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Similar to the compactness parameter (β ¼ M=R), the gravitational binding energy (GBE) is also a
characteristic parameter that can reflect the internal structure of a neutron star and thus can be used to
express the universal relations. Scaling by the stellar mass, this investigation demonstrates a perfect
universal relation between the GBE and the moment of inertia, where both of the normal neutron stars and
the quark stars satisfy the same universal relation. Moreover, a fine empirical relation between the GBE
and the tidal deformability is proposed, where the difference of the relations can be used to distinguish
whether a pulsar is a normal neutron star or a quark star if the stellar mass and the tidal deformability can be
observed or estimated rather accurately. These universal relations provide a potential way to estimate the
GBE if the stellar mass and the moment of inertia/the tidal deformability are precisely measured.
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I. INTRODUCTION

The equation of state (EOS), which is basically seen as
the density-pressure relation, virtually governs most macro-
scopic properties of neutron stars, such as their mass (M),
radius (R), moment of inertia (I), quadrupole moment (Q),
and tidal deformability (Λ). The majority composition of a
neutron star is currently considered as a kind of cold and
ultradense nucleonic fluid. Presently, people cannot well
understand the EOS of nuclear matter beyond saturation
density only through the terrestrial experiments [1–3].
Fortunately, the astronomical observations on the pulsars
may provide the unknown segments of the EOS [4].
Nowadays, more and more useful observations of neutron
stars have been accumulated, especially the discovery of
massive neutron stars in recent years [5–7] and the
gravitational wave radiation detection of the merging of
binary neutron stars [8], which have provided effective
constraints on the EOS [2,9–21]. It has been an important
thread to use the neutron star observations to inversely
study the EOS. For example, Bayesian inference was
adopted frequently to explore and contrast the parameters
of different EOS models [15–17,22].
Among the numerous studies on this issue, finding

universal relations (independent from the EOS) between
the properties of neutron star is a practicable and effective
method. In the last twenty years or so, a great deal of
research work has been done on these universal relations.
For example, the universal relations of the quasinormal

modes in the neutron star provide an effective method in
studying the frequency and damping time of the oscillation;
see, e.g., Refs. [23–28]. In the past few years, a new type
of universal relation between the properties, including the
moment of inertia, the Love numbers, and the normalized
quadrupole moment, namely, I-Love-Q, was established
[29,30] and thoroughly investigated [23,31–37]. These
relations are very useful as they provide a direct link to
I, Love number, and Q, and if the stellar mass and one of
the three parameters of a neutron star is observed, then the
other two properties can be determined. Someone may ask
that though the universal relation is independent from the
EOS, how can we extract the information of the EOS? In
fact, as only a few of the global properties can be observed
accurately, those properties that are difficult to be observed
precisely, such as the radius and the moment of inertia, can
be obtained through combining the universal relations and
the accurately observed property. And then we can further
determine the EOS as the derived global properties of the
neutron star depend strongly on the EOS [23,26].
In the research of finding and constructing the universal

relations between the properties of the neutron star, the
compactness parameter (β ¼ M=R) and the moment of
inertia are considered to be the two key parameters. Why
are these two quantities so important in the universal
relations? As pointed out in Refs. [25], most of the
properties of neutron stars, such as the Love number, the
normalized quadrupole moment, and the parameters of
the quasinormal modes, are related to the stellar mass
distribution mðrÞ, and the mass distribution can be solely
characterized by the compactness and be independent of
the stellar mass M [38,39]. The moment of inertia is
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believed to be a better parameter to describe the global mass
distribution and thus leads to an improved universal
behavior [26].
Could there be better parameters to construct the

universal relations? Lattimer et al. proposed the existence
of approximate universality between binding energy and
compactness of the neutron star [39,40]. But this univer-
sality is too rough to be used as an accurate relation to
determine the properties of the neutron star. In fact, the
problem comes from the binding energy. The binding
energy in their universal relation is the total binding energy,
including both the gravitational binding energy and the
nuclear binding energy. Obviously, the nuclear binding
energy does not include the mass distribution information.
Inspired by that the dimensionless gravitational binding
energy in Newtonian gravity of a uniform sphere can be
expressed as Eg

M ¼ 3
5
M
R (Eg is the gravitational binding

energy), linked directly to the compactness, we believe
that the gravitational binding energy would be a better
parameter to build the universal relations between the
properties of the neutron star. Actually, this work discovers
two interesting EOS-insensitive universal relations based
upon gravitational binding energy. There are I-Eg and
Λ-Eg, respectively. In this work, we present and discuss
these universal relations in detail.
The paper is organized as follows. In Sec. II, the binding

energy and its measurement are briefly reviewed. In Sec. III,
the parametric EOS of neutron-rich dense matter and a
few of the other EOS models are concisely introduced.
In Sec. IV, we present the universal relations between the
gravitational binding energy and the global properties of
neutron stars in detail. A brief summary is given at the end.
Unless otherwise noted, we use geometrical unit

(G ¼ c ¼ 1).

II. REVIEW OF THE BINDING ENERGY IN
THE NEUTRON STAR

The stellar mass measured by the observer at infinity is
defined as the gravitational mass. For a nonrotating neutron
star, the gravitational mass can be calculated by [41–43]

M ¼
Z

R

0

ρðrÞ4πr2dr; ð2:1Þ

where ρðrÞ is the mass density at radius r, and R is the
surface radius of a neutron star. As the proper volume
element in Schwarzschild metric is written as [42–45]

dV ¼ ffiffiffiffiffiffi
−g

p
d4x ¼ 4πr2

�
1 −

2mðrÞ
r

�
−1
2

dr; ð2:2Þ

the total baryon number of a nonrotating neutron star can be
obtained through [42,43]

A ¼
Z

R

0

nðrÞdV ¼
Z

R

0

nðrÞ4πr2
�
1 −

2mðrÞ
r

�
−1
2

dr; ð2:3Þ

where nðrÞ is the number density of the baryon, andmðrÞ is
the mass within the radius r.
The baryon mass (in some references named the rest

mass) of the neutron star is defined as

Mb ¼ Amb; ð2:4Þ

where mb is the mass of a baryon, which takes a value of
939 MeV for both the neutron and proton. The difference

Et ¼ M −Mb ð2:5Þ

is defined as the total binding energy of a neutron star
[39,40,46,47], which contains the total energy by assem-
bling all of the baryons from infinity to form a stable
neutron star, that is, contains both the gravitational binding
energy and the nuclear binding energy. It is worth noting
that in order to distinguish the attractive potential energy
and the repulsive potential energy from the sign of the data,
here we follow the rules that the negative value represents
the attractive potential energy while the positive value
represents the repulsive potential energy.
Through defining a proper mass of a neutron star [44,45]

Mp ¼
Z

R

0

ρðrÞ4πr2
�
1 −

2mðrÞ
r

�
−1
2

dr; ð2:6Þ

one can obtain the gravitational binding energy as

Eg ¼ M −Mp: ð2:7Þ

Obviously, the gravitational binding energy Eg does not
include the nuclear binding energy En. Through the defi-
nition of total binding energy and gravitational binding
energy, the nuclear binding energy can be calculated through

En ¼ Et − Eg ¼ Mp −Mb: ð2:8Þ

To a normal neutron star, the total nuclear binding energy
is positive, which means that the nuclear interaction
between most of the nucleons is repulsive in the neutron
star. As a comparison, the nuclear binding energy per
particle of isospin symmetric nuclear matter at saturation
is about -16 MeV [47].
It has long been recognized that the binding energy of

a neutron star can be measured through the supernova
neutrino, as the supernova energy is mainly released in the
form of neutrinos (at least 99% [40]) and the released
energy of the supernova can be approximated to the binding
energy of the neutron star [39,40,46–48]. As has been
pointed out by Lattimer and Prakash [39], the released
energy in a supernova explosion is from the collapse of a
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white-dwarflike iron core but not from the free-baryons
collapse from infinity; thus the measured binding energy
through the supernova neutrino is not the total binding
energy Et, but the effective total binding energy Eet ¼
M −mebA, where meb is the effective mass of a baryon,
takes a value of 930 MeV, corresponding to the mass
of Fe56=56.
The intermediate-mass neutron stars in the range of

1 ∼ 1.5 M⊙ are expected to possess the total binding
energy Et as high as 0.08 ∼ 0.16 M⊙ [46]. The formation
of a massive neutron star would generally release greater
energy than that of a less-massive one. The heaviest
neutron star in the sky is therefore believed to get bound
by enormous binding energy [40]. The measurements of
neutrinos from SN1987A show that the effective total
binding energy is about 0.1 ∼ 0.2 M⊙ for the neutron star
with mass in 1.14 ∼ 1.55 M⊙ [49,50]. Based on the
analysis of the observation of γ rays from 56Co and
57Co, Bethe and Brown obtained the baryon mass of the
core left by the SN1987A as Mb ¼ 1.733� 0.024 M⊙
[51]. Referring to the observation of SN1987A, we believe
that the gravitational mass M, the total baryon number A,
the baryon mass Mb, and the effective total binding energy
Eet (then the total binding energy Et) can be measurable
or be deducible through the detection of the supernova
explosion in the future. With more observations on the
supernova in the future, the binding energy will have
become an important character to tell the internal secrets
of the compact neutron stars.

III. EOS OF NEUTRON STAR AND QUARK
STAR MODELS

There are still great difficulties to extrapolate the current
EOS into the density of neutron star core. The predictions
of the different EOS models often incur significant diver-
gence at suprasaturation densities. It is instructive to
construct an EOS model not only minimizing the model
dependence of the EOS but also containing all known
constraints on the EOS. The general parametric EOS model
for neutron-rich nucleonic matter in the core is such an
ideal model [10]. In this work, we employ this EOS model
to describe the neutron star core matter, which consists of
protons, neutrons, electrons, and muons at β-equilibrium.
For more details on this EOSmodel please refer to Ref. [10]
and the references therein. For the outer crust and the inner
crust, the BPS EOS [52] and the NV EOS [53] are adopted,
respectively. By changing the EOS parameters of this
parametric model, we can generate a huge number of
EOS for the neutron star. The parameters are essentially
coherent with the terrestrial experiments on the nuclear
physics. In addition, we rule out the EOS that cannot
support a maximum mass greater than 2.01 M⊙ or cannot
meet the causal constraint. Here we employ about 10,000
screened EOS to investigate the universal relations.

For comparisons, we also employ 11 EOS [10,23] for
normal or hybrid neutron stars constructed by microscopic
nuclear many-body theories (marked as 11 microscopic
EOS in the following text and figures) and three EOS for
the quark star models [54]. The 11 microscopic EOS are as
follows: ALF2 of Alford et al. [55] for hybrid stars
(nuclear þ quark matter), APR3 and APR4 of Akmal
and Pandharipande [56], ENG of Engvik et al. [57],
MPA1 of Muther et al. [58], SLy of Douchin and
Haensel [59], WWF1 and WWF2 of Wiringa et al. [60],
and the QMFL40, QMFL60, and QMFL80 model from the
work of Zhu et al. [61]. The three EOS of quark stars are
from the confined-density-dependent-mass (CDDM)
model [54]. Similar to the work of Ref. [62], here we also
adopt the three typical EOS (labeled as CIDDM, CDDM1,
and CDDM2) as the quark star models.

IV. UNIVERSAL RELATIONS IN TERMS OF
GRAVITATIONAL BINDING ENERGY

Based on a variety of equations of state, Lattimer et al.
proposed that there exists a universal relation between the
total binding energy and the stellar mass of the neutron star
[46], namely,

jEtj ≈ 0.084

�
M
M⊙

�
2

M⊙: ð4:1Þ

The formula is potentially applicable in determining the
mass of the neutron star through the binding energy. At a
later time, Lattimer et al. further proposed a relatively
accurate universal relation of the binding energy as [39]

jEtj
M

≈
ð0.6� 0.05Þβ
ð1 − 0.5βÞ ; ð4:2Þ

where β ¼ M=R is the compactness of a neutron star.
Recently, Breu and Rezzolla gave a more precise universal
relation between the mass and the binding energy through a
quadratic polynomial function [63],

jEtj
M

¼ d1β þ d2β2; ð4:3Þ

where d1 ¼ 6.19 × 10−1 and d2 ¼ 1.359 × 10−1. More
interestingly, the moment of inertia was also found to link
with the compactness [39]. Since both the total binding
energy and the moment of inertia have universal relation
with the compactness, it is natural to consider the relation
between the total binding energy and the moment of inertia.
Steiner et al. obtained such an universal relation as [64]

jEtj
M

¼ 0.0075þ ð1.96þ0.05
−0.05ÞĪ−1 − 12.80Ī−2 þ 72.00Ī−3

− ð160þ20
−20ÞĪ−4; ð4:4Þ

where Ī ¼ I=M3.
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All the above three universal relations are related to
the total binding energy. From Figs. 17, 18, and 24 of
Ref. [64], it is shown that the total-binding-energy related
universal relations are rather rough. As mentioned above,
this is because the total binding energy includes both of
the nuclear binding energy and the gravitational binding
energy, and only the latter has the mass distribution
information, which is just the essential internal cause of
the universal relations [25,26].
In order to make quantitative discussions on the binding

energy, we first present the baryon mass, the proper mass,
the total binding energy, the gravitational binding energy,
the nuclear binding energy, and the corresponding single
nucleon energy for the canonical stars (1.4 M⊙) in Table I
and for the maximum-mass stars in Table II. From Table I,
it is easy to see that except for the hybrid star (ALF2) and
the quark star (CDDM) models, all the canonical stars have
similar baryon mass, proper mass, total binding energy,
gravitational binding energy, and nuclear binding energy.

For these canonical neutron stars, their gravitational
binding energy is about 1.3–1.6 times the total binding
energy, and their nuclear binding energy is positive.
For the hybrid stars and quark stars, the nuclear binding
energy is negative. Through Table II, it is shown that the
maximum-mass stars have much larger binding energies
than their corresponding canonical neutron stars, and the
average gravitational binding energy per nucleon (Eg=A)
can be up to −325 MeV, while for the canonical neutron
stars, the highest Eg=A is about −155 MeV.
We first present the universal relation between the total

binding energy and the compactness, as shown in Fig. 1.
It is shown that for all of the parametric EOS and ten of
the 11 microscopic EOS (namely, except for the hybrid
star model ALF2), there is only a rough universal relation,
while for EOS of quark stars and hybrid stars, their
relations are quite divergent. This result further indicates
that the total binding energy is not an appropriate parameter
to construct the universal relations. When we replace the

TABLE I. The binding energies of neutron stars and quark stars with a canonical gravitational mass 1.4 M⊙.

EOS M (M⊙) Mb (M⊙) Mp (M⊙) −Et (M⊙) −Eg (M⊙) En (M⊙) −Et=A (MeV) −Eg=A (MeV) En=A (MeV)

ALF2 1.40 1.59 1.59 0.194 0.191 −0.003 114.373 112.423 −1.95
APR3 1.40 1.56 1.62 0.160 0.218 0.057 96.34 130.90 34.56
APR4 1.40 1.57 1.64 0.170 0.236 0.065 101.74 140.78 39.04
ENG 1.40 1.55 1.62 0.151 0.218 0.067 91.56 131.93 40.37
MPA1 1.40 1.55 1.61 0.145 0.208 0.064 88.00 126.62 38.62
SLY 1.40 1.55 1.63 0.145 0.230 0.085 88.16 139.91 51.75
WWF1 1.40 1.58 1.66 0.178 0.262 0.084 105.97 155.63 49.67
WWF2 1.40 1.56 1.64 0.161 0.241 0.080 96.79 145.07 48.28
QMFL40 1.40 1.55 1.62 0.149 0.224 0.075 90.36 135.81 45.45
QMFL60 1.40 1.55 1.62 0.149 0.220 0.072 90.21 133.60 43.39
QMFL80 1.40 1.55 1.61 0.147 0.208 0.061 89.33 126.21 36.88
CIDDM 1.40 1.70 1.58 0.301 0.176 −0.125 165.94 96.83 −69.12
CDDM1 1.40 1.60 1.55 0.201 0.151 −0.051 117.91 88.27 −29.64
CDDM2 1.40 1.61 1.53 0.209 0.133 −0.076 122.24 77.71 −44.53

TABLE II. The binding energies of neutron stars and quark stars with maximum gravitational mass Mmax.

EOS M (M⊙) Mb (M⊙) Mp (M⊙) −Et (M⊙) −Eg (M⊙) En (M⊙) −Et=A (MeV) −Eg=A (MeV) En=A (MeV)

ALF2 2.09 2.54 2.69 0.453 0.598 0.145 167.32 221.08 53.76
APR3 2.39 2.96 3.37 0.567 0.972 0.405 179.89 308.18 128.30
APR4 2.22 2.73 3.13 0.513 0.918 0.405 176.58 316.05 139.47
ENG 2.24 2.71 3.15 0.468 0.902 0.434 162.19 312.36 150.17
MPA1 2.47 3.02 3.44 0.551 0.969 0.418 171.40 301.59 130.19
SLY 2.05 2.43 2.81 0.379 0.762 0.383 146.40 294.12 147.72
WWF1 2.14 2.64 3.04 0.507 0.904 0.398 180.00 321.17 141.17
WWF2 2.20 2.70 3.14 0.496 0.934 0.438 172.47 325.06 152.59
QMFL40 2.03 2.39 2.63 0.363 0.602 0.239 142.26 235.98 93.72
QMFL60 2.08 2.47 2.80 0.386 0.723 0.337 147.15 275.51 128.35
QMFL80 2.11 2.51 2.81 0.401 0.708 0.307 150.06 265.05 114.99
CIDDM 2.07 2.64 2.58 0.570 0.514 −0.056 202.78 182.80 −19.98
CDDM1 2.20 2.61 2.71 0.417 0.511 0.094 149.88 183.64 33.75
CDDM2 2.41 2.87 2.99 0.453 0.572 0.119 148.35 187.45 39.10
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total binding energy by the gravitational binding energy to
plot the similar relations, we found that there is a much
better universal relation for all the parametric EOS and the
11 microscopic EOS, as presented in Fig. 2. Moreover, all
the three quark star EOS outline a tight-fitting branch in the
figure as green dashed lines, which is slightly different from
the neutron star branch. Interestingly, the ALF2 EOS,
which refers to the typical EOS of hybrid stars, lands on
the neutron star branch instead of the quark star branch in
Fig. 2. This means that the all of the neutron stars with a
crust (whatever the composition of the core) have a similar

universal relation between the gravitational binding energy
and the compactness.
Inspired by the above results, we expect that there ought

to exist some interesting universal relations between the
gravitational binding energy and the global properties of
neutron stars. As the moment of inertia is usually used to
investigate the universal relation, here we explore the
relation between the moment of inertia and the gravita-
tional binding energy first. In Fig. 3, the universal relation
between the dimensionless gravitational binding energy
and the dimensionless moment of inertia is presented. It is
shown that there is a perfect linear universal relation
between ðjEgj=MÞ−2 and Ī, which can be approximated by
the formula

Ī ¼ 0.1806

�jEgj
M

�
−2

þ 9.314: ð4:5Þ

Here the neutron stars and quark stars also follow the same
universal relation, as shown in Fig. 3. This means that we
cannot distinguish the normal neutron stars and quark stars
through this relation. According to Eq. (4.5), it is sufficient to
estimate the gravitational binding energy if the stellar mass
M and the moment of inertia I are measured simultaneously
in the future, whether the compact star is a quark star or a
neutron star. Scientists have pointed out that enough precise
measurement of pulsar motion in the double-pulsar system
could lead to a relative accurate determination of the moment
of inertia of the neutron star [65–67]. Optimistically, we
expect to get an accurate measurement of the moment
of inertia in the near future. The methods of applying the
universal relations to constrain the relevant quantities also
can be found in Ref. [63].

FIG. 1. (Top) jEtj=M − β relation with various EOS together
with fitting curve (solid curve). (Bottom) The relative fractional
difference between the numerical results and the fitting curve,
where jĒtj ¼ jEtj=M.

FIG. 2. (Top) jEgj=M − β relation with various EOS together
with fitting curve (solid curve). (Bottom) The relative fractional
difference between the numerical results and the fitting curve,
where jĒgj ¼ jEgj=M.

FIG. 3. (Top) Ī − ðjEgj=MÞ−2 relations for various EOS,
together with the fit in Eq. (4.5) (solid curve). (Bottom) The
relative fractional difference between the numerical results and
the fitting curve.
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For comparison, the relations between the compactness
and the dimensionless moment of inertia are presented in
Fig. 4. It is clear that for the adopted EOS, these relations
are rather divergent. From this point of view, the gravita-
tional binding energy is a better one in expressing the
universal relations.
With the breakthrough measurement on the gravitational

waves in recent years, the tidal deformability is now an
important character of a neutron star [8]. Many accurate
universal relations associated with the tidal deformability
(or the tidal Love number) are proposed, such as the
relations of I—Love and Q—Love [29] and the relations
between f-mode frequency/damping time and tidal deform-
ability [23]. As has been discussed above, according to
the observed quantities, these relations can be used to learn
about the quantity that is inconvenient to be observed.
Currently, the constraint on the tidal deformation from
the gravitational-wave detection of GW170817 is Λ1.4 ¼
190þ390

−120 at 90% level [15]. Interestingly, we found that there
exist ideal linear universal relations between the negative
fifth power of dimensionless gravitational binding energy
ðjEgj=MÞ−5 and the tidal deformability Λ, as shown in
Fig. 5, where the normal neutron stars and quark the stars
obey two totally different universal relations. To the normal
neutron stars, the universal relation can be approximated by

Λ ¼ 3.646 × 10−2
�jEgj

M

�
−5

− 4.233; ð4:6Þ

while to the quark stars, its universal relation can be
approximated by

Λ ¼ 3.245 × 10−3
�jEgj

M

�
−5

þ 108: ð4:7Þ

Similar to the application of Fig. 3, any two of the three
quantities (Λ, Eg, and M) are observed precisely, and then

we can use the universal relations to constrain the third
quantity. Moreover, the different universal relations of the
normal neutron stars (with a crust) and the quark stars
(without a crust) provide a potential way to distinguish
these two kinds of compact stars, for example, if a relative
higher tidal deformability (e.g., Λ > 500) is observed, then
we can conclude that it should be a normal neutron star.
In fact, the different universal relations of these two kinds
of compact stars may be understood through the definition
of the tidal deformability, which is dependent mostly on the
internal structure of the star near the outer layer [68], where
normal neutron stars have a completely different outer layer
from quark stars.
Similarly, we also present the relations between the

compactness and the tidal deformability, as shown in Fig. 6.
Through comparing Figs. 5 and 6, we can see once again

FIG. 4. Relations between compactness and dimensionless
moment of inertia.

FIG. 6. Relations between compactness and tidal deformability.

FIG. 5. (Top) Λ − ðjEgj=MÞ−5 relations with various EOS
together with fitting curve (solid curve). (Bottom) The relative
fractional difference between the numerical results and the fitting
curve.
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that the gravitational binding energy is better than the
compactness in expressing the universal relations.
In the end, we give some discussion on the measurement

and estimation of binding energy. As has been mentioned in
Sec. II, through the detection of the supernova explosion,
the measurable properties of a neutron star include the
effective total binding energy (Eet), the baryon mass (Mb),
and the gravitational mass (M) [39,40,46–51]. Given
available and precise enough Eet;Mb, and M from the
detection of the supernova explosions in the future, can we
estimate the gravitational binding energy? We try to figure
out a way to solve this problem. As has been pointed out
above, Table I shows that the gravitational binding energy
is about 1.3–1.6 times the total binding energy for the
canonical neutron stars. In fact, except for the quark stars
and hybrid stars, the ratio of gravitational binding energy
to total binding energy is around 1.3–1.6 for most of the
normal neutron stars, as shown in Fig. 7. If we believe or
can prove the star is a normal neutron star, then we can
roughly estimate the gravitational binding energy.
In addition, if the compactness of a neutron star can be

measured precisely, then the Eg=M can be estimated rather
accurately according to the universal relation described in
Fig. 2, and further the dimensionless moment of inertia and
the tidal deformability can be driven from the universal
relations in Figs. 3 and 5, respectively.
We also investigated the universal relations in alternative

gravity theory and try to find if the universal relation can be
used to distinguish the alternative gravity theory from general
relativity. The Eddington-inspired Born-Infeld theory [69]
is employed as a representation to calculate the universal
relations and the results show that there is no distinct
difference in the universal relations and we cannot detect
the deviations of the alternative gravity theory from GR.

V. SUMMARY

By analyzing the different kinds of binding energy of the
neutron star, it is shown that the gravitational binding
energy carries the information of the stellar mass distribu-
tion and can be used as a parameter to express the universal
relations with the global properties of neutron stars. In this
work, two universal relations expressed by the dimension-
less gravitational binding energy are presented. They are
the universal relation between the gravitational binding
energy and the moment of inertia, and the universal relation
between the gravitational binding energy and the tidal
deformability. It is shown that for the former, both of the
normal neutron stars and the quark stars follow the same
universal relation; while for the later, the normal neutron
stars and quark stars satisfy different relations, which can
be used to distinguish a normal neutron star from a quark
star. On the one hand, if any two of the three quantities
in the universal relations are observed precisely, we can
use the universal relations to constrain the third quantity.
Thus the universal relations provide a potential way to
estimate the gravitational binding energy if the stellar
mass and the moment of inertia/the tidal deformability
are precisely measured. On the other hand, the future
estimation of the gravitational binding energy through the
detection of the supernova explosion or the accurate
measurement of the compactness may benefit us in learning
the moment of inertia and the tidal deformability.
It should be noted that the universal relations in this work

are obtained based on the nonrotating neutron star model.
These relations still hold for the neutron stars spinning
much slower than the Kepler frequency. However, for a
neutron star spinning close to Kepler frequency (such as a
newly born neutron star), the universal relations given in
this work may not be applicable. In fact, the universal
relations among the global properties of the rapidly rotating
neutron stars are deeply probed in recent years [63,70,71].
For example, there exist universal relations between the
scaled rest mass, gravitational mass, and angular momen-
tum for the most rapidly uniformly/differentially rotating
neutron stars [70]. It is also found that there is a universal
relation between the mass (normalized by the stellar mass
of nonrotating and Keplerian rotating neutron stars) and
the spin period (normalized by the Keplerian period) [71].
We hope to return to these issues in the near future.
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