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The interiors of mature neutron stars are expected to host superfluid neutrons that can flow relative to the
normal component tracked by electromagnetic emission. Hence, analogously to the hydrodynamic
description of terrestrial superfluids like “He, the system is best described by means of a two-fluid model.
We study wave propagation in the crust and core of a neutron star by conducting a local plane-wave analysis
of the two-fluid hydrodynamic equations for a homogeneous macroscopic element of nuclear matter. We
explicitly account for a background flow between the two components (as would be expected in the presence
of pinning of superfluid vortex lines) and the entrainment coupling, and we consider both standard (Hall-
Vinen) and isotropic (Gorter-Mellink) forms of the mutual friction. We find that for standard mutual friction
there are families of unstable inertial and sound waves both in the case of a counter-flow along the superfluid
vortex axis and for counterflow perpendicular to the vortex axis and find that entrainment leads to a
quantitative difference between instabilities in the crust and core of the star. For isotropic mutual friction, we
find no unstable branches of the dispersion law and speculate that instabilities in a straight vortex array may

be linked to glitching behavior, which then ceases until the turbulence has decayed.
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I. INTRODUCTION

Describing the inner structure of a neutron star (NS)
requires theoretical methods consistent with astronomical
observations. Despite the recent detection of gravitational
waves emitted during an NS merger [1], which delivered
interesting constraints on the equation of state of matter at
high densities [2], direct data from the deep layers of an NS
are inaccessible.

To date, most of the signals we receive from NSs consist
of electromagnetic radiation emitted by the star, which
carries mostly information on the processes in the mag-
netosphere or outermost, low density, layers. However, in
some cases, the electromagnetic spectra allow to constrain
the surface temperature controlled by the heat conduction
and neutrino emission, which in turn depends on the
physics of deep layers, i.e., whether the interior contains
superfluid components or not [3]. In fact, neutrons can pair
and form a superfluid in the inner crust and core of an NS,
with protons also expected to be superconducting in the
core (see Haskell and Sedrakian [4] for a recent review).
Superfluidity and superconductivity profoundly alter the
dynamics of the internal components that can now flow
relative to each other with small dissipation for extended
periods of time.

In particular, the presence of superfluid matter in the
outer core and inner crust of an NS is believed to be
connected with glitches, sporadic, and small increments of
the rotational frequency of a pulsar [5].
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In fact, glitches are generally assumed to be due to the
sudden recoupling of the interior superfluid neutrons and
the normal crust, which is tracked by the electromagnetic
emission [6,7]. Glitches allow for an indirect probe of the
NS interior and can be used to obtain constraints on
physical parameters of the star [8—12]. The superfluid
component, however, also has a strong impact on the
spectrum of global oscillations of the NS, as the increase of
degrees of freedom leads to an increase in the number of
modes [13,14]. Furthermore, the presence of a superfluid
may affect the oscillation modes of an NS as also
Tkackenko waves in the vortex array could be excited
[15,16]. This in turn will have observational consequences,
as global modes of oscillation can lead to gravitational
wave emission [13,14,17,18] and may be at the heart of the
observed quasiperiodic oscillations in the tail of magnetar
giant flares [19-21].

The hydrodynamics of coupled superfluid and normal
fluid systems plays a key role in the analysis of not only
NSs, but also laboratory superfluids. In particular, it is well
known that thermal counterflow of the normal fluid with
respect to the superfluid can generate turbulence, and that
the vortex array will be disrupted by the so-called
Donnelly-Glaberson (DG) instability [22]. Many experi-
mental and theoretical studies have recently investigated
counterflow turbulence and the link between the motion of
the normal fluid and that of the superfluid [23-26]. The
instability is a general feature of superfluids with vorticity,
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and is thus likely to operate in NS interiors [27,28], as
phenomena such as precession and Ekman flow can lead to
large scale motions along the rotation axis [29]. The DG
instability is not stabilized by the magnetic field and could
play an important role in an NS [30].

Very few experiments (see, e.g., Swanson et al. [31],
Finne et al. [32]), however, have dealt with instabilities due
to counterflow coupled to rotation, which is a setup
reminiscent of the neutron star interior, in which the normal
component can rotate at a different rate with respect to the
neutron superfluid. A notable exception is represented by
the experiment of [33], who considered rotating spherical
containers of superfluid He II, that abruptly changed
angular velocity, and studied the relaxation of the fluid
(see Eysden and Melatos [34] for a recent analysis of the
experiment).

To make progress in the neutron star problem, we adopt a
hydrodynamical approach similar to that used in the study
of superfluid He II, the so-called Hall-Vinen-Bekarevich-
Khalatnikov (HVBK) two-fluid model [35,36], and based
on the multifluid neutron star hydrodynamics proposed by
Andersson and Comer [37]. This allows us to study the
dispersion relation of waves propagating in the coupled
fluids and investigate not only their spectrum, but also
which branches of the dispersion relation may be driven
unstable by the counterflow of the superfluid and normal
components. Such instabilities may signal the transition
to a turbulent state and may both trigger a glitch and affect
the response of the fluid after the event. An example
of such trigger is the Kelvin-Helmholtz instability on the
isotropic-anisotropic interface between the 'S, and 3P,
neutron superfluids close to the crust-core transition [38].
Another group of instabilities, namely two stream instabil-
ities, may also be related to glitches since the entrainment
effect could provide a sufficiently strong coupling for
the instability to be astrophysically plausible [39-42].
Instabilities in pinned superfluids have been studied by
Link [43,44], who considered a regime in which vortices are
pinned either to nuclei in the crust, or to superconducting
fluxtubes in the core of the star, with only a small number of
them “creeping” out. On a larger scale, the global flow in an
NS may also be susceptible to various instabilities in
spherical Couette flow [45-47], and such instabilities
may also be related to timing noise in radio pulsars [48],
and precession of the rotational axis of NSs [49,50].

In the present work, a local three-dimensional plane
wave analysis of equations of motion for a multiconstituent
fluid [37] is performed. We consider two fluids, the
superfluid neutrons and a normal charge neutral fluid that
consist of electrons and protons [51]. Dissipative coupling
between the fluids is given by mutual friction, while a
nondissipative coupling is due the entrainment effect, that
accounts for the reduced mobility of neutrons especially in
the crust [52,53]. We start from the analysis of Sidery et al.
[28], who analyzed the oscillations of such a system,

assuming the fluids to be locked in the background
configuration, and in our calculation also allow for a
velocity difference between the constituents in the back-
ground, and explicitly account for entrainment. Physically,
such a background velocity difference will be built up if
vortices are pinned in the crust or core of the star and is
crucial for our analysis.

II. TWO-FLUID HYDRODYNAMICS

Our starting point will be the multifluid formalism
of [37]. We consider the hydrodynamical equations of
motion for two dynamical degrees of freedom, the super-
fluid neutrons, and a charge neutral fluid consisting of
protons and electrons locked together by electromagnetic
interactions on timescales shorter than those of interest for
our problem. The momentum equations take the form

ot
+ 26,0k = 1. (1)

0 , ,
<— —|— v{(V]> pi( + SXW?{VI'U{( + Vi(CI)R + ﬂx)

Indices x and y label the constituents, and the inequality
X #y is always understood to be true. The proton-electron
fluid will be denoted as p (and often referred to as the
“proton” fluid, as electrons ensure charge neutrality, but
only carry a small fraction of the inertia of the fluid) and
superfluid neutrons, labeled as n. Indices i, j, k label the
spacial coordinates. Summation over repeated indices is
implied (excluding the summation over constituent x and y
indices). The velocity of constituent x is ¥ while w)* =
v — v} is the difference between velocities of components.
The angular velocity of the star in the background con-
figuration is given by the vector ', and we have included
the centrifugal term in the potential @, that in spherical
coordinates can be written as

1
O = @~ Q2 sin 02, (2)

where @ is the gravitational potential which is given by the
Poisson equation

V20 = 42G» p,. (3)

fiy = uy/my is the chemical potential per unit mass, and p,
is the density of the x constituent. In the following, we
make the approximation m, =m, =m. Finally, the
momentum per unit mass p}, which due to entrainment
is not aligned with the velocity 2%, is

P =i + el (4)
where e, is the entrainment coefficient. Assuming
that individual species are conserved, the continuity
equations are
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Ipx
ot

+V;(pk) = 0. (5)

The force f7 on the right-hand side of Eq. (1) is the vortex
mediated mutual friction [35], and it represents an average
of individual interactions between vortices and the normal
fluid on the subhydrodynamical scale. As such its form
depends strongly on the properties of the vortex configu-
ration within the fluid. For straight vortices and laminar
flow, vortex mediated mutual friction force takes the
form [54]

pn i pn AT X
— nVB’e,»ijfwﬁy + o nyBe ki ekmepwyi . (6)
X X

where hats represent unit vectors, and the vector k' = kG
points along the vortex array, which is colinear with the
rotation axis, and k = h/2m,, is the quantum of circulation.
The vortex density per unit area, n,, can be linked to the
average large scale vorticity @' of the superfluid as

Kin, = o' = eV, pr + 201, (7)

which for two fluids rotating rigidly around a common axis
with angular velocities Q, and Q, reduces to

Kin, = 2QF + 2¢,(QF — QD). (8)

For vanishing entrainment, or if the two fluids corotate, the
above expression reduces to the standard Feynman-
Onsager relation for rotating superfluids, x'n, = 2Q¢.
The mutual friction parameters B and 5’ in (6) can be
expressed in terms of dimensionless drag parameter R as

R R?
e ™M PR O
where R encodes the microphysics of the dissipation
processes that give rise to mutual friction in the stellar
interior.

Theoretical calculations provide values for the drag
parameter R =~ 10~ for electron scattering on the magnet-
ized vortex cores in the NS core [55] and R =~ 1071 for
phonon scattering in the crust [56] (however, see [57] for
the discussion of additional dissipation mechanisms in the
case of type-I superconductor in the core).

Higher values of R = 1 are expected due to Kelvon in the
crust [58,59], if vortices are moving rapidly past pinning
sites. Using the two-fluid model of Khomenko and Haskell
[60], that allows for vortex accumulation in the presence of
differential rotation and based on the observational data of
glitches in Vela and Crab pulsar, Haskell et al. [12] have
recently derived values of B in the ranges B~ 1074-1073
for the Vela core and B~ 107> — 10™* for the Crab crust.
Similar results have been obtained by [61], who also

calculated the density dependence of the Kelvon mutual
friction parameter.

In the presence of turbulence, however, the vortex array
is disrupted, and a vortex tangle is likely to develop. In this
case, the form of the mutual friction in (6) will no longer be
appropriate. The form of the mutual friction to be used in
the case of a polarized turbulent tangle in a neutron star is
highly uncertain [62]; however, in analogy to the cause of
homogeneous isotropic turbulence in He-II, we will con-
sider the form proposed by Gorter and Mellink [63]

fx= __HAGMwin;ya (10)

X

where the parameter A, has the dimensions of the inverse
of a circulation and w3, = wi,w}”. As discussed by [62],
this form is essentially phenomenological and its relevance
for neutron stars is still unclear. However, it is interesting to
use this form of mutual friction as a completely different,
physically motivated, alternative to (6), to investigate the
effects of fully developed turbulence on the mode structure
of the star.

III. PERTURBED EQUATIONS OF MOTION

We begin our analysis by linearizing the equations of
motion in a frame rotating with angular velocity Q = €,
Formally, we expand a generic quantity Q in a neighbor-
hood of a certain position r as

O(r, 1) = Qp(r) +60(r, 1), (11)

where Qjp is the background (time independent) value of
the field, and the perturbation is assumed to be such that
|60| < |Qp|. With this in mind, the perturbed continuity
equation follows from (5) and is

ddp
ot

+ VI (036py + pyéuy) = 0, (12)
while from (1), we obtain

(0, + ”ivj)(&’?(l — &) +wl'Seg + £8v7) + 5v§Vj[;§
+ 5(£XW§XV,~U{;) + V(8 + 5@g) + 2€,,Q/ 50k = 5f7,
(13)

where 0f7 is a perturbed mutual friction contribution. In
order to keep our equations tractable, we apply the Cowling
approximation, taking 6@, = 0. Using Eq. (4), we can thus
expand (13) to write
(0, + viV,) (505 (1 — &,) + 60! +w! e, ) + 504V 0%
+ &, 004V W + ex(éwﬁxviv{ + wjy.xviﬁv{;) + 5exw§XV,-v{;
+ V6 + 26, Q0 505 = 57, (14)
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where

owy = vt — vl (15)

A. Thermodynamical relations

As it is clear from the form of the perturbation equations
in the previous section, to compute the effect of a velocity
perturbation we need to calculate perturbations of the
chemical potential and of the entrainment. For a charge
neutral two-fluid system, it is known that a complete
thermodynamic description in the zero temperature limit
can be achieved by considering the two densities p,, the
squared velocity lag between the two species w%x and the
related intensive variables, namely the two chemical
potentials per unit mass fi, and a dimensionless parameter
a which regulates the strength of the conservative entrain-
ment coupling between the two species [52]. In particular,
the first law of thermodynamics can be expressed as [54,64]

dE = i dpy + fiydp, + adwyy, (16)

where E is the energy density of the fluid mixture, while the
intensive variables are given by

OE OE
Uy = 7 and a= a2 . (17)
Ipx PyWh Owyy PuPy

The parameter a has the dimensions of a mass density and
is related to the usual dimensionless entrainment param-
eters &, via [52,65]

_2(1
Px

&x

(18)

Therefore, the variation de, is related to the variations of the
more basic thermodynamic quantities a and fi, as

_ 20a  &.0py
P Pr

Se, (19)

While for the chemical potential, we need to calculate

__ Opyg Ofi iy
X y yX

The derivatives of chemical potential with respect to the
squared background velocity may be computed using the
first law of thermodynamics in (16), which leads to

~ 2
op,  O°E 8<6E) oa o)

O Owhps  Op \Owd)  Opy

which, from (18) gives

Opt, 1 1 Oe

=&+ .
w2, 22 gy,

(22)

We are now ready to calculate perturbations of the entrain-
ment and chemical potential. To do this, we introduce the
sound velocities c,, the chemical couplings C, [66], and
two additional parameters related to the dependence on the
lag of @ and the chemical potentials,

o, O
X X 8px
o O OR
) Y Opy
Iy x
4
4, =20
Px aWnp
Oa Oy, Oey
=2——=2 = — 23
ax apx awﬁp SX + px apx ( )

Note that our definition of ¢2 coincides with the one used
by [28]. In our more general analysis, we let the entrain-
ment vary according to the thermodynamic relations, which
forces us to introduce also A, and «,, at least at this formal
level. There are no estimates in the literature for the
parameters A, in a neutron star, so in the following we
will neglect it and set A, = 0 in practical examples [67].
The parameter C, is also highly uncertain and generally
computed from phenomenological models [39], while for
a, one can obtain an estimate in the inner crust, shown in
Fig. 1, by assuming that the ratio between the densities of
the two species is frozen at its chemical equilibrium value.
In this case, one has that

&, interpolation
X &, by Chamel . .
20 === &+ ngdEalang SN
----- npden/ang ) i
2 101
Q
<
S
wn
f=
<U
g 01
£
I
—-10 1
-20
0.00 0.0l 002 003 004 005 006 007 008
ng [fm=3]
FIG. 1. Estimate of the quantity a, as a function of the total

baryon number density np in the inner crust of a neutron star. We
interpolate the orange crosses, that indicate the entrainment
parameters ¢, in the inner crust calculated by Chamel [68].
The green dashed line is a rough estimate of a,, the red dotted line
quantifies the absolute error that arises by considering a, ~ &,
according to Eq. (24).
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aex
Onp’

Oey
&x + Px o 8 R €y + np (24)

where np represents the total baryon number density.
This rough argument gives a plausibility interval for the
unknown values of a.

Thanks to the fact that Swyy, = 2(v} — v} )(6vk — 6vi),
the variation of the chemical potentlals can be conveniently
written as

Ofix 3Mx Ofiy
Sjiy = =2 8p + X 8p, + —25
/’tx 8px pX ap py a 2 W
)6
— 2% e Py s (25)
Px Py

Following the same procedure, we can write for the
entrainment

Oa Oa Oa

da = ——8py +=—0py + = W2

a_/’x 8,0 Y ow 2 yx
1) 0 A
_axﬂx& AyPy py+ xPx yxéw (26)
2 py 2 py 2

which, combined with Egs. (25) and (26) with (19), leads to

0 19
x_gx)&+ay&-

27
Px Px 27)

Sy = Awiow!™ + (a

B. Perturbing the mutual friction

The next step is to perturb the mutual friction. Let us start
by considering the anisotropic form valid for a straight
vortex array, given in (6). In this case, it is

Sfr = 5(p">[ K Be z)kwxy +n K;Be,,kkfekl’” |

X

p
+ = nyk! Ble; i 5why +,0

X

nyk Be kI e Swy)

4 on 8(nyk’)Be;jwhy + —5(nVK1)Beijkk/6klmmey
)

X X

+&nVKlB£,-jk5(f€j) klmwm ) (28)

X

where we have assumed that 655 = 658’ = 0. In principle,
one could vary also these quantities, but given the large
uncertainties on these coefficients, and to simplify our
analysis, we choose to ignore their perturbations. In order
to discuss the terms in a more tractable form, and keep track
of their physical origin, we separate the expression above in
the following way:

8fF = (6f )sound + (8f i)y + (8fi)ne + (8fi)e- (29)

The first term (5f;)souna connects sound waves and the
mutual friction and takes the form

0 Pa ;
(5fi)sound = <p - _zépx> (anj‘Bleijkwﬁy

X px

+ nyk Be kI emwi). (30)

The term, containing the perturbations of the background
velocity, which would exist also if the fluids corotate in the
background, is

(0f i) =

— ny (kI B'e; y5why + ki Beikiekmswy)). (31)

The final two terms (f),, . and (6f;); depend on variations
of the vorticity, both in magnitude and direction, and to
calculate them we need to perturb the vorticity o' = x'n,,
so that

8(kin,) = ' = €kV 5Py, (32)
which using
5Pk = (1 — &)5v% + £,6v% + wi e, (33)
gives

b’ = (1 = &,)e"*V ;507 + £,V ;50]
+ €75V ;(8e, Wi (34)

We also need to perturb the vorticity unit vector &' = @,
which can be done readily in terms of a projection operator L
that projects orthogonally to the vortex lines,

1
— 1isw® = — (8} —

Sk = 50 =
le @]

®'@,)60".  (35)
We can thus write

Pn
(8f ) px = —p—B'(nyvk(Spn wiy Vi6p})

‘f‘&B(K Wme hvlépn_w Ke[thvtépn) (36)

Px

and

Pn pon - XY n A o
(6fi)f<:[)_HBKI(W;V(yeslmvlép;n _ququtlmKtvlépgl)’ (37)

X

which, together with (33), completes our calculation of the
perturbed mutual friction. Before moving on, let us remark
that we could have obtained our expression directly in terms
of the perturbed vorticity éw’, by noting that the term

€@ e wwy, in the expression in (6) for the mutual
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friction, can be written in terms of the projection operator in
(35) as

€@ maw, = —|(0|J_{w§x (38)
and that

—5(|w|J_{w3-'x) = dw;(@w)) + @ (Wixdw,)
+=(@/60;) (Liw") = @[ (LEow;"). (39)

We consider also perturbations of the isotropic mutual
friction force in (10), proposed for the case in which we
have fully developed turbulence and an isotropic vortex
tangle. In this case, the perturbations of the vorticity play no
role and from Eq. (10), we have

L

B = =L Ay P + 2007 )

+ ) (p—n>AGM|ny|2Wiy. (40)

X

IV. PLANE WAVE ANALYSIS

We are now ready to derive the dispersion relation for
waves propagating in a neighborhood of the position r
inside the star. To do so, we use a plane wave ansatz into the
linearized hydrodynamical equations derived in the pre-
vious section. Let r + x be a vector in the neighborhood
of r, so that we can write

O(r +x,1) = Qp(r) + 50, (x, 1), (41)
with
5Qr _ Qei(kij_“”). (42)

We assume that |x| < |r| and R™! <« |k|, so that all
gradients of background quantities (that vary on length
scales comparable to the stellar radius R) are ignored in our
perturbation equations. We use a local cartesian coordinate
system, as sketched in Fig. 2, which is taken to be
corotating with the normal component, such that Q=.Q,
and v, = 0 in the following. This naturally implies that

Whp = Uh. (43)

Each perturbed quantity 6Q can be expressed in terms of
the two fields §v} and 6v, by means of the continuity
equations and of the thermodynamic relations and it will be
convenient to express the amplitude Q as

Q = Q4§ + 047y, (44)

FIG. 2. Sketch of the geometrical definitions used: the vector r
indicates the central position of a small sample of matter inside
the star, whereas r + x identifies the points in a neighborhood
of r. The local Cartesian system of coordinates is chosen to
be right-handed in such a way that the z-axis is parallel to
the direction identified by €, the x-axis defines the direction of
the cylindrical radius, and the y-axis is locally parallel to the
azimuthal direction. In this way, the coordinates x, y and z
identify the position x introduced in Eq. (41).

Following this procedure, the perturbed version of the
Euler-like equations (1) can be used to define a linear
system of six equations for the six independent amplitudes
7t which has the form

> MY (45)

y'=np

The only way to have nontrivial solutions of the above
equation is to impose that det (M) = 0. The determinant of
(45) is in general a high degree polynomial in the
components of the wave vector k and of the frequency
o and requires a numerical analysis. Particular cases that
can be studied analytically will, however, be presented in
the following sections.

To calculate the components of the matrix in (45), first of
all we insert the plane wave ansatz in the continuity
equation (12) to obtain
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pxki
Xpi,  where p* = 2 46
Px = pi*v A (46)

We also need the plane wave perturbations of the chemical
potential and entrainment, which from (25) and (27) are

yy
i, = [ 2? + ay vxy]v + {C i

— o, v 173' 47
Py y} )

equations in (14). The full result is complex, but a
procedure to obtain all the variations in the presence of
a background lag and with no approximations is given in
Appendix. It is, however, instructive to study the case in
which we neglect perturbations of the entrainment and set
be, = 0 and also neglect terms involving Je, /Jp,, so that
one has a, & €, in (47). In this case, the Euler equations can
be written as

and (k vx—a))[ (1_€x)+8x ]+2€UkQ vx
k; ) k~vy
_ P p; . — ik; c2.’7+c.’7—svw >_5 ,
Ex = l:(ax ) PR +A ny:| + [ay;_AxU;y:| U?I‘ (48) l< * kjl]] —iw Y ij{/ ) > fl
X
(49)
With the above expressions at hand, we can now
compute the plane wave perturbations of the Euler  where defining pX = % + e, W% pn> We have
|
o n Fn JR! k Pn P 2j pklmy XY
5fi -\~ _sz nyk B €ijkwxy + /)_ - _sz anlBGiij € Wm
X X X
Pn iR =k Pn Rl xy _Pnpy
+—=nyk/ B'e;jwyy +—nyk;Bejkle -—B (lwxykkp, zwxyk r)
X Px Px
+— a B(lK Wm zthkt iw?y’%lelthktﬁﬁ) + &Baf(iwiyeslmklﬁ;? - iw}gyezlmklﬁ;?)- (50)
Px Px

V. WAVES IN THE ABSENCE
OF MUTUAL FRICTION

In this section, we consider some simple examples where
progress can be made analytically, before moving on to the
numerical results for the full set of equations. In particular
we will first consider sound waves and inertial waves in the
limit of vanishing mutual friction, and show how mutual
friction can damp or drive some of the modes instable.
The approximations will be outlined for each case as we
proceed.

A. Sound waves

Let us begin by considering pure sound waves. If we set
Q=¢ =wy =1, =0 in (49) and (50), the dispersion
relation follows from

w*(ck* — w?)(chk* — 0*) = 0. (51)

Here and in the following calculations we will not consider

the stable and trivial solutions. Using the dispersion

relation, we recover two branches of sound waves, one
for each fluid

o = *kc, (52)

o = tkc,. (53)

|

Including a background flow, still with Q = e, = 0 does
not couple the fluids, and simply introduces a correction, so
that the nontrivial branches of the dispersion relation are

w = tke, + (V7k) (54)

o = *tkc,. (55)

1. Chemical coupling and entrainment
We now move on to considering the chemical coupling
between the two fluids in the regime in which w,, =v,=0
and Q = 0. In this case, the dispersion relation follows
from

w*é — 0’k (C, + ¢2) + k*(cici — C,C,) =0, (56)

where we have defined

O’E
C,=Che,+ Cpe, = da——— (57)
p pp 3puOp,
and
Cz = (1 - gn)clz) + (1 - 8p)crz1’ (58)

as well as the dimensionless parameter
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E=1-¢,—¢,. (59)

The roots of (56) are organized in four branches that have
the form
® = tke, @ = tke,, (60)

where the constants ¢; and ¢, are two velocities for
entrainment-coupled sound waves

, 2+C.+A
="
28
2+ C,—A
G = (61)
with
A= /(& +C) - A5G -GGy, (62)

It is immediate to see that, in the limit of no entrainment
and no chemical coupling, c¢; and ¢, are exactly equal to ¢,
and ¢, of pure one-component sound waves. To grasp the
physical effect of chemical coupling, we furthermore
require that ¢ > C,, Cy. In this limit, it is useful to define
A as the limit of A when C, =0,

Ay = /2 —4écicl Cps (63)

so that the limit of weak chemical coupling can be equally
seen as C,/Ay < 1. In this case, the velocities in (61) can
be expanded up to the second order in the chemical
couplings as

2
) c;+C, A C.
= | 1£— 64
C1,2 24; AO + ( )
C,C, c* —4&cic? C? c2c?
n~p lLe n‘p n p 4
oc 65
A% Ay A2 Ay +0(&), (65)
In the limit of &, = ¢,, and using the relation C, =3 b,
we recover the result [28]
P G
= ke, |1 - 66
okt o
Pp Ca }
o =tkey |l + ——5—5—|. (67)
b [ 2py cplcp = ca)

However, retaining the entrainment terms, the lowest order
correction to the dispersion relation comes the term that is
linear in C,: when entrainment is considered, the effect of
the chemical coupling on sound waves is enhanced. Note
that this result is independent of the assumption de, = 0

and remains the same also in the more general case in
which perturbations of the entrainment are considered.

2. Including rotation

We now consider the effect of rotation on the sound
waves, in the limit of no chemical coupling, i.e., we take
C, = C, = wy, = v, = 0 in the background. In this case,
the dispersion relation is still too complex to solve for a
general case. However, if we consider sound waves with a
dispersion relation of the form w ~ c.k, we expect that
@ > Q even for the smallest possible k, which is of the
order of the inverse of the stellar radius R~ (i.e., the
sound velocity in nuclear matter is such that ¢, > QR).
Therefore, it is a very good approximation to expand the
two branches of w?(k) to the lowest order in Q,

(k) = K2ty + f1,97 + 0(Q1), (68)
where

2 Cg j:AO
Cla2 = 25

Ag = \[ct—4cicy,  (69)

where c¢; corresponds to the upper sign choice. The
quantities f; and f, are

Fia =z (€ + D0 F 20+ G)(E +Osin’(0)+
0
(70)
F (& + &+ 1) cos(20) £ cz¢]. (71)

where f| corresponds to the upper sign choice and 9 is the
angle between Q and k. Finally, combining the above
expressions, we find that the correction to the four branches
of the dispersion relation for sound waves produced by the
Coriolis force is

f 1,292> ’ (72)

=+
w(k) <01,2k+ 26,k

which, neglecting entrainment (¢, =&, =0) reduces to [28]

2Q?

o~ cnk[l + = (sin 9)2] (73)
cik
202

w = ek [1 +—53 e (sin 9)2] . (74)

B. Inertial waves

We now continue to focus on the effect of rotation,
but search for solutions that are inertial waves, for
which the dispersion relation is not linear in k. If we set
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¢y =c¢p, =C,=C,, we find, as expected, families of
inertial modes such that

® = +2Qcos 0 (75)
2Q
o= 4 22e0s0 (76)
(1-¢e,—¢p)

In this case, we still have two families of modes, but these
do not correspond to oscillations in the single fluids as in
the sound wave case, but rather represent an inertial mode
where the two fluids flow together, which represents the
standard inertial mode of the system, and a mode in which
the two fluid oscillate relative to each other, the frequency
of which is affected by entrainment [69].

VI. INCLUDING MUTUAL FRICTION

So far it has been assumed that the two fluids can
oscillate without any dissipation mechanism. The mutual
friction will couple the two fluids and generally tend to
damp any relative motion. To study this problem, we
consider a selection of analytically tractable cases and
defer the reader to Sec. VII for the full analysis. We begin
with a discussion of inertial waves, as it is known that
inertial modes may be dynamically unstable in the presence
of a background flow [28,30,52].

Let us start our analysis of inertial waves by considering
the weak drag regime, such that R < 1, which results in
B' < B. We thus take B’ = 0, and also set ¢, = ¢, = C, =
C, = 0 as we are interested in inertial waves. In the case in
which there is no background flow, i.e., wh, = v} = 0, the
dispersion relation follows from

[(4(Qcos 0)? — @?)(4(Qcos 0)? — (2Bk;Q (1 + p)

—i(l—g,—¢g,)w)?] =0,

where p = p,/p,. The solutions are still an undamped
inertial mode, which we identify with the comoving mode,
as in this case there is no relative motion and no mutual
friction (note that in a full spherical analysis rotation
couples the two motions at higher order and results in
mutual friction damping even for the standard comoving
mode, see Haskell er al. [69]), and the damped counter-
moving mode, modified by entrainment.

® = +2Qcos b (77)
2Qcos 0

w =" 1 B+ p)). (78)
l—¢e,—¢

Note that the denominator is always positive, 1 —¢&, —¢&, >0,
as required by stability on a microscopic scale [65]. The
mode is therefore always stable, but we see here that our
study of large scale hydrodynamical instabilities, such as

the one that would arise if 1 — ¢, — ¢, <0, successfully
captures a more general physical instability of the system.

A. Background flow

We now consider the physically realistic case in which
the fluids are not corotating in the background, for example
due to vortex pinning in the crust. The analysis is now more
involved, so we will consider two cases separately: counter-
flow along the axis of the vortex array (the DG instability)
and counterflow perpendicular to the axis.

1. The Donnelly-Glaberson instability

To study the instabilities that arise due to counterflow
along the vortex axis, we specialize our setup, and consider
only modes propagating along the vortex axis, which is
taken to be aligned with the rotation axis along z. We thus
have k, = k, = 0. To begin our analysis, we consider the
simplified case with no entrainment, i.e., &, = &, = 0 and
also start from the assumption p =p,/p, =0, which
corresponds to assuming that the mutual friction only acts
on the neutrons. This not only simplifies the calculations,
but it corresponds to assuming that the protons and
electrons are “clamped” to the normal fluid (e.g., their
motion is entirely dictated by the magnetic field). In this
case, the dispersion relation is

ok vy + 0)(4Q% — ) ((2Q — iBk,v%)?
— (2B + i(k.v5 — w))?) = 0, (79)

which, apart from the trivial solutions corresponding to the
choice of coordinate system, has solutions

w = +2Q (80)
® = F2Q — 2iBQ + iBk V5 + k,vb. (81)

The first solution corresponds to standard inertial waves
(the factor cos @ = 1 due to our choice of direction of k),
the second corresponds to the DG instability and is
generally unstable as long as |v,| > 2Q/|k.|. If we consider
a standard pulsar such that 2Q ~ 100 rad/ sec and hydro-
dynamical scales such that |k.| < 1 cm™!, then we have an
instability if |v,| > 10> cm/s, which corresponds to a lag
of AQ ~ 107*, in the outer layers of the star, which is easily
sustainable by pinning forces in the crust [70]. Such an
instability is thus always likely to be present, as vortex
bending and large scale flows in the normal fluid, coupled
to the superfluid, will always induce counterflow along the
vortex array. The fact that the instability exists evenif p = 0
and mutual friction is not acting on the protons, suggests
the instability will exist even in the presence of strong
magnetic fields, as suggested by the analysis of van Eysden
and Link [30].
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If we relax our approximations, and take p # 0 and
include entrainment in our analysis, the full solution is
intractable. We thus consider the weak drag case, for which
R < 1, and we can take B’ =~ 0. Furthermore, we consider
two limiting cases, the small entrainment limit, which is
relevant for the core of the star, and the large entrainment
limit, relevant for the crust. For small entrainment
& < g <1, we have

Re(w) = £2(1 4 ¢,)Q
B?(k,v3 £ 2Q)

82
i (k,v3)? + B?[(k,v3)? 4+ Qk, v + 4Q?] (82)
4Be Q%k 17
I = p z7n 23
)= (k,vi)? + B*[(k,v3)? & Qk v + 4Q?] (83)
and
Re(w) = +2(1 4 &,)Q + k. v§
4B2gp§22(kzvﬁ + ZQ) (84)
<kzl)ﬁ)2 + BZ[(kaIZJZ + Qk_ 0% + 492]
Im(w) = —Blk,vi +2Q(1 + &, £ &,)]
4Be ,Q%k v}
== EpSaK Uy (85)

(k.vi P + B(k.vi)? = Qv + 407

We see that in the presence of a background flow entrain-
ment modifies also the comoving mode, which is now
potentially unstable. For weak drag, if we expand to first
order in B, we see that the mode is always unstable for

o ml
2 9
k.|~ 4Be,Q

(86)

which means that in the presence of a lag, due to core
pinning (e.g., of neutron vortices to proton fluxtubes), the
vortex array is generally unstable on all hydrodynamical
length scales for standard parameters (B~ 107*, Q ~ 100,
g, = 0.6, |v,| = 10* cm/s).

2. Two stream instability

Let us now consider the case of a two stream instability,
in which there is a counterflow perpendicular to the vortex
axis, which we take to be aligned with the rotation axis such
that &' = Qf = 2. We thus have o7 # 0, with o7 =0,
v? =0, and to keep the calculation tractable we consider
the case in which ¢, = 0 and take the protons to be clamped
to the normal fluid (p = 0). The dispersion relation is

w(k,vy — Bkyvi — ) (4Q% — 0?)
X (4(1 + B)Q? — 2iBQ(—k v} + B, v} + 20)
= (kyvy — o) (kv — Bkyvy — o)) = 0. (87)

Apart from the trivial solution, we now have solutions of
the form

1
= 2Q = 2BQ + k,v} % 5 Bk, v}

1 Bk, vy,
41— i
2\/ T

This mode can be unstable due to the induced flow in the y
direction caused by the background flow in the x direction.
An expansion for B <1 reveals that the criterion for
instability is

BR(01)?
16Q2

(88)

1
—Im(w) = 2BQ + Ekavﬁ <0. (89)

This gives the condition for the instability to develop

o> — k., >0 (90)
|k |
4Q
U;l < —|k—, kx < 0. (91)

Note, this condition does not contain dependence on k,. To
obtain this, we need to expand the second order in small

parameter |v,|/€, which leads to
B B3 (v2)? Bk K (vi)?
-1 =2BQ+—kau—— e ——— 2R (92
m(@) T T 6497 ©2)

As we can see mutual friction does not affect the critical
velocity for the instability to set in, but affects its growth
rate, with higher mutual friction causing a faster rise of the
instability with increasing velocity.

B. The strong drag regime

We now move on to consider the case of a strong drag,
that corresponds to R > 1, in which case the parameter 5’
can no longer be neglected. This case may be applicable in
regions with strong pinning [71-73] and may have impor-
tant consequences for the development of the r-mode
instability [41,69]. Let us begin our analysis by the
equivalent of the DG instability, in which the relative flow
is along the vortex axis, taken to coincide with rotational
axis, or v} = 1);% = 0 and 27 # 0, and we also take &, = 0.
We consider the limit R < 1 for which B~ 0 and B’ ~ 1.
In this case, the spectrum is given by
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1 1 1
a)ZZQ—B/Q(l +ﬁ) —Ekzv,zl +§B/k11}2 ﬂ:i\/ Tl
1

1 1
2kz’l)fl+§B/kz7}ﬁZ|:§\/ T2, (93)

o==-2Q+BQ(1+p)+
with

T, = B?(=2Q(1 + p) + k,v3)?
+ 2Bk v5[2Q(=1 + p) + kvf)] + (k.05)?
Ty =B2(2Q(1 + p) + k.v})?
+ 2Bk v3[2Q(1 = p) + k.vi] + (k.v3)2. (94)
For standard neutron star parameters, these modes are not
unstable, and in fact if we expand for B’ < 1, we obtain
@ =2Q+2BQ+ k,vi £ Bk,vj
w = =2Q+2BQ+ k.v5 + Bk, 3, (95)

which are stable, modified inertial modes.

C. Sound waves and mutual friction

To study the effect of mutual friction on sound waves, we
can consider an expansion in Q around the Q = 0 solution
@ = *£c,k. Let us consider the modes of the superfluid, in
the clamped proton approximation. Defining 6 to be the
angle between the wave vector and the rotation axis, we
find that for ¢, = Cy = wyy = v, = 0, we have

(k) =tc,k—iBQ?sin? 6
Q2 L)

" sin- 6
2c,k

(4—8B +4B? -5B+ B*cos20). (96)

The effect of the mutual friction disappears when the wave
vector is aligned with the vorticity, i.e., # = 0;in this case, the
velocity perturbation is parallel to the vortex array and there
cannot be any mutual friction effect (all the cross products in
28 are zero). Things are very different if a background
velocity lag is present (even if this lag is parallel to the vortex
array) because vorticity perturbations enter the game: this
will be investigated numerically in the next sections.

In the weak drag limit, we may set B’ ~ R? and B~ R
and the relevant terms become

QZ%sin%6

o = ek — iRQ?sin’0 + ek

(4-5R). (97)

D. Isotropic (Gorter-Mellink) mutual friction

We now consider the Gorter-Mellink form for the mutual
friction in (10) to investigate if and how the presence of an
isotropic vortex tangle modifies the previous results. In the
limit kc, > Agy|v,|?, it is possible to write the exact
implicit form of the dispersion relation, which is

iQ2
w(k) = +2Q|cosf| —iay Agy|v,|? (1 _1—18)
Cn

292 iQZ
w(k)==+ (c,JH——) —ias Agu|va)? (l —fCS 2 ) (98)

2
an n

for inertial and sound waves, respectively. Here, f7 ~ 1 and
f+ ~ 1 are four involved functions of the angles between
the vectors v,, k, and €, as well as the two positive
functions af > 0 and aF > 0. Irrespectively of the mutual
orientation and magnitude of the three vectors (provided
that kc,, is always much bigger than Q and Agy,|v,|?), we
are always in a damped regime in which the damping
timescale is of the order of Ag),|v,|™ for both inertial and
sound waves.

It would thus appear that a rectilinear vortex array is
rapidly destabilized as unstable inertial modes develop due
to counterflow. If an (approximately) isotropic vortex
tangle develops this remains stable, at least until the
turbulent tangle decays. Once a rectilinear array is restored,
the system is again unstable, leading to a recurrent
mechanism that may be linked to the trigger of pulsar
glitches. A more detailed analysis in the case of a polarized
turbulent tangle should be the focus of future work.

Note that as the modes in (98) are stable, we will not
consider isotropic mutual friction in the numerical analysis
in the following section.

VII. NUMERICAL RESULTS

All the machinery needed to derive the general
dispersion relations for the various modes of oscillation
of the two-fluid system is presented in Appendix. The final
result is the matrix M in (A25), which depends on some
basic local quantities that define how the system responds
to a perturbation in the velocity fields: the full matrix (or its
determinant) can be seen as a function of w and k and
depends on several parameters, namely

M=M(w,K;v,,0,Q; e, p, a0, A, Cooe; BB, (99)

Leaving aside the obvious dependence on the pulsation @
and on k, the other parameters (that describe completely
the hydrodynamic state of the background configuration
when there is no turbulence and magnetic field) have been
formally divided into three sets, which helps us to discuss
their role.

The first set comprises the variables v,,, @, and Q: they
define the state of motion of the background configuration
in which the normal component rotates rigidly. We allow
for a stationary nonzero local velocity lag v, = w,,, which
is expected to be nonconstant on the stellar radius length
scale. Therefore, in a purely local analysis, the background
vorticity field @ is not expressible in terms of the local
(constant) value of w,,: only a true solution of the
unperturbed equations of motion would lead to locally
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TABLE L

The two prototype cases, for the crust and core of the star, that have been tested in the numerical analysis of the determinant.

For each of these five cases, we consider nine different relative orientations of the local lag v,, and k and the three mutual friction
scenarios listed in Table II. Each of these cases has been investigated by considering two relative velocity speeds between neutrons and

the normal component |v,| = 1 cm/s and |v,| = 10* cm/s.

Case Pn Ch ) £, £, Q || 0} A,y Cop
Crust 4p, 10° cm/s 0.51c, —-10 —40 100 rad/s 200 rad/s v/ 0 0
Core 4p, 10° cm/s 0.51¢, 0.15 0.6 100 rad/s 200 rad/s 7 0 0

consistent values for wy,,, @, and £, but would prevent us to
test the more general case in which the local direction and
magnitude of these vectors are chosen at will.

The second set of parameters describes the local state of
matter in the stationary configuration. It can be further
divided into two subsets. The four parameters ¢, and p, are
defined by considering the first law of thermodynamics
(16) and their unperturbed value can oscillate: indeed, we
introduced the linear combinations (46) and (48) to express
their amplitudes in terms of the perturbed velocities (the
same is valid for the chemical potentials ji,, with the only
caveat that the unperturbed value of the chemical potentials
does not enter into the explicit expression of M). The
second subset comprises ay, A, Cyx, and ¢y, that are related
to second order derivatives of the internal energy E; in a
first-order analysis, these quantities are fixed to their
unperturbed value and allow, together with the unperturbed
values p, and &, to express the fundamental thermody-
namic perturbations dpy, ¢y, and iy, as described in
Sec. 1T A.

Finally, the two parameters /3 and B define the “state” of
the vortex array (note again, that we only consider the
standard, anisotropic form of the mutual friction, and not
the Gorter-Mellink form, as we have found modes to be
stable for this form of the mutual friction). We do not
consider variations of these parameters and their value has
to be fixed according to the mutual friction scenario that we
are interested to test. In the subsequent numerical analysis,
we consider different possibilities, listed in Tables I and II.

From the analytic point of view, writing down the full
matrix M is of little interest, but its complete and explicit
form in components can be easily obtained with the aid of
any software for symbolic computation, as outlined in
Appendix. Although extremely complex, also the full and
exact determinant of M can be obtained as well. At this

TABLE II. The mutual friction scenarios considered in the
numerical analysis: for each case listed in Table I, we consider
these four mutual friction regimes.

Description B B R
Pinned vortices 1 0 )
Free vortices 0 0 0
Strong drag 0.5 0.5 1
Weak drag 1074 1072 ~1072

point, we substitute a particular choice for the background
parameters into the complete expression of the determinant;
the roots of det M(w,k) =0, which is a high degree
polynomial equation in the pulsation @, can be computed
numerically for different values of k. By varying k and the
parameters, some branches of the dispersion relation w(k)
may result in a positive imaginary part. The associated
instability timescale is then defined as

2

" o)

(100)

Since we worked within a purely hydrodynamic frame-
work, it is important to stress that not all the values of |Kk|
are physically meaningful. As also discussed in [30], the
wave vector should be much smaller than the inverse of
the stellar radius, otherwise the effect of stratification is
expected to modify the dispersion relation (namely, the
background quantities have spatial dependence on such
length scales and cannot be considered uniform, as in the
present local analysis). Since the stellar radius is about
R ~ 10 km, we should consider |k| > 107% cm™': there-
fore, we expect the present analysis to be valid for |k| ~
1073 cm™! since significant density changes are expected
to occur on the length scale of about 10 m, especially at the
core-crust interface.

On the other hand, the definition of the superfluid
momentum and vorticity needs a suitable average on a
macroscopic sample of matter containing many vortex
lines, in which average separation is expected to be of
the order of ~1073 cm. Therefore, we expect the present
analysis to break down when the wave vector reaches the
critical value |k| ~ 10° cm™'. For this reason, the region
outside the physically interesting range 107 < |k| cm <
103 is shaded in the plots of the instability timescales.

Considering the relative orientation of four different
vectors (v, Q, w, and k) leads to a huge parameter space;
therefore, in the numerical analysis we stick to the case in
which Q = Q7 and w = 2Q, while v, and k are chosen to
be aligned with one of the three directions X, ¥, or Z, for a
total of nine combinations [74]. However, for simplicity,
only the interesting cases that allow for unstable modes are
shown in figures and discussed.

First of all we consider the DG instability, for strong and
weak drag and in the “pinned” scenario, which we mimic
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Instability timescale 7'(k) versus wave-vector k for the DG instability, in which the counterflow and k are along the vortex axis

in the z direction. The color coding expresses the real part of the oscillation frequency (note that the rotation rate of the star, i.e., of the
“normal” component, is taken to be = 100 rad/s). We consider the strong drag case with B = ' = 0.5 and two values for the
background lag, a low value of v = 1 cm/s (left), and a high value (corresponding approximately to the maximum that pinning forces
can sustain), of v3 = 10* cm/s (right). In general, we see that there are always mixed inertial-sound waves, that are unstable on
dynamical timescales, and are increasingly unstable on small length scales, and that for large enough background velocity lags, the

whole dynamical range is unstable.

by taking B’ = 1, but B = 0. In Figs. 3 and 5, we plot the
instability timescale for strong drag (weak drag is quali-
tatively similar) and for pinned vortices, for varying values
of the background lag. In general, we confirm the results of
the analysis in Sec. VI A 1, there exists a family of mixed
inertial and sound waves, that are unstable on dynamical
timescales, both in the core and crust. Mutual friction has
little effect on damping the instability (in fact it is at the
heart of driving it), and rather it is the lag that plays a role in
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determining the onset of the instability. For small values
of the lag of »3 = 1 cm/s, corresponding to AQ ~ 107> in
the outer core or inner crust, assuming a radius of
R ~ 10 km, only the shortest length scales are unstable.
For higher lags (vi = 10* cm/s, AQ~ 1072), all the
dynamical range is unstable, and we can thus assume that
once pinning allows for a significant enough lag to develop,
the array will go unstable, possibly playing a role in
triggering pulsar glitches or contributing to timing noise.
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FIG. 4. Dispersion relations (real part of @ vs k) for the crust (left) and core (right) of the neutron star, for a lag of vj; = 10* cm/s in
the case of strong drag (B = B’ = 0.5), for the DG instability in which we consider the background lag along the vortex axis, i.e., the
z axis. We can see that there are mode crossings between families of inertial and sound waves, and in red we have the unstable modes,
which are modified sound-inertial waves. In the crust, in the presence of large entrainment, an additional unstable inertial mode is
present for negative values of k,. The shading identifies the region in which the scale of the horizontal axis is linear.
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Instability timescale versus wave-vector k for the DG instability, in which the counterflow and k are along the vortex axis in

the z direction. The color coding expresses the real part of the oscillation frequency (note that the rotation rate of the star, i.e., of the
“normal” component, is taken to be Q = 100 rad/s). The setup us the same as in Fig. 3, but here we consider the “pinned” case with
B =0 and B’ = 1, again two values for the background lag, a low value of v3 = 1 cm/s (left), and a high value of v = 10* cm/s
(right). We see that we still have unstable modes, although if one observes the dispersion relation in Fig. 6, it is clear that these are now
inertial waves and not mixed sound-inertial waves as in the strong drag case (the weak drag case is qualitatively similar to the strong

drag one).

In Figs. 4 and 6, we plot the dispersion relation for both the
strong drag and pinned case. We see that the nature of the
unstable modes changes: in the pinned case, inertial modes
are unstable, while in the strong drag case (and we have
verified that the same is true for weak drag), the unstable
mode is a modified sound wave.

In Fig. 7, we consider the two-stream instability, in
which the background counterflow is taken perpendicular
to the vortex (and rotation) axis. Here again we confirm
our analytical results from Sec. VIA2. There are
mixed sound-inertial waves (as can be verified from the
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dispersion relation in Fig. 8) that are unstable on dynamical
timescales, and the unstable range depends strongly on
the magnitude of the background counterflow velocity.
For high values, as may be expected from strong
pinning, »f = 10* cm/s, the whole dynamical range is
unstable, with the instability developing on similar time-
scales at all scales. For vf = 1 cm/s, on the other hand,
only the smallest length scales are unstable, and the
instability develops on longer timescales, that may be
affected by other viscous mechanisms, such as shear
viscosity.
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FIG. 6. Dispersion relations (real part of @ vs k,) for the crust (left) and core (right) of the neutron star, for a lag of v} = 10* cm/s for
the pinned case (B = 0, B’ = 1), in the case of the DG instability in which we consider the background lag along the vortex axis, i.e., the
z axis. Unlike in the strong drag case in Fig. 4, the unstable modes (in red) are now clearly inertial waves. The shading identifies the

region in which the scale of the horizontal axis is linear.
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FIG. 7.

ky [em~1]

Instability timescale versus wave-vector k for the two-stream instability, in which the counterflow and k are taken

perpendicular to the vortex axis, in this case in the y direction. The color coding expresses the real part of the oscillation frequency (note
that the rotation rate of the star, i.e., of the ‘normal’ component, is taken to be Q = 100 rad/s). As in previous cases, we consider the
strong drag case with B = B’ = 0.5 and two values for the background lag, a low value of »3 = 1 cm/s (left), and a high value
(corresponding approximately to the maximum that pinning forces can sustain), of v}, = 10* cm/s (right). In general, we see that there
are always mixed inertial-sound waves, that are unstable on dynamical timescales, and that for large enough background velocity lags,

the whole dynamical range is unstable.
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FIG. 8. Dispersion relations (Real part of w vs k) for the crust (left) and core (right) of the neutron star, for a lag of v} = 10* cm/s for
the strong drag case (B = B’ = 0.5), for the two-stream instability in which we consider the background lag perpendicular to the vortex
axis, i.e., the y axis (the vortex is taken to be aligned with the z axis). The unstable modes (in red) appear to be sound-inertial waves. Note
that for the pinned or weak drag case, no instabilities are present. The shading identifies the region in which the scale of the horizontal

axis is linear.

VIII. CONCLUSIONS

We have studied the modes of oscillation of a superfluid
neutron star, accounting for background counterflows and
including entrainment. We have considered the effect for
both standard HVBK mutual friction that arises if the
vortex array is straight, and the Gorter-Mellink isotropic
form, relevant for fully developed turbulence.

We find that for standard mutual friction there is always a
fast instability in the case of counterflow along the vortex
axis (which may arise, for example, if the star is precessing,

or if vortices bend on a large scale), which is the neutron
star analog of the Donnelly-Glaberson instability that is
observed in laboratory studies of superfluid helium. We
also confirm the existence of a rapid two-stream instability
when the background counterflow is perpendicular to the
vortex axis (as is expected if a difference in angular velocity
between the superfluid and the normal fluid arises due to
pinning).

We find that entrainment plays an important role in the
instability, and its effect is twofold. On the one side, it
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extends the dynamical range over which inertial modes are
unstable in the crust, but on the other it significantly
shortens the growth time in the core of the star.

When we consider isotropic Gorter-Mellink mutual
friction, we find that the previous instabilities are stabilized.
This suggests that once a large enough lag sets in, the
instabilities we have presented will disrupt the straight
vortex array and a turbulent tangle will develop. At this
point, the system is stable until the turbulence decays and
the process will start again. It is thus very likely that
transitions to turbulence play a role in triggering pulsar
glitches and in timing noise [48,75].

An important effect that we have not considered is that of
the magnetic field. The problem is complicated, as the
interior field configuration of a neutron star is generally
unknown, but van Eysden and Link [30] found that for
simple field geometries the two-stream instability can be
stabilized, while the Donnelly-Glaberson instability is
always present. We have mimicked the effect of the
magnetic field by studying a setup in which the proton
fluid is “clamped” and not affected by the mutual friction
(to imitate the situation in which it is held in place by
magnetic stresses) and find that the two-stream instability is
still present in the weak drag regime when entrainment is
present. Future work should focus on the full problem,
accounting also for superconductivity in the core and the
interaction between neutron vortices and superconducting
flux tubes [76].
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APPENDIX: DERIVATION OF
THE DISPERSION MATRIX

In this appendix, we provide a more self-contained
description of how to perform the local variations by using
directly the plane wave ansatz and find the dispersion matrix
of the two-fluid system. In the following, the indexes x and y
are always meant to be different (x # y), while x and y’ can
assume the same value.

For clarity, let us list all the quantities that appear into the
Euler equations (1) as the entries of a vector O, namely

i A

0 = (&, px. fix. &, Pk, @', @"). (A1)

Note that the gravitational potential @ is not included into
the set of variables that we perturb, as well as the mutual

friction parameters 13, 5/, and A,,. The angular velocity Q
is also kept constant and defines the rotating frame in which
k and the pulsation @ of the plane wave ansatz (42) are
measured. Since the quantities in Q are not all independent,
it is convenient to calculate their variation following the
order in the list. Once the quantities in Q have been
expressed in terms of the velocity fields only, the vector is
expanded at the first order as

Ofv, + ¥, eilkx=om) QB+Z Q-f. (A2)

Hence, the generic amplitudes Q introduced in Eq. (44) are
obtained by means of the coefficients

—i(k-x—wt) aQ
o,

a0

: A3
0; = s 08l (A3)

For p,, fi,, and ¢,, the result has already been given in
Sec. IV. From the continuity equation, we find the diagonal
elements p¥* of the three 2 x 2 matrices p;y/ = Sy p}; see
Eq. (46). Now, the thermodynamic relations of Sec. III A
allow us to calculate the explicit form of

fix = py" 04 + pa 0% (A4)
and
g, = el + g, 0%, (AS)

where the matrices ,u;y/ and .s;y/ have been given in
Egs. (47) and (48), respectively. Using the result for p;yl,

the final expressions read

i
i C;{kf — -y (A6)
for the specific momentum and
i .
et = (o — &) o—Kk-v, + Axwyy
p oSl KA, (a7

Py o—k-vy

for the entrainment parameters.

At this point it is immediate to address also the variations
of the momenta and of the vorticity. To give a concrete
example of how the linear combination (44) looks like
when applied to vectorial quantities, we start by formally
writing the momentum amplitude as
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p;( = p)ii:l”n + pm p (A8)
Performing the expansion (A2) on the momenta defined in
(4) immediately gives
Px = (1 — &)V + &}, + vixE,. (A9)
The last term can be expanded thanks to (A5), and (A2)
tells us that
Pi = (1= &) +wel
P =i, +wler. (A10)
When the entrainment coefficients (A7) are inserted into
the above formulas, we see that the momentum perturba-
tions have a correction which depends on the coefficient A,.
Not surprisingly, these terms are of the second order in the
background velocity lag; it is not particularly convenient to
neglect them here, but from the numerical point of view
these terms are expected to have little effect on the
calculated dispersion relation.
The last ingredient that we need is to write the vorticity
perturbation in the same fashion of (44), namely

»; = W, vy + ol 5. (A11)

Starting from Eq. (34), or applying directly (A2) on the
definition of vorticity together with (AS), it is straightfor-
ward to check that

Poon j il onn
—lwi, = (1 - gn)eijakj + €ijlkjvpnga

—la}p = Sneijakj + €ijlkjWén82p. (AIZ)

Alternatively, the above result can be found directly from
(A9) by observing that @; = i€;,,k*p%. Similarly, the
variation of the vorticity versor can be easily obtained
by means of the projector in Eq. (35).

1. Left-hand side of the Euler equations
Let us define the right-hand side of Eq. (1) as

& = (9, + vV, p¥ + eijyvivi + Vi, + 26, Q7 0%,
(A13)

where the gravitational potential ® and the centrifugal term
have been ignored: we are interested in the variation 5%
and these two terms only contribute to define the back-
ground configuration. We extend the notation (42) to &%,
namely

5EF = Exeilkx-on) (Al14)

where

Er = £t + EY ¢

ia Uy (A15)

Using systematically the results obtained so far, a small
amount of algebra gives

i85 = (w—k-vy)[(1
+2i€ijan

—k(waa +Iu )
(A16)

- 8x)5ia + W?IXSZX]

and

i) = (w—K-v)|ebin +wied | — ks . (A17)
In a dynamical regime in which the mutual friction is zero
(i.e., in the rather ideal situation in which the vortex lines
can be considered free and no drag nor pinning interactions
act upon them), this result is sufficient to build the matrix M
of Eq. (45). More explicitly, the six equations of the full
linear system (45) can be also be written as

Mnnvn —|—an a =0

M98+ MPP T4 = 0, (A18)

where the indexes i and a run over the three spatial indexes
(the summation over a is understood). Therefore, it should
be clear that each block of the full matrix M can be
obtained as

!

My =gy (A19)

in the free vortex limit.

2. Perturbing the mutual friction

In order to treat consistently the mutual friction term, it is
convenient to start from the case x = n in (6), namely
f" = B'w X vy, + BO X (@ X Vyp). (A20)

Once the variation 6f" has been obtained, the reaction on
the normal component will just be given by

5
5fP:—<p"——5 )f” Pn sgn.
Pp pp Pp

(A21)

Note that this last equation is valid also for the Gorter-
Mellink mutual friction (10). In complete analogy with
what has already been discussed for Eq. (A15), we may
write

Fr= v+ £l v (A22)

The calculation leading to an explicit form of the coef-

!
ficients f}) is laborious, and the final expression is
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complex enough to be useless in an analytic approach.
However, it is possible to implement an exact procedure
that can be solved by any software for symbolic
calculus. First, the amplitude in (A23) can be formally
obtained as

7 = e300 a0, 4 eitxon) (a23)
9] aQ

where the derivative is evaluated on the background
configuration. Therefore, the matrices in (A23) are com-
puted as

Xy’ 8]_“ aQ
i = =— (A24)
! zQ: 010 81);,

_ Off
= EQ:Q§ 35

B B

In this way, it is possible to find the complete matrix M of
Eq. (99): not surprisingly, its form is defined in terms of the
four 3 x 3 blocks

Xy oxy Xy’
M; =¢&; —fi;-

(A25)
The determinant of this 6 x 6 matrix is a huge rational
function of complex coefficients, which numerator defines a
high degree polynomial in @ and in the components of k. The
roots of this polynomial define the dispersion relation w (k)
of the oscillation modes of the two-fluid system. In Sec. VII,
the dispersion relations relative to some physically interest-
ing cases are studied numerically within the simplifying
assumptions that C, = a, = A, = 0. Notice that, according
to (A7), this does not imply that entrainment variations are
null [as it has been assumed in particular in (49) and (50)].
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