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Implications of the fermion vacuum term in the extended SU(3) quark meson
model on compact star properties

Andreas Zacchi®" and Jiirgen Schaffner-Bielich®'

Institut fiir Theoretische Physik, Goethe Universitdit Frankfurt,
Max von Laue Strasse 1, D-60438 Frankfurt, Germany

® (Received 4 October 2019; published 30 December 2019)

We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of
state and determine the vacuum parameters for various sigma meson masses. We examine its influence on
the equation of state and on the resulting mass radius relations for compact stars. The tidal deformability A
of the stars is studied and compared to the results of the mean field approximation. Parameter sets which
fulfill the tidal deformability bounds of GW 170817 together with the observed two solar mass limit turn out
to be restricted to a quite small parameter range in the mean field approximation. The extended version of
the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase
transition is found in the extended version of the model, not allowing for the twin star solutions found in the

mean field approximation.
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I. INTRODUCTION

The theory of the strong interaction, quantum chromody-
namics (QCD), describes the interaction between quarks and
gluons. The QCD Lagrangian possesses an exact color and
flavor symmetry for N, massless quark flavors [1-6], and
chiral symmetry controls the hadronic interactions in the low
energy regime [7,8]. At high temperatures or densities chiral
symmetry is expected to be restored [2,9,10]. The possible
appearance of quark matter at high densities has interesting
consequences for the properties of compact stars [11-18].

Since QCD cannot be solved on the lattice at nonzero
density, effective models are needed to study the features
and interactions of high density matter [5,19-23]. The
chiral SU(3) quark meson model is a well established and
studied framework [5,23-34]. Its advantage in comparison
to other chiral models such as the Nambu-Jona-Lasinio
model [35-38] lies in its renormalizability [31,32,39] by
taking into account vacuum fluctuations.

In this article we study the impact of the fermion vacuum
term on the equation of state (EoS) in the SU(3) quark meson
model in an extended mean field approximation (eMFA); see
also [20,28,40—43]. For that purpose we determine the
vacuum parameters for different sigma meson masses m,,.
The dependence of the vacuum parameters on the renorm-
alization scale parameter A, cancels with the dependence of
the additional fermion vacuum term Q%°(A,) in the grand
potential, so that the whole grand potential is independent
of the renormalization scale parameter A, [28,31,42,43].
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The resulting EoSs are investigated and subsequently used
to solve the Tolman-Oppenheimer-Volkoff (TOV) equations
[44] for various parameters of the model, that is, the sigma
meson mass m,, the repulsive vector coupling constant g,,,
and the vacuum pressure constant B'/4. Constraints on the
EoS for compact stars are imposed by the observation of the
2 M neutron stars [45—48] and by the gravitational wave
measurement GW170817 [49,50] of a binary neutron star
merger. In this context, the tidal deformability parameter A
depends on the compactness C of the compact star and on the
Love number &, [51-53] via

2k,
A= 30 (1)
The GW170817 measurement on the tidal deformability
deduces A = 300f§328 for a 1.4 M star [50]. Inferred from
that measurement, the radius of a 1.4 M star cannot be
larger than R > 13.5 km [54-61].

The mass radius relations of the eMFA are compared to
those of the standard mean field approximation (MFA). We
find that the mass radius relations for a given parameter set
in the eMFA are in general less compact compared to the
MFA case. Less compact star configurations imply rather
large values of the tidal deformability parameter A. Fulfilling
all considered constraints on mass M > 2 M, radius R <
13.5 km at 1.4 M, and the tidal deformability parameter
A <720 for a 1.4 M star is possible in a narrow parameter
space for the MFA. The parameters in the eMFA do not allow
for solutions which satisfy the above-mentioned constraints.

Further analysis of the parameter range of the SU(3)
chiral quark meson model in the eMFA exhibits that the
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inclusion of the fermion vacuum term yields crossover
transitions from a chirally broken phase to a restored phase
exclusively. This feature consequently smooths the EoSs
compared to the MFA case not allowing for twin star
solutions, that is, two stable branches in the mass radius
relation, as found for a certain parameter range in the MFA
(see, e.g., [18]).

II. THE SU(3) QUARK MESON MODEL

A chirally invariant model with three flavors N, = 3 and
with quarks as the active degrees of freedom is the SU(3)
chiral quark meson model. Based on the theory of the
strong interaction, an effective model must doubtlessly
implement features of QCD, such as flavor symmetry and
spontaneous and explicit breaking of chiral symmetry. The
N; =3 Lagrangian [6,16,32,62] respecting these sym-
metries and including vector mesonic interactions reads

L= qun(la - gamn)an + \ijs(la - gams)lps

+ tr(9,P) (#®)" — 4, [tr(DTD))* — A, tr(PTD)?

+ tr[H (D + ©F)] + c(det(DT) + det(P))

— m(tr(®'®)) — mitr(V'V) (2)
with a Yukawa-like coupling g,, a being the fields ¢, o,
, p, and ¢ involved, and the effective mass m,, ; to the
spinors ¥, ;. The indices n = nonstrange and s = strange

indicate the flavor content. All physical fields are arranged
in the matrix ® [5,6]

(Un +08)+i<'7n +7t0)

1 7 ag+int  Ki+iK*
— 6,—ad)+i(n,—r° .
(D—7§ a6+iﬂ'_ ( n ao);%(ﬂu ) K?+1KO , (3)
Ky +iK~ KO+iK°  o,+in,

where we consider the condensed o, ; fields and the pions
to determine the vacuum parameters 4;, 4,, m%, c, h,, and
h, of the model, which are fixed at tree level [27,32,62,63],
but change upon renormalization [39,42,43] (see Sec. Il A).
In thermal equilibrium the grand potential Q is calculated
via the partition function Z, which is defined as a path
integral over the fermion fields,

Q- _% with Z = / DYDPe s 4 [ 3L (4)

Evaluated, the grand canonical potential reads
— h
Qzy =V + QI +QF,

_v_ 3 [
_vy ﬂzﬁ/o Rdk-(R+N).,  (5)

where V is the tree level potential

_ Ao oy A2 4 4 my 2 2
V__((O-n+63))+_(6n+26s)+7(6n+55>

4 8
2
C0;,0
- hno-n - hx‘o-\‘ - =
1
— 5 (miw? + mip? + mGg?) + B, (6)
where B'/* is a phenomenological vacuum pressure

term [64—67], which will stiffen or soften the EoS p(e),
pressure p vs energy density e. The fermion vacuum term is

EHVS
T El

Que =R = (7)

and the part from the mean field approximation is

Qtéhq — N — ln(l + e_ﬂ(En+ﬂll)) + ln(l + e_ﬂ(Eu_ﬁu))
+ ln(l + e_ﬂ(El1+ﬁd)) + ln(l + e_ﬂ(En_ﬁd))
+1In(1 4 e PEF)) 4 In(1 + e PE)), (8)

The dependence of Q‘éhq on the chiral condensates o, ; is

implicit in the relativistic quasiparticle dispersion relation
for the constituent quarks

En,s -V Kk + ﬁ/l%m' (9)

The quantity 7, ; = g,m, ; is the in medium mass gen-
erated by the scalar fields. u, , in Eq. (8) are the respective
chemical potentials

ﬁup =y = go® + 9pP> (10)
Hdown = Hq = Go® = GppP> (11)
ﬂstrange =j, = g¢¢' (12)

A. Renormalized vacuum parameters
of the SU(3) quark meson model

The implementation of the fermion vacuum term
needs regularization schemes. In this work we employ
the minimal substraction scheme and follow the procedure
as found in [20,28,39—43] to properly perform the regu-
larization of the divergence. The diverging integral con-
taining the fermion vacuum contribution in Eq. (5) is to
lowest order just the one-loop effective potential at zero
temperature [41] and is dimensionally regularized via the
corresponding counterterm

N.N 11
B faa |1 -3 +2y—4In(2y7)]|, (13)

oL = , =
1672 e 2[
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which gives

NNy, 11 i
QYaC = ¢ 7 4 o _3 2 41 1 bl
" e L 2 [ e n<2\/7r/\r>”

(14)

where N, = 3 is the number of colors, lim ¢ — 0 is from
dimensional reasoning, y is the Euler-Mascheroni constant,
and A, is the renormalization scale parameter. The dimen-
sionally regularized fermion vacuum contribution eventu-
ally reads

NN m
dr __ Vo n,s
Qll = - e m;‘cln(Ar>. (15)

As in mean field approximation, the six model parameters
Al Ao, m%, ¢, h,, and hg are fixed by six experimentally
known values [32,62,68]. As an input the pion mass
m, = 136 MeV, the kaon mass m; = 496 MeV, the pion
decay constant f, = 92.4 MeV, the kaon decay constant
fr =113 MeV, the masses of the eta meson m, =
548 MeV, the mass of the eta-prime meson m
958 MeV, and the mass of the sigma meson m, need to
be known.

The mass of the sigma meson m,, is experimentally not
well determined. Usually, the sigma meson is identified
with the experimentally measured resonance f,(500),
which is rather broad, 400 < mg, < 600 MeV [68,69]. In
Ref. [6] it was demonstrated that within an extended quark-
meson model that includes vector and axial-vector inter-
actions, the resonance f(1370) could be identified as this
scalar state. The mass of the sigma meson is chosen from
400 < m, < 800 MeV in the following.

The starting point for the determination of the vacuum
parameters is the potential V, Eq. (6), including the pions
and the vacuum contribution Q;,, Eq. (7), which together
form V,

===

A
V=710 +01) + 21307 + 03) + 7]

/1 2
+§2[( ﬁ+ﬂ%)2+20§]+%(aﬁ+né+a§)

o020, + o
—h,0, — ho, — c<%\/§03> + Bl/A
1
+ 3 (maw* + mp* + miqﬁz)
NcNf g 63 + 6%
A, ’

872 (16)

(o7 + 03)? ln<
The procedure to determine the vacuum parameters is
similar as in the SU(2) case [39]. Here, three of the six
derivatives to determine the vacuum parameters read

co,0 A
h, = mic, — \;i” + (6% + 62)o, + 525,31 + Vac.,
hy = mdo, — i + 41(62 + 62)o, + 403 + Vac
N 0%s M n s N s
m2 =m -2 4+, (62 +07) + /1—202 + Vac. (17)
71' 0 \/E n s B n s

with the vacuum contribution yet to be determined. Since
the pion does not form a condensate, it does not occur
anymore in Egs. (17) above. Due to the mixing of the fields,
the second derivative 9*V/0c?2 does not yield the mass of
the sigma meson as in the two flavor case SU(2). At this
point the kaon mass is needed as an input parameter and
one remains with three unknown quantities [28].

It is necessary to rewrite the nonstrange-strange basis in
terms of the generators, i.e., the mathematical fields, and
afterwards identifying those with the physical fields.
Following [32,62] the matrix @, Eq. (3), can be written
as @ =T,®, =T,(c, + ir,) with T, =%, ], being the
Gell Mann matrices where a =0, 1,2, ...,8 are the nine
generators of the U(3) symmetry group. The generators
obey the U(3) algebra with the standard symmetric d,;;,. and
antisymmetric structure constants f,,.. Rearranging the
entries of Eq. (3) gives

\/%00 +03+ % 61— iy 64— i0s
1
_ . 2 e .
d>f5 o1 +io, \/;60—63+7"§ og—1io7 |,
. . 2 20,
04+ 105 06+ 107 \éao - 7;‘

and the transformation from the physical nonstrange-
strange basis to the mathematical basis reads

(0)-5 (7 22)()
Og \/§ 1 _\/i 4]

Separating the entries for the scalar and the pseudoscalar
sector gives the potential in terms of the mathematical fields
[32,62]. The mass matrix m;; is determined only by the
mesonic part and by the fermionic vacuum term of the
potential V, Eq. (16), because the quark contribution
vanishes at T = u = 0. Because of isospin symmetry some
entries of m7; are degenerate and furthermore mgy = mg,,

so that

; my .. ml

vV

2 — = - 20

mu a‘bla(bj : ( )
mly .. ml
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This matrix needs to be diagonalized for m2 and m;»o in the
scalar sector, and for m, and m;, in the pseudoscalar sector

introducing a mixing angle 6. Eventually the mass of the
kaon in the nonstrange-strange basis reads

A
m} = m} =14+ 010 + 02) + 2 (0} = V20,0, +202).
(21)
which determines the axial anomaly term to be
= —2(]’}1% - m72z) - AZ(ﬁanas - 20%) ] (22)
6, — V20,
Using Eq. (20), the sum of m, and m;, reads
m, + m}, = 2m} + 24, (6% + 62) —|—/1—2(62 +202) + %
n n 0 1\On s ) n s \/§
22 3co
=2m2 — = (02 —202) + >, 23
(6 =200) + 77 23)

and inserting Eq. (22) into Eq. (23) to solve for 1, gives

6as(mi—m,2t)

2 12 _ 2
my + = —2mg + TP
2 ‘7% (3\/5530’1_60%) '

Us 2 ﬁ(”s - \/Eas )

Ay = (24)

The further procedure in the mean field approximation is to
determine 4, (m3) via m, and m,, [16,32,62]. The quantities
obtained so far enter into the two condensate equations,
Eqgs. (17), for the explicit symmetry breaking terms £,
and h,. Working in the extended version of the model,
the vacuum contributing a part from Eq. (16) has to be
rewritten in terms of the mathematical fields. Furthermore

Podr T XBoy— 22 6y)
99 _ el AW + M], (25)
d%c} i Z
Podr T XWgy —2¥24)
949 _ B 3 Y8 3 0 , 26
82600'8 K L W + Z ( )
9*Qar [ V¥ 202, )
Loklew+=—3-2 31 0 ] (27)
820§ i Z
where
N.N
K= — 72ﬂ2f 7, (28)
A = 9662 — 482605 + 4803, (29)
B = 96605 — 30V 20% — 24202, (30)

C = 4863 — 60V 2050, + 15002, (31)
4 2 | 22 5 2
g\/3 0y +%=0003 +30
W:2ln< 300 3/\08 38>+%’ (32)

X =320} — 10V26} — 24V26%03 + 480305, (33)
Y = 5003 — 8v20; + 480305 — 30V 20002, (34)

Z—gd%—zisﬁﬁoﬁg +§0§ (35)
Rewriting everything according to Eq. (19) in terms of the
physical fields, these mass corrections enter in the numerical
routine to search for the vacuum parameters A, and m3. These
two parameters alone compensate for the vacuum contribu-
tion in the two condensate equations /,, and A, in Eqs. (17).

It is interesting to note that the grand canonical potential
remains unaffected by the choice of the renormalization
scale parameter A,. This is easily seen in the SU(2) case
[39] and has also been shown for the SU(3) case for m, =
400 MeV [28,42]. To compare our results with [42], the
renormalization scale parameter is set to A, = 200 MeV.

B. Charge neutrality and the gap equations

Since the lepton contribution decouples from the quark
grand canonical potential, it can be treated separately. The
electron contribution reads

2 &k Eyope
Q =——[| —=hn|(l+e "7 36

=5 [ (1+7) oo
with E; , = \/k* + m2, where m, is the electron mass and

U, is the electron chemical potential.
A compact star is charge neutral, so that

2 1 1
g Oy =_-n,—-ng—~n;—n, =0 (37)
f=u,d.s.e ‘ 3 3 3

with n, as the particle density of each species f.
The total grand canonical potential is

N.N m 3 [
Qot = v - A (—L ——/ K*dk -
82 n(/\ 7B Jo N

2 [ Bk e
-5 e )

and the vacuum parameter sets for different sigma meson
mass m, are listed in Table I. As already mentioned, the
potential is scale independent. The dependence cancels
neatly, which is straightforward but tedious to check
[28,39,42,43]. The independence of Eq. (38) on A, in
our work is checked numerically. The equations of motion

123024-4
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TABLE L

The vacuum parameters A;, A,, ¢, m?, h,, and h, for different values of the sigma meson mass m}* in mean field

approximation (MFA: upper table) and with the inclusion of the fermion vacuum term for the renormalization scale parameter A =

200 MeV (eMFA: lower table).

e A A J ¢ [MeV] m? [MeV?] h, [MeV?] h, [MeV?]
400 - ~5.901 46.488 4807.245 (494.272)? (120.73) (336.41)3
500 e —2.698 46.488 4807.245 (434.541)? (120.73)3 (336.41)3
600 o 1.398 46.488 4807.245 (342.496)? (120.73)} (336.41)?
700 e 6.615 46.488 4807.245 (161.918)? (120.73)° (336.41)3
800 . 13.488 46.488 4807.245 —(306.289)> (120.73)} (336.41)?
900 . 23.649 46.488 4807.245 —(520.82) (120.73)3 (336.41)3
myee A A 1 ¢ [MeV] m? [MeV?] h, [MeV?] h, [MeV?]
400 200 ~8.173 138.516 4807.245 (283.901)2 (120.73)? (336.41)?
500 200 ~5.285 138.516 4807.245 (173.694)2 (120.73)3 (336.41)3
600 200 ~1.661 138.516 4807.245 —(181. 951)2 (120.73)? (336.41)?
700 200 2.819 138.516 4807.245 —(333.675)? (120.73)3 (336.41)3
800 200 8.450 138.516 4807.245 —(457.902)2 (120.73)3 (336.41)°
900 200 16.179 138.516 4807.245 —(587.056)2 (120.73)* (336.41)3
oQ  OQ°  0Q°  oQ  oQ | 0. (39) The Love number k, is calculated as follows:

de, 0o, Ow  Op ¢

also known as the gap equations, finally determine the EoS,
p(€), with the pressure p and the energy density e.

III. COMPACT STARS

The formalism discussed in the previous section can be
used to obtain EoSs, p(e), applicable for the calculation of
compact stars. The resulting mass radius relations have to
respect certain constraints to be physically reasonable. The
most important constraints are the 2 M, limit [45-48] and
the tidal deformability measurement by the LIGO/Virgo
Collaboration [49,50].

A. Tidal deformability

The observation of the binary neutron star merger event
GW170817 [49] is used to constrain the EoSs of compact
stars [54-60,70-72]. During the inspiral phase, one star
quadrupole deformation Q;; in response to the companions
perturbing tidal field &;; is measured by the tidal polar-
izability 4,

Qjj = —A&;;. (40)

A depends on the EoS [52,53,73] and is related to the stars
quadrupolar tidal Love number [51] k, via

3
k2 :E/IR_S, (41)

where R is the radius of the star.

8C°
ky = 5 (1 2C> [2+2C<YR_1>_}’R}

x {2C[6 —3ygr +3C(5yg — 8)]
+4C3 13 = 11yg + C(3yg —2) +2C*(1 + yg)]
+3(1 =2C)%[2 = yg +2C(yg — 1)]In(1 = 2C)} 71,
(42)
with the compactness C = M/R. The quantity y; = y(R)
on the other hand is obtained by solving the differential

equation for y(r) coming from the line element of the
linearized metric, described in greater detail in [52,74,75]

ry'(r) 4+ y(r)* +r*0(r)

+y(r)e[1 + 4z (p(r) —e(r))] =0, (43)
with
0(r) = drel® <5€( ) +9p(r) e(’");(r’)’(’)>
()
—6——(V(r) (44)

the metric functions from general relativity

M) — (1 - zm(r))_l, (45)

r

m(r) + dzr’p(r)

7'2 ’

V(r) = 2641 (46)

and c¢,(r)> =dp/de as the speed of sound squared
[52,53,73]. The boundary condition of Eq. (43) is

123024-5
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¥(0) = 2, which implies no deformation at all in the center
of the star. At the surface of a self-bound star ¢? — 0 and
the denominator in Eq. (44) blows up. The density
discontinuity leads to an extra expression just below the
surface of the star [53,73,75]. One has to substract

_Arrie(r)

Vs = (47)

m(r)

from Eq. (43) with e,(r) being the value of the energy
density just below the surface. The dimensionless tidal
deformability A is

2k
A=2
3¢5

(48)

usually solved simultaneously with the TOV equations
[52,53,73]. The actual value of a 1.4 M, star has to be in a
range A = 300733 [49,54].

IV. RESULTS

In this section we present our results for varying
sigma meson mass m,, repulsive vector coupling g,, and
different values of the bag constant B'/#. At the end of this
section we compare the results from the eMFA with the
MFA. The constituent quark mass is held fixed at
m, = 300 MeV, which is roughly one-third of the nucleon
mass. The standard parameter set is m, = 300 MeV, m, =
600 MeV, g,, = 3.5, and B'/* = 80 MeV, in the following
denoted as a reference set.

A. Variation of the sigma meson mass

Figure 1 shows the solutions of the scalar condensate
equations, Egs. (39), as a function of quark chemical

90
80
70
— 60
>
= 50} \
= m,=400 MeV — . — |
<3
o 40 m =600 MeV \
= U
30} Mo=800 MeV |
20t \
10}
0 L Il L L =
0 200 400 600 800 1000
Hg [MeV]
FIG. 1. The solutions of the condensate equations o, and o, in

the extended mean field approximation as a function of the
quark chemical potential u, for different values of m,. The other

parameters are m, = 300 MeV, g,, = 3.5, and B'/* = 80 MeV.

potential u, for the scalar fields o, and o,. For all our
choices of m, a crossover transition is found. For larger
values of m,; the restoration of chiral symmetry happens at
larger quark chemical potential y,, than for a lower mass of
the sigma meson. A first order phase transition in the eMFA
within this parameter choice is not found. Chiral symmetry
is not entirely restored, because of the explicit breaking of
chiral symmetry [16,32].

Figure 2 shows the EoSs for three different values of the
sigma meson mass, 400 MeV, 600 MeV, and 800 MeV. The
symbol on a particular EoS denotes the corresponding
location of the maximum mass star on the EoS. The red
circle marks the maximum mass star on the EoS for
m, = 400 MeV. The black triangle is the maximum mass
star on the reference set, and the blue square is the
representative maximum mass star for m, = 800 MeV.
The corresponding vacuum parameters are listed in Table 1.
Due to the implementation of the fermion vacuum term the
behavior of the grand potential, Eq. (5), i.e., the resulting
EoS, is highly nonlinear. The appropriate EoSs stiffen with
increasing sigma meson mass m, for p < 100 MeV/fm?,
which is in contrast to the MFA case [16]. For p >
100 MeV/fm® the EoSs stiffen with decreasing sigma
meson mass m, as in the MFA. The inset of Fig. 2 shows
the crossing of the EoSs where the EoS for m, = 400 MeV
crosses the m, = 600 MeV EoS at p = 20 MeV/fm? and
then the m, = 800 MeV EoS at p = 35 MeV/fm?.

The corresponding speed of sound c¢? for the different
choices of m, can be seen in Fig. 3. The inset displays that
the speed of sound approaches ¢? = 0.5 at large energy
densities. The EoS for m, =400 MeV generates the
highest values of the speed of sound c¢? at a given energy
density for values of the energy density e > 220 MeV /fm’.

400

150

pressure (MeV/fms)
n
o
o

my=400 MeV — - —

100 4
my=600 MeV
50 - m;=800 MeV - - - -
O 1 1 1 1 1
0 200 400 600 800 1000 1200

energy density (MeV/fmS)

FIG. 2. The EoSs for different values of the sigma meson mass
m,. The inlaid figure accentuates the behavior at rather low
energies, resulting in nontrivial mass-radius sequences. The
symbols indicate where the maximum mass star is located on
the respective EoS. The other parameters are my, = 300 MeV,

g, = 3.5, and B'/* = 80 MeV.
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05t o
0.66 [ -
0.33f
0.4t -7
« 03}
(2]
o
m,=400 MeV — - —
02r | my=600 MeV
- m,=800 MeV - - - -
o1t S
0 s s s ‘ ‘
0 200 400 600 800 1000 1200
energy density (MeV/fm3)
FIG. 3. The speed of sound for different values of the sigma

meson mass m,. The symbols indicate the maximum mass star.
The inset shows that the speed of sound approaches ¢2 = 0.5 for
large energy densities. The other parameters are m, = 300 MeV,

g = 3.5, and BY/* = 80 MeV.

This feature results from the stiffness of the EoS; see also
Fig. 2. ¢? influences the solution of the differential
equation, Eq. (43), via the quantity Q(r), Eq. (44).
Thereby k, and eventually the tidal deformability A,
Eq. (48), are influenced by the EoS.

The mass radius relations can be seen in Fig. 4, where
for our parameter choices 2M are possible [45-48],
indicated by the upper horizontal line. The lower horizontal
line indicates 1.4 M. For the lowest value of m, =
400 MeV chosen in this article, the mass radius relation
is more compact than for the other choices of m,. This
feature is different in the MFA [16] and results from the

=
SO\
T Lo o]
1
;
15F ) C
/
. ,
z /
= my=400 MeV — - — ’
2 10 m,=600 MeV .
m,=800 MeV — - - - /
/
2 Mgy, line - a
051 qamy,line - s
0 ‘
2 4 6 8 10 12 14 16 18

Radius (km)

FIG. 4. The mass radius relation for different values of the
sigma meson mass m,. For m, = 400 MeV the maximum mass
is 2.24 M at 12.12 km, for m, = 600 MeV 2 M, are reached at
the same radius, whereas for m, = 800 MeV the maximum mass
is 2.2 My at 15.65 km radius. These values are also listed in
Table II. The other parameters are m, = 300 MeV, ¢, = 3.5,

and B'/* = 80 MeV.

q

nontrivial behavior of the EoSs discussed for Fig. 2. At
m, =400 MeV the radius of a 1.4 Mg star is Ry 4y, =
13.14 km, whereas for m, = 600 MeV R, 4, =15.27km
and for m, =800 MeV R4y = 16.22km (see also
Table II). With increasing m, the configurations become
less compact, but nonetheless has the mass radius relation
for m,; =600 MeV, the smallest maximum mass of
2.02M. This value is at roughly the same radius R =
12.12 km as the mass radius relation for m, = 400 MeV
with a maximum value of 2.24 M . The maximum mass for
m, = 800 MeV is 2.2 M, at a radius R = 15.65 km. It is,
however, not seen in the MFA that the maximum masses
for two different values of m, =400 MeV and m, =
800 MeV are nearly equal at different radii. This pecu-
liarity can be explained with the nontrivial behavior of the
EoSs for p < 100 MeV/fm?; see inset of Fig. 2.

Figure 5 shows the radial profile of the maximum mass
star with M = 2.02 M5 at R = 12.12 km from the standard
parameter set, i.e., the black triangles in Figs. 2, 3, and 4.
The left figure displays the nonstrange ¢, and the strange o
condensate as a function of the stars’ radius R. The right
figure shows the pressure p and the energy density € as a
function of the stars’ radius R. The curves are rather smooth
because the phase transition is a crossover. The nonstrange
o, condensate has a value below 10 MeV/fm? in the center
of the star at R = 0, which is a magnitude smaller than
the value of the chirally broken phase f, = 92.4 MeV.
However, chiral symmetry is not fully restored in the center
of the 2.02 M, star as the strange o, condensate at R = 0 is
only slightly below 60 MeV for a vacuum expectation value
of 94.47 MeV.

1200

e [MeV/im®] ——
37 s
1000 p [MeV/fm~]
mg 800
>
— (0]
3 =
2 % 2 600
73 )
& 40 £
S
30 2 400
a
20
200
10 ST
.
0 2 4 6 8 10 12 0 2 4 6 8 10 12
R [km] R [km]
FIG. 5. The radial profile of the maximum mass star with M =

2.02 My at R = 12.12 km (the black triangle) from the standard
parameter set m, = 300 MeV, m, = 600 MeV, g, = 3.5, and
B'/* = 80 MeV. The left figure displays the nonstrange and the
strange o condensate as a function of the stars’ radius R. The right
figure shows the pressure p and energy density € as a function of
the stars’ radius R.
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TABLE II.

eMFA: The values of the radius at 1.4 M, the tidal deformability parameter A, 4 y_, the maximum radius, the maximum

mass, and the central pressure and central energy density for the maximum mass stars for the parameters m,, g,, and B'/*.

me [MeV] ) Bl/4 [MCV] R1-4Mo [km] A1v4M® Rmax [km] Mmax [MO] Pmax [MeV/fm3] €max [MeV/fm3]
400 35 80 13.14 1107 12.12 2.24 320.02 999.55
600 35 80 15.27 3253 12.12 2.02 343.21 1148.82
800 35 80 16.22 5184 15.65 2.20 88.62 537.67
600 1 80 9.32 47 8.87 1.44 409.65 1829.86
600 6 80 18.06 1079 17.15 2.82 128.35 509.77
600 35 50 22.57 5250 22.80 2.61 23.35 221.13
600 35 110 10.10 66 9.36 1.79 578.83 1658.17
TABLE IIl.  MFA: The values of the radius at 1.4 M, the tidal deformability parameter A 4 y,, the maximum radius, the maximum

mass, and the central pressure and central energy density for the maximum mass stars for the parameters m,, g, and B/*.

m, [MeV] g, B [MeV] Ry, [kml Ay, Rpo [kml My [Mo]  pra IMeV/f'] € [MeV/fim’]
400 35 80 14.38 2275 15.28 2.70 142.70 568.15
600 35 80 12.51 630 11.47 2.03 330.56 1143.22
800 35 80 16.10 4858 15.88 2.09 64.78 480.79
600 1 80 10.74 389 10.45 1.71 206.77 1091.38
600 6 80 18.00 9815 14.86 2.58 251.90 761.90
600 35 50 21.92 25300 14.5 2.19 228.14 878.17
600 3.5 110 10.08 243 9.61 1.82 467.07 1493.87

B. Comparison with the mean field approximation

The stars on the mass radius relation for a larger value of
the repulsive coupling parameter g,, have larger maximum
masses and also larger radii, which is qualitatively known
from the MFA case [14,16]; see also the corresponding
values in Table II for the eMFA and Table III for the MFA.

The vacuum pressure constant B'/* drops out in the
equations of motion, Eqgs. (39) and (6), respectively.
Smaller values of B'/* have essentially the same effect
on the mass radius relation as a larger repulsive coupling
g,,- Maximum masses and radii become larger.

Figure 6 shows contour lines of 2 M 5 maximum mass for
the MFA and the eMFA cases at fixed g, = 2.5, 3, and 3.5
in the m, vs B'/* plane. For a parameter choice on the right-
hand side of a particular contour line, the maximum mass of
the corresponding mass radius relation is smaller than
2Mg, and on the left-hand side consequently larger than
2 M. Furthermore, smaller values of the repulsive cou-
pling g, together with a relatively small value of the
vacuum pressure constant B'/# yield maximum masses of
>2 M in the mass radius relation [16,18]. This statement
holds for the MFA and for the eMFA cases.

The contour lines of the MFA and the eMFA seem
somehow to be shifted vertically with a difference of m, ~
150 MeV for g, = 2.5, m, ~ 100 MeV for g, = 3.0, and
m, ~ 50 MeV for g, = 3.5. The difference in the shift in
m, becomes smaller for larger values of g,. For a certain
m, < 620 MeV, larger values of B'/* are allowed for 2 M,
in the MFA compared to the eMFA, resulting in more

compact mass radius relations in the MFA. Recall that
smaller values of B'/# generate rather larger radii, so that
denser stars yield smaller values of the tidal deformability
parameter A o« C™> [see Eq. (48)]. For at least 2 M, in the
eMFA with values m, > 620 MeV a rather large value of
B'/* is necessary. The mass radius configurations, however,
turn out to already have a too large radius for a small tidal

800

750

700

500

450

400 :
30 40 50 60 70 80 90

B [MeV]

FIG. 6. Contour lines of maximum masses of 2 M in the m,, vs
B'/* plane for fixed 2.5 < g, <3.5. Smaller values of the
repulsive coupling g,, accompanied with a relatively small value

of the vacuum pressure B'/* yields a maximum mass of 2 M, oin
the mass radius relation. This holds for the MFA (dashed lines)
and for the eMFA (continuous lines).
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deformability parameter A < 720; see also Table II for the
eMFA and Table III for the MFA.

Figure 7 shows contour lines of maximum masses of
2 M, for the MFA and the eMFA cases at fixed B'/* in the
m, vs g, plane. For a particular parameter choice the
maximum mass is larger than 2 M on the right-hand side
of a particular contour line and on the left-hand side
consequently smaller. Recall that a larger value of the
repulsive coupling is needed for 2 M at fixed vacuum
pressure constant B!'/4.

It is interesting to note that in the MFA case no repulsive
coupling is necessary to generate two solar masses for
rather small m,, making the configurations more compact
compared to the eMFA case. As already mentioned, more
compact configurations are in favor of a low value of the
tidal deformability parameter A.

Figure 8 shows the value of the tidal deformability
parameter A according to Eq. (48) on a logarithmic scale
fora 1.4 M, star as a function of the radius of a 1.4 M star.
The shaded area fulfills both constraints on either R <
13.5 km [54-61] or A <720 [50]. The ¢2 curve corre-
sponds to the MIT bag model EoS p = c2e —4B and is
obtained for different values of the vacuum pressure
constant B. It is interesting to note that the curves for
the MIT bag model for ¢? = 1 and ¢? = 1/3 are relatively
close together. This feature indicates that a particular
function A 4, (R} .4u,) is rather independent of the speed

of sound ¢2, so that ¢2 in Eq. (44) plays a subdominant part.
The curve for ¢2 = 1 can also be seen as an upper limit due
to causality.

The MFA and the eMFA cases are obtained by varying
m, in the standard parameter set. In the eMFA case
the Aj4p, values and the radii decrease linearly on the

800

750 |

700 |

650

m, [MeV]
(2]
8

500 F°

450

400

FIG.7. Contour lines of maximum masses of 2 M in the m,, vs
g, plane at fixed 50 MeV < B'/* < 110 MeV. In the MFA case
(dotted lines) no repulsive coupling is necessary to generate two
solar masses for low m,. The configurations in MFA are more
compact compared to the eMFA case (continuous lines).

—
=1 ——

c2=1/3 - - - - R=13.5 km el
MFA O - my=800
4000 | - e o E
eMFA ® me=400 7~
p=Ke2

5/3

= p=Ke
s | Skyme -
S
5
1000 |
A=720
500
12 13 14 15 16
R1.am,,) [km]
FIG. 8. The values of the tidal deformability parameter A on a

logarithmic scale for a 1.4 M, star as a function of the radius for
a 1.4 M star for various EoSs. The shaded area fulfills both
constraints on either R < 13.5 km or A < 720.

logarithmic scale with decreasing m,, (see also Table II). In
the MFA case a minimum value A = 680 at 12.51 km
radius for m,; = 600 MeV is found (see also Table III).
Smaller and larger values of m, = 600 MeV lead to larger
values of either A4, or the corresponding radius. This
feature may be explained due to a shift in the dominance of
attractive and repulsive field contributions to the stiffness of
the EoS, and has already been suspected and discussed
in [16]. The only parameter set which respects the 2 M
limit, the Ry 45, < 13.5 km bound, and the A4y, <720
constraint is the reference set in the MFA and is hence
located within the shaded area in Fig. 8.

The inclusion of the fermion vacuum term in the SU(3)
chiral quark meson model seems not to be compatible with
astrophysical measurements and constraints.

To sort our results for the SU(3) quark meson model
within other approaches, a Skyrme parameter approach
taken from Zhou et al. [76] and an relativistic mean field
(RMF) model studied by Nandi et al. [77] are included in
Fig. 8. The RMF values correspond to the fit function
Aram, = 1.53 X 1072 (R, 4, /km)®® [77]. The values of
these two approaches are located at smaller A} 4, ata given
radius and lie well within the shaded area. Furthermore, the
results for free Fermi gas EoSs p = Ke'*!/” for various
constants K, with n = 1 and n = 3/2 are also shown. The
values of Ay 4y (R4, ) for the interaction dominated EoS
with n = 1 lie in between the results of the quark matter
EoSs and the Skyrme and RMF approach. The results of the
nonrelativistic EoS for n = 3/2 may be seen as a lower limit
for the function A4y (R, 4p,) in Fig. 8. The values for
Aj4m, at a given radius of the hadronic EoSs are located
above the values of the nonrelativistic EoS.

In general it seems that stars composed of quark matter
have larger values of the tidal deformability parameter A
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for a 1.4 M, star at a given radius than stars generated by
hadronic EoSs.

V. CONCLUSIONS

We have studied the SU(3) quark meson model including
the fermion vacuum term and have determined the vacuum
parameters for different values of the sigma meson mass
m,. The whole potential is independent of any renormal-
ization scale [28,31,42,43].

For all scalar meson masses in the eMFA a crossover
transition in the condensates is found. In general it seems
that in the MFA a first order phase transition is possible in a
larger parameter space. For larger values of m, the
restoration of chiral symmetry happens at the larger quark
chemical potential , [78], which is also observed for larger
values of g,,. The bag constant B'/# on the other hand does
not affect the condensates at all, since it drops out in the
equations of motion.

The resulting EoSs have been used to calculate mass
radius relations of compact stars. These mass radius
relations have to respect the 2 M limit [45-48] and the
constraints coming from the analysis of the tidal deform-
abilities of the GW170817 neutron star merger event
[50,54-60]. We compare our results from the eMFA with
the MFA. Our finding is that the 2 M, constraint can be
fulfilled in both approaches in a rather wide parameter
space (see, e.g., [16]), and that in the eMFA the mass radius
relations are generally less compact resulting in larger
values of the tidal deformability parameter A. This feature,
however, implies that in the eMFA the constraints from
GW170817 are not fulfilled, i.e., A4y, =720. In the
MFA a small parameter space is found where all considered
restrictions are satisfied.

Within our parameter choice in the eMFA a smaller
value of the sigma meson mass m,, is favored for a rather
compact mass radius relation. This is in contrast to the
MFA (see, e.g., [16]), and may be explained via the
additional term in the potential resulting from the fermion
vacuum contribution.

A large repulsive coupling constant g,, stiffens the EoS
and hence enables the star to generate more pressure
against gravity. The maximum mass and also the radius
become consequently larger. These features may then result
in larger values for the tidal deformability parameter
A & C~>, C being the compactness. Incidentally, this holds
vice versa; i.e., small respulsive couplings g, imply rather
small tidal deformabilities, but the 2 M, constraint may not
be fulfilled.

The EoSs substantially soften when increasing the
vacuum pressure constant B'/# so that for values B'/* >
110 MeV maximum masses of 2 M, are difficult to obtain.
Smaller values of B'/4, on the other hand, have essentially

the same effect on the mass radius relation as a larger
repulsive coupling g,; i.e., maximum masses and radii
become larger and consequently so does the tidal deform-
ability parameter A.

To sort our results we compare our findings for the tidal
deformability parameter at 1.4 Mo, Aj4p, (R 4p,), With
the results for a constant speed of sound (linear) EoS with
¢2 = 1, where M o R* and which can be seen as an upper
limit due to causality. As a lower limit we introduce a
nonrelativistic polytropic EoS with the polytropic index
I' = 5/3 where M « R73. The case I' = 2 corresponds to
an interaction dominated EoS where R ~ const, indepen-
dent of the mass of the stars on the mass radius relation. In
between these results we find the results of the MFA and
eMFA cases relatively close to the constant speed of sound
EoSs and the polytrope n = 2. For further comparison we
also took a Skyrme parameter approach taken from Zhou
et al. [76] and an RMF model studied by Nandi et al. [77].
Their results are located slightly below the values of the
polytropic I' = 2 case and centrally in between the results
from the constant speed of sound and the nonrelativistic
polytropic EoS.

In general it seems that quark matter stars have larger
values of the tidal deformability parameter A at 1.4 Mg
than hadronic stars. Taking into account more interactions
among quarks could lower the value of the tidal deform-
ability parameter A4y, (R4p,), because interactions
among quarks may decrease the value of Ay 4, at a given
radius; see Fig. 8.

A first order chiral phase transition yielding twin stars as
in the MFA (see, e.g., [18]) was not found in the eMFA.
Compared to the mean field case, the EoSs show a smooth
behavior due to the additional term in the potential coming
from the fermion vacuum term. The MFA and the eMFA,
however, yield stars with >2 M and radii < 13.5 km at
1.4 M, but only in the MFA was the additional A <720
limit fulfilled for one set of parameters, i.e., for
m, = 600 MeV. This is due to the fact that the MFA
approach yields more compact mass radius relations
than the eMFA case. In the eMFA the 2M, limit is
fulfilled for the most compact mass radius configuration
at m, =400 MeV with a radius of 13.14 km, but the
value of Aj4y, (Ry4pm,) = 1107 is not compatible with
GW170817.
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