

This has the same form as the standard FRW metric

ds2 ¼ dt2 − a2ðtÞdx⃗2; ð8Þ

with τ replacing t and with ψðtÞ ¼ ψ ½τ� replacing the
FRW expansion factor aðtÞ. However, this does not mean
that Eq. (3) with f ≠ 0 can be reduced to the f ¼ 0 case.
To see this, we rewrite Eq. (3) in terms of the metric
components αðtÞ and ψðtÞ, both assumed positive so that
ðð4ÞgÞ1=2 ¼ αðtÞψ3ðtÞ, giving

SΛ ¼ −
Λ

8πG

Z
dtd3xαðtÞψ3ðtÞ½1 − f þ fαðtÞ−4�

¼ −
Λ

8πG

Z
dτd3xψ3½τ�½1 − f þ fα½τ�−4�: ð9Þ

When f ¼ 0 the metric component αðtÞ is absorbed into the
definition of the new time variable, as expected since the
standard cosmological action is four-space general coor-
dinate invariant. But when f ≠ 0, the factor α½τ�−4 cannot
be similarly absorbed, reflecting the fact that the f term is
only three-space, but not four-space general coordinated
invariant.3 So we anticipate that Eq. (3) with f ≠ 0will give
a more general cosmology than the standard FRW cosmol-
ogy. However, since when αðtÞ≡ 1 Eq. (3) reduces back to
a standard cosmological term, we also anticipate that this
more general dynamics will include the standard FRW
cosmology as a special case.

B. Some notations

We record the following notational conventions that will
be used throughout.

(i) The metric components αðtÞ and ψðtÞ form the basis
of our nonperturbative treatment. But in both the
nonperturbative and perturbative discussions, we
will also use the related components θðtÞ, ΦðtÞ,
and ΨðtÞ defined by4

1An earlier version [5] has been merged into this one.
2We have chosen the arbitrary lower limit of the integral in

Eq. (6) so that the proper time origin τ ¼ 0 coincides with the
coordinate time origin t ¼ 0.

3If one were to define dτ ¼ dtαðtÞ½1 − f þ f=αðtÞ4�, the
Einstein-Hilbert action which is proportional toR
dtd3xαðtÞψ3ðtÞR would be left with a residual αðtÞ depend-

ence. The same is true if one were to define dτ ¼ αð0Þdt.
4The factor 1=θð0Þ drops out of the equations below from

which we calculate ψðtÞ, since these are homogeneous in ψ .
Similarly, it is not relevant for the equations of Sec. III where
we calculate ΦðtÞ and ΨðtÞ, since these equations are homo-
geneous in aðtÞ. But it guarantees that at early times ψðtÞ
becomes identical to aðtÞ, which is important for the match to
the CMB fits, since these are based on small fluctuation equations
including x⃗ dependence that are sensitive to the absolute
magnitude of aðtÞ.
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αðtÞ ¼ 1þΦðtÞ;
ψðtÞ ¼ aðtÞθðtÞ=θð0Þ;
θðtÞ ¼ 1 −ΨðtÞ; ð10Þ

with aðtÞ the standard FRW expansion factor.
(ii) Since our focus is on the matter-dominated era,

we use the following convenient approximate
formula [6] for aðtÞ,5

aðtÞ ≃
�
Ωm

ΩΛ

�
1=3

ðsinhðxÞÞ2=3; Ωm ¼ 1 − ΩΛ;

ð11Þ

with x the dimensionless time variable

x ¼ 3

2

p
ΩΛH0t: ð12Þ

At the present era t ¼ t0 defined by aðt0Þ ¼ 1, x0
takes the value

x0 ¼ arcsinhððΩΛ=ΩmÞ1=2Þ ≃ 1.169: ð13Þ

Equations (12) and (13) then give H0t0 ¼ ð2=3Þx0=p
ΩΛ ¼ 0.946, in agreement with the Planck values

for this product, where we have used the Planck
2018 values [7] ΩΛ ¼ 0.679, Ωm ¼ 0.321. How-
ever, we will see below in Sec. V that H0 in
Eqs. (11) and (12) is rescaled by a factor αð0Þ from
the Planck value HPl

0 ≃ 67 km s−1Mpc−1, so that
H0 ¼ αð0ÞHPl

0 .
(iii) The Hubble parameter HðtÞ defined by the standard

FRW cosmology is

HðtÞ ¼ daðtÞ=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð14Þ

which in the matter-dominated era, using the
approximate formula of Eq. (11), is

HðtÞ ¼ H0

p
ΩΛ cothðxÞ

¼ H0½Ωmð1þ zÞ3 þΩΛ�1=2; ð15Þ

with cothðxÞ ¼ coshðxÞ= sinhðxÞ and with the red-
shift z defined by 1þ z ¼ 1=aðtÞ. This is to be
distinguished from the Hubble parameter HeffðtÞ
arising from the modified dynamics of Eq. (3),
which is given by the proper time derivative

Heff ½τ� ¼
dψ ½τ�=dτ

ψ ½τ� ¼ HeffðtÞ ¼
dψðtÞ=dt
αðtÞψðtÞ : ð16Þ

III. METRIC PERTURBATION DERIVATION

A. Setting up the Φ equation

In [4] we gave detailed results for the scalar perturbation
equations around a FRW background arising when
dark energy is included through the action of Eq. (3).
Writing [8]6

g00¼1þE;

gi0¼−aðtÞð∂iFþvectorÞ;
gij¼−a2ðtÞ½ð1þAÞδijþ∂i∂jBþvectorþ tensor�; ð17Þ

we gave formulas in B ¼ 0 gauge for the linearized
equations governing the scalar perturbations A, E, and
F, for the general case in which these are functions of both
space and time. For the analysis of this paper, it is more
convenient to express the B ¼ 0 gauge linear perturbation
equations in terms of F and the functions Φ and Ψ that are
related to E and A by

E ¼ 2½Φ − ∂tðaFÞ�;
A ¼ −2½Ψþ _aF�; ð18Þ

as given in Appendix A. This form of the perturbation
equations corresponds to writing the perturbed line
element as

ds2 ¼ ½1þ 2Φ�dt2 − a2ðtÞ½1 − 2Ψ�dx⃗2; ð19Þ

in agreement to linear order with Eqs. (4) and (10) above
when the 1=θð0Þ factor is omitted (or is included in the
normalization of the expansion factor a).
In the limit that the metric perturbations have no spatial

dependence, the perturbation F, which appears in Eq. (17)
acted on by spatial derivatives, can be assumed to have
the x⃗-independent limit FðtÞ ¼ 0 and so can be dropped
from the metric perturbation equations.7 Also, in the
matter-dominated era the anisotropic inertia [8] πS ¼ 0,
so assuming continuity in the limit of vanishing spatial
dependence, the Y ¼ 0 part of Eq. (A1) in Appendix A
implies that ΦðtÞ ¼ ΨðtÞ. With these simplifications, we

5Before the matter-dominated era, when the radiation content
of the universe is significant, aðtÞ is no longer well approximated
by Eq. (11). But this does not affect the numerical results given
below.

6The equations of Sec. III and Appendix A follow [4,8] and do
not include the factor 1=θð0Þ of Eq. (10), which can be thought of
here as residing in the normalization of a. This factor is not
relevant for the analysis of this section since the equations that we
use to determine Φ and Ψ are homogeneous in a, and so the
normalization of a drops out.

7This still allows one to make three-space general coordinate
transformations, but not four-space general coordinate trans-
formations, which corresponds to the invariance properties of
the action of Eq. (3).
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show in Appendix A that the perturbation equations
governing the time evolution of ΦðtÞ can be put into the
form (with _¼ d=dt)

Φ̈þ 4
_a
a
_Φþ

�
2
ä
a
þ _a2

a2

�
Φ ¼ 4πGδpþ 2ΛfΦ; ð20Þ

with δp the pressure perturbation. As noted, this equation is
independent of the normalization of aðtÞ. When the term
proportional to f is dropped, this agrees with Eq. (7.49) of
Mukhanov [9] and Eq. (23c) of Ma and Bertschinger [10]
when their conformal time derivatives are converted to time
derivatives. In the matter-dominated era, δp vanishes for
adiabatic perturbations, so then we can drop the δp term in
Eq. (20), giving

Φ̈þ 4
_a
a
_Φþ

�
2
ä
a
þ _a2

a2

�
Φ ¼ 2ΛfΦ: ð21Þ

It is convenient now to use the dimensionless time variable
x introduced above in Eq. (12), which when substituted
into Eq. (21) gives finally the evolution equation for Φ in
terms of x,

d2Φ
dx2

þ 8

3
cothðxÞ dΦ

dx
¼ 4

3
ð2f − 1ÞΦ: ð22Þ

B. Large and small x behavior and numerical solution

Before proceeding to the numerical solution of Eq. (22),
we examine analytically the large and small x behavior of
the solutions. For large x the function cothðxÞ approaches
unity, and Eq. (22) becomes an equation with constant
coefficients solved by exponentials,

ΦðxÞ ¼ C1eμþx þ C2eμ−x;

μ� ¼ −
2

3
½2� ð6f þ 1Þ1=2�: ð23Þ

As suggested already by the factor 2f − 1 in Eq. (22), there
is a crossover in behavior at f ¼ 1=2. For f < 1=2, both
exponents in Eq. (23) are negative, and Φ decays to zero as
x → ∞. For f ¼ 1=2, one exponent is negative, while the
other is zero, and Φ approaches a constant as x → ∞. For
f > 1=2, one exponent remains negative, while one is
positive, and Φ becomes infinite as x → ∞. So for f ¼ 1,
the case of a scale invariant cosmological action, the metric
perturbation Φ grows with time.
We examine next the small x behavior, where the term

proportional to 2f − 1 becomes much less important than
the terms on the left of Eq. (22). This equation is then
approximated by

d2Φ
dx2

þ 8

3

1

x
dΦ
dx

¼ 0; ð24Þ

with the general solution

ΦðxÞ ¼ C3 þ C4x−5=3: ð25Þ

This shows that sufficient boundary conditions for getting
a unique solution are the requirements that the solution
be regular at x ¼ 0, together with specification of the
value Φð0Þ.
With this analysis in mind, we rewrite Eq. (22) as an

integral equation. Defining the normalized perturbation

Φ̂ðxÞ ¼ ΦðxÞ=Φð0Þ; ð26Þ

Φ̂ obeys the integral equation

Φ̂ðxÞ ¼ 1þ 4

3
ð2f − 1Þ

Z
x

0

dwðsinhðwÞÞ−8=3

×
Z

w

0

duðsinhðuÞÞ8=3Φ̂ðuÞ; ð27Þ

which incorporates both the boundary conditions at x ¼ 0
and the differential equation of Eq. (22). Starting from an
initial assumption Φ̂ðxÞ ¼ 1, and then updating at each
evaluation of the right-hand side of Eq. (27), the integral
equation converges rapidly to an answer in 5 iterations on
an 800 bin mesh8 taking integrand values at center of bin.
The results for dΦ̂=dx with f ¼ 1 are given in Table I, for
various values of x ranging from 0 to x0, showing that
dΦ̂=dxjx¼x0 is positive. Consistent with the large time
analysis given above, when we repeat the calculation with
f ¼ 0 we find a negative value of dΦ̂=dxjx¼x0 . In the final
column of Table I we tabulate the quadratic approximation
to Φ̂ðxÞ,

Φ̂ðxÞ ≃ 1þ Cðx=x0Þ2; C ¼ 0.244; ð28Þ

which is accurate to a few parts per thousand over the entire
interval 0 ≤ x=x0 ≤ 1.

IV. NONPERTURBATIVE DERIVATION

A. Einstein tensor and equations, and the dark energy
and matter energy momentum tensors

We return now to the general form for the line element
given in Sec. II,

ds2 ¼ α2ðtÞdt2 − ψ2ðtÞdx⃗2: ð29Þ

8On this coarse mesh, the value xeq < 10−5 at the transition
from radiation domination to matter domination is indistinguish-
able from 0, so it suffices to take zero as the lower limit of the
integrals.
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Using a Mathematica notebook for general relativity [11],
the nonzero Einstein tensor components for this metric are
computed to be

G00 ¼ −3
_ψ2ðtÞ
ψ2ðtÞ ;

Gij ¼ δij
2ψðtÞ½αðtÞψ̈ðtÞ − _αðtÞ _ψðtÞ� þ αðtÞ _ψ2ðtÞ

α3ðtÞ ð30Þ

where _ψ2ðtÞ ¼ ðdψðtÞ=dtÞ2.
Writing the dark energy action of Eq. (3) as

SΛ ¼ −
Λ

8πG

Z
d4xðð4ÞgÞ1=2½1 − f þ f=α4ðtÞ�; ð31Þ

and varying this equation with respect to gij, we get the ij
component of the dark energy contribution to the energy
momentum tensor,

Tij
Λ ¼ Λ

8πG
½ð1 − fÞgij þ ftij�;

TΛij ¼
Λ

8πG
½ð1 − fÞgij þ ftij�; ð32Þ

with

tij ¼ −δij
1

α4ðtÞψ2ðtÞ ; tij ¼ −δij
ψ2ðtÞ
α4ðtÞ : ð33Þ

As detailed in [1–4], in order to use this as the source term
in the Einstein equations, the remaining components of tμν
must be determined so that covariant conservation with
respect to the metric is satisfied. The conserving comple-
tion of the gij part of Eq. (32) is just gμν. Since the metric is
diagonal, the conserving completion of tij in Eq. (33) has

t0i ¼ ti0 ¼ 0, and t00 given by the solution of the covariant
conservation equation, which is

_t00ðtÞ þ t00ðtÞ
�
3
_ψðtÞ
ψðtÞ − 2

_αðtÞ
αðtÞ

�
¼ 3

_ψðtÞ
α2ðtÞψðtÞ : ð34Þ

This equation can be readily integrated to give

t00ðtÞ ¼ 3
α2ðtÞ
ψ3ðtÞ

Z
t

0

du
_ψðuÞψ2ðuÞ
α4ðuÞ ; ð35Þ

where we have arbitrarily taken the lower limit of integra-
tion as zero (more about this below).
We additionally need the particulate matter energy

momentum tensor, for which we take the relativistic perfect
fluid form

Tpm
μν ¼ ðpþ ρÞuμuν − pgμν; ð36Þ

with p the pressure, ρ the energy density, and uμ ¼
gμνdxν=ds the four velocity. For the metric of Eq. (4),
u0 is given by

u0 ¼ α2ðtÞ dx
0

ds
¼ α2ðtÞ dx0

αðtÞdt ¼ αðtÞ dx
0

dt
¼ αðtÞ; ð37Þ

from which we find

Tpm
00 ¼ ρα2ðtÞ;

Tpm
ij ¼ δijpψ2ðtÞ: ð38Þ

Covariant conservation of Tpm
μν implies

dðρðtÞψ3ðtÞÞ
dt

¼ −3pðtÞ _ψðtÞψ2ðtÞ; ð39Þ

which dividing by αðtÞ on both sides is equivalent to

dðρ½τ�ψ3½τ�Þ
dτ

¼ −3p½τ� dψ ½τ�
dτ

ψ2½τ�: ð40Þ

B. Einstein equations

We now have all the ingredients needed to write down
the Einstein equations. From the 00 component we get

_ψ2ðtÞ
α2ðtÞψ2ðtÞ ¼

Λ
3

�
1 − f þ f

3

ψ3ðtÞ
Z

t

0

du
_ψðuÞψ2ðuÞ
α4ðuÞ

�

þ 8πG
3

ρðtÞ; ð41Þ

and from the spatial components we get

TABLE I. Values of dΦ̂=dx and Φ̂ versus x=x0 and redshift z,
calculated with f ¼ 1, that is, with all of the observed cosmo-
logical constant arising from a scale invariant but frame depen-
dent action. The final column gives the fit of Φ̂ to the quadratic
1þ Cðx=x0Þ2, with C ¼ 0.244.

x=x0 z dΦ̂=dx Φ̂ 1þ 0.244ðx=x0Þ2
1.0 0.00 0.409 1.244 1.244
0.9 0.10 0.369 1.198 1.197
0.8 0.22 0.331 1.158 1.156
0.7 0.36 0.290 1.121 1.120
0.6 0.54 0.251 1.089 1.088
0.5 0.77 0.209 1.062 1.061
0.4 1.08 0.169 1.040 1.039
0.3 1.55 0.126 1.023 1.022
0.2 2.36 0.0848 1.010 1.0098
0.1 4.36 0.0416 1.0026 1.0024
0.0341 10 0.0131 1.0003 1.000028
0.00122 100 0.000018 1.0000 1.0000
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2ψðtÞ½αðtÞψ̈ðtÞ − _αðtÞ _ψðtÞ� þ αðtÞ _ψ2ðtÞ
α3ðtÞ

¼ ψ2ðtÞ
�
ð1 − fÞΛþ fΛ

α4ðtÞ − 8πGpðtÞ
�
: ð42Þ

As noted above, both of these equations are independent of
the normalization of ψðtÞ.
The three equations Eq. (41), Eq. (42), and Eq. (39)

are not independent, by virtue of the Bianchi identities
for Gμν and covariant conservation of the energy momen-
tum tensors. Multiplying Eq. (41) through by ψ3ðtÞ,
differentiating with respect to time, eliminating
ðd=dtÞðψ3ðtÞρðtÞÞ by Eq. (39), and dividing by _ψðtÞ, we
recover Eq. (42). Hence effectively we have only one
equation relating the metric components α and ψ , and a
second equation will be needed, a topic which we address
in the next section.
But first let us address several issues raised by the structure

of the above equations, beginning with the arbitrary
lower limit in the integral in Eq. (35). In the sequel we will
be interested in solving Eqs. (41) and (42) in the matter-
dominated era, in which the pressure p ¼ 0. Then Eq. (39)
can be integrated to give ρðtÞ ¼ C=ψ3ðtÞ, with C a constant
of integration, and we see that a shift in the lower limit of
the integral in Eqs. (35) and (41) can be absorbed into a shift
in the integration constantC. So there is no loss of generality
in taking the lower limit of integration as zero.9 A further
property of Eqs. (41) and (42) is that when αðtÞ≡ 1, they
reduce when ψð0Þ ¼ 0 to the usual FRW equations with
ψðtÞ playing the role of the FRW expansion factor aðtÞ,

_ψ2ðtÞ
ψ2ðtÞ ¼

Λ
3
þ 8πG

3
ρðtÞ;

2ψðtÞψ̈ðtÞ þ _ψ2ðtÞ ¼ ψ2ðtÞ½Λ − 8πGpðtÞ�: ð43Þ

These equations have as the solution ψðtÞ ¼ aðtÞ, a property
that will be relevant for finding a second equation relating
αðtÞ and ψðtÞ.

C. Finding the second equation

To find a second equation relating αðtÞ and ψðtÞ, we
generalize to the case where these are also functions of
the coordinate x⃗, so that we have αðt; x⃗Þ;ψðt; x⃗Þ, and then
assume a smooth limit as the coordinate dependence limits
to zero. When α and ψ are coordinate dependent, the
Einstein tensor component Gxy is given by

ψ2αGxy ¼ −2α∂xψ∂yψ þ αψ∂x∂yψ þ ψ2∂x∂yα

− ψð∂xα∂yψ þ ∂yα∂xψÞ; ð44Þ

which is independent of the normalization of ψðt; x⃗Þ. Since
the energy momentum source tensors have no xy compo-
nent, Gxy must be equated to zero. To proceed further, with
no loss of generality so far we write α and ψ as

αðt; x⃗Þ ¼ 1þΦðt; x⃗Þ;
ψðt; x⃗Þ ¼ aðtÞθðt; x⃗Þ=θð0; 0⃗Þ;
θðt; x⃗Þ ¼ 1 −Ψðt; x⃗Þ; ð45Þ

corresponding to introducing x⃗ dependence into Eq. (10)
above. Substituting into Eq. (44), we get

0 ¼ −2ð1þΦÞ∂xΨ∂yΨ − ð1þΦÞð1 −ΨÞ∂x∂yΨ

þ ð1 −ΨÞ2∂x∂yΦþ ð1 −ΨÞð∂xΦ∂yΨþ ∂yΦ∂xΨÞ:
ð46Þ

To leading linear order in Φ and Ψ, this reduces to

0 ¼ ∂x∂y½Φðt; x⃗Þ −Ψðt; x⃗Þ�; ð47Þ

which assuming a smooth limit to vanishing spatial
dependence gives the leading order result

ΦðtÞ ¼ ΨðtÞ: ð48Þ

We have not found a model-independent way to go
beyond leading order, so we proceed by introducing a
specific model, from which we abstract a relation which we
then use with no further reference to the model. Our model
is to assume that Φ and Ψ are dominated by a single plane
wave so that

Φðt; x⃗Þ ¼ ΦðtÞeik⃗·x⃗;
Ψðt; x⃗Þ ¼ ΨðtÞeik⃗·x⃗: ð49Þ

With this assumption ∂x ≡ ikx; ∂y ≡ iky, which can then be
factored from all terms of Eq. (46). This leaves a purely
algebraic relation between ΦðtÞ and ΨðtÞ, which can be
reduced to the simple form

ΦðtÞ ¼ ΨðtÞ
1 − 2ΨðtÞ ; ð50Þ

which to first order reproduces Eq. (48). Reexpressing
Eq. (50) in terms of θðtÞ and αðtÞ we find

9When Eq. (41) is converted to Eq. (42) by multiplication by
ψ3ðtÞ and differentiation, the constant C drops out, and is
replaced by the additional constant of integration needed for a
second order differential equation as opposed to a first order
equation. This new constant will end up parametrizing the family
of solutions of our model.
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αðtÞ ¼ θðtÞ
2θðtÞ − 1

;

θðtÞ ¼ αðtÞ
2αðtÞ − 1

;

2θðtÞαðtÞ ¼ θðtÞ þ αðtÞ: ð51Þ

These equations give the relation between α and ψ that we
will use in our analysis beyond leading order. It has the nice
feature that αðtÞ≡ 1 implies that θðtÞ≡ 1, ψðtÞ≡ aðtÞ,
which is the same property found for Eqs. (41) and (42)
above. Thus our model relating α and ψ is structurally
compatible with the Einstein equations derived in the
preceding section.

D. Differential equation for θ, reduction to the
linearized case, and large and small time behavior

Since study of the linearized case in Sec. III shows that
ΨðtÞ ¼ 1 − θðtÞ is slowly varying in comparison to the
FRW expansion factor aðtÞ, we turn Eq. (42) into an
equation for θ by substituting ψðtÞ ¼ aðtÞθðtÞ=θð0Þ.
Setting the pressure term p to zero, using the zeroth
order FRW equation 2ä=aþ ð _a=aÞ2 ¼ Λ, changing to
the dimensionless variable x of Eq. (12), and using a0=a ¼
ð2=3Þ cothðxÞ with 0 denoting d=dx, we arrive at

θ00 ¼ F½θ0; θ�;

F½θ0; θ� ¼ 2

3
α2½1 − f þ f=α4�θ − ð2θ þ 1Þ

2ð2θ − 1Þ
ðθ0Þ2
θ

−
4

3
cothðxÞ 3θ − 1

2θ − 1
θ0 −

2

3
θ; ð52Þ

with α in the first term of F related to θ by α ¼ θ=ð2θ − 1Þ.
To check that this reduces to the linearized case, we set
θ ¼ 1 −Ψ and keep only terms of first order in Ψ, giving
after a little algebra

Ψ00 þ 8

3
cothðxÞΨ0 ¼ 4

3
ð2f − 1ÞΨ; ð53Þ

in agreement (using the perturbative relation Ψ ¼ Φ) with
Eq. (22) above. We note that since θ ¼ 1 corresponds to
α ¼ 1, Eq. (52) implies that Fð0; 1Þ ¼ 0, with the conse-
quence that initial data θ0ð0Þ ¼ 0 and θð0Þ ¼ 1 propagate
forward in time unchanged.
Since Eq. (52) is even in x it admits θ to be an even

function of x, and so at x ¼ 0 there will be a regular
solution with θð0Þ an arbitrary constant, and θ0ð0Þ ¼ 0.
Making the ansatz that θ becomes infinite for large x,
Eq. (52) reduces to an equation with constant coefficients.
Substituting θðxÞ ¼ eλx we find the algebraic equation

λ2 þ 4

3
λþ 4

9
¼ 1

9
ð15f þ 1Þ; ð54Þ

with roots

λ ¼ −
2

3
� 1

3
ð15f þ 1Þ1=2; ð55Þ

to be compared with

λ ¼ −ð2=3Þ½2� ð6f þ 1Þ1=2� ð56Þ

found from the linearized equation in Sec. III. When f ¼ 1
Eq. (55) gives an exponentially growing solution with
λ ¼ 2=3 ≃ 0.67, somewhat larger than the exponent
ð2=3Þðp7 − 2Þ ≃ 0.43 given for f ¼ 1 by Eq. (56). For
the nonperturbative formula of Eq. (55) the exponentially
growing solution appears for f > 1=5, whereas for the
linearized result of Eq. (56) the exponentially growing
solution first appears for the larger value f > 1=2.

E. Numerical solution

To solve for θ numerically, we employ stepwise forward
integration of Eq. (52) starting from x ¼ 0,

θ0ðiþ 1Þ ¼ θ0ðiÞ þ F½θ0ðiÞ; θðiÞ�Δx;
θðiþ 1Þ ¼ θðiÞ þ θ0ðiÞΔx; ð57Þ

with Δx ¼ 1=800, and then as a check with Δx ¼ 1=1600.
These two calculations differ only in the fifth decimal
place. In Table II we give results with f ¼ 1 for θ, and for
the normalized ratio ΨðxÞ=Ψð0Þ ¼ ½1 − θðxÞ�=½1 − θð0Þ�,
starting from θð0Þ ¼ 1.1, or equivalently Ψð0Þ ¼ −0.1,
and θ0ð0Þ ¼ 0. The normalized ratio ΨðxÞ=Ψð0Þ is directly
comparable to Φ̂ calculated in Sec. III and given in Table I;
in the final column of Table II we give Φ̂ recalculated by the
stepwise forward integration method used here for solving
the θ differential equation, which agrees to within one or
two parts per thousand with the iterative integral equation

TABLE II. Values of θðxÞ and ΨðxÞ=Ψð0Þ calculated for
θð0Þ ¼ 1.1, and in the final column the corresponding linearized
equation result Φ̂ðxÞ, versus x and redshift z, taking f ¼ 1, that is,
with all of the observed cosmological constant arising from a
scale invariant but frame dependent action.

z x θðxÞ ΨðxÞ=Ψð0Þ Φ̂ðxÞ
0 1.169 1.126 1.264 1.243
0.1 1.054 1.122 1.215 1.198
0.2 0.955 1.118 1.177 1.163
0.3 0.868 1.115 1.146 1.135
0.4 0.792 1.112 1.122 1.113
0.5 0.726 1.110 1.103 1.095
0.6 0.668 1.109 1.087 1.080
0.7 0.616 1.107 1.074 1.069
0.8 0.571 1.106 1.064 1.059
0.9 0.530 1.106 1.055 1.051
1.0 0.494 1.105 1.048 1.044
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method used in Sec. III.10 We see that the final two columns
of Table II agree to within a couple of percent, indicating
that the linear perturbation results of Sec. III suffice at
present for phenomenological applications.
We have also checked that with the iteration of Eq. (57),

initial data θð0Þ ¼ 1 and θ0ð0Þ ¼ 0 propagate forward in
time unchanged. For θð0Þ > 1, the numerical solution
for θðxÞ with f ¼ 1 increases with increasing x, while
for θð0Þ < 1 the numerical solution for θðxÞ decreases with
increasing x, corresponding respectively to a universe that
expands more rapidly, or more slowly, than the standard
FRW solution aðtÞ.

F. Correspondence of the nonperturbative
and perturbative solutions

To conclude this section, we see that a nonperturbative
treatment of the problem that we addressed by linearized
perturbation theory in Sec. III leads again to a one-
parameter family of cosmologies, parametrized now by
the initial value θð0Þ. In the perturbative treatment, the
corresponding parameter was Φð0Þ, and this parameter
is related to the one used in the nonperturbative analysis
by Φð0Þ ≃ Ψð0Þ ¼ 1 − θð0Þ. For θð0Þ ¼ 1;Φð0Þ ¼ 0, the
nonperturbative and perturbative evolutions both have as
the solution the standard FRW expansion factor aðtÞ;
that is, θðtÞ remains equal to 1 [and ΦðtÞ remains 0] for
all times t. For θð0Þ > 1;Φð0Þ < 0 the f ¼ 1 nonpertur-
bative and pertubative evolutions both give a universe that
expands faster than the standard FRW solution aðtÞ, as
discussed further below, and for θð0Þ < 1;Φð0Þ > 0 the
f ¼ 1 nonperturbative and pertubative evolutions both give
a universe that expands more slowly than the standard FRW
solution aðtÞ. There is thus a direct qualitative correspon-
dence between the two methods of treating the model of
Eq. (3), and for parameter values θð0Þ close to unity, there is
only a small quantitative difference.Wehave also seen that the
nonperturbative treatment gives a relatively straightforward
way of rederiving the pertubation equation of Eq. (22).

V. COSMOGRAPHIC EQUATIONS AND
APPLICATION TO THE “HUBBLE TENSION”

To discuss cosmography we rewrite the metric in terms
of proper time τ as in Eq. (7),

ds2 ¼ dτ2 − ψ2½τ�dx⃗2; ð58Þ
which we recall takes the standard FRW form with τ
replacing t and with ψ ½τ�≡ ψðtÞ ¼ aðtÞθðtÞ=θð0Þ replac-
ing aðtÞ. Thus in comparisons with experiment, it is τ that
will be the true physical time, and ψ ½τ� the true expansion
rate. We proceed now with a number of applications of the

analysis of the previous sections. Where we give perturba-
tive results, we use the first order accurate equality
ΦðtÞ ≃ΨðtÞ, which is equivalent to θðtÞαðtÞ ≃ 1.

(i) Substituting the quadratic approximation to Φ̂ from
Table I, we get a simple approximate formula for the
transformation from coordinate time t to proper time τ,

τðtÞ ¼
Z

t

0

αðuÞdu ¼
Z

t

0

duαð0Þ½αðuÞ=αð0Þ�

≃ αð0Þ
Z

t

0

du½1þΦð0ÞðΦ̂ðuÞ − Φ̂ð0ÞÞ�

≃ αð0Þ
Z

t

0

du½1þΦð0ÞCðu=t0Þ2�

¼ αð0Þt½1þ ðΦð0ÞC=3Þðt=t0Þ2�; ð59Þ

with C ¼ 0.244. This has the inversion

t½τ� ¼ ðτ=αð0ÞÞ½1 − ðΦð0ÞC=3Þðτ=τ0Þ2�: ð60Þ

(ii) We now have to find the transformation that relates
H0 and t0 with the physical quantities HPl

0 and τPl0
measured by Planck [7] (and earlier, by WMAP
[12]) from the CMB. We note from Table I that
for redshifts z greater than 100, and therefore at
and before decoupling, ΦðtÞ is very accurately the
constantΦð0Þ, and thus αðtÞ is very accurately equal
to αð0Þ. So the transformation from coordinate time t
to proper time τ is just a constant rescaling
τ ¼ αð0Þt. Since to first order θðtÞ ≃ 1=αðtÞ, for
large redshifts θðtÞ ≃ θð0Þ, and thus ψ ½τ� ¼
aðtÞθðtÞ=θð0Þ ≃ aðtÞ ¼ aðτ=αð0ÞÞ. Hence the rela-
tion between HPl

0 and H0 is just a rescaling by αð0Þ,

HPl
0 ¼ H0=αð0Þ; H0 ¼ HPl

0 αð0Þ; ð61Þ

and introducing the age of the universe τPl0 as
measured by Planck, we have

τPl0 ¼ H0t0=HPl
0 ¼ t0αð0Þ;

H0t0 ¼ HPl
0 τ

Pl
0 ¼ 2x0

3
p
ΩΛ

¼ 0.946: ð62Þ

We will see that the effect of these rescalings is to
make all physical process depend on Φ̂ðtÞ through
the combination Φ̂ðtÞ − Φ̂ð0Þ ¼ Cðt=t0Þ2, so that if
the late time increase coefficient C were set to zero,
there would be no physical effects. This is essential,
because with C ¼ 0 the relation between the coor-
dinate time t and the proper time τ of Eq. (59)
becomes a constant rescaling for all times, and a
change in the units in which time is measured should

10For example, interpolating into Table II we find for z ¼ 0.54
that Φ̂ ¼ 0.6 × 1.095þ 0.4 × 1.080 ¼ 1.089, compared with
1.089 in Table I.
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have no effect on physical consequences of the
equations.

(iii) The nonperturbative generalizations of the standard
cosmological distance measures are obtained by
making the substitution aðtÞ → ψ ½τ� ¼ ψðtÞ ¼
aðtÞθðtÞ=θð0Þ in the usual formulas, with the fol-
lowing results, where the subscript 0 denotes the
present time, and 1 denotes the past time at which an
object at coordinate distance r1 emitted a signal.
For waves of wavelength λ and frequency ν, we

have

1þ zeff ¼
ψ ½τ0�
ψ ½τ1�

¼ 1

ψ ½τ1�
¼ θð0Þ

aðt1Þθðt1Þ
; ð63Þ

where in the second equality we used ψ ½τ0� ¼ 1.
The parallax distance dP, luminosity distance dL,

angular diameter distance dA, and proper motion
or comoving angular diameter distance dM, are
given by

dP ¼ r1ψðt0Þ;
dL ¼ r1ψðt0Þð1þ zeffÞ;
dA ¼ r1ψðt1Þ;
dM ¼ r1ψðt0Þ; ð64Þ

with ratios

dA
dL

¼ 1

ð1þ zeffÞ2
;

dM
dL

¼ 1

1þ zeff
;

dA
dP

¼ 1

1þ zeff
: ð65Þ

(iv) The perturbative formulas needed to evaluate the
above expressions are11

θð0Þ
θðtÞ ¼ 1þΦð0Þ½Φ̂ðtÞ− Φ̂ð0Þ�

¼ 1þΦð0ÞCx2τ=x20;

aðtÞ ¼
�
Ωm

ΩΛ

�
1=3

�
sinh

�
xτ

�
1−

1

3
Φð0ÞCx2τ

x20

���
2=3

;

xτ ¼
3

2

p
ΩΛHPl

0 τ: ð66Þ

(v) As noted in Sec. II, the effective Hubble parameter is
defined as the proper time derivative

Heff ½τ� ¼
dψ ½τ�=dτ

ψ ½τ� ; ð67Þ

or in terms of t,

HeffðtÞ ¼
dψðtÞ=dt
αðtÞψðtÞ ¼ dðθðtÞaðtÞÞ=dt

αðtÞθðtÞaðtÞ

¼ 1

αðtÞ
�
_aðtÞ
aðtÞ þ

_θðtÞ
θðtÞ

�

¼ 1

αðtÞ
�
HðtÞ þ

_θðtÞ
θðtÞ

�
: ð68Þ

In the linearized perturbation limit this is (using
αθ ¼ 1)

HeffðtÞ ≃ ½1 −ΦðtÞ�HðtÞ − _ΦðtÞ. ð69Þ

From this and Eq. (B2), working to first order
accuracy, we find at the present proper time τ0 that

Heff ½τ0�
HPl

0

≃ 1 −Φð0Þ
�
ðΦ̂ðx0Þ − 1Þ

�
1þ 3

2
Ωm

�

þ 3

2

p
ΩΛdΦ̂=dxjx¼x0

�

≃ 1 − 0.867Φð0Þ; ð70Þ

with ðΦ̂ðx0Þ−1Þð1þð3=2ÞΩmÞ contributing 0.3615
and with 3

2

p
ΩΛdΦ̂=dxjx¼x0 contributing 0.5055

to the coefficient 0.867. If we use the quadratic
approximation to Φ̂ðxÞ given in the final column of
Table I, Eq. (70) becomes

Heff ½τ0�
HPl

0

≃ 1 −Φð0ÞC
�
1þ 3

2
Ωm þ 3

p
ΩΛ=x0

�

¼ 1 − 0.877Φð0Þ; ð71Þ

in good agreement with Eq. (70).
(vi) Much recent attention has been paid to a tension

between values of the local Hubble constant directly
measured from redshifts using supernova samples
calibrated with Cepheids [13], or supernova samples
calibrated with the tip of the red giant branch [14],
versus the value at early cosmic times inferred from
the study of fluctuations in the CMB radiation
[7,15]. This tension may require recalibration
of the distance ladder used in direct redshift mea-
surements [16], or may indicate a need for new
physics [17]. To interpret the Hubble tension in
terms of new physics via a frame-dependent dark
energy, we take f ¼ 1 and use Eq. (70) to fit the ratio

11Whenever multiplied by Φð0Þ, which is first order in
magnitude, other quantities can be taken to zeroth order. Hence
Φð0Þx2τ ≃Φð0Þx2, etc.
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Hlocal=HPl
0 , as summarized in Table III, where we

give the parameter Φð0Þ needed to fit the ratio of the
local Hubble constant value of [13] or [14] to the
CMB Hubble value quoted in [15]. This then gives a
prediction of our model for the Hubble constant
value extracted from baryon acoustic oscillations
by the method of Alam et al. [18], as discussed in
Appendix B, with the result given in the fourth
column of Table III. The prediction coming from the
Cepheid determination of the local Hubble constant
[13] is 4.8� 2.1 percent larger than the BAO value.
As argued in [19], this tension is a reflection of the
fact that our model is a late time model, which
generically cannot accommodate the Hubble values
from both [13,18].

(vii) When 1þΦð0Þ ¼ αð0Þ < 1, the expansion rate in
our model is enhanced over that in the standard FRW
cosmology for all times. To see this, take the τ
derivative of the logarithm of ψ ½τ� ¼ θðtðτÞÞaðtðτÞÞ=
θð0Þ, converting derivatives on the right to t
derivatives using d=dτ ¼ ð1=αðtÞÞd=dt, to get

d logðψÞ
dτ

¼ 1

αðtÞ
�
d logðaðtÞÞ

dt
þ d logðθðtÞÞ

dt

�
; ð72Þ

with t on the right hand side understood to
be tðτÞ. Since for αð0Þ < 1 we have 1

αðtÞ > 1 and

dθðtÞ=dt > 0, Eq. (72) implies that

d logðψÞ
dτ

−
d logðaÞ

dt
> 0; ð73Þ

that is, in our model with f ¼ 1 and negative Φð0Þ,
the expansion rate of the universe at all times is
greater than in standard FRW cosmology.

(viii) Corresponding to the fact that expansion rate of the
universe is altered in our model for Φð0Þ ≠ 0, the
age of the universe is changed. This can be calcu-
lated, to leading order in perturbations, as follows.
We first note that just as the age t0 of the FRW
universe is fixed by the requirement aðt0Þ ¼ 1, in
similar fashion the proper time age of the universe τ0

in our model is fixed12 by the condition ψ ½τ0� ¼ 1.
Writing tðτ0Þ ¼ t0 þ Δt we get from ψðtÞ ¼
aðtÞθðtÞ=θð0Þ the equation

1 ¼ ψ ½τ0� ¼ aðtðτ0ÞÞθðtðτ0ÞÞ=θð0Þ
¼ aðt0 þ ΔtÞ½1 −Φð0ÞðΦ̂ðt0 þ ΔtÞ − Φ̂ð0ÞÞ�

≃ 1þ Δt
da
dt

ðt0Þ −Φð0ÞðΦ̂ðt0Þ − Φ̂ð0ÞÞ; ð74Þ

which can be solved to give Δt,

Δt¼Φð0ÞðΦ̂ðt0Þ−Φ̂ð0ÞÞ
da
dt ðt0Þ

¼Φð0ÞðΦ̂ðt0Þ−Φ̂ð0ÞÞ
H0

≃
Φð0ÞðΦ̂ðt0Þ−1Þ

HPl
0

: ð75Þ

From the definition of the proper time in Eq. (6)
we get

τ0 ¼
Z

tðτ0Þ

0

duαðuÞ

¼
Z

t0þΔt

0

du½1þΦð0ÞΦ̂ðuÞ�

¼ t0 þ ΔtþΦð0Þ
Z

t0

0

duΦ̂ðuÞ; ð76Þ

and remembering that t0¼ τPl0 =αð0Þ≃τPl0 ð1−Φð0ÞÞ
this gives to first order

τ0 − τPl0 ¼ −Φð0ÞτPl0 þ ΔtþΦð0Þ
Z

t0

0

duΦ̂ðuÞ

≃
Φð0Þ
HPl

0

�
Φ̂ðt0Þ − 1þ 2

3
p
ΩΛ

Z
x0

0

dxΦ̂ðxÞ

− τPl0 H
Pl
0

�
: ð77Þ

TABLE III. Results of fits ofΦð0Þ to the Hubble tension obtained by the Cepheid [13] and red giant [14] methods. The second column
gives the ratio of the local Hubble measurement to the CMB Hubble valueHPl

0 ¼ 67.27 km s−1 Mpc−1 quoted in the review [15]. On the
Cepheid line [13], the error is statistical. On the red giant line [14], the first error is statistical and the second is systematic. The third
column gives the value of Φð0Þ needed to fit the second column using Eq. (70). The fourth column gives the ratio of the Hubble
parameter to the corresponding BAO value [18] at zeff ¼ 0.51, as calculated in Appendix B. The fifth column gives the correction to the
age of the universe from Eq. (78).

Method Hlocal=HPl
0 Φð0Þ Heff;0.51=HBAO;0.51 τ0 − τPl0 (Gyr)

Cepheid 1.100� 0.023 −0.114� 0.026 1.048� 0.021 −0.53� 0.12
red giant 1.038� 0.015� 0.025 −0.043� 0.017� 0.028 1.018� 0.019� 0.012 −0.20� 0.08� 0.13

12To elaborate, the age of the universe is the elapsed proper
time between redshift zero and redshift infinity. When ψ ¼ 1, the
effective redshift zeff vanishes, and at τ ¼ 0 the effective redshift
is infinite since ψ ½0� ¼ að0Þ ¼ 0.
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Using the approximation Φ̂ðxÞ ≃ 1þ Cðx=x0Þ2 this
gives

τ0 − τPl0 ¼ Φð0ÞC
HPl

0

�
1þ 2x0

9
p
ΩΛ

�
≃
1.315Φð0ÞC

HPl
0

;

ð78Þ

which is used to calculate the final column of
Table III, using τPl0 ¼ 13.83 Gyr, and 1=HPl

0 ¼
τPl0 =0.946 ¼ 14.62 Gyr.

To summarize, a scale invariant but frame dependent
dark energy can enhance the local Hubble constant value
without spoiling the excellent CMB angular fits, with a
universe that is expanding faster and hence is younger than
is suggested by the standard FRW cosmology. However,
our model, in which changes from the standard FRW
cosmology occur only at late time, tends to give too large
a value for the Hubble constant extracted by the BAO
method. We look forward to future experiments to give an
enlarged and improved data set against which to give a
definitive test of our model.
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APPENDIX A: PERTURBATION EQUATIONS
REWRITTEN IN TERMS OF Φ AND Ψ

In [4] we gave the metric perturbation equations for
f ≠ 0 in B ¼ 0 gauge in terms of A, E, and F, taken as
functions of both t and x⃗. Here we give the same equations
when rewritten in terms of Ψ, Φ, and F, obtained by
substituting Eq. (18) and algebraic simplification.13

The ij equation takes the form

0 ¼ δijX þ ∂i∂jY;

X ¼ 2½aäþ 2ð _aÞ2�Φþ a _a _Φþ6a _a _Ψþa2Ψ̈ −∇2Ψ

þ 4πGa2ðδρ − δp −∇2πSÞ − 4πG½ _aa24ðpþ ρÞ
þ a3ð_ρ=3þ _pÞ�F þ Λfa2ðt00=2 − EÞ;

Y ¼ 8πGa2πS þΦ − Ψ: ðA1Þ

The i0 equation becomes

0 ¼ −2ð _a=aÞ∂iΦ − 2∂i
_Ψ − 8πGðpþ ρÞð∂iδu − a∂iFÞ

þ Λft0i; ðA2Þ

and the 00 equation becomes14

0 ¼ Z ¼ −ð1=a2Þ∇2Φ − 3ð _a=aÞ _Φ − 6ðä=aÞΦ − 3Ψ̈

− 6ð _a=aÞ _Ψþ 4πG½δρþ 3δpþ∇2πS þ að_ρþ 3 _pÞF�
þ Λfðt00=2þ 3EÞ: ðA3Þ

Taking the linear combination ð1=4Þa2Z þ ð3=4ÞX þ
ð1=4Þ∇2Y gives

0 ¼ −∇2Ψþ 3a _a _Ψþ3ð _aÞ2Φþ Λfa2t00=2

þ 4πGa2½δρ − 3_aðpþ ρÞF�; ðA4Þ

and using this to eliminate −∇2Ψ from X we get

a2Ψ̈þ ½2aäþ ð _aÞ2�Φþ a _a _Φþ3a _a _Ψ

¼ 4πGa2ðδpþ∇2πSÞ þ 2Λfa2½Φ − _aF − a _F�
þ 4πGa3 _pF: ðA5Þ

In the limit that the metric perturbations are functions only
of t, using FðtÞ ¼ 0 and ∇2πSðtÞ ¼ 0 this simplifies, after
division by a2, to

Ψ̈þ ½2ðä=aÞ þ ð _a=aÞ2�Φþ ð _a=aÞ _Φþ 3ð _a=aÞ _Ψ
¼ 4πGδpþ 2ΛfΦ: ðA6Þ

When Ψ ¼ Φ, this gives Eq. (20) of the text. The point of
the manipulations leading to Eq. (A6) is to eliminate
both energy densities δρ and t00 from the equation used
to solve for Φ.

APPENDIX B: COMPARISON AT zeff = 0.51 OF
THE HUBBLE PARAMETER PREDICTED BY
OUR MODEL WITH THE VALUE INFERRED

FROM BAO MEASUREMENTS

Baryon acoustic oscillation measurements using three
clusters of galaxies grouped around redshifts of 0.38, 0.51,

13We remind the reader that here we follow the notation of
[4,8] and omit the normalization factor 1=θð0Þ. This has no effect
on the final result of Eq. (A6), which is independent of the
normalization of a, even though Eqs. (A1)–(A3) are sensitive to
the normalization of a when spatial dependences are included.

14Under the gauge changes Δgða2AÞ ¼ 2a _aϵ0, ΔgE ¼ 2_ϵ0,
ΔgðaFÞ ¼ −ϵ0, Δgδρ ¼ _ρϵ0, Δgδp ¼ _pϵ0, Δgπ

S ¼ 0, Δgδu ¼
−ϵ0, ΔgΦ ¼ ΔgΨ ¼ 0, all terms of Eqs. (18) and (A1)–(A3) are
invariant except the Λf terms, reflecting the fact that the effective
action of Eq. (2) breaks four-space general coordinate invariance.
When only three-space general coordinate transformations are
considered [which is the most general invariance of Eq. (3)],
one can take ϵ0 ¼ 0, which is consistent with our then setting
FðtÞ ¼ 0.
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and 0.61 give [18] a Hubble constant HBAO
0 ¼ 67.3�

1.0 km s−1Mpc−1, nearly identical to the CMB value [15]
of HPl

0 ¼ 67.27� 0.60 km s−1 Mpc−1. To compare this
with the prediction of our model, we calculate the
ratio of the Hubble expansion parameters HðtÞ evaluated
at t corresponding to the central redshift 0.51. For
the Hubble expansion parameter implied by the BAO
measurements, we use the FRW cosmology formula of
Eq. (15) with H0 replaced by the BAO measured value,
giving

HBAO;0.51 ¼ HBAO
0 ½Ωmð1.51Þ3 þ ΩΛ�1=2

¼ 89.9� 1.3 km s−1Mpc−1: ðB1Þ

For the Hubble expansion parameter implied by our model,
we use Eqs. (63) and (66) to determine the xτ value
corresponding to 1þ zeff ¼ 1.51, and then substitute this
into Eq. (69), which we expand to first order accuracy,

HeffðtÞ ≃ ½1 −ΦðtÞ�HðtÞ − _ΦðtÞ

≃HPl
0

p
ΩΛ

�
coth

�
xτ

�
1 −

Φð0ÞC
3

x2τ
x20

��

−
Φð0ÞC
x20

ðx2τ cothðxτÞ þ 3xτÞ
�
: ðB2Þ

This yields

Heff;0.51 ¼ 94.2� 1.3 km s−1 Mpc−1 for

Φð0Þ ¼ −0.114� 0.026;

Heff;0.51 ¼ 91.5� 1.0� 1.1 km s−1Mpc−1 for

Φð0Þ ¼ −0.043� 0.017� 0.028; ðB3Þ

giving the numbers used to form the ratio Heff;0.51

HBAO;0.51
in
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