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We study the impact of the fermion vacuum term in the SU(3) quark meson model on the equation of
state and determine the vacuum parameters for various sigma meson masses. We examine its influence on
the equation of state and on the resulting mass radius relations for compact stars. The tidal deformability Λ
of the stars is studied and compared to the results of the mean field approximation. Parameter sets which
fulfill the tidal deformability bounds of GW170817 together with the observed two solar mass limit turn out
to be restricted to a quite small parameter range in the mean field approximation. The extended version of
the model does not yield solutions fulfilling both constraints. Furthermore, no first order chiral phase
transition is found in the extended version of the model, not allowing for the twin star solutions found in the
mean field approximation.
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I. INTRODUCTION

The theory of the strong interaction, quantum chromody-
namics (QCD), describes the interaction between quarks and
gluons. The QCD Lagrangian possesses an exact color and
flavor symmetry for Nf massless quark flavors [1–6], and
chiral symmetry controls the hadronic interactions in the low
energy regime [7,8]. At high temperatures or densities chiral
symmetry is expected to be restored [2,9,10]. The possible
appearance of quark matter at high densities has interesting
consequences for the properties of compact stars [11–18].
Since QCD cannot be solved on the lattice at nonzero

density, effective models are needed to study the features
and interactions of high density matter [5,19–23]. The
chiral SU(3) quark meson model is a well established and
studied framework [5,23–34]. Its advantage in comparison
to other chiral models such as the Nambu-Jona-Lasinio
model [35–38] lies in its renormalizability [31,32,39] by
taking into account vacuum fluctuations.
In this article we study the impact of the fermion vacuum

termon the equation of state (EoS) in the SU(3) quarkmeson
model in an extendedmean field approximation (eMFA); see
also [20,28,40–43]. For that purpose we determine the
vacuum parameters for different sigma meson masses mσ.
The dependence of the vacuum parameters on the renorm-
alization scale parameterΛr cancels with the dependence of
the additional fermion vacuum term Ωvac

q̄q ðΛrÞ in the grand
potential, so that the whole grand potential is independent
of the renormalization scale parameter Λr [28,31,42,43].

The resulting EoSs are investigated and subsequently used
to solve the Tolman-Oppenheimer-Volkoff (TOV) equations
[44] for various parameters of the model, that is, the sigma
meson mass mσ, the repulsive vector coupling constant gω,
and the vacuum pressure constant B1=4. Constraints on the
EoS for compact stars are imposed by the observation of the
2M⊙ neutron stars [45–48] and by the gravitational wave
measurement GW170817 [49,50] of a binary neutron star
merger. In this context, the tidal deformability parameter Λ
depends on the compactnessC of the compact star and on the
Love number k2 [51–53] via

Λ ¼ 2k2
3C5

: ð1Þ

The GW170817 measurement on the tidal deformability
deduces Λ ¼ 300þ420

−230 for a 1.4M⊙ star [50]. Inferred from
that measurement, the radius of a 1.4M⊙ star cannot be
larger than R ≥ 13.5 km [54–61].
The mass radius relations of the eMFA are compared to

those of the standard mean field approximation (MFA). We
find that the mass radius relations for a given parameter set
in the eMFA are in general less compact compared to the
MFA case. Less compact star configurations imply rather
large values of the tidal deformability parameterΛ. Fulfilling
all considered constraints on mass M ≥ 2M⊙, radius R ≤
13.5 km at 1.4M⊙, and the tidal deformability parameter
Λ ≤ 720 for a 1.4M⊙ star is possible in a narrow parameter
space for theMFA. The parameters in the eMFA do not allow
for solutions which satisfy the above-mentioned constraints.
Further analysis of the parameter range of the SU(3)

chiral quark meson model in the eMFA exhibits that the
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inclusion of the fermion vacuum term yields crossover
transitions from a chirally broken phase to a restored phase
exclusively. This feature consequently smooths the EoSs
compared to the MFA case not allowing for twin star
solutions, that is, two stable branches in the mass radius
relation, as found for a certain parameter range in the MFA
(see, e.g., [18]).

II. THE SU(3) QUARK MESON MODEL

A chirally invariant model with three flavors Nf ¼ 3 and
with quarks as the active degrees of freedom is the SU(3)
chiral quark meson model. Based on the theory of the
strong interaction, an effective model must doubtlessly
implement features of QCD, such as flavor symmetry and
spontaneous and explicit breaking of chiral symmetry. The
Nf ¼ 3 Lagrangian [6,16,32,62] respecting these sym-
metries and including vector mesonic interactions reads

L ¼
X
α

Ψ̄nði∂ − gαmnÞΨn þ Ψ̄sði∂ − gαmsÞΨs

þ trð∂μΦÞð∂μΦÞ† − λ1½trðΦ†ΦÞ�2 − λ2trðΦ†ΦÞ2
þ tr½ĤðΦþΦ†Þ� þ cðdetðΦ†Þ þ detðΦÞÞ
−m2

0ðtrðΦ†ΦÞÞ −m2
vtrðV†VÞ ð2Þ

with a Yukawa-like coupling gα, α being the fields σn, σs,
ω, ρ, and ϕ involved, and the effective mass mn;s to the
spinors Ψn;s. The indices n ¼ nonstrange and s ¼ strange
indicate the flavor content. All physical fields are arranged
in the matrix Φ [5,6]

Φ¼ 1ffiffiffi
2

p

0
BBB@

ðσnþa0
0
Þþiðηnþπ0Þffiffi

2
p aþ0 þiπþ Kþ

s þiKþ

a−0 þiπ− ðσn−a00Þþiðηn−π0Þffiffi
2

p K0
sþiK0

K−
s þiK− K̄0

sþiK̄0 σsþiηs

1
CCCA; ð3Þ

where we consider the condensed σn;s fields and the pions
to determine the vacuum parameters λ1, λ2, m2

0, c, hn, and
hs of the model, which are fixed at tree level [27,32,62,63],
but change upon renormalization [39,42,43] (see Sec. II A).
In thermal equilibrium the grand potential Ω is calculated
via the partition function Z, which is defined as a path
integral over the fermion fields,

Ω ¼ −
lnZ
β

with Z ¼
Z

DΨDΨ̄e
R

β

0
dτ
R

d3x⃗L: ð4Þ

Evaluated, the grand canonical potential reads

Ωq̄q ¼ V þΩvac
q̄q þΩth

q̄q

¼ V −
3

π2β

Z
∞

0

k2dk · ðRþN Þ; ð5Þ

where V is the tree level potential

V ¼ λ1
4
ððσ2n þ σ2sÞ2Þ þ

λ2
8
ðσ4n þ 2σ4sÞ þ

m2
0

2
ðσ2n þ σ2sÞ

− hnσn − hsσs −
cσ2nσs
2
ffiffiffi
2

p

−
1

2
ðm2

ωω
2 þm2

ρρ
2 þm2

ϕϕ
2Þ þ B1=4; ð6Þ

where B1=4 is a phenomenological vacuum pressure
term [64–67], which will stiffen or soften the EoS pðϵÞ,
pressure p vs energy density ϵ. The fermion vacuum term is

Ωvac
q̄q ¼ R ¼ En;s

T
; ð7Þ

and the part from the mean field approximation is

Ωth
q̄q ¼ N ¼ lnð1þ e−βðEnþμ̃uÞÞ þ lnð1þ e−βðEn−μ̃uÞÞ

þ lnð1þ e−βðEnþμ̃dÞÞ þ lnð1þ e−βðEn−μ̃dÞÞ
þ lnð1þ e−βðEsþμ̃sÞÞ þ lnð1þ e−βðEs−μ̃sÞÞ: ð8Þ

The dependence of Ωth
q̄q on the chiral condensates σn;s is

implicit in the relativistic quasiparticle dispersion relation
for the constituent quarks

En;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m̃2

n;s

q
: ð9Þ

The quantity m̃n;s ¼ gαmn;s is the in medium mass gen-
erated by the scalar fields. μn;s in Eq. (8) are the respective
chemical potentials

μ̃up ¼ μ̃u ¼ gωωþ gρρ; ð10Þ

μ̃down ¼ μ̃d ¼ gωω − gρρ; ð11Þ

μ̃strange ¼ μ̃s ¼ gϕϕ: ð12Þ

A. Renormalized vacuum parameters
of the SU(3) quark meson model

The implementation of the fermion vacuum term
needs regularization schemes. In this work we employ
the minimal substraction scheme and follow the procedure
as found in [20,28,39–43] to properly perform the regu-
larization of the divergence. The diverging integral con-
taining the fermion vacuum contribution in Eq. (5) is to
lowest order just the one-loop effective potential at zero
temperature [41] and is dimensionally regularized via the
corresponding counterterm

δL ¼ NcNf

16π2
m̃4

n;s

�
1

ϵ
−
1

2
½−3þ 2γ − 4 ln ð2 ffiffiffi

π
p Þ�

�
; ð13Þ
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which gives

Ωvac
q̄q ¼ NcNf

16π2
m̃4

n;s

�
1

ϵ
−
1

2

�
−3þ 2γ þ 4 ln

�
m̃n;s

2
ffiffiffi
π

p
Λr

���
;

ð14Þ

where Nc ¼ 3 is the number of colors, lim ϵ → 0 is from
dimensional reasoning, γ is the Euler-Mascheroni constant,
and Λr is the renormalization scale parameter. The dimen-
sionally regularized fermion vacuum contribution eventu-
ally reads

Ωdr
q̄q ¼ −

NcNf

8π2
m̃4

f ln

�
m̃n;s

Λr

�
: ð15Þ

As in mean field approximation, the six model parameters
λ1, λ2, m2

0, c, hn, and hs are fixed by six experimentally
known values [32,62,68]. As an input the pion mass
mπ ¼ 136 MeV, the kaon mass mk ¼ 496 MeV, the pion
decay constant fπ ¼ 92.4 MeV, the kaon decay constant
fk ¼ 113 MeV, the masses of the eta meson mη ¼
548 MeV, the mass of the eta-prime meson m0

η ¼
958 MeV, and the mass of the sigma meson mσ need to
be known.
The mass of the sigma meson mσ is experimentally not

well determined. Usually, the sigma meson is identified
with the experimentally measured resonance f0ð500Þ,
which is rather broad, 400 ≤ mf0 ≤ 600 MeV [68,69]. In
Ref. [6] it was demonstrated that within an extended quark-
meson model that includes vector and axial-vector inter-
actions, the resonance f0ð1370Þ could be identified as this
scalar state. The mass of the sigma meson is chosen from
400 ≤ mσ ≤ 800 MeV in the following.
The starting point for the determination of the vacuum

parameters is the potential V, Eq. (6), including the pions
and the vacuum contribution Ωq̄q, Eq. (7), which together
form V,

V ¼ λ1
4
½ðσ2n þ σ2sÞ2 þ 2π20ðσ2n þ σ2sÞ þ π40�

þ λ2
8
½ðσ2n þ π20Þ2 þ 2σ4s � þ

m2
0

2
ðσ2n þ π20 þ σ2sÞ

− hnσn − hsσs − c
�
σ2nσs þ π20σs

2
ffiffiffi
2

p
�
þ B1=4

þ 1

2
ðm2

ωω
2 þm2

ρρ
2 þm2

ϕϕ
2Þ

−
NcNf

8π2
ðσ2n þ σ2sÞ2 ln

�
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n þ σ2s

p
Λr

�
: ð16Þ

The procedure to determine the vacuum parameters is
similar as in the SU(2) case [39]. Here, three of the six
derivatives to determine the vacuum parameters read

hn ¼ m2
0σn −

cσsσnffiffiffi
2

p þ λ1ðσ2n þ σ2sÞσn þ
λ2
2
σ3n þ Vac:;

hs ¼ m2
0σs −

cσ2nffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2

pp þ λ1ðσ2n þ σ2sÞσs þ λ2σ
3
s þ Vac:;

m2
π ¼ m2

0 −
cσsffiffiffi
2

p þ λ1ðσ2n þ σ2sÞ þ
λ2
2
σ2n þ Vac:; ð17Þ

with the vacuum contribution yet to be determined. Since
the pion does not form a condensate, it does not occur
anymore in Eqs. (17) above. Due to the mixing of the fields,
the second derivative ∂2V=∂σ2n does not yield the mass of
the sigma meson as in the two flavor case SU(2). At this
point the kaon mass is needed as an input parameter and
one remains with three unknown quantities [28].
It is necessary to rewrite the nonstrange-strange basis in

terms of the generators, i.e., the mathematical fields, and
afterwards identifying those with the physical fields.
Following [32,62] the matrix Φ, Eq. (3), can be written
as Φ ¼ TaΦa ¼ Taðσa þ iπaÞ with Ta ¼ λa

2
, λa being the

Gell Mann matrices where a ¼ 0; 1; 2;…; 8 are the nine
generators of the U(3) symmetry group. The generators
obey the U(3) algebra with the standard symmetric dabc and
antisymmetric structure constants fabc. Rearranging the
entries of Eq. (3) gives

Φ¼ 1

2

0
BBBBB@

ffiffi
2
3

q
σ0þ σ3þ σ8ffiffi

3
p σ1 − iσ2 σ4− iσ5

σ1þ iσ2
ffiffi
2
3

q
σ0 − σ3þ σ8ffiffi

3
p σ6− iσ7

σ4þ iσ5 σ6þ iσ7
ffiffi
2
3

q
σ0−

2σ8ffiffi
3

p

1
CCCCCA;

ð18Þ

and the transformation from the physical nonstrange-
strange basis to the mathematical basis reads

�
σn

σs

�
¼ 1ffiffiffi

3
p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
��

σ0

σ8

�
: ð19Þ

Separating the entries for the scalar and the pseudoscalar
sector gives the potential in terms of the mathematical fields
[32,62]. The mass matrix mij is determined only by the
mesonic part and by the fermionic vacuum term of the
potential V, Eq. (16), because the quark contribution
vanishes at T ¼ μ ¼ 0. Because of isospin symmetry some
entries of m2

ij are degenerate and furthermore m2
08 ¼ m2

80,
so that

m2
ij ¼

∂2V
∂Φi∂Φj

¼

0
BB@

m2
00 … m2

08

..

. . .
. ..

.

m2
80 … m2

88

1
CCA: ð20Þ
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This matrix needs to be diagonalized for m2
σ and m2

f0
in the

scalar sector, and for mη and m0
η in the pseudoscalar sector

introducing a mixing angle θ. Eventually the mass of the
kaon in the nonstrange-strange basis reads

m2
k ¼ m2

0 −
cσn
2

þ λ1ðσ2n þ σ2sÞ þ
λ2
2
ðσ2n −

ffiffiffi
2

p
σnσs þ 2σ2sÞ;

ð21Þ

which determines the axial anomaly term to be

c ¼ −2ðm2
k −m2

πÞ − λ2ð
ffiffiffi
2

p
σnσs − 2σ2sÞ

σn −
ffiffiffi
2

p
σs

: ð22Þ

Using Eq. (20), the sum of mη and m0
η reads

mη þm0
η ¼ 2m2

0 þ 2λ1ðσ2n þ σ2sÞ þ
λ2
2
ðσ2n þ 2σ2sÞ þ

cσsffiffiffi
2

p

¼ 2m2
π −

λ2
2
ðσ2n − 2σ2sÞ þ

3cσsffiffiffi
2

p ; ð23Þ

and inserting Eq. (22) into Eq. (23) to solve for λ2 gives

λ2 ¼
m2

η þm0
η
2 − 2m2

π þ 6σsðm2
k−m

2
πÞffiffi

2
p ðσn−

ffiffi
2

p
σsÞ

σ2s −
σ2n
2
− ð3 ffiffi2p

σ2sσn−6σ3sÞffiffi
2

p ðσs−
ffiffi
2

p
σsÞ

: ð24Þ

The further procedure in the mean field approximation is to
determine λ1ðm2

0Þ viamσ and mπ [16,32,62]. The quantities
obtained so far enter into the two condensate equations,
Eqs. (17), for the explicit symmetry breaking terms hn
and hs. Working in the extended version of the model,
the vacuum contributing a part from Eq. (16) has to be
rewritten in terms of the mathematical fields. Furthermore

∂2Ωdr
q̄q

∂2σ20
¼ κ

�
AW þ Xð8

3
σ0 − 2

ffiffi
2

p
3
σ8Þ

Z

�
; ð25Þ

∂2Ωdr
q̄q

∂2σ0σ8
¼ κ

�
BW þ Xð10

3
σ8 − 2

ffiffi
2

p
3
σ0Þ

Z

�
; ð26Þ

∂2Ωdr
q̄q

∂2σ28
¼ κ

�
CW þ Yð10

3
σ8 − 2

ffiffi
2

p
3
σ0Þ

Z

�
; ð27Þ

where

κ ¼ −
NcNf

72π2
g4; ð28Þ

A ¼ 96σ20 − 48
ffiffiffi
2

p
σ0σ8 þ 48σ28; ð29Þ

B ¼ 96σ0σ8 − 30
ffiffiffi
2

p
σ28 − 24

ffiffiffi
2

p
σ20; ð30Þ

C ¼ 48σ20 − 60
ffiffiffi
2

p
σ8σ0 þ 150σ28; ð31Þ

W ¼ 2 ln

 
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
σ20 þ 2

ffiffi
2

p
3
σ0σ8 þ 5

3
σ28

q
Λ

!
þ 1

2
; ð32Þ

X ¼ 32σ30 − 10
ffiffiffi
2

p
σ38 − 24

ffiffiffi
2

p
σ20σ8 þ 48σ28σ0; ð33Þ

Y ¼ 50σ38 − 8
ffiffiffi
2

p
σ30 þ 48σ20σ8 − 30

ffiffiffi
2

p
σ0σ

2
8; ð34Þ

Z ¼ 4

3
σ20 −

2
ffiffiffi
2

p

3
σ0σ8 þ

5

3
σ28: ð35Þ

Rewriting everything according to Eq. (19) in terms of the
physical fields, these mass corrections enter in the numerical
routine to search for thevacuumparameters λ1 andm2

0. These
two parameters alone compensate for the vacuum contribu-
tion in the two condensate equations hn and hs in Eqs. (17).
It is interesting to note that the grand canonical potential

remains unaffected by the choice of the renormalization
scale parameter Λr. This is easily seen in the SU(2) case
[39] and has also been shown for the SU(3) case for mσ ¼
400 MeV [28,42]. To compare our results with [42], the
renormalization scale parameter is set to Λr ¼ 200 MeV.

B. Charge neutrality and the gap equations

Since the lepton contribution decouples from the quark
grand canonical potential, it can be treated separately. The
electron contribution reads

Ωe ¼ −
2

β

Z
d3k
ð2πÞ3 ln

�
1þ e−

Ek;e�μe
T

�
ð36Þ

with Ek;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

e

p
, where me is the electron mass and

μe is the electron chemical potential.
A compact star is charge neutral, so that

X
f¼u;d;s;e

Qfnf ¼ 2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0 ð37Þ

with nf as the particle density of each species f.
The total grand canonical potential is

Ωtot ¼ V −
NcNf

8π2
m̃4

f ln

�
m̃f

Λr

�
−

3

π2β

Z
∞

0

k2dk ·N

−
2

β

Z
d3k
ð2πÞ3 lnð1þ e−

Ek;e�μe
T Þ; ð38Þ

and the vacuum parameter sets for different sigma meson
mass mσ are listed in Table I. As already mentioned, the
potential is scale independent. The dependence cancels
neatly, which is straightforward but tedious to check
[28,39,42,43]. The independence of Eq. (38) on Λr in
our work is checked numerically. The equations of motion
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∂Ωtot

∂σn ¼ ∂Ωtot

∂σs ¼ ∂Ωtot

∂ω ¼ ∂Ωtot

∂ρ ¼ ∂Ωtot

∂ϕ ¼! 0; ð39Þ

also known as the gap equations, finally determine the EoS,
pðϵÞ, with the pressure p and the energy density ϵ.

III. COMPACT STARS

The formalism discussed in the previous section can be
used to obtain EoSs, pðϵÞ, applicable for the calculation of
compact stars. The resulting mass radius relations have to
respect certain constraints to be physically reasonable. The
most important constraints are the 2M⊙ limit [45–48] and
the tidal deformability measurement by the LIGO/Virgo
Collaboration [49,50].

A. Tidal deformability

The observation of the binary neutron star merger event
GW170817 [49] is used to constrain the EoSs of compact
stars [54–60,70–72]. During the inspiral phase, one star
quadrupole deformation Qij in response to the companions
perturbing tidal field Eij is measured by the tidal polar-
izability λ,

Qij ¼ −λEij: ð40Þ

λ depends on the EoS [52,53,73] and is related to the stars
quadrupolar tidal Love number [51] k2 via

k2 ¼
3

2
λR−5; ð41Þ

where R is the radius of the star.

The Love number k2 is calculated as follows:

k2 ¼
8C5

5
ð1–2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1;

ð42Þ
with the compactness C ¼ M=R. The quantity yR ≡ yðRÞ
on the other hand is obtained by solving the differential
equation for yðrÞ coming from the line element of the
linearized metric, described in greater detail in [52,74,75]

ry0ðrÞ þ yðrÞ2 þ r2QðrÞ
þ yðrÞeλðrÞ½1þ 4πr2ðpðrÞ − ϵðrÞÞ� ¼ 0; ð43Þ

with

QðrÞ ¼ 4πeλðrÞ
�
5ϵðrÞ þ 9pðrÞ þ ϵðrÞ þ pðrÞ

c2sðrÞ
�

− 6
eλðrÞ

r2
− ðν0ðrÞÞ2; ð44Þ

the metric functions from general relativity

eλðrÞ ¼
�
1 −

2mðrÞ
r

�
−1
; ð45Þ

ν0ðrÞ ¼ 2eλðrÞ
mðrÞ þ 4πr3pðrÞ

r2
; ð46Þ

and csðrÞ2 ¼ dp=dϵ as the speed of sound squared
[52,53,73]. The boundary condition of Eq. (43) is

TABLE I. The vacuum parameters λ1, λ2, c, m2, hn, and hs for different values of the sigma meson mass mvac
σ in mean field

approximation (MFA: upper table) and with the inclusion of the fermion vacuum term for the renormalization scale parameter Λ ¼
200 MeV (eMFA: lower table).

mvac
σ Λ λ1 λ2 c [MeV] m2 [MeV2] hn [MeV3] hs [MeV3]

400 � � � −5.901 46.488 4807.245 ð494.272Þ2 ð120.73Þ3 ð336.41Þ3
500 � � � −2.698 46.488 4807.245 ð434.541Þ2 ð120.73Þ3 ð336.41Þ3
600 � � � 1.398 46.488 4807.245 ð342.496Þ2 ð120.73Þ3 ð336.41Þ3
700 � � � 6.615 46.488 4807.245 ð161.918Þ2 ð120.73Þ3 ð336.41Þ3
800 � � � 13.488 46.488 4807.245 −ð306.289Þ2 ð120.73Þ3 ð336.41Þ3
900 � � � 23.649 46.488 4807.245 −ð520.82Þ2 ð120.73Þ3 ð336.41Þ3

mvac
σ Λ λ1 λ2 c [MeV] m2 [MeV2] hn [MeV3] hs [MeV3]

400 200 −8.173 138.516 4807.245 ð283.901Þ2 ð120.73Þ3 ð336.41Þ3
500 200 −5.285 138.516 4807.245 ð173.694Þ2 ð120.73Þ3 ð336.41Þ3
600 200 −1.661 138.516 4807.245 −ð181.951Þ2 ð120.73Þ3 ð336.41Þ3
700 200 2.819 138.516 4807.245 −ð333.675Þ2 ð120.73Þ3 ð336.41Þ3
800 200 8.450 138.516 4807.245 −ð457.902Þ2 ð120.73Þ3 ð336.41Þ3
900 200 16.179 138.516 4807.245 −ð587.056Þ2 ð120.73Þ3 ð336.41Þ3
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yð0Þ ¼ 2, which implies no deformation at all in the center
of the star. At the surface of a self-bound star c2s → 0 and
the denominator in Eq. (44) blows up. The density
discontinuity leads to an extra expression just below the
surface of the star [53,73,75]. One has to substract

ys ¼
4πr3ϵsðrÞ
mðrÞ ð47Þ

from Eq. (43) with ϵsðrÞ being the value of the energy
density just below the surface. The dimensionless tidal
deformability Λ is

Λ ¼ 2k2
3C5

; ð48Þ

usually solved simultaneously with the TOV equations
[52,53,73]. The actual value of a 1.4M⊙ star has to be in a
range Λ ¼ 300þ420

−230 [49,54].

IV. RESULTS

In this section we present our results for varying
sigma meson mass mσ , repulsive vector coupling gω, and
different values of the bag constant B1=4. At the end of this
section we compare the results from the eMFA with the
MFA. The constituent quark mass is held fixed at
mq ¼ 300 MeV, which is roughly one-third of the nucleon
mass. The standard parameter set is mq ¼ 300 MeV, mσ ¼
600 MeV, gω ¼ 3.5, and B1=4 ¼ 80 MeV, in the following
denoted as a reference set.

A. Variation of the sigma meson mass

Figure 1 shows the solutions of the scalar condensate
equations, Eqs. (39), as a function of quark chemical

potential μq for the scalar fields σn and σs. For all our
choices of mσ a crossover transition is found. For larger
values of mσ the restoration of chiral symmetry happens at
larger quark chemical potential μq than for a lower mass of
the sigma meson. A first order phase transition in the eMFA
within this parameter choice is not found. Chiral symmetry
is not entirely restored, because of the explicit breaking of
chiral symmetry [16,32].
Figure 2 shows the EoSs for three different values of the

sigma meson mass, 400 MeV, 600 MeV, and 800 MeV. The
symbol on a particular EoS denotes the corresponding
location of the maximum mass star on the EoS. The red
circle marks the maximum mass star on the EoS for
mσ ¼ 400 MeV. The black triangle is the maximum mass
star on the reference set, and the blue square is the
representative maximum mass star for mσ ¼ 800 MeV.
The corresponding vacuum parameters are listed in Table I.
Due to the implementation of the fermion vacuum term the
behavior of the grand potential, Eq. (5), i.e., the resulting
EoS, is highly nonlinear. The appropriate EoSs stiffen with
increasing sigma meson mass mσ for p ≤ 100 MeV=fm3,
which is in contrast to the MFA case [16]. For p ≥
100 MeV=fm3 the EoSs stiffen with decreasing sigma
meson mass mσ as in the MFA. The inset of Fig. 2 shows
the crossing of the EoSs where the EoS formσ ¼ 400 MeV
crosses the mσ ¼ 600 MeV EoS at p ¼ 20 MeV=fm3 and
then the mσ ¼ 800 MeV EoS at p ¼ 35 MeV=fm3.
The corresponding speed of sound c2s for the different

choices of mσ can be seen in Fig. 3. The inset displays that
the speed of sound approaches c2s ¼ 0.5 at large energy
densities. The EoS for mσ ¼ 400 MeV generates the
highest values of the speed of sound c2s at a given energy
density for values of the energy density ϵ ≥ 220 MeV=fm3.
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FIG. 1. The solutions of the condensate equations σn and σs in
the extended mean field approximation as a function of the
quark chemical potential μq for different values of mσ . The other
parameters are mq ¼ 300 MeV, gω ¼ 3.5, and B1=4 ¼ 80 MeV.
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FIG. 2. The EoSs for different values of the sigma meson mass
mσ . The inlaid figure accentuates the behavior at rather low
energies, resulting in nontrivial mass-radius sequences. The
symbols indicate where the maximum mass star is located on
the respective EoS. The other parameters are mq ¼ 300 MeV,
gω ¼ 3.5, and B1=4 ¼ 80 MeV.
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This feature results from the stiffness of the EoS; see also
Fig. 2. c2s influences the solution of the differential
equation, Eq. (43), via the quantity QðrÞ, Eq. (44).
Thereby k2 and eventually the tidal deformability Λ,
Eq. (48), are influenced by the EoS.
The mass radius relations can be seen in Fig. 4, where

for our parameter choices 2M⊙ are possible [45–48],
indicated by the upper horizontal line. The lower horizontal
line indicates 1.4M⊙. For the lowest value of mσ ¼
400 MeV chosen in this article, the mass radius relation
is more compact than for the other choices of mσ. This
feature is different in the MFA [16] and results from the

nontrivial behavior of the EoSs discussed for Fig. 2. At
mσ ¼ 400 MeV the radius of a 1.4M⊙ star is R1.4M⊙

¼
13.14 km, whereas for mσ ¼ 600 MeV R1.4M⊙

¼15.27 km
and for mσ ¼ 800 MeV R1.4M⊙

¼ 16.22 km (see also
Table II). With increasing mσ the configurations become
less compact, but nonetheless has the mass radius relation
for mσ ¼ 600 MeV, the smallest maximum mass of
2.02M⊙. This value is at roughly the same radius R ¼
12.12 km as the mass radius relation for mσ ¼ 400 MeV
with a maximum value of 2.24M⊙. The maximummass for
mσ ¼ 800 MeV is 2.2M⊙ at a radius R ¼ 15.65 km. It is,
however, not seen in the MFA that the maximum masses
for two different values of mσ ¼ 400 MeV and mσ ¼
800 MeV are nearly equal at different radii. This pecu-
liarity can be explained with the nontrivial behavior of the
EoSs for p ≤ 100 MeV=fm3; see inset of Fig. 2.
Figure 5 shows the radial profile of the maximum mass

star withM ¼ 2.02M⊙ at R ¼ 12.12 km from the standard
parameter set, i.e., the black triangles in Figs. 2, 3, and 4.
The left figure displays the nonstrange σn and the strange σs
condensate as a function of the stars’ radius R. The right
figure shows the pressure p and the energy density ϵ as a
function of the stars’ radius R. The curves are rather smooth
because the phase transition is a crossover. The nonstrange
σn condensate has a value below 10 MeV=fm3 in the center
of the star at R ¼ 0, which is a magnitude smaller than
the value of the chirally broken phase fπ ¼ 92.4 MeV.
However, chiral symmetry is not fully restored in the center
of the 2.02M⊙ star as the strange σs condensate at R ¼ 0 is
only slightly below 60MeV for a vacuum expectation value
of 94.47 MeV.
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The inset shows that the speed of sound approaches c2s ¼ 0.5 for
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gω ¼ 3.5, and B1=4 ¼ 80 MeV.
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B. Comparison with the mean field approximation

The stars on the mass radius relation for a larger value of
the repulsive coupling parameter gω have larger maximum
masses and also larger radii, which is qualitatively known
from the MFA case [14,16]; see also the corresponding
values in Table II for the eMFA and Table III for the MFA.
The vacuum pressure constant B1=4 drops out in the

equations of motion, Eqs. (39) and (6), respectively.
Smaller values of B1=4 have essentially the same effect
on the mass radius relation as a larger repulsive coupling
gω: Maximum masses and radii become larger.
Figure 6 shows contour lines of 2M⊙ maximummass for

the MFA and the eMFA cases at fixed gω ¼ 2.5, 3, and 3.5
in themσ vs B1=4 plane. For a parameter choice on the right-
hand side of a particular contour line, the maximummass of
the corresponding mass radius relation is smaller than
2M⊙, and on the left-hand side consequently larger than
2M⊙. Furthermore, smaller values of the repulsive cou-
pling gω together with a relatively small value of the
vacuum pressure constant B1=4 yield maximum masses of
≥2M⊙ in the mass radius relation [16,18]. This statement
holds for the MFA and for the eMFA cases.
The contour lines of the MFA and the eMFA seem

somehow to be shifted vertically with a difference of mσ ≃
150 MeV for gω ¼ 2.5, mσ ≃ 100 MeV for gω ¼ 3.0, and
mσ ≃ 50 MeV for gω ¼ 3.5. The difference in the shift in
mσ becomes smaller for larger values of gω. For a certain
mσ ≤ 620 MeV, larger values of B1=4 are allowed for 2M⊙
in the MFA compared to the eMFA, resulting in more

compact mass radius relations in the MFA. Recall that
smaller values of B1=4 generate rather larger radii, so that
denser stars yield smaller values of the tidal deformability
parameter Λ ∝ C−5 [see Eq. (48)]. For at least 2M⊙ in the
eMFA with values mσ ≥ 620 MeV a rather large value of
B1=4 is necessary. The mass radius configurations, however,
turn out to already have a too large radius for a small tidal

TABLE II. eMFA: The values of the radius at 1.4 M⊙, the tidal deformability parameter Λ1.4 M⊙
, the maximum radius, the maximum

mass, and the central pressure and central energy density for the maximum mass stars for the parameters mσ , gω, and B1=4.

mσ [MeV] gω B1=4 [MeV] R1.4M⊙
[km] Λ1.4M⊙

Rmax [km] Mmax ½M⊙� pmax [MeV=fm3] ϵmax [MeV=fm3]

400 3.5 80 13.14 1107 12.12 2.24 320.02 999.55
600 3.5 80 15.27 3253 12.12 2.02 343.21 1148.82
800 3.5 80 16.22 5184 15.65 2.20 88.62 537.67
600 1 80 9.32 47 8.87 1.44 409.65 1829.86
600 6 80 18.06 1079 17.15 2.82 128.35 509.77
600 3.5 50 22.57 5250 22.80 2.61 23.35 221.13
600 3.5 110 10.10 66 9.36 1.79 578.83 1658.17

TABLE III. MFA: The values of the radius at 1.4 M⊙, the tidal deformability parameter Λ1.4 M⊙
, the maximum radius, the maximum

mass, and the central pressure and central energy density for the maximum mass stars for the parameters mσ , gω, and B1=4.

mσ [MeV] gω B1=4 [MeV] R1.4M⊙
[km] Λ1.4M⊙

Rmax [km] Mmax ½M⊙� pmax [MeV=fm3] ϵmax [MeV=fm3]

400 3.5 80 14.38 2275 15.28 2.70 142.70 568.15
600 3.5 80 12.51 680 11.47 2.03 330.56 1143.22
800 3.5 80 16.10 4858 15.88 2.09 64.78 480.79
600 1 80 10.74 389 10.45 1.71 206.77 1091.38
600 6 80 18.00 9815 14.86 2.58 251.90 761.90
600 3.5 50 21.92 25300 14.5 2.19 228.14 878.17
600 3.5 110 10.08 243 9.61 1.82 467.07 1493.87
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deformability parameter Λ ≤ 720; see also Table II for the
eMFA and Table III for the MFA.
Figure 7 shows contour lines of maximum masses of

2M⊙ for the MFA and the eMFA cases at fixed B1=4 in the
mσ vs gω plane. For a particular parameter choice the
maximum mass is larger than 2M⊙ on the right-hand side
of a particular contour line and on the left-hand side
consequently smaller. Recall that a larger value of the
repulsive coupling is needed for 2M⊙ at fixed vacuum
pressure constant B1=4.
It is interesting to note that in the MFA case no repulsive

coupling is necessary to generate two solar masses for
rather small mσ , making the configurations more compact
compared to the eMFA case. As already mentioned, more
compact configurations are in favor of a low value of the
tidal deformability parameter Λ.
Figure 8 shows the value of the tidal deformability

parameter Λ according to Eq. (48) on a logarithmic scale
for a 1.4M⊙ star as a function of the radius of a 1.4M⊙ star.
The shaded area fulfills both constraints on either R ≤
13.5 km [54–61] or Λ ≤ 720 [50]. The c2s curve corre-
sponds to the MIT bag model EoS p ¼ c2sϵ − 4B and is
obtained for different values of the vacuum pressure
constant B. It is interesting to note that the curves for
the MIT bag model for c2s ¼ 1 and c2s ¼ 1=3 are relatively
close together. This feature indicates that a particular
function Λ1.4M⊙

ðR1.4M⊙
Þ is rather independent of the speed

of sound c2s , so that c2s in Eq. (44) plays a subdominant part.
The curve for c2s ¼ 1 can also be seen as an upper limit due
to causality.
The MFA and the eMFA cases are obtained by varying

mσ in the standard parameter set. In the eMFA case
the Λ1.4M⊙

values and the radii decrease linearly on the

logarithmic scale with decreasing mσ (see also Table II). In
the MFA case a minimum value Λ ¼ 680 at 12.51 km
radius for mσ ¼ 600 MeV is found (see also Table III).
Smaller and larger values of mσ ¼ 600 MeV lead to larger
values of either Λ1.4M⊙

or the corresponding radius. This
feature may be explained due to a shift in the dominance of
attractive and repulsive field contributions to the stiffness of
the EoS, and has already been suspected and discussed
in [16]. The only parameter set which respects the 2M⊙
limit, the R1.4M⊙

≤ 13.5 km bound, and the Λ1.4M⊙
≤ 720

constraint is the reference set in the MFA and is hence
located within the shaded area in Fig. 8.
The inclusion of the fermion vacuum term in the SU(3)

chiral quark meson model seems not to be compatible with
astrophysical measurements and constraints.
To sort our results for the SU(3) quark meson model

within other approaches, a Skyrme parameter approach
taken from Zhou et al. [76] and an relativistic mean field
(RMF) model studied by Nandi et al. [77] are included in
Fig. 8. The RMF values correspond to the fit function
Λ1.4M⊙

¼ 1.53 × 10−5ðR1.4M⊙
=kmÞ6.83 [77]. The values of

these two approaches are located at smallerΛ1.4M⊙
at a given

radius and lie well within the shaded area. Furthermore, the
results for free Fermi gas EoSs p ¼ Kϵ1þ1=n for various
constants K, with n ¼ 1 and n ¼ 3=2 are also shown. The
values of Λ1.4M⊙

ðR1.4M⊙
Þ for the interaction dominated EoS

with n ¼ 1 lie in between the results of the quark matter
EoSs and the Skyrme and RMF approach. The results of the
nonrelativistic EoS for n ¼ 3=2may be seen as a lower limit
for the function Λ1.4M⊙

ðR1.4M⊙
Þ in Fig. 8. The values for

Λ1.4M⊙
at a given radius of the hadronic EoSs are located

above the values of the nonrelativistic EoS.
In general it seems that stars composed of quark matter

have larger values of the tidal deformability parameter Λ
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for a 1.4M⊙ star at a given radius than stars generated by
hadronic EoSs.

V. CONCLUSIONS

We have studied the SU(3) quark meson model including
the fermion vacuum term and have determined the vacuum
parameters for different values of the sigma meson mass
mσ . The whole potential is independent of any renormal-
ization scale [28,31,42,43].
For all scalar meson masses in the eMFA a crossover

transition in the condensates is found. In general it seems
that in the MFA a first order phase transition is possible in a
larger parameter space. For larger values of mσ the
restoration of chiral symmetry happens at the larger quark
chemical potential μq [78], which is also observed for larger
values of gω. The bag constant B1=4 on the other hand does
not affect the condensates at all, since it drops out in the
equations of motion.
The resulting EoSs have been used to calculate mass

radius relations of compact stars. These mass radius
relations have to respect the 2M⊙ limit [45–48] and the
constraints coming from the analysis of the tidal deform-
abilities of the GW170817 neutron star merger event
[50,54–60]. We compare our results from the eMFA with
the MFA. Our finding is that the 2M⊙ constraint can be
fulfilled in both approaches in a rather wide parameter
space (see, e.g., [16]), and that in the eMFA the mass radius
relations are generally less compact resulting in larger
values of the tidal deformability parameter Λ. This feature,
however, implies that in the eMFA the constraints from
GW170817 are not fulfilled, i.e., Λ1.4M⊙

≥ 720. In the
MFA a small parameter space is found where all considered
restrictions are satisfied.
Within our parameter choice in the eMFA a smaller

value of the sigma meson mass mσ is favored for a rather
compact mass radius relation. This is in contrast to the
MFA (see, e.g., [16]), and may be explained via the
additional term in the potential resulting from the fermion
vacuum contribution.
A large repulsive coupling constant gω stiffens the EoS

and hence enables the star to generate more pressure
against gravity. The maximum mass and also the radius
become consequently larger. These features may then result
in larger values for the tidal deformability parameter
Λ ∝ C−5, C being the compactness. Incidentally, this holds
vice versa; i.e., small respulsive couplings gω imply rather
small tidal deformabilities, but the 2M⊙ constraint may not
be fulfilled.
The EoSs substantially soften when increasing the

vacuum pressure constant B1=4 so that for values B1=4 ≥
110 MeV maximum masses of 2M⊙ are difficult to obtain.
Smaller values of B1=4, on the other hand, have essentially

the same effect on the mass radius relation as a larger
repulsive coupling gω; i.e., maximum masses and radii
become larger and consequently so does the tidal deform-
ability parameter Λ.
To sort our results we compare our findings for the tidal

deformability parameter at 1.4M⊙, Λ1.4M⊙
ðR1.4M⊙

Þ, with
the results for a constant speed of sound (linear) EoS with
c2s ¼ 1, where M ∝ R3 and which can be seen as an upper
limit due to causality. As a lower limit we introduce a
nonrelativistic polytropic EoS with the polytropic index
Γ ¼ 5=3 where M ∝ R−3. The case Γ ¼ 2 corresponds to
an interaction dominated EoS where R≃ const, indepen-
dent of the mass of the stars on the mass radius relation. In
between these results we find the results of the MFA and
eMFA cases relatively close to the constant speed of sound
EoSs and the polytrope n ¼ 2. For further comparison we
also took a Skyrme parameter approach taken from Zhou
et al. [76] and an RMF model studied by Nandi et al. [77].
Their results are located slightly below the values of the
polytropic Γ ¼ 2 case and centrally in between the results
from the constant speed of sound and the nonrelativistic
polytropic EoS.
In general it seems that quark matter stars have larger

values of the tidal deformability parameter Λ at 1.4M⊙
than hadronic stars. Taking into account more interactions
among quarks could lower the value of the tidal deform-
ability parameter Λ1.4M⊙

ðR1.4M⊙
Þ, because interactions

among quarks may decrease the value of Λ1.4M⊙
at a given

radius; see Fig. 8.
A first order chiral phase transition yielding twin stars as

in the MFA (see, e.g., [18]) was not found in the eMFA.
Compared to the mean field case, the EoSs show a smooth
behavior due to the additional term in the potential coming
from the fermion vacuum term. The MFA and the eMFA,
however, yield stars with ≥2M⊙ and radii ≤ 13.5 km at
1.4M⊙, but only in the MFA was the additional Λ ≤ 720
limit fulfilled for one set of parameters, i.e., for
mσ ¼ 600 MeV. This is due to the fact that the MFA
approach yields more compact mass radius relations
than the eMFA case. In the eMFA the 2M⊙ limit is
fulfilled for the most compact mass radius configuration
at mσ ¼ 400 MeV with a radius of 13.14 km, but the
value of Λ1.4M⊙

ðR1.4M⊙
Þ ¼ 1107 is not compatible with

GW170817.
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