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In order to separate astrophysical gravitational-wave signals from instrumental noise, which often
contains transient non-Gaussian artifacts, astronomers have traditionally relied on bootstrap methods such
as time slides. Bootstrap methods sample with replacement, comparing single-observatory data to construct
a background distribution, which is used to assign a false-alarm probability to candidate signals. While
bootstrap methods have played an important role establishing the first gravitational-wave detections,
there are limitations. First, as the number of detections increases, it makes increasingly less sense to treat
single-observatory data as bootstrap-estimated noise, when we know that the data are filled with
astrophysical signals, some resolved, some unresolved. Second, it has been known for a decade that
background estimation from time slides eventually breaks down due to saturation effects, yielding incorrect
estimates of significance. Third, the false alarm probability cannot be used to weight candidate
significance, for example when performing population inference on a set of candidates. Given recent
debate about marginally resolved gravitational-wave detection claims, the question of significance has
practical consequences. We propose a Bayesian framework for calculating the odds that a signal is of
astrophysical origin versus instrumental noise without bootstrap noise estimation. We show how the
astrophysical odds can safely accommodate glitches. We argue that it is statistically optimal. We
demonstrate the method with simulated noise and provide examples to build intuition about this new
approach to significance.
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I. INTRODUCTION

Recent breakthroughs in gravitational-wave astronomy
have been facilitated by Bayesian inference [1]. Inference
allows robust and unbiased determination of the source
properties, model comparisons, population-level inferences
for a set of observations, and optimal searches for the
gravitational wave background (for examples, see [2–9]).
However, the problem of detection for transient compact
binary coalescence signals has typically been cast in
frequentist terms.
Detection is theproblemof identifying andquantifying the

significance of astrophysical signals in noisy data. To first
order, the noise in gravitational-wave observatories such as
LIGO/Virgo [10,11] can be described as a colored Gaussian
process. However, gravitational-wave observatories are sub-
ject to frequent transient artifacts known as glitches; see, for
example, Refs. [12–14]. Glitches can arise from any number
of reasons, for example, photodiode saturation, environmen-
tal influence, and scattered light [15]. Inmost cases, however,

the cause of a glitch is unknown. Most glitches are of local
original and therefore not causally connected between sites.
However, events such as lightning can potentially produce
correlated glitches. For these correlated glitches, data from
environmental sensing equipment are used as a veto. For a
complete guide to the LIGO and Virgo detector noise, see,
e.g., Refs. [16,17]. Here, we assume that glitches are not
causally connected between sites (i.e., that any glitches
occurring from global phenomena have been vetoed by
the environmental sensing). In our model, glitches in differ-
ent observatories are independent and any coincidences are
due entirely to chance.
For the gravitational-wave transients detected thus far, a

p-value approach (also known as null-hypothesis signifi-
cance testing) is often applied to assign significance for
detection claims (see, e.g., Refs. [18–21]). A detection
statistic for the signal is compared against a background
distribution. Without the ability to shield the observatory
from astrophysical signals, the background distribution is
generated instead using bootstrap methods such as time
slides (see, e.g., Refs. [22–29]). The term “bootstrap” refers
to the practice of using an empirical distribution (in this
case, a detection statistic) to estimate the properties of an
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estimator (in this case, the p value); for more information,
see, e.g., Ref. [30].
Time slides are a classic example. Data from indepen-

dent observatories are time shifted by an amount greater
than the coherence time of the signal. Each time shift
provides an independent realization of bootstrap generated
noise. By calculating the detection statistic for each time
shifted dataset, a background distribution can be generated.
Astrophysical signals are detected when their detection
statistic is suitably large compared to this background
distribution. Time slides are a highly successful and
convenient way to detect signals in the presence of transient
noise. However, they have limitations.
With O3 sensitivity, the rate of binary black hole

detections is expected to average one per week [5,31]. If
several days of data around the event are used to perform
background estimation, there is non-negligible probability
of including another event close to the detection threshold.
Moreover, in addition to individually detectable signals, the
data will also contain a stochastic background of unre-
solved signals [6,32,33]. Using data containing astrophysi-
cal signals violates the basic assumptions of the time-slide
method and will eventually (with increasing sensitivity)
result in false dismissal of astrophysical signals due to
contamination from signals in the background estimation
procedure [34]. In addition, it was shown byWąs et al. [35]
that the time-slide method suffers a saturation problem:
increasing the number of time slides eventually fails to
produce new realizations of the background data due to the
limited variety of glitches in the original dataset. This
means the p value estimated from time slides can be
incorrect and will not be improved by more time
slides [35].
An alternative bootstrap method to time slides is to

model the distribution of noise as a Poisson process, which
combines random draws from single-detector background
distributions [36,37]. The background distribution is mod-
eled using the empirical distribution of the single-detector
detection statistic. Employing bootstrap techniques, the
method is subject to the same limitations as time slides:
saturation (from the limited noise realization available for
the empirical distribution) and contamination from signals.
See [38–40] for recent updates and applications of this
method.
Large-scale mock data challenges comparing pipelines

[41] have validated the p-value approach to significance for
rare events (unambiguous detections) using various boot-
strap methods. However, the authors of [41] point out that
bootstrap methods are subject to limitations when applied
to marginal events.1

These limitations motivate a fully Bayesian approach
which eschews the bootstrap estimation of the background,
a conclusion supported by [41]. We propose an approach,
which unifies, in a single framework, the problems of
significance and parameter estimation. We argue that the
significance of a candidate event does not depend on the
detection pipeline(s) used to identify it.
We anticipate that this Bayesian approach has broader

applications for population modeling, robust multimessen-
ger detection [42], and detector characterization.
There has been some work already toward this end. The

first LIGO/Virgo gravitational-wave transient catalog [43]
includes a table of pastro, a Bayesian odds comparing the
astrophysical/terrestrial hypotheses [44–46]. We regard this
step as an important development. The method for calcu-
lating pastro is fully Bayesian. However, it relies on the
bootstrap noise models of the search pipelines used to
identify the candidate events. Thus, the limitations of
bootstrap methods discussed above affect the determination
of pastro. Moreover, using the bootstrap noise models of
different search pipelines leads to other undesirable con-
sequences which are highlighted in Table IV of [43]:
different pipelines produce different values of pastro.
Consider, for example, GW170729: the pastro values range
from 52% to 98%. Recent claims from [47] have yielded
new candidates—using an entirely different pipeline—
which were not deemed significant by LIGO/Virgo, at
least in the first gravitational-wave transient catalog [43].
This begs the question: what is the actual probability that
GW170729 is of astrophysical origin? We argue that the
question is best answered in a pipeline-independent way,
using the same infrastructure used for parameter estimation.
The remainder of this paper is organized as follows. In

Sec. II, we introduce the formalism for calculating the
astrophysical odds, quantifying the probability that a data
segment contains a signal of astrophysical origin versus
noise. In Sec. III, we carry out a toy model demonstration to
build intuition for the odds before providing a full-scale
simulation study of binary black hole signals in modeled
interferometer data in Sec. IV. We conclude in Sec. V with a
discussion and future outlook.

II. TOWARD BAYESIAN DETECTION

In this section, we introduce a Bayesian odds for
determining the significance of a gravitational-wave can-
didate without time slides. The details are somewhat
technical, and it is necessary to introduce a bit of notation.
Rather than build the odds from constituent parts, we opt to
begin with the result and then explain the components one
at a time.
This section is organized as follows. In Sec. II A, we

provide a general expression for the astrophysical odds and
define the component parts. In Sec. II B, we introduce a
mixture model describing the data as a combination of
signal and noise. In Sec. II C, we describe the noise model,

1As an aside, approaches based on data statistics hypotheses
face a fundamental limitation: the associated p value cannot be
used as a “score” to determine a candidate’s astrophysical
significance.
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which includes a model of glitches. In Sec. II D, we
describe the signal model for gravitational waves from
compact binaries. In Sec. II E, we provide a practical
expression for the astrophysical odds based on our signal
and noise models. Finally, in Sec. II F, we place the method
in the context of previous literature.

A. Formalism

We presuppose that the data are divided into segments,
each of which may contain a single binary signal. (This
assumption is valid provided the segment duration is less
than 108 s, the implied 90% lower bound on the average
waiting time between stellar-mass black hole coalescence
events throughout the universe [48]). The following boxed
equation is the astrophysical odds, which answers the
question “what are the odds that the ith data segment
contains a signal Si, given all the data d?”

OSi=N i
ðdÞ¼

R
dΛLðdijSi;ΛÞπðΛjdk≠iÞπðSijdk≠i;ΛÞR
dΛLðdijN i;ΛÞπðΛjdk≠iÞπðN ijdk≠i;ΛÞ

:

ð1Þ

Let us go through component pieces in turn:
(i) OSi=N i

ðdÞ. The detection statistic is a hyperparame-
trized astrophysical odds, or for short, astrophysical
odds, a single number, which we denote O. See
Appendix A for a derivation of the hyperodds in
general. As all odds, it compares two hypotheses, in
this case S, the signal hypothesis, and N , the noise
hypothesis. According to the signal hypothesis, the
segment contains an astrophysical signal in among
noise. According to the noise hypothesis, there is no
signal present, just noise. Noise, here, refers to both
Gaussian noise and/or a glitch. The astrophysical
odds depends on the full dataset d.

(ii) Λ. The numerator and denominator include integrals
over Λ, which is a set of hyperparameters modeling
the distribution of signal and noise parameters θi.
The models are described using conditional priors
πðθijΛÞ.

(iii) di and dk≠i. We divide d into di, the ith data
segment, and every other segment of data, dk≠i,
which we refer to as the contextual data. The
contextual data provide context with which to
understand the significance of di.

(iv) LðdijSi;ΛÞ. The next term in the numerator is the
likelihood of the data given the signal hypothesis,
and given the hyperparameters. For short, we call it
the signal evidence. The corresponding term in the
denominator is LðdijN i;ΛÞ, the likelihood of
the data given the noise hypothesis and given the
hyperparameters. For short, we call it the noise
evidence. We note that these terms could also be

described equivalently as the fully marginalized
signal and noise likelihoods.

(v) πðΛjdk≠iÞ. The next term in the numerator is the
posterior for the hyperparameters given the contex-
tual data. We use this k ≠ i posterior as the prior for
event i. For short, we call this the hyperprior.

(vi) πðSijdk≠i;ΛÞ. The final term in the numerator is the
prior for the signal hypothesis given the contextual
data and given the hyperparameter Λ. For short, we
call this the signal prior. The corresponding term in
the denominator is the prior for the noise hypothesis,
πðN ijdk≠i;ΛÞ. For short, we call this the noise prior.

Qualitatively, Eq. (1) is straightforward to understand
now that we have introduced the necessary notation. Our
signal and our noise are described by parameters θi. The
prior distribution for θi has an uncertain shape, which we
model using hyperparameters Λ, so that the signal and
noise parameters are conditional on the hyperparameters:
πðθijΛÞ. In other words, we employ a hierarchical model
[49]. The odds, defined in Eq. (1), is an example of a
hyperodds (see Appendix A) which marginalizes over
uncertainty in the hyperparameters using contextual data
dk≠i. The overall result is that Eq. (1) compares the
probability for a signal and noise model evaluated using
a hierarchical model conditional on the contextual data. In
the following subsections, we will describe how each term
in Eq. (1) is calculated in detail, resulting in the version
used in practice, Eq. (15).

B. Mixture model

In Sec. II A we presented the astrophysical odds in a
general form. It is now necessary to specialize further. First,
we assume that the hyperparameters consist of three
components:

Λ → fΛS;Λ=S; ξg ð2Þ

¼ fΛ=S; ξg; ð3Þ

where ξ≡ πðSjξÞ is the mixing fraction and the signal
hyperparametersΛS determine the shape of the signal priors.
For this analysis, we assume there are no signal-hyper
parameters, and so this term can be neglected:

LðdijSi;ΛÞ → LðdijΛS;SiÞ ð4Þ

¼ LðdijSiÞ: ð5Þ

However, one could straightforwardly extend the
analysis to incorporate signal hyperparameters, for example,
from [50].
The noise hyperparameters Λ=S determine the shape of

the noise prior:
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Lðdij=Si;ΛÞ → LðdijΛ=S; =SiÞ: ð6Þ

This is where the action happens: the problem of determin-
ing the significance of a candidate event is recast as a
problem of determining a suitable hyperparametrization for
the noise distribution.
Constructing a mixture model for the exhaustive hypoth-

esis S∨N , we obtain a general hyperlikelihood, condi-
tional on the hyperparameters:

LðdjΛS;Λ=S;ξ;S∨N Þ¼ ξLðdjSÞþð1−ξÞLðdjΛ=S;N Þ:
ð7Þ

The general likelihood is used to calculate πðΛjdk≠iÞ. In
Secs. II C and II D, we give details on how the noise and
signal evidences are calculated in practice.

C. Noise model

We adopt a noise model consisting of multiple sub-
hypotheses and for simplicity restrict the discussion to just
two observatories, a and b. The entire noise hypothesis,
which is the union of four subhypotheses, is denoted N .
Each subhypothesis accounts for the different kinds of
noise. For example, =S0Ga=Gb is the subhypothesis that no
signal is present (=S0); there is a glitch in observatory a (Ga);
there is no glitch present in observatory b (=Gb). The
complete noise hypothesis is

N ≡ =S0GaGb∨=S0Ga=Gb∨=S0=GaGb∨=S0=Ga=Gb: ð8Þ

The noise evidence from Eq. (7) can therefore be calculated
using a mixture model

LðdjΛ=S0 ;N Þ ¼ ξagξ
b
gLðdjΛ=S; =S0GaGbÞ

þ ξgað1 − ξgbÞLðdjΛ=S; =S0Ga=GbÞ
þ ð1 − ξagÞξbgLðdjΛ=S; =S0=GaGbÞ
þ ð1 − ξagÞð1 − ξbgÞLðdjΛ=S; =S0=Ga=GbÞ; ð9Þ

where ξxg ≡ πðGxjΛ=SÞ is the glitch mixing fraction for

observatory x. The individual likelihoods in this expression
are the evidence for glitches (or a lack thereof) in each
observatory. Assuming the noise (including glitches) are
independent between the two observatories, we can sim-
plify the likelihoods, e.g.,

LðdjΛ=S; =S0GaGbÞ ¼ LðdjΛ=S; =S0GaÞLðdjΛ=S; =S0GbÞ: ð10Þ

In the absence of a signal or glitch hypothesis, e.g.,
Lðdj=S0=GxÞ, the evidence is the usual Gaussian-noise
evidence [51]. On the other hand, given a glitch model,
the evidence for a glitch in the x observatory is calculated
from marginalizing over the glitch model parameters,

LðdjΛ=S; =SGxÞ ¼
Z

dθLðdjθ;Λ=S;GxÞπðθjΛ=S;GxÞ: ð11Þ

In practice, this integration is performed numerically
using nested sampling methods [52]. In order to allow
rapid evaluation of LðdjΛ=S; =SGxÞ while varying Λ=S, we use
the so-called recycling method; see Appendix B and
Refs. [51,53,54].
However, it is difficult to build a glitch model to evaluate

Eq. (11) from first principles since most glitches are poorly
understood. In this work, we instead apply the conservative
model first proposed by Veitch and Vecchio [55] in which
glitches are modeled as compact binary signals with
uncorrelated model parameters in each observatory.
This glitch model is founded on the principle of model-

ing the worst-case scenario: glitches are indistinguishable
from signals except for the absence of coherence (in the
model parameters θ) between observatories. Therefore for a
signal to be preferred over this glitch model, it must not
only match modeled waveforms, but must also look like the
same binary system in multiple observatories with arrival
times consistent with an astrophysical origin. We will apply
this idea, further developed in Isi et al. [56], which extends
the noise hypothesis to include Gaussian noise.
This glitch model is conservative in that we could better

distinguish glitches and hence boost the significance of
astrophysical signals by including more physically moti-
vated models of glitches (see, e.g., Ref. [57]). However, in
the absence of a trustworthy physical glitch model, our
conservative approach ensures that we do not generate false
positives due to a flaw in our glitch model. That said, this
formalism can be extended to accommodate more sophis-
ticated models. We return to this below when discussing
possibilities for future work.

D. Signal model

We adopt a signal model consisting of multiple sub-
hypotheses and for simplicity restrict the discussion to just
two observatories a and b. The entire signal hypothesis,
which is the union of four subhypotheses, is denoted S.
Each subhypothesis accounts for the different kinds of
noise that the signal can be embedded within. For example,
S0Ga=Gb is the subhypothesis that a signal is present (S0)
with a glitch in observatory a (Ga) with no glitch present in
observatory b (=Gb). With these definitions, the complete
signal hypothesis is

S ≡ S0GaGb∨S0Ga=Gb∨S0=GaGb∨S0=Ga=Gb: ð12Þ

Qualitatively, this expression captures the idea that a signal
in the detector S0 may coincide with or without a glitch in
either detector. Note that, while we refer to S as “the signal
hypothesis” for brevity, it might be more aptly named “the
set of all hypotheses that include a signal.”
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Signals from compact binaries are typically character-
ized by 15 parameters. In the previous subsection, we
introduced a noise model where glitches modeled as
incoherent binary signals, which introduces 15 parameters
per observatory. Thus, this formulation will require mar-
ginalizing over 30 parameters (for the SGa=Gb, S=GaGb

subhypotheses) and marginalizing over a 45-dimensional
parameter space for the SGaGb subhypothesis. With current
nested-sampling methods, these integrals remain challeng-
ing and robust methods to calculate them are an unsolved
problem which has a number of applications beyond the
current work.
However, if the rate of astrophysical signals is suffi-

ciently small, then we can make the following approxi-
mation as in Smith and Thrane [6]:

S ≈ S0=Ga=Gb: ð13Þ

As such, the signal evidence in Eq. (7) is calculated by
simply marginalizing over binary parameters

LðdjSÞ¼LðdjS0=Ga=GbÞ¼
Z

dθLðdjθ;S0ÞπðθjS0Þ; ð14Þ

where we drop the conditional probability on the no-glitch
hypotheses where they have no bearing in the signal
likelihood, Lðdijθ;S0Þ. The signal likelihood is con-
structed from a Gaussian noise likelihood (with the power
spectral density estimated from the data), and standard
stochastic sampling procedures are used to perform the
marginalization (see, e.g., Ref. [51] for a detailed
discussion).

E. The astrophysical odds: A practical implementation

The astrophysical odds has been given in the generic
form of Eq. (1). Having defined the noise and signal models
(see Secs. II C and II D), we obtain an expression for our
specific signal and noise models:

OSi=N i
ðdÞ¼ LðdijSiÞ

R
dξξπðξjdk≠iÞRR

dξdΛNLðdijΛN ;N iÞð1−ξÞπðξ;ΛN jdk≠iÞ
:

ð15Þ

The odds of Eq. (15) is the Bayesian answer to the question:
does data segment di contain an astrophysical signal
(without a glitch) or is it noise? Where the noise hypothesis
includes a conservative glitch model and the question is
asked, not in the isolated case of a single data segment, but
in the context of some wider set of data d.
That the odds is a fully Bayesian answer is important.

There is no need to treat these odds as a frequentist
detection statistic. There is no need to perform time slides
to generate a background and then calculate a false alarm
rate, a technique which runs into problems with saturation.

The odds is a statement about the probability that the data
are signals rather than noise; for example, odds of 9∶1 will
be a signal 9 times out of 10. We discuss this point further
in Sec. III.
A point we have yet to discuss, and will be the core issue

for practical applications of this method, is that the odds
will be sensitive to the validity of the noise hypermodel.
However, this is not a drawback to the method, but a
feature. This method makes explicit the underlying noise
model which is being applied. This will require careful
checking to ensure the noise hypermodel is appropriate
using posterior predictive checks (see, e.g., Gelman
et al. [49]).

F. The astrophysical odds: Relation to previous results

The hyperparametrization step in the astrophysical odds
is unique to this work. However, our work builds on ideas
in the literature. Here, we show how these are related.
In Veitch and Vecchio [55], the coherence test was

introduced, which is a Bayes factor between a coherent
signal S and incoherent glitches GaGb. In the notation of
this work, this is

Bcoh;incðdiÞ≡ LðdijSÞ
LðdijGaGbÞ ¼

LðdijSÞ
LðdijGaÞLðdijGbÞ ; ð16Þ

with S as defined in Eq. (13). Note, in the original work this
was generalized to an arbitrary number of observatories.
Later, Isi et al. [56] introduced the Bayesian coherence-

ratio (BCR) statistic,

BCR≡ PðSjdiÞ
PðN jdiÞ

¼ αLðdijSÞQ
l¼a;b½LðdijGlÞβlþð1−βlÞLðdij=GlÞ�;

ð17Þ

which is an odds comparing the signal hypothesis S, as
defined in Eq. (13), with incoherent glitches or Gaussian
noise. Comparing with the work herein, α ¼ ξ=ð1 − ξÞ and
βl ¼ ξlg . In the case where no contextual data are used,
the astrophysical odds, Eq. (15), is a generalization of
the BCR odds. Isi et al. [56] demonstrate how the rate of
signals and glitches (α and β) can instead be tuned using
time-slid data and injections to maximally separate signals
from noise. This is analogous to how ξ and ξg are estimated
in the astrophysical odds, but differs in that the work
presented herein uses contextual non-time-slid data. The
astrophysical odds also allows the glitch model-parameter
hyperpriors to be inferred from the contextual data.

III. TOY MODEL DEMONSTRATION

In this section we demonstrate the Bayesian odds with a
toy-model problem. The point of this exercise is to show
the following: (1) given well-informed priors, the Bayesian
odds has a clear and reliable interpretation; (2) if the prior is
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misinformed (i.e., does not represent our true beliefs), this
interpretation becomes unreliable. Later, in Sec. IV, we
show that if the exact prior is unknown, it can be inferred
using hierarchical modeling, reestablishing the reliability of
the Bayesian odds.
In our toy model, each measurement consists of a single

number xi. The data are generated either by a noise model,
consisting of a standard normal distribution (i.e., zero mean
and unit variance), or by a signal mode, consisting of a
normal distribution with some nonzero mean and unit
variance. To summarize, our signal and noise hypotheses
are as follows:

(i) S: xi ∼ Normalðμ; σ ¼ 1Þ with μ ∼ Uniformð0; 1Þ.
(ii) N : xi ∼ Normalðμ ¼ 0; σ ¼ 1Þ.

We fix the prior odds to unity, i.e., πðSÞ ¼ πðN Þ ¼ 1=2.
We simulate a dataset consisting of 10 data points and

randomly assign each one to the S andN categories. Next,
we draw random values of xi based on the category of each
event. Having generated a set of data fxig, we calculate the
evidences LðfxigjN Þ and LðfxigjSÞ. The first of these can
be calculated directly, the second is estimated using a nested-
sampling algorithm, marginalizing over μ. Initially, we
apply the prior πðμjSÞ ¼ Uniformð0; 1Þ, i.e., the correct
population prior used to generate the data. (Belowwe repeat
the calculation using an intentionally misinformed prior for
illustrative purposes.) Once these estimates of the evidence
are calculated, we calculate the odds O for the dataset.
We demonstrate that if the odds is formulated correctly,

they can be trusted at face value. That is, events with odds of
O ¼ 9 will turn out to be signal 9 times out of 10. We
illustrate this with a plot. Let δMSðOÞ be the number of
datasets simulated as signals with an odds on the interval
ðO;Oþ δOÞ. Then, if δMN ðOÞ is the number of simulated
datasets simulated as noise on the same interval we can
define

RðOÞ≡ δMSðOÞ
δMN ðOÞ : ð18Þ

If the odds is what they say they it is, then this ratio should
exactly equal the odds, i.e., R ¼ O. In Fig. 1, we simulate
1000 datasets and plot log10ðRÞ against log10ðOÞ using the
correct prior: i.e., the prior distribution from which the
model parameters where drawn (blue line). The odds
performs as expected: the diagonal, corresponding to
R ¼ O, is consistent with the diagonal R ¼ O line.
For comparison, we can purposefully repeat the calcu-

lation using a misinformed prior to understand what effect
this has on the plot. We repeat the steps above, but when
calculating the signal evidence, we do not use the correct
prior distribution on μ, but instead use an intentionally
misinformed prior PðμjS0Þ ∝ μ2 with a minimum of 0 and a
maximum of 1, i.e., a power-law distribution with the same
support as the correct prior, but a different spectral index. In
effect, we are comparing a new hypothesis S0 with the noise
instead of S. The result is shown in Fig. 1 (orange line).

Unlike the case of the correct prior, the odds now does not
behave as expected: at times it is too liberal and other times
too conservative.

IV. DEMONSTRATION WITH BINARY BLACK
HOLE MERGERS

We now simulate the problem of binary coalescence
significance estimation with data from two observatories
(labeled H and L) containing binary black hole signals and
glitches (as described in Secs. II C and II D). From this
simulated data, we first infer the population

FIG. 1. Performance plot of the odds using the correct and
incorrect priors (see text). Shaded regions indicate the approxi-
mate 1 − σ uncertainty due to the finite number of realizations
used. An optimally performing odds lies on the diagonal line.

TABLE I. Binary black hole coalescence simulation population
parameters. The signal rate, ξ, and glitch rate for the H and L
detectors, ξH and ξL, refer to the probability of a 4 s data segment
containing a signal or glitch. The luminosity distance (chirp-
mass) population distributions for signals dsL (Ms) and glitches
dgL (Mg) have equal support, but obey differing scaling relations;
the same glitch population is applied to both the H and L
observatories.

Parameter Distribution

ξ ¼ 0.001

ξHg ¼ 0.6

ξLg ¼ 0.4

dsL ∼ PowerLawðα ¼ 2; 1 Gpc; 2GpcÞ
dgL ∼ PowerLawðα ¼ 0; 1 Gpc; 2 GpcÞ

Ms ∼ PowerLawðα ¼ 0; 25 M⊙; 100 M⊙Þ
Mg ∼ PowerLawðα ¼ 2; 25 M⊙; 100 M⊙Þ
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hyperparameters, verifying that the values used in generat-
ing the simulation are properly recovered. Then, we
demonstrate calculation of the astrophysical odds, showing
the behavior as a function of the amount of contextual data.
We use the BILBY [58] Bayesian inference package to
generate and analyze the simulated data and the DYNESTY

[59] nested-sampling package for parameter estimation and
evidence evaluation.
We define the simulated population parameters in Table I.

The signal and glitch rates (ξ, ξHg , and ξLg ) refer to the
probability of a 4 s data segment containing a signal or glitch.
Their values are selected so that in a sample of a few hundred
data segments, the expected number of segments containing
a signal and glitch is less than one, but the absolute number
of signals and glitches is sufficiently large enough for
population-level inference.Meanwhile, Table I also outlines
the population distribution of luminosity distances and chirp
mass for signals and glitches; these have the same support,
but obey different scaling laws. The population hyper-
parameters are chosen so that glitches are more frequent
and tend to be louder and shorter in duration than signals.
Each segment of the contextual data is generated by first

drawing parameters from the population level rate param-
eters (i.e., Table I) to determine what the segment should
contain. If the segment is to contain a signal, a set of signal
parameters are drawn from a standard set of priors, but with
the luminosity distance and chirp mass as given in Table I.
If the segment is to contain a glitch, a set of glitch
parameters (for each observatory) is drawn from a standard
set of priors identical to the standard signal priors, but with
the luminosity distance and chirp mass as given in Table I.
Afterwards, the simulated signals and glitches are added to
Gaussian noise. The simulation will add both signals and
glitches to the data simultaneously; however, we have
chosen the rate parameters to ensure the probability of this
occurring is small.
Having generated the contextual data segments, we

proceed to recover the hyperparameters; this is done by
applying Eq. (7), where a hyperparameter model for each
observatory is used for both the luminosity distance and
chirp mass. Each model has the same support as the true
priors (see Table I), but an unknown spectral index α with
subscript either H or L, labeling the observatory and
superscript labeling if it is for the luminosity distance dL
or chirp mass M. We repeat the hyperparameter inference
for a variable number of segments randomly drawn from the
prior. In Fig. 2, we show the marginalized one-dimensional
posterior distributions for the hyperparameters as a function
of the number of segments. This demonstrates the expected
results that, as the number of segments increases, we
correspondingly see the posteriors converge to the true
values.
As the amount of contextual data increases, Fig. 2

demonstrates that inferences about the hyperparameters
also become increasingly well informed. How does this

affect the astrophysical odds? To study this, we simulate a
glitch in Gaussian observatory noise and compute the
astrophysical odds using Eq. (1) while varying the set of
contextual data (using the same datasets used to produce
Fig. 2). The glitch is the worst possible type of glitch: a
quasicoherent glitch. Such a glitch consists of a binary
black hole signal injected into both observatories with near-
identical signal parameters to within the uncertainties
afforded by the background Gaussian observatory noise.
For false alarms, this is precisely the sort of glitch which is
best at deceiving traditional detection statistics.

FIG. 2. Marginalized posterior median (solid line) and 90%
credible interval (shaded region) for the hyperparameter of the
binary black hole simulation. True values are shown as horizontal
dashed lines.
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The quasicoherent glitch has a network optimal signal-
to-noise ratio of ∼50 and log-Bayes factor comparing a
signal versus Gaussian noise of ∼1000; when compared to
Gaussian noise it is distinctly signal-like. However, the
simulated contextual data contain a multitude of non-
Gaussian artifacts. For illustrative purposes, we calculate
the significance several different ways. The coherence test
from [55] yields a Bayes factor logBcoh;inc ¼ 8.9 [see
Eq. (16) for a definition]. This is unsurprising given we
injected a quasicoherent glitch, which is essentially indis-
tinguishable from a coherent signal. The BCR method [56]
[see Eq. (17) for a definition] depends on the tuning
parameters α and β. Using uniformed values of α ¼ 1
and β ¼ 0.5, we have that logBCR ¼ 8.9. In this case the
alternative “Gaussian noise” hypothesis provided by the
BCR [56] does not further distinguish the event. That these
methods fail to veto this quasicoherent glitch is unsurpris-
ing and precisely the motivation for the astrophysical odds,
which incorporates knowledge about the background. We
note that tuning the BCR parameters would improve the
performance of this metric, but is beyond the scope of
this paper.
In Fig. 3, we plot the astrophysical odds, for this same

pathological event, as a function of the number of back-
ground segments used. For small numbers of segments, the
astrophysical odds agrees with the logBcoh;inc and logBCR
numbers, whichmakes sense since the background is not yet
well constrained. As the number of segments increases,
however, the odds tends to decrease, eventually reaching a
threshold of logO ≈ 0. In this instance, the astrophysical
odds is (appropriately) far more conservative than the other
approaches. Given the nature of the background, the
statistical significance of the event is marginal. It is worth
noting that a similarly loud signal would also fail to pass the
bar for detectability: fundamentally, the background in this
region includes so many loud glitches that it decreases the
operational sensitivity.

That the odds tends to a threshold is a direct result
of the limited amount of information available from the
background as seen in Fig. 2. Initially, each extra set of
segments provides a substantial improvement to the con-
straint on the hyperpriors, but eventually once the back-
ground has been adequately sampled, extra data do not
provide much new information about the nature of the
background. The result is that one needs to make sure the
number of background segments is sufficiently large before
drawing a conclusion. By studying this behavior, gravita-
tional-wave astronomers can ascertain how much data are
required to determine the significance of a candidate before
reaching the point of diminishing returns.

V. DISCUSSION AND OUTLOOK

The tools of Bayesian inference have been widely
adopted in astrophysics due to their utility in parameter
estimation and model selection. In this work, we introduce
a complete formalism for calculating the astrophysical
odds [Eq. (1)] for transient gravitational wave signals.
Gravitational wave observatories are plagued by transient
non-Gaussian artifacts often referred to as glitches. These
glitches need to be carefully considered when evaluating
the significance of a putative signal.
Building on the work of Smith and Thrane [6], Veitch

and Vecchio [55], and Isi et al. [56], we present a complete
framework for defining the likelihood of the data contain-
ing a signal, accounting for both Gaussian noise and
glitches in the data. The conservative glitch model used
herein relies on the ideas of pairs of incoherent compact
binary signals as a conservative glitch model as proposed
by Veitch and Vecchio [55]. However, in the future it may
prove fruitful to extend this glitch model to include, for
example, sine Gaussians [57] in addition to compact binary
signals. If the data support the hypothesis that glitches look
more like sine-Gaussians than compact binaries, the astro-
physical odds will automatically adopt the less conservative
assumption.
The key new ingredient developed in this work is the

ability to marginalize over the glitch population properties
using contextual data. This is done using hyperparameters,
which allow the glitch population to differ from the priors
for astrophysical signals. For example, astrophysical sig-
nals are expected to follow a prior in which more signals are
found at a larger distance [in this paper, we model this as
PðdLjIÞ ∝ d2L]. But for glitches in the observatory (as
described by fitting incoherent compact binary coalescence
signals), this is unlikely to be true. Equation (1) is the main
result of this paper. It describes how the odds of an
astrophysical signal can be calculated, marginalized over
the contextual data which surround the event. This result is
fully Bayesian: it does not require boot straps and hence
does not suffer from issues such as saturation [35] or signal
contamination. Moreover, the Bayesian approach (see also
Refs. [44–46]) allows the significance to be easily inte-
grated into downstream analyses, for example in population
modeling.

FIG. 3. The astrophysical odds, Eq. (15) as a function of the
number of contextual data segments used in the calculation of
the background prior. A dashed horizontal line marks the value of
the odds without any contextual data.
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One subtlety to this type of analysis is the characteri-
zation of the background. We demonstrated in this work
how injected background with known power-law distribu-
tions can be recovered. But, for real interferometer data,
more nuanced models may be needed. In future work, we
aim to apply this method to data from the LIGO and Virgo
interferometers. As part of this work, we aim to recompute
the significance of previously published gravitational-wave
detections and/or candidates [43,47,60]. We plan to carry
out diagnostic tests, for example, with posterior predictive
checking, in order to build confidence in our noise model.
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APPENDIX A: HYPERODDS

Typically, Bayesian model selection problems answer
the question “given some data d, what are the relative
probabilities of model A and model B?” by calculating the
odds, OA=BðdÞ≡ PðAjdÞ=PðBjdÞ. In this work, we answer
the question “given a set of data d, what are the relative
probabilities of model A and model B for the ith data
segment?” by calculating the generalized notion of a
hyperodds which we define now. The important distinction
here is that the data dk≠i, which we refer to as contextual
data, are used to inform the odds about the typical
characteristics of the A and B models.
Let Ai be the hypothesis of model A for the ith segment.

Then, the model evidence for Ai given all of the data can be
calculated from

LðAijdÞ ¼
Z

dΛLðAijd;ΛÞπðΛjdÞ: ðA1Þ

Applying the rules of conditional probability and explicitly
writing the likelihood conditional on the data for segment i
and for the contextual data, we find that

LðAijdÞ ¼
1

LðdÞ
Z

dΛLðdijAi;ΛÞ
Y
k≠i

LðdkjΛÞπðΛÞ: ðA2Þ

Typically, the normalizing factor in this equation cannot
easily be calculated since an exhaustive set of models is
seldom known. Instead, the common alternative is to
instead calculate an odds

OAi=Bi
ðdÞ ¼ LðAijdÞ

LðBijdÞ
: ðA3Þ

Applying Eq. (A2), we therefore have that

OAi=Bi
ðdÞ ¼

R
dΛLðdijΛ; AiÞLðAijΛÞ

Q
k≠iLðdkjΛÞπðΛÞR

dΛLðdijΛ; BiÞLðBijΛÞ
Q

k≠iLðdkjΛÞπðΛÞ
:

ðA4Þ

Finally, we can simplify Eq. (A4) to

OSi=N i
ðdÞ ¼

R
dΛLðdijΛ;SiÞLðSijΛÞπðΛjdk≠iÞR
dΛLðdijΛ;N iÞLðN ijΛÞπðΛjdk≠iÞ

; ðA5Þ

where πðΛjdk≠iÞ is the posterior distribution on the hyper-
parameters, conditional on the context data. This expres-
sion allows calculation of the odds marginalizing over
uncertainty about the priors, at both the model parameters
and the hypothesis level, using the contextual data. To
provide some intuition and demonstrate the power of this
general method we now discuss two specific cases.
First, let PðAijΛÞ≡ ξ be a hyperparameter modeling the

prior probability of model A for a segment. If ξ constitutes
the only hyperparameter, e.g., PðdijAi;ΛÞ ¼ PðdijAiÞ (and
similarly for the denominator), then

OAi=Bi
ðdÞ ¼ LðdijAiÞ

LðdijBiÞ

R
ξπðξjdk≠iÞdξR ð1 − ξÞπðξjdk≠iÞdξ

ðA6Þ

¼ LðdijAiÞ
LðdijBiÞ

E½ξ�
1 − E½ξ� ; ðA7Þ

where E½ξ� is the expectation value of ξ. The first factor
here is the usual Bayes factor in support of signal in the ith
segment, while the second factor is the prior odds con-
ditioned on all other data. In the limit of small E½ξ�, this is
approximately E½ξ�. This expression agrees with how the
prior odds is typically defined.
Second, consider the case where model A is a signal in

addition to white Gaussian noise with an unknown standard
deviation σ. Then, we hyperparametrize by allowing
σ ∼ Normalðμσ; σσÞ. If the number of segments of data
in di≠k is suitably large, then σ can be precisely estimated
from the contextual data. In the language of our hyper-
parameters, this would imply that σσ=μσ ≪ 1 and the term
πðμσ; σσjdk≠iÞ ≈ δðσ − μσÞ. The consequence would be that
OSi=N i

ðdÞ ≈OSi=N i
ðdiÞ with a prior σ ¼ μσ (i.e., the

precisely measured value taken from all the other data).

APPENDIX B: RECYCLING INFERENCE

In the case of a model H with model parameters θ, for
some choice of hyperparametersΛ, the hypothesis evidence
is given by
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LðdjΛ;HÞ ¼
Z

dθLðdjθ;Λ;HÞπðθjHÞ: ðB1Þ

Typically, θ can be of high dimension, and this
integration itself, done numerically, can take from a
few minutes to many hours depending on the problem in
hand. If one then wants to calculate as part of a posterior
inference over Λ, say, this could be computationally
challenging.
Instead, consider that we compute this marginalization

once at a fixed value of Λ ¼ Λ0 and we have a set of
samples fΘi;kg (where i labels the data segment and k the
sample number) and an evidence estimate LðdjΛ0;HÞ.
Then, since Λ is a hyperparameter, Lðdjθ;Λ;HÞ ¼
Lðdjθ;Λ0;HÞ because θ is fully specified. Therefore

LðdjΛ;HÞ ¼
Z

dθLðdjθ;Λ0;HÞπðθjΛ;HÞ: ðB2Þ

Applying Bayes rule to expand the likelihood dependent on
Λ0, noting that LðΛ0jd; θÞ ¼ LðΛ0jdÞ and applying Bayes
rule again, we find that

LðdjΛ;HjÞ ¼ LðdjΛ0Þ
Z

dθLðθjdÞ πðθjΛÞ
πðθjΛ0Þ : ðB3Þ

The first term here is the evidence at the fixed value of Λ0
that we have already computed. The second term, given the
samples generated in computing the evidence can be
approximated by an average over the k samples

PðdjΛ;HjÞ ¼ PðdjΛ0Þ
�
PðfΘi;kgjΛÞ
PðfΘi;kgjΛ0Þ

�
k
: ðB4Þ

This allows for rapid evaluation of the likelihood,
without having to performed calculations of the high-
dimensional nested integrals. One alternative to this method
is to apply a kernel-density estimation method; see, e.g.,
Pitkin et al. [54].
We note that, while the above discussion was given

assuming that the samples where computed at a fixed value
of Λ, the same general principle applies given any prior
choice (even one that did not arise from the same
family) [51].
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