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Neutron stars provide an excellent laboratory for physics under the most extreme conditions. Up to
now, models of axisymmetric, stationary, differentially rotating neutron stars were constructed under the
strong assumption of barotropicity, where a one-to-one relation between all thermodynamic quantities
exists. This implies that the specific angular momentum of a matter element depends only on its angular
velocity. The physical conditions in the early stages of neutron stars, however, are determined by their
violent birth processes, typically a supernova or in some cases the merger of two neutron stars, and
detailed numerical models show that the resulting stars are by no means barotropic. Here, we construct
models for stationary, differentially rotating, nonbarotropic neutron stars, where the equation of state and
the specific angular momentum depend on more than one independent variable. We show that the
potential formulation of the relativistic Euler equation can be extended to the nonbarotropic case, which,
to the best of our knowledge, is a new result even for the Newtonian case. We implement the new method
into the XNS code and construct equilibrium configurations for nonbarotropic equations of state. We
scrutinize the resulting configurations by evolving them dynamically with the numerical relativity code
BAM, thereby demonstrating that the new method indeed produces stationary, differentially rotating,
nonbarotropic neutron star configurations.
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I. INTRODUCTION

Black holes and neutron stars are the final stages of the
evolution of massive stars, and they are typically born in
supernova explosions or, less frequently, in binary neutron
star mergers. Neutron stars are of particular interest since they
allow for the study ofmatter properties under extreme density
and temperature conditions that cannot be reached in any
terrestrial laboratory, e.g., [1–5]. These matter properties,
however, leave an imprint in the postmerger gravitational
wave signal (at kHz frequencies) that will be accessible to
ground-based gravitational wave detectors of the next gen-
eration, e.g., [6,7]. Moreover, these properties impact also the
postmerger neutrino and electromagnetic signals [8–11].
Stationary rotating equilibrium configurations are often

used as idealizations of the postmerger remnant or as initial
conditions for long-term evolutions and explorations of the
parameter space (e.g., [12–16]). Thermal effects are in such
studies included by assuming that all thermodynamical
quantities, including the temperature, are functions of only
one independent variable, e.g., the pressure. This leads to
“effective barotropic” or simply “barotropic” stellar models
which are particularly convenient because they allow one to
write the Euler equation as a potential.
The barotropic assumption is also commonly used to

model Newtonian (e.g., main sequence) stars. In the context

of Newtonian stars, however, nonbarotropic stellar models
(also called “baroclinic”) have been computed both per-
turbatively [17–20] and nonperturbatively [21–26], and
even for Newtonian accretion disks with an analytic
procedure [27,28]. In a nonbarotropic star, the thermody-
namical quantities depend on more than one independent
variable, for example, on the pressure and the temperature,
and the Euler equation needs to be solved numerically.
While baroclinic stationary stars are known and studied in
Newtonian theory, they have not yet been addressed in a
general relativity context.1 This is probably due to the
difficulty of solving the Euler equation in differential form
and the fact that thermal effects influence the neutron star
structure only for the first few tens of seconds and are
negligible thereafter.
Nevertheless, since postmerger and postsupernova rem-

nants are not barotropic (e.g., [4,5]), or, more generally,
since the lack of nonbarotropic models in general relativity
represents a serious gap in the theory of stellar structure, we
address this topic here. We address the nonbarotropicity of
relativistic neutron stars, both theoretically and with sta-
tionary and dynamical numerical codes. The novelty of our

1Bardeen [29] explicitly considers a general entropy distribu-
tion in the formulation of his variational principle, but does not
compute any stellar structure.
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work is twofold: on the one hand this is the first study in
general relativity of stationary, differentially rotating, non-
barotropic stars; on the other hand we demonstrate that also
in the nonbarotropic case the Euler equation can be cast in
the form of a potential. The latter result is novel even in the
Newtonian context.
The paper is organized as follow. We discuss in

Sec. II how thermal effects are commonly included in
barotropic neutron star models. Section III describes our
novel approach and its numerical implementation is
explained in Sec. IV. The new approach is validated in
Sec. V and Sec. VI discusses some of its implications.
We finally summarize and conclude in Sec. VII. In three
appendixes we describe the Newtonian limit of the (rela-
tivistic) Euler equation (Appendix A) and the nonbaro-
tropic (Appendix B) and effective barotropic (Appendix C)
equations of state adopted.

II. ROTATING STARS IN GENERAL
RELATIVITY

Unless stated otherwise, we use c ¼ G ¼ M⊙ ¼ kB ¼ 1,
which are also our code units. Useful conversions to
this unit system are km ≃ 0.677, ms ≃ 203, and ρn ≃
4.34 × 10−4, where ρn is the nuclear saturation rest-mass
density (ρn ≃ 2.68 × 1014 g=cm3).
In this work we are interested in solutions of stationary

rotating stars in general relativity. We assume axisymmetry,
since nonaxisymmetric rotating bodies radiate gravitational
waves and therefore are not stationary. We further assume
a circular spacetime, which implies the assumption that
meridional currents and convection are negligible. Under
these assumptions, the spacetime shaped by the rotating
neutron star in quasi-isotropic coordinates reads [30]

dτ2 ¼ −α2dt2 þA2ðdr2 þ r2dθ2Þ þB2r2sin2θðdϕ−ωdtÞ2;
ð1Þ

where τ is the proper time, t, r, θ, ϕ are the coordinate time,
radius, polar angle, and azimuth angle, respectively, and α,
A, B, ω are metric fields that depend only on r, θ due to the
stationarity and axisymmetry condition. α is the lapse and
ω is the angular velocity of the zero angular momentum
observer (ZAMO) as measured by an observer at infinity
[29]. It is useful to define the cylindrical radius (which in
general relativity has no cylindrical isosurfaces),

Rðr; θÞ ¼ Bðr; θÞr sin θ: ð2Þ

With these assumptions, the Einstein equations reduce
to four equations for the metric fields α, A, B, ω. Let us
assume that the stellar matter is described by a perfect fluid,
with energy-momentum tensor

Tμν ¼ huμuν þ pgμν; ð3Þ

where uμ is the 4-velocity, p is the pressure, and h is the
total enthalpy per volume. The Euler equation can be
derived from the vanishing of the covariant divergence of
the energy-momentum tensor as

∂ip
h

þ ∂i ln
α

γ
þ F∂iΩ ¼ 0; ð4Þ

where i ¼ fr; θg [see Appendix A for the Newtonian limit
of Eq. (4)]. γ and Ω are respectively the Lorentz factor
with respect to the ZAMO and the matter angular speed
seen at infinity,

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRvϕÞ2

p ; ð5Þ

Ω ¼ αvϕ þ ω; ð6Þ

where vϕ is the contravariant matter 3-velocity with respect
to the ZAMO, and F is

F ¼ utuϕ ¼ R2ðΩ − ωÞ
α2 − R2ðΩ − ωÞ2 : ð7Þ

The specific (per unit energy) angular momentum of a
fluid element is given by

l ¼ −
uϕ
ut

¼ R2ðΩ − ωÞ
α2 þ R2ωðΩ − ωÞ ; ð8Þ

which is equivalent to

F ¼ l
1 −Ωl

: ð9Þ

Since for axisymmetry and stationarity F ¼ Fðr; θÞ, it
follows that in general Ω ¼ Ωðr; θÞ and l ¼ lðr; θÞ.
Stationary numerical solutions of the structure of rela-

tivistic rotating stars can be obtained by iteratively solving
the metric and matter equations [30]. In the following
sections, we discuss the equations for matter fields. This
means in particular that the metric fields α, A, B, ω are
known and fixed from the previous iteration.

A. Isentropic EOS and rigid rotation

Considering an equation of state (EOS) depending on
two variables with a thermal part, the first law of thermo-
dynamics for the specific enthalpy reads

dh ¼ dp
ρ

þ T
mn

ds; ð10Þ

where ρ is the rest-mass density, h the specific total
enthalpy (h ¼ h=ρ), T the temperature, mn the nucleon

CAMELIO, DIETRICH, MARQUES, and ROSSWOG PHYS. REV. D 100, 123001 (2019)

123001-2



mass, and s the entropy per baryon. Since one can get ρ and
T from partial differentiation of h with respect to p and s,

1

ρ
¼ ∂h

∂p
����
s
; ð11Þ

T ¼ mn
∂h
∂s

����
p
; ð12Þ

it is natural to use the pair p, s as independent variables for
the enthalpy and its derived quantities,

dhðp; sÞ ¼ dp
ρðp; sÞ þ

Tðp; sÞ
mn

ds: ð13Þ

If the entropy is uniform in the star, then ds ¼ 0 and2

h ¼ hðpÞ; namely, the EOS is barotropic (i.e., one dimen-
sional), and the first law of thermodynamics reads

d ln h ¼ dp
h

: ð14Þ

In rigid rotation ∂iΩ ¼ 0, and thanks to Eq. (14), we can
write Eq. (4) as

∂i ln hþ ∂i ln
α

γ
¼ 0; ð15Þ

which is equivalent to

ln hðpÞ þ ln
α

γ
¼ const; ð16Þ

where we can determine the constant from the known
central values of the enthalpy h0 and the lapse α0 (on the
axis Rvϕ ¼ 0 and therefore γ ¼ 1),

const ¼ lnðh0α0Þ: ð17Þ

From Eqs. (16) and (17) and fixing the uniform angular
velocity Ω ¼ Ω0 one can easily get h and from it p and the
other EOS quantities.
The most common example of neutron stars studied in

the literature is cold stars (i.e., uniform vanishing entropy
per baryon). An example of a cold, rigidly rotating neutron
star is marked as “CR” in this paper.

B. Barotropic EOS and differential rotation

Under the assumption that the entropy per baryon
depends only on the pressure s ¼ s̃ðpÞ, a hot EOS
depends on pressure alone; i.e., it becomes an effective
barotrope,

hðpÞ ¼ hðp; s̃ðpÞÞ: ð18Þ

This can be observed in Fig. 1, where we show the entropy
per baryon as a function of the rest-mass density in the
interior of a neutron star. The black lines correspond to the
effective barotropic assumption, while the red regions are
obtained by dropping this assumption as described in
Sec. III. It is convenient to define the “heat function”

HðpÞ ¼
Z

p

p0

dp0

hðp0Þ ; ð19Þ

where p0 is the given central pressure, from which we
obtain

∂iHðpÞ ¼ ∂ip
h

: ð20Þ

FIG. 1. Entropy per baryon s as a function of rest-mass
density ρ for two barotropic (black lines) and two nonbaro-
tropic (red regions) models considered in this paper, cf. Table I.
The upper/lower edge of the red regions corresponds to the
entropy along the equatorial plane/rotational axis of the non-
barotropic neutron star, respectively. Similar plots obtained
from dynamical simulations are e.g. Fig. 1 of Fischer et al. [5]
and Figs. 3–8 of Perego et al. [4].

2For simplicity we use in this work the same symbol for
functions that represent the same physical quantity but depend on
different independent variables, even if mathematically they
differ since they are defined on different domains. We always
specify the independent variables if they are not clear from the
context.
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Additionally, if we assume that F depends only on Ω,
we have analogously

F ðΩÞ ¼
Z

Ω

Ω0

FðΩ0ÞdΩ0; ð21Þ

∂iF ðΩÞ ¼ FðΩÞ∂iΩ; ð22Þ

where Ω0 is the given angular frequency on the symmetry
axis and F ðΩÞ is called “differential-rotation law.” Using
Eqs. (19)–(22), Eq. (4) is equivalent to

HðpÞ þ ln
α

γ
þ F ðΩÞ ¼ ln α0: ð23Þ

One can determine the matter properties in every point (r,
θ) by determining Ω from the relation F 0ðΩÞ ¼ FðΩ; r; θÞ,
where we show explicitly the dependence on the yet-to-be-
determined Ω, and then p from Eqs. (19) and (23). The
other EOS quantities are easily determined because the
EOS is effectively barotropic.
For an isentropic star it is HðpÞ ¼ ln hðpÞ − ln h0, and

if in addition the star is in rigid rotation, one recovers
Eq. (14), as expected.
One can assume an analytic form for the differential-

rotation law, for example, by adopting the “j-const” law that
is commonly used in the literature ([31], see also [32,33]),

F ðΩÞ ¼ −
R2
0

2
ðΩ −Ω0Þ2; ð24Þ

where R0 has the dimension of a length and sets the scale of
the differential rotation, that is, Ω ≃ Ω0=2 at R ¼ R0 [34].
Rigid rotation cannot be described by a differential-rotation
law because Ω is constant, but F is not. Therefore, it can
only be recovered in the limit R0 → ∞. To model rigid
rotation, one can just fix Ω ¼ Ω0 and drop the F term in
Eq. (23); however in Sec. VI D we show how it is possible
to cleanly unify the description of rigidly and differentially
rotating stars.
The assumption F ¼ FðΩÞ is equivalent to requiring

that l ¼ lðΩÞ [cf. Eq. (9)]; namely, it is equivalent to
dropping any dependence on the metric and the coordi-
nates in the relation between the specific angular momen-
tum and the angular speed. This can be seen in Fig 2,
where we show the specific angular momentum as a
function of the angular velocity in the interior of a neutron
star. The black line corresponds to the case discussed
in this section, where the specific angular momentum
is in a one-to-one correspondence with the angular
velocity, while the red region is obtained by dropping
this assumption as described in Sec. III.

III. NONBAROTROPIC THERMAL PROFILE

The big problem of the method described in the previous
section is that one is limited to an effective barotropic
EOS; i.e., the EOS is actually a function of one indepen-
dent variable only, even in presence of thermal effects.
Similarly, one enforces l ¼ lðΩÞ, dropping any depend-
ence on the metric; see black lines in Figs. 1 and 2.
However, dynamical core-collapse supernova and binary
neutron star merger simulations show that realistic newly
born neutron stars are nonbarotropic (e.g., [4,5]).
In this section we show how it is possible to overcome

these limitations in a rigorous way.

A. The generalization

Equation (4) can be written as

dp
h

þ FdΩþ d ln
α

γ
¼ 0; ð25Þ

to stress that when h ¼ hðpÞ and F ¼ FðΩÞ it is

d

�
HðpÞ þ F ðΩÞ þ ln

α

γ

�
¼ 0; ð26Þ

namely the Euler equation implies the existence of a
conserved quantity and

1

h
¼ dHðpÞ

dp
; ð27Þ

F ¼ dF ðΩÞ
dΩ

: ð28Þ

In other words, we are casting the Euler equation in a
potential form similar to thermodynamics. However,

FIG. 2. Angular momentum per unit energy l as a function of
angular velocity Ω for a barotropic (black line) and a non-
barotropic (red region) model considered in this paper, cf. Table I.
The upper/lower edge of the red region corresponds to the
specific angular momentum along the equatorial plane/stellar
border, respectively. Nonconvective models behave similarly.
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comparing the thermodynamical case [e.g., Eqs. (11)
and (12)] with the stellar case [i.e., Eqs. (27) and (28)],
one notes that in contrast to the former, in the latter we are
determining the derived quantities with total derivatives
of two potentials instead of partial derivatives of one
potential.Here we push the similarity with thermodynamics
one step further.
Let us pursue this intuition,

Qðp;ΩÞ ¼ − ln
α

γ
; ð29Þ

∂iQðp;ΩÞ ¼ ∂ip
hðp;ΩÞ þ Fðp;ΩÞ∂iΩ; ð30Þ

1

hðp;ΩÞ ¼
∂Qðp;ΩÞ

∂p
����
Ω
; ð31Þ

Fðp;ΩÞ ¼ ∂Qðp;ΩÞ
∂Ω

����
p
; ð32Þ

where we defined the potential Q and all quantities depend
on p, Ω because these are the natural variables for the same
reason p and s are the natural variables for the thermody-
namical case, namely because the other quantities (h and F
in the stellar case, ρ and T in the thermodynamical case)
can be determined from partial differentiation with respect
to those. Note that Eq. (30) is exactly the Euler equation
[Eq. (4)] and that it mirrors the equivalent thermodynamical
equation [after substituting the exact differential with
partial differentiation in Eq. (13)].
We should be careful because for axisymmetry and

stationarity it is also Q ¼ Qðr; θÞ, p ¼ pðr; θÞ, and
F ¼ Fðr; θÞ: given the pair p and Ω, we must be able to
determine the pair r and θ. However, this change of
coordinates is not bijective, that is, each pair p and Ω
corresponds to two pairs r and θ, one in the northern
hemisphere and one in the southern hemisphere, and
therefore to two potentials, Qþðp;ΩÞ and Q−ðp;ΩÞ, that
are identical in the planar case Qþ ¼ Q−. In Fig. 3 we
show how the interior of a star is mapped with r and θ
coordinates (on the right) and with p and Ω coordinates
(on the left).
The key point here is that the additional dependence

of h on Ω [as opposed to a dependence only on p, see
Eq. (31)] “breaks” the barotropicity because, as can be seen
in Fig. 3, Ω is not in a one-to-one correspondence with p.
This additional dependence is made possible by allowing
for ∂p∂ΩQ ≠ 0.
It is worth noting the following:
(i) The standard case described in Sec. II B is equivalent

to the following potential:

Qðp;ΩÞ ¼ HðpÞ þ F ðΩÞ − ln α0: ð33Þ

(ii) Since we rewrote Eq. (4) in terms of a potential, the
difference of pressure and angular speed between
two stellar points does not depend on the integration
path but only on the initial and final points.

(iii) From Schwarz’s theorem we get the Maxwell-like
relation

∂h−1

∂Ω
����
p
¼ ∂F

∂p
����
Ω
: ð34Þ

B. A simple nonbarotropic model

Assuming that the analytic form of Qðp;ΩÞ is known,
but that we do not know the pressure and angular velocity
profiles pðr; θÞ and Ωðr; θÞ, we have to solve the following
system of equations in every point:

Qðp;ΩÞ ¼ − ln
αðr; θÞ

γðr; θ;ΩÞ ; ð35Þ

∂ΩQðp;ΩÞ ¼ Fðr; θ;ΩÞ; ð36Þ

∂pQðp;ΩÞ ¼ 1

hðp; sðr; θÞÞ : ð37Þ

In Eqs. (35)–(37) we have made explicit the dependence of
every quantity on the position in the star (r, θ) and on the
yet-to-be-determined quantities (p, Ω). Given a point in the
star (r, θ) and the entropy in that point sðr; θÞ, this is a

FIG. 3. Sketch of the coordinate grid in p, Ω (left, red) and in r,
θ (right, blue). The p coordinate is ellipticlike while the Ω
coordinate is paraboliclike, cf. Fig. 6. Note that the planar
symmetric A and B points have different θ coordinate but the
same p, Ω coordinates.
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system of three equations in two variables (p, Ω) that in
general has no solution. On the other hand, if we leave
sðr; θÞ undetermined, given (r, θ) we can first determine
(p, Ω) solving Eqs. (35)and (36), and then determine
sðr; θÞ from Eq. (37).
Let us now consider a simple3 nontrivial case,

Qðp;ΩÞ ¼ Q0 þHðpÞ þ F ðΩÞ þ bHðpÞF ðΩÞ; ð38Þ

where b is a “barotropic” parameter and the constant Q0 is
determined from the condition Q0 ¼ Qðp0;Ω0Þ ¼ − ln α0.
The standard case of Eq. (33) is reobtained for b ¼ 0. H
and F are formally defined as in Eqs. (19) and (21), but do
not have the same physical meaning. In particular, the
arbitrary barotropic function s̃ðpÞ that enters in the defi-
nition of HðpÞ does not correspond to a physical entropy
unless b ¼ 0 (this is the reason we defined it with a tilde).
The potential Q in this form is particularly convenient,

because we can factor out the dependence on p and
therefore we have to solve only one equation to determine
Ω. In fact, Eq. (36) reads

F 0ðΩÞð1þ bHðpÞÞ ¼ Fðr; θ;ΩÞ; ð39Þ

and using the definition (38) we get

F 0ðΩÞð1þ bQðr; θ;ΩÞ − bQ0Þ ¼ Fðr; θ;ΩÞð1þ bF ðΩÞÞ
ð40Þ

that can be solved for Ω with a one-dimensional root
finding [Qðr; θ;ΩÞ is the rhs of Eq. (35)]. Knowing Ω, one
can first determine HðpÞ and then h from

HðpÞ ¼ Qðr; θ;ΩÞ −Q0 − F ðΩÞ
1þ bF ðΩÞ ; ð41Þ

hðp;ΩÞ ¼ 1

H0ðpÞð1þ bF ðΩÞÞ ; ð42Þ

where H0ðpÞ is the total derivative of HðpÞ. Knowing h
and p [obtained from the inversion of HðpÞ] one can use
them to invert the EOS, that in the case considered here
depends on two independent variables (we discuss in
Sec. VI C how to generalize the procedure to an EOS that
depends on more than two independent variables).
It is useful at this point to recap what we have

accomplished. We have first defined in Eq. (38) a function
Qðp;ΩÞ and then enforced with Eqs. (35)–(37) that this
function acts as a potential for the Euler equation. In this
way both the matter and the rotational profiles of the star

are uniquely determined from the potential Q and are
functions in general of more than one independent variable,
therefore breaking the stellar barotropicity. In Sec. VI B
we show how, in principle, one can use the freedom in
the definition of Q to tune the thermodynamical and
rotational profiles.
Note that for the nonbarotropic models in Figs. 1 and 2

(red filled contours) the relations s ¼ sðρÞ and l ¼ lðΩÞ
do not hold anymore.

IV. NUMERICAL IMPLEMENTATION

A. XNS code

The XNSv2 code [14,15] determines the stationary
structure of a rotating neutron star in the extended con-
formal flatness condition (XCFC) approximation [35].
The metric equations are solved with a spherical harmonics
decomposition on the angular direction and with finite
differences along the radial direction. In the XCFC
approximation the metric equations are simpler and hier-
archically decoupled; this approximation is equivalent to
enforce in Eq. (1),

Aðr; θÞ≡ Bðr; θÞ≡ ψ2ðr; θÞ; ð43Þ

where ψ is called the conformal factor, and it is justified
because the maximal relative difference between the A and
B metric functions is of the order of 10−3 [36]. The XCFC
approximation yields results of excellent accuracy for
rotating neutron stars (e.g., [16]), while it has been showed
to degrade for differentially rotating neutron stars [37].
Using the diagnostic formula of Eq. (20) of Iosif and
Stergioulas [37], we estimate for the configurations studied
in this paper a maximal error for local quantities (e.g., the
angular velocity at the equator) within 2% and a much
smaller error for global quantities (e.g., the gravitational
mass). The estimated error is adequate for a good descrip-
tion of the rotating neutron star and its spacetime. In any
case, we emphasize that the nonbarotropic theory, which
we develop in this paper, does not depend in any way on the
use of the XCFC approximation.
In this paper we use our modified version [16] of XNSv2

and simply refer to it as XNS in the following. In Camelio
et al. [16] we described and validated it against the RNS
code [38] that solves the stationary configuration of
rotating neutron stars in general relativity without approx-
imations. We refer the reader to [14–16,35] for the general
structure of XNS and the XCFC equations and just describe
the main modifications with respect to [16].
To determine the solution of a rotating star, XNS

iterates between the solution of the metric and the matter
equations until convergence. When the matter quantities
(h, p, vϕ) are updated, the metric quantities (α, ψ , ω)
are kept fixed, and vice versa. To update the matter
quantities, the following procedure is repeated for each

3Note that this is not the only potential that generalizes the
standard case; for example another valid choice is obtained by
substituting Q0 → 0 and HðpÞ → HðpÞ − ln α0 in Eq. (38),
which gives a different but still consistent solution.
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grid point ri, θj (we start from the center, ri ¼ r1, and
increase i outward).
(1) If the star is rigidly rotating, set Ω ¼ Ω0. Otherwise,

determine Ω from Eq. (40).
(2) Find HðpÞ from Eq. (41).
(3) Find p inverting HðpÞ.
(4) If p < ps (ps being a fixed value of the surface

pressure), go to step 8.
(5) If the star is nonbarotropic,

(a) Find h from Eq. (42).
(b) If the pair h, p is not physical (e.g., h ≤ p), go

to step 8.
(6) All independent quantities have been computed.

Solve the EOS from p (if barotropic) or p, h (if
nonbarotropic). Determine vϕ from Ω.

(7) Go to step 1 with the next ri.
(8) The point is outside the surface. Set to 0 all matter

quantities in r ≥ ri and go to step 1 with ri ¼ r1 and
the next θj.

We adopt a rectangular nonevenly spaced grid in r, θ
[16]. Our radial grid is divided in two regions: the inner part
has 2000 evenly spaced points from r ¼ 0 excluded to
r ¼ 15 and the outer part has 2000 increasingly spaced
points from r¼15 to r¼1000. The angular grid (0<θ<π)
contains 501 points on the Legendre knots. We used 50
angular harmonics in the pseudospectral expansion and we
consider the result converged when the maximal absolute
variation of the rest-mass density between two iterations is

smaller than 10−12. The surface pressure is set to ps ¼
10−40 in code units (c ¼ G ¼ M⊙ ¼ 1).

B. BAM code

We also study the dynamical evolution of the XNS
configurations with the bifunctional adaptive mesh (BAM)
code [39–44]. BAM employs a simple mesh refinement
scheme where the grid is composed of nested Cartesian
boxes. The grid setup is controlled by the resolution Δx in
the finest levels. The outer levels are constructed by
progressively coarsening the resolution by factors of 2.
We solve the Einstein Equations using the Z4c evolution
scheme [45–47] and employ fourth order finite-difference
stencils. The equations of general relativistic hydrodynam-
ics employ a finite-volume shock-capturing method and the
hydrodynamical flux is computed with the local Lax-
Friedrichs scheme using the WENOZ limiter [43,48].
The evolution equation system is closed with the EOS,

for which we assume an ideal gas with a cold and a thermal
contribution,

pðρ; uthÞ ¼ KρΓ þ ðΓth − 1Þρuth; ð44Þ

where uth is the specific thermal energy and K, Γ, Γth
are EOS-dependent parameters, cf. Appendix B and
Tables I and II.
To prove the robustness of our numerical scheme, we

show the central rest-mass density evolution of the CR
model, i.e., of a cold, rigid rotating neutron star, in Fig. 4;
we refer the interested reader to [42,43,49–51] for addi-
tional tests and convergence analyses.
We increase the BAM resolution by factors of 2, where

for the low resolution (blue line) the minimum grid
resolution in the finest level is 0.1875, the medium
resolution (red line) has a minimum grid spacing of
0.09375, and the high resolution (black line) has a mini-
mum grid spacing of 0.046875. This is compatible to
the highest resolved binary neutron star simulations per-
formed for gravitational wave model development to date
[52,53]. We save computational costs by simulating only a
single quadrant of the numerical domain making use of the

TABLE I. Abbreviated names of the stellar configuration
studied in this work.

Name Configuration

CR Cold, Rigidly rotating
BC Differentially rotating, Barotropic, Convective
NC Differentially rotating, Nonbarotropic, Convective
CΩ Control with b ¼ 0 in Eq. (40)
Cp Control with b ¼ 0 in Eq. (42)
BN Differentially rotating, Barotropic, Nonconvective
NN Differentially rotating, Nonbarotropic, Nonconvective

TABLE II. Parameters and properties of the stellar models considered in this work. The first column is the name of the model (see
Sec. IV C), columns 2–6 are the EOS parameters, columns 7–11 are the parameters of the potential Q, and columns 12–15 are model
properties. Symbol ” means “same as above” and the asterisk means that b was included in a nonconsistent way in CΩ and Cp. See the
text for details.

Name Γ k1 K Γth k2 ρ0 s̃ðρ̃Þ Ω0 R0 b M hlog jδrji hlog jδθji T0½MeV=kB�
CR 3 5 × 104 105 1.75 1.5 4ρn 0 0.035 ∞ 0 2.17 −7.0 −7.6 0
BC 3 5 × 104 105 1.75 1.5 4ρn 2ðρ̃=ρ0Þ5=8 0.035 15 km 0 2.12 −7.0 −7.4 48
NC 3 5 × 104 105 1.75 1.5 4ρn 2ðρ̃=ρ0Þ5=8 0.035 15 km −2 2.15 −7.0 −7.4 48
CΩ 3 5 × 104 105 1.75 1.5 4ρn 2ðρ̃=ρ0Þ5=8 0.035 15 km −2� 2.16 −4.2 −4.1 48
Cp 3 5 × 104 105 1.75 1.5 4ρn 2ðρ̃=ρ0Þ5=8 0.035 15 km −2� 2.15 −4.6 −5.6 48
BN 3 5 × 104 105 1.75 1.5 4ρn 2 − ρ̃=ρ0 0.035 15 km 0 2.09 −7.0 −7.2 24
NN 3 5 × 104 105 1.75 1.5 4ρn 2 − ρ̃=ρ0 0.035 15 km −2 2.12 −6.9 −7.1 24
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axisymmetry of the spacetime and the planar symmetry of
the models. From Fig. 4, we conclude that the changes in
the central density decrease with increasing resolution. In
particular, the central density decrease, which is present
in the low resolution case, is small for the medium and high
resolution. The remaining density oscillations of the order
of ∼0.25% seem negligible for the studies discussed in the
following.4 If not otherwise stated, we show the results
for the high resolution grid configuration, but all models
have been simulated with the low, medium, and high grid
resolutions to test the correctness of our results.

C. Models

To minimize additional code changes in BAM and XNS,
we use throughout this work an EOS such that the total
energy density is given by

ϵðρ; sÞ ¼ ρþ k1ρΓ þ k2s2ρΓth ; ð45Þ

where k1, k2, Γ, Γth are parameters specified in Table II.
With our parameter choice this EOS has a maximal
cold, nonrotating neutron star mass of 2.22M⊙ as
shown in Fig. 5, and can be straightforwardly included
in BAM, since it is equivalent to an ideal gas EOS with
K ¼ ðΓ − 1Þk1 (Appendix B).
We fix the barotropic function by setting s̃ðρ̃Þ. We

remark that with our choice of the potential Q, ρ̃ and s̃
are physical rest-mass density and entropy per baryon
also when b ≠ 0 only on the rotational axis, since there
F ðΩ0Þ ¼ 0. For this reason, there is no ambiguity in using
the central quantities in Table II.
We consider seven models, all shown in Fig. 6 and

described in Tables I and II. We remark that if two

quantities have parallel level contours, then this means
that they are in a one-to-one correspondence, cf. Fig. 6.
The control configurations CΩ and Cp have been obtained
with the same procedure as NC, but for CΩ we set b ¼ 0 in
Eq. (40) and for Cp we set b ¼ 0 in Eq. (42). For this
reason, l ¼ lðΩÞ for CΩ and s ¼ sðpÞ for Cp. Since the
potential Q has not been solved consistently, CΩ and Cp
are expected not to be true stationary solutions and are
therefore our control models against which we judge the
quality of the theory.
The parameters of the EOS and of the potential Q

that completely determine the stellar models are shown
in Table II. The values of parameters R0 and b have
been chosen to emphasize differential rotation and non-
barotropicity, while the choice of the other parameter
values is discussed in Appendix B. All models are stable
against dynamical instabilities, i.e., they do not collapse
(Appendix B), but some models are unstable against
convection (Appendix C). Note that the obtained central
temperatures T0 are reasonable for protoneutron stars and
for postmerged neutron stars.
More details on the EOS and the rationale behind our

choices are provided in Appendixes B and C.

V. RESULTS

A. Test 1: barotropic limit

We checked that, using the nonbarotropic inversion of
the EOS (namely steps 5.a–5.b in Sec. IVA), we obtain
the same stationary results for the cold, rigid rotating model
CR (having dropped the F term) and for the barotropic,
differentially rotating models BC and BN.

FIG. 5. Gravitational mass as a function of the central density
for the EOS adopted in this paper with causality enforced at
ρ > ρcs ¼ 5.95ρn. The lower black line corresponds to non-
rotating cold models and the upper black line to cold models that
rotate rigidly at the Keplerian limit. Mmax ¼ 2.22 is the maximal
nonrotating mass corresponding to ρmax ¼ 6.90ρn (red cross) and
ρc ¼ 4.60ρn is the critical density for inverting the nonbarotropic
EOS (see Appendix B). The thick red line marks the region of
central density and gravitational (Komar) mass of the models
considered in this paper (ρ0 ¼ 4ρn).

FIG. 4. BAM evolution of the central rest-mass density of the
stellar model CR for different resolutions.

4We remark that the remaining density oscillations are likely to
be related to the XCFC approximation of XNS, since it is absent
or smaller if the XCFC approximation is not employed; cf. Fig. 2
of [43] for single star evolutions and the supplemental material of
[51] for studies in binary neutron star configurations.
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B. Test 2: first integral residual

We define the residuals of the Euler equation as

δiðr; θÞ ¼ ∂iQðr; θÞ − ∂ipðr; θÞ
hðr; θÞ − Fðr; θÞ∂iΩðr; θÞ; ð46Þ

where i ¼ r, θ is the direction of differentiation. To
quantify how well Eq. (4) is solved in the star we use
the averaged logarithm of the residuals,

hlog jδiji ¼
P

jlog10jδiðrj; θjÞj
N

; ð47Þ

FIG. 6. Stationary stellar models obtained with XNS. For each model, the color-filled contours refer to the pressure p (red scale, left)
and the angular velocity Ω (blue scale, right), while the thick black and white contours refer to the entropy per baryon s (left) and the
specific angular momentum l (right). See the text for details.
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where j is the index that identifies a point inside the star
and N is the total number of points inside the star. These
quantities should be compared with the potential Q which
is in the range 0.3≲Q≲ 0.8. We report the residuals in
Table II. As expected, the Euler equation has on average a
much worse residual (2 to 3 orders of magnitude) in the
control configurations than in the consistently determined
ones, thus corroborating our theory.

C. Test 3: stellar oscillations

As a final check, we evolved the XNS models with BAM
to see whether the configurations are indeed in equilibrium.
In particular, we compare the amplitude of the oscillations
that are artificially triggered by numerical inaccuracies and
by the use of the XCFC approximation for the initial setup.
In Fig. 7 we show the central rest-mass density evolution,
and in Fig. 8 we compare the initial configuration with a
snapshot close to the maximum of the final oscillation
(marked with crosses in Fig. 7), in such a way to maximize
deviations. Indeed, control configurations diverge much
more than the consistently determined ones.
However, as discussed in Appendix C, models BC and

NC are unstable against convection (note the convective
patterns in the velocity field for these configurations in
Fig. 8). Moreover, the convective timescale is comparable
with the evolution time (Appendix C), and therefore also
these consistently determined stellar configurations deviate
from the initial ones.
We thus evolved two models that are stable against

convection, BN and NN. These configurations have small
oscillations comparable to that of the cold rigidly rotating
model CR, thus verifying our theory.
In Fig. 9 we compare the evolution of the nonbarotropic

setup for the convective and nonconvective star. Convection
begins at the stellar surface, where the convective timescale
is shorter (Appendix C), and propagates to the interior,
destroying the nonbarotropic pattern and flattening the
entropy profile. We have also simulated the evolution of a
low resolution NC setup for a much longer time. This low
resolution simulation reproduces the qualitative patterns
of the high resolution one and in it the convective cells
disappear after t ≃ 10 ms, in line with the qualitative
estimates of the convective timescale made in Appendix C.5

As final remarks, we point out the following:
(i) The control models too are unstable against con-

vection; however the nonconsistency of the initial
configurations has a much larger destabilizing effect,
cf. Fig. 7.

(ii) It is possible to obtain equilibriummodels of neutron
stars that are unstable against convection as it is
possible to obtain equilibrium models that are
dynamically unstable (i.e., that collapse [16]).

VI. DISCUSSION

A. Consequences

In the following we list some general results that can be
directly derived with our novel approach:
(1) The Schwarz’s theorem implies that if F ¼ FðΩÞ,

then s ¼ sðpÞ; namely the EOS is an effective
barotrope. Vice versa is also true.

(2) Schwarz’s theorem implies that a stationary neutron
star with a nonbarotropic thermal profile must also
be differentially rotating.

(3) On the symmetry axis F vanishes; then if the star is
barotropic [namely Ω ¼ ΩðFÞ] the angular velocity

FIG. 7. Time dependence of the central rest-mass density in the
BAM evolution for the models considered in this paper. The cold,
rigidly rotating model CR is plotted in all panels as a reference.
The crosses mark the snapshots shown in Fig. 8 and the gray
horizontal lines mark the initial central density.

5We note the larger entropy at the star’s surface for the low
resolution NC model. This entropy production is caused by the
surface as discussed, e.g., in Guercilena et al. [54]. The entropy
production decreases with an increasing resolution and its origin
lies in the high resolution shock-capturing schemes and the use of
an artificial atmosphere surrounding the star.
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is uniform on the symmetry axis. However, this is
not true in general for a nonbarotropic star (but it is
for the nonbarotropic cases considered in this work)
[18,19,21,23,24,26].

(4) An interesting point that emerges from Sec. III is
that there are only two EOS quantities that can be

directly determined from the Euler equation without
solving the EOS, namely p and h. This should
not be a surprise because p and h are the only
EOS quantities that appear in the definition of the
energy-momentum tensor, Eq. (3). When other
quantities like ln h and s appear in the equations,

FIG. 8. BAM evolution. For each model, we plot the density ρ (red scale, left) and the orthogonal velocity v⊥ ¼ r sinðθÞvϕ (blue scale,
right). The initial configurations are shown in color-filled contours delimited by thin gray contours while the configurations marked in
Fig. 7 are shown in black thick contours with the parallel velocity vk ¼ vrer þ rvθeθ shown as a vector field. Any deviance from
stationarity during the evolution is due to convection and/or to the nonconsistency of the initial setup. See the text for details.
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they correspond to physical quantities only in some
limits, e.g., for isentropic stars in the case of ln h and
for barotropic stars in the case of s.

(5) As already pointed out, the method we developed to
obtain nonbarotropic configurations does not de-
pend on the XCFC approximation and can be easily
adapted to the full stationary metric (even without
the circularity assumption) or to Newtonian gravity
(see Appendix A). All that is really needed to have
nonbarotropicity is that the potential Q depends on
more than just the pressure [e.g., Qðp; xÞ], that the
second free variable x has a spatial distribution
different from p, and that the cross partial derivative
of the potential ∂p∂xQ is not null. In this paper we
chose the second variable to be the angular velocity,
x ¼ Ω, and we therefore consider differentially
rotating neutron stars, but, in principle, we could
as well have used the magnetic field or meridional
currents [55] instead (or in addition).

(6) It is known that the numerical solution of the
Euler equation for a Newtonian nonbarotropic star
shows a degeneracy in the profile of Ω that can be
lifted by e.g. including viscosity [24]. This degen-
eracy does not arise in our method because we fix
the potential Qðp;ΩÞ and therefore we implicitly fix
the profile of Ω.

Note that points 1 and 2 are a reformulation of the
relativistic von Zeipel’s theorem [56,57].

B. General entropy profile

In principle, it is possible to use the formalism developed
in this paper to determine the rotating profile of a hot neutron
star given its two-dimensional thermal profile s ¼ sðr; θÞ.
Let us assume a potential that further generalizes

Qðp;ΩÞ in Eq. (38), for example

Qðp;ΩÞ ¼
X
l;m

almHlðpÞFmðΩÞ; ð48Þ

FIG. 9. Convection in the BAM evolution. Each row refers to a different stellar model and each column to a different time snapshot.
The entropy per baryon s is shown as color-filled contours and the parallel velocity vk ¼ vrer þ rvθeθ as a vector field. See the text for
details.
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where alm are parameters and H and F are formally
defined as before. Now, given a choice of alm, we
obtain a unique profile sðr; θÞ from the solution of
Eqs. (35)–(37). To ensure that the entropy in a given point
within the star takes a specified value, sðr0; θ0Þ ¼ s0,
one can modify the potential free parameters, e.g., al0m0 .
If we want to fix the entropy in two points, we must tweak
two free parameters, and so on. In principle, we can fix
the entropy in all grid points by adjusting an equal number
of parameters.
In practice, the procedure described above may be

cumbersome if one wants to fix the entropy in more than
a few points and we discussed it only as a proof of
principle. Moreover, this procedure works only for planar
configurations, namely sðr; θÞ ¼ sðr; π − θÞ. To obtain a
nonplanar configuration one should define two potentials
Q− and Qþ that coincide together with their first and
second partial derivatives along a given curve ðpðzÞ;ΩðzÞÞ,
where z is the curve parameter.
We remark that this procedure would work also if one

wants to fix the rotational profileΩ ¼ Ωðr; θÞ instead of the
entropy one.

C. Multidimensional equation of state

Let us consider an EOS that depends on N > 2 inde-
pendent variables, e.g. h ¼ hðp; s; YÞ, where Y is the
proton number fraction.
In this case one should solve Eqs. (35) and (36) as for

the nonbarotropic case of the EOS with two independent
variables. The difference is that Eq. (37) now becomes

∂pQðp;ΩÞ ¼ 1

hðp; sðr; θÞ; Yðr; θÞÞ : ð49Þ

At this point, one can fix Yðr; θÞ and invert the EOS to
determine sðr; θÞ. Another way to look at this is that the
three-dimensional EOS is equivalent to a parametrized
two-dimensional EOS: hðp; s; Yðr; θÞÞ ¼ hYðr;θÞðp; sÞ.
We remark the following:
(i) It is possible to fix sðr; θÞ instead of Yðr; θÞ, but not

both profiles at the same time, unless one uses the
procedure discussed in Sec. VI B.

(ii) The results discussed above would stay valid when
s and/or Y do not explicitly depend on (r, θ) but on
(p,Ω), since all these quantities are known when one
solves Eq. (49).

D. Legendre transformation

In thermodynamics, different choices of free variables
imply the use of different thermodynamical potentials that
are related to each other by Legendre transformations.
What if we take the Legendre transformation of the
potential Q?

First, we define the following transformed potential,

Qðp; FÞ ¼ Qðp;Ωðp;FÞÞ −Ωðp;FÞF; ð50Þ

where the independent variables are p, F and therefore the
angular velocity is written as Ω ¼ Ωðp; FÞ, cf. Eq. (B12).
The differential of Eq. (50) yields

dQ ¼ dp
h

−ΩdF; ð51Þ

h−1 ¼ ∂Q
∂p

����
F
; ð52Þ

Ω ¼ −
∂Q
∂F

����
p
; ð53Þ

where all quantities depend on (p, F).
In order to reobtain the barotropic, differentially rotating

model we assume that the EOS is an effective barotrope and
that Ω ¼ ΩðFÞ. Similarly to what was done in Sec. II B,
we can define a function G ¼ GðFÞ such that

ΩðFÞ ¼ −
dGðFÞ
dF

: ð54Þ

The j-const differential-rotation law is equivalent to

GðFÞ ¼
�
σ2

2
F − Ω0

�
F; ð55Þ

where σ ¼ 1=R0 is a parameter. The barotropic potential of
Eq. (38) is equivalent to the following barotropic trans-
formed potential:

Qðp;FÞ ¼ HðpÞ þ GðFÞ − ln α0: ð56Þ

An advantage of this formulation is that it unifies rigidly
and differentially rotating stars. Indeed, the rigid rotation
limit R0 → ∞ corresponds to σ ¼ 0 and therefore
ΩðFÞ≡Ω0 is well defined. It also simplifies the inclusion
of differential rotation laws where FðΩÞ is not monotonic
[32], which are a more realistic description of postmerged
neutron stars.

VII. CONCLUSIONS

In this paper we have studied, for the first time, a
stationary, differentially rotating, nonbarotropic neutron
star in general relativity. In doing so, we have shown with
theoretical arguments and with stationary and dynamical
numerical simulations how the Euler equation can be cast
in a potential form also in the nonbarotropic case. This is a
novel result even in the context of Newtonian stars.
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To test our approach, we have first generated sta-
tionary configurations using the XNS code [14–16], that
determines the neutron star structure and spacetime in the
extended conformal flatness condition approximation
[35]. We have then taken the stationary configurations
as an initial condition for dynamical evolutions per-
formed with the general relativistic hydrodynamics code
BAM [40,41]. We considered consistently determined
configurations of barotropic and nonbarotropic rotating
neutron stars and compared them with nonconsistent
“control” configuration to gauge the quality of our
models. We considered both convectively stable and
unstable models.
We used our formalism to demonstrate some properties

of nonbarotropic stars, most notably that a nonbarotropic
star must be differentially rotating [56,57] and that in a
nonbarotropic star the specific angular momentum and the
entropy must depend on both pressure and angular velocity.
Possible outlooks of this work are the following.
One can use the final snapshots of dynamical evolutions

to model the Euler equation potential of (i) postmerged
neutron stars, (ii) protoneutron stars (post core collapse),
and (iii) post hadron phase transition quark stars. Then,
one can quickly explore the parameter space of the hot
rotating remnant with a stationary code like XNS to study
e.g. the dynamical stability, the maximal mass, the
gravitational wave signal from stellar quasiperiodic oscil-
lations, etc. The most interesting configurations can then
be selected to be further explored with dynamical codes
like BAM, using the XNS output as completely consistent
initial data (e.g., [16]).
In Sec. VI B we showed how, in principle, it is possible

to use our potential formalism to determine a general
entropy profile. But another, maybe simpler, method
would be to import the techniques developed in the
context of Newtonian baroclinic stars to include a general
thermal profile. In this way one can study the long-term
(on the order of minutes), neutrino-driven, quasistationary
evolution of the hot and rotating remnant of cases (i–iii)
[34,58–62]. This is important because a huge amount of
energy (up to tenths of solar masses) is expected to be
radiated through neutrinos in the first phase of the neutron
star life. However, this phase is too long to be fully
explored with dynamical codes, while using a quasista-
tionary evolution would allow one to employ stationary,
fast codes like XNS. Again, in this way one can quickly
study the parameter space and select the most interesting
configurations to be further explored with dynamical
codes, and even study the time-dependent gravitational
wave signal from this phase [63,64] and assess the role of
physical processes such as viscosity.
Finally, one can apply our potential formalism to the

study of nonbarotropicity in accretion disks [27,28,33], in
neutron stars with magnetic field [65] and with meridional
currents [55], and in Newtonian stars.
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APPENDIX A: NEWTONIAN LIMIT

In the Newtonian limit,

α → expΦ; ðA1Þ

h → ρ; ðA2Þ

R → ϖ ¼ r sin θ; ðA3Þ

vϕ → Ω; ðA4Þ

F → j ¼ ϖ2Ω; ðA5Þ

l → j ¼ ϖ2Ω; ðA6Þ

Q → −
�
Φ −

1

2
ϖ2Ω2

�
; ðA7Þ

where Φ is the gravitational potential, ϖ the cylindrical
radius, and j the nonrelativistic specific angular momen-
tum. Note that both F and l tend to the same limit, j, and
that the potential Q [Eq. (29)] tends to minus the effective
(including the centrifugal force) gravitational potential.
The Newtonian limit of Eq. (4) is

∇p
ρ

þ∇
�
Φ −

1

2
ϖ2Ω2

�
þ j∇Ω ¼ 0; ðA8Þ

where i ¼ fr; θg and we divided by r the equation along
the θ direction.
Equation (A8) is equivalent to the stationary Euler

equation adopted in the Newtonian literature [e.g.,
Eqs. (2) and (3) of Ref. [21] and Eq. (20) of Ref. [24],

∇p
ρ

þ∇Φ −ϖΩ2eϖ ¼ 0; ðA9Þ
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where eϖ is a unit vector along the cylindrical radius and
we assumed circular motion (i.e., no meridional currents)
and no viscosity.
We show here that Eqs. (A8) and (A9) are equivalent by

recovering both from the general form of the stationary
(Newtonian) Euler equation,

ðv ·∇Þv ¼ −
∇p
ρ

−∇Φ; ðA10Þ

where v ¼ Ωϖeϕ is the fluid velocity. From the identity

ðv · ∇Þv ¼ 1

2
∇ðv · vÞ − v × ð∇ × vÞ; ðA11Þ

we get

ðv ·∇Þv ¼ 1

2
∇ðϖ2Ω2Þ − x; ðA12Þ

x ¼ Ω sin θ∂rðrϖΩÞer þ Ω∂θðsin θϖΩÞeθ: ðA13Þ

Now, if we directly expand the partial derivatives in x,

x ¼
�
er∂r þ

eθ
r
∂θ

�
ϖ2Ω2

2
þϖΩ2ðsin θer þ cos θeθÞ;

ðA14Þ

we recover Eq. (A9).
On the other hand, we have also

x ¼ Ω∂rðϖ2ΩÞer þ
Ω
r
∂θðϖ2ΩÞeθ

¼ ∇ðϖ2Ω2Þ −ϖ2Ω∇Ω; ðA15Þ

from which we recover Eq. (A8).
Our nonbarotropic potential formalism can be simply

extended to the Newtonian case by applying it to Eq. (A8).

APPENDIX B: TWO-DIMENSIONAL
EQUATION OF STATE

We choose a polytropic expression for the total energy
per baryon,

eðρ; sÞ ¼ mnð1þ ucoldðρÞ þ uthðρ; sÞÞ; ðB1Þ

ucoldðρÞ ¼ k1ρΓ−1; ðB2Þ

uthðρ; sÞ ¼ k2s2ρΓth−1; ðB3Þ

where ρ is the rest-mass density, s the entropy per baryon,
mn the nucleon mass, ucold the specific cold internal energy,
uth the specific thermal internal energy, and k1, Γ, k2 and
Γth the parameters. We remark that to have physical results
for any physical ρ, s it has to be Γ > 1, Γth > 1, k1 > 0, and

k2 ≥ 0. Using the relation (that is a consequence of the
first law of thermodynamics)

p
ρ2

¼ 1

mn

∂e
∂ρ

����
s
; ðB4Þ

where p is the pressure, we get

pðρ; sÞ ¼ ðΓ − 1ÞρucoldðρÞ þ ðΓth − 1Þρuthðρ; sÞ: ðB5Þ

Equation (B5) can be written as

pðρ; uthÞ ¼ KρΓ þ ðΓth − 1Þρuth; ðB6Þ

K ¼ ðΓ − 1Þk1; ðB7Þ

namely we recover Eq. (44).
Using the thermodynamical relation

T ¼ ∂e
∂s

����
ρ

; ðB8Þ

where T is the temperature, we obtain

Tðρ; sÞ ¼ 2mnk2sρΓth−1: ðB9Þ

We remark that T → 0 as s → 0, as expected.
The speed of sound is defined by

cs ¼
ffiffiffiffiffiffiffiffiffi
∂p
∂ϵ

����
s

s
; ðB10Þ

where ϵ ¼ ρe=mn is the total energy density. For our EOS
it is

c2s ¼
ΓðΓ − 1Þk1ρΓ þ ΓthðΓth − 1Þs2k2ρΓth

ρþ Γk1ρΓ þ Γths2k2ρΓth
: ðB11Þ

From the Legendre transformation of the specific energy

hðp; sÞ ¼ eðρðp; sÞ; sÞ
mn

þ p
ρðp; sÞ ; ðB12Þ

we get the specific enthalpy h,

hðp; sÞ ¼ 1þ Γk1ðρðp; sÞÞΓ−1 þ Γthk2s2ðρðp; sÞÞΓth−1;

ðB13Þ

where ρðp; sÞ is the inverse of Eq. (B5). The reason why we
write all quantities in terms of p and s is that h is naturally a
function of these variables; see the discussion in Sec. II A.
From the solution of the Euler equation [Eqs. (35)–(37)]

we obtain h and p, from which we want to get all the other
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thermodynamical quantities. To invert the EOS, we first
cancel out the term with the entropy and obtain the equation

ðΓth − 1Þh − Γthp ¼ ðΓth − 1Þρþ ðΓth − ΓÞk1ρΓ; ðB14Þ

where h ¼ hρ is the enthalpy density and the only
unknown is the density ρ. This equation can be easily
solved if Γ ¼ 3=2 (when it becomes cubic in

ffiffiffi
ρ

p
), Γ ¼ 2

(quadratic in ρ) or Γ ¼ 3 (cubic in ρ).
We pick Γ ¼ 3 because it is closer to the stiffness

expected for the high-density part of the real EOS [66].
We can at this point set the parameter k1 enforcing the
condition 2.1≲Mmax ≲ 3, where Mmax is the maximal
nonrotating mass.
We choose Γth ¼ 1.75, which is a value that reproduces

the behavior of known finite-temperature EOSs [67,68].
To set k2 we require that the thermal contribution to the
pressure at ρ ¼ 2ρn and s ¼ 2 kB is approximately 30%, a
value determined by inspection of realistic EOSs. The
corresponding temperature is Tð2ρn; 2kBÞ ≃ 29 MeV=kB.
The solution of Eq. (B14) is not always unique. In

particular, when Γth < Γ ¼ 3 there are values of ðh; pÞ
which correspond to two valid solutions ðρ1; s1Þ and
ðρ2; s2Þ with ρ1 ≤ ρc ≤ ρ2, where ρc is a critical density
that depends on Γ, Γth, k1,

ρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γth − 1

3k1ðΓ − ΓthÞ

s
ðΓth < Γ ¼ 3Þ: ðB15Þ

A way around this difficulty is to choose a stellar con-
figuration such that the maximal density is lower than ρc,
in order to safely take the root ρ1.
We report the EOS parameters in Table II. With those, we

get the following EOS properties (cf. Fig. 5):
(i) Critical density for EOS inversion: ρc ¼ 4.61ρn.
(ii) The speed of sound of the cold EOS becomes greater

than the speed of light at ρcs ¼ 5.95ρn.
(iii) Central density of the (cold, nonrotating) maximal

mass configuration: ρmax ¼ 6.90ρn.
(iv) Maximal mass of the cold, nonrotating star:

Mmax ¼ 2.22M⊙,
where ρmax and Mmax are obtained enforcing causality at
densities greater than ρcs and without attaching a crust at
low densities.
Since all considered models have a central density

ρ0 ¼ 4ρn (see Table II), we avoid the problems related
to causality and uniqueness. This value is also smaller than
the central density ρmax of the nonrotating maximal mass
configuration; and since additionally we choseΩ0 such that
the gravitational (Komar) mass is smaller than (but close to)
the maximal nonrotating mass, all studied models are
dynamically stable (i.e., they do not collapse).

APPENDIX C: BAROTROPIC EOS

When the EOS is an effective barotrope every thermo-
dynamical quantity depends only on the pressure, for
example s ¼ s̃ðpÞ; ρ ¼ ρ̃ðpÞ; h ¼ h̃ðpÞ;… (we mark the
barotropic functions with a tilde to stress that they
correspond to physical quantities only in a barotropic
stellar model, while the pressure p is always equivalent
to the physical quantity).
The easiest choice for the barotropic function is

s̃ðpÞ ¼ k3ðρ̃ðpÞÞ
Γ−Γth

2 ; ðC1Þ

where k3 is a constant; in this case the heat integral can be
easily integrated in ρ̃,

HðpÞ ¼
Z

ρ̃ðpÞ

ρ̃ðp0Þ

p0ðρ̃Þ
h̃ðpðρ̃ÞÞ dρ̃; ðC2Þ

where p0 is the central pressure, h̃ is the enthalpy density,
pðρ̃Þ is the inverse of ρ̃ðpÞ, and p0ðρ̃Þ is the total derivative
with respect to ρ̃. Indeed, in this case we analytically obtain

HðpÞ ¼ Γ½ðΓ − 1Þk1 þ ðΓth − 1Þk2k23�
ðΓ − 1Þ½Γk1 þ Γthk2k23�

ln
h̃ðpÞ
h̃0

; ðC3Þ

where h̃0 is the central specific enthalpy. We remark that
H ¼ ln h=h0 when k2k23 ¼ 0 (i.e., cold star) or Γ ¼ Γth (i.e.,
isentropic star), as it should be.
We consider another possibility for the barotropic

function,

s̃ðpÞ ¼ s̃s − k3ρ̃ðpÞ; ðC4Þ

where s̃s is the surface entropy and k3 a constant.
Unfortunately in this case there is no simple analytical form
for the heat integral and we integrate Eq. (C2) numerically.
Let us now consider the stability of the star against

convection. We use the convective criterion in spherical
symmetry, namely for a nonrotating neutron star, as an
estimate for our rotating case. In spherical symmetry the
star is unstable against convection when the Schwarzschild
discriminant is negative [69],

Sðr̄Þ ¼ dp
dr̄

− c2s
dϵ
dr̄

< 0; ðC5Þ

where cs is the speed of sound [Eq. (B11)] and the total
derivatives are taken along the Schwarzschild radius r̄ that
is related to the isotropic radius by

dr̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2 − 2mðr̄Þr̄

p ¼ dr
r
; ðC6Þ

where mðr̄Þ is the gravitational mass enclosed in r̄.
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For our EOS, Eq. (C5) is equivalent to

½ðΓth − 1Þ þ k1ΓðΓth − ΓÞρΓ−1� ds
dr̄

< 0: ðC7Þ

For our choice of Γth < Γ, this means that if the entropy
gradient is negative (respectively, positive) there is convec-
tion when ρ < ρc (respectively, ρ > ρc), where the critical
density for convection ρc happens to be equal to the critical
density for inverting the EOS, Eq. (B15). Then, since in our
models the rest-mass density is always smaller than ρc, we
expect convection for barotropic profiles given by Eq. (C1)
and vice versa no convection for barotropic profiles given
by Eq. (C4).
For the case with convection, the convective timescale is

given by the analytical estimate [69] (g is the strength of the
gravity acceleration)

τc ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

−gSðr̄Þ

s
; ðC8Þ

which is of the order of tens of milliseconds close to the
stellar center and reduces to a timescale of the order of
0.1 ms close to the stellar surface (these timescales are
compatible with those found by De Pietri et al. [70] and
De Pietri et al. [71] in their simulations). This means that
we expect convection to influence our dynamical simu-
lations (that last for 10 ms), and that it starts at the
surface and propagates to the center.
While this analysis is strictly valid only for a nonrotating

barotropic star, we find that its application to rotating
nonbarotropic stars qualitatively agrees with the results
obtained from dynamical simulations (Sec. V).
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