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Interferometric gravitational-wave detectors like LIGO need to be able to measure changes in their arm
lengths of order 10−18 m or smaller. This requires very high laser power in order to raise the signal above
shot noise. One significant limitation to increased laser power is an optomechanical interaction between the
laser field and the detector’s test masses that can form an unstable feedback loop. Such parametric
instabilities have long been studied as a limiting effect at high power, and were first observed to occur in
LIGO in 2014. Since then, passive and active means have been used to avoid these instabilities, though at
power levels well below the final design value. Here we report on the successful implementation of tuned,
passive dampers to tame parametric instabilities in LIGO. These dampers are applied directly to all
interferometer test masses to reduce the quality factors of their internal vibrational modes, while adding a
negligible amount of noise to the gravitational-wave output. In accordance with our model, the measured
mode quality factors have been reduced by at least a factor of 10 with no visible increase in the
interferometer’s thermal noise level. We project that these dampers should remove most of the parametric
instabilities in LIGO when operating at full power, while limiting the concomitant increase in thermal noise
to approximately 1%.
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I. INTRODUCTION

A. Overview

Interferometric gravitational-wave detectors use a modi-
fied Michelson interferometer that measures gravitational-
wave strain as a difference in length of its orthogonal arms,
which are made several kilometers long to increase their
strain-to-length conversion. Other enhancements to the basic
Michelson interferometer are made to increase the conver-
sion of path length change to optical signal. These include
the use of resonant optical cavities in the long arms to
multiply the light phase change, an input power-recycling
mirror that creates additional resonant buildup of the laser
light in the interferometer, and an output signal-recycling
mirror that broadens the bandwidth of the arm cavities. The
quantum-noise-limited sensitivity of the interferometer is
determined by the stored laser power, and, up to a limit, is
improved by increasing the laser power. For the 11 gravi-
tational-wave detections made in their first two observation
runs [1], the Advanced LIGO interferometers operated with
100–120 kW of power stored in each arm cavity. Since the
full design sensitivity of Advanced LIGO calls for 750 kWof

arm power [2], higher power will be required to reach the
instruments’ full potential.
There are, however, significant technical challenges to

achieving and maintaining stable operation as the laser
power is increased. One of these involves optomechanical
interactions between the stored laser field and the arm
cavities’ test masses that can form an unstable feedback
loop [3]. Given the high optical power level in each cavity
and the very high mechanical quality factors (Q-factors) of
the test-mass vibrational modes (≳107), the process can
result in a parametric instability (PI), in which the cavity
optical energy is pumped into a test-mass mechanical
mode, which grows exponentially until the interferometer
becomes inoperable.
Since Braginsky et al. [4] identified the phenomenon,

PIs have been extensively studied as a limitation for
advanced interferometric gravitational-wave detectors
[3,5–9]. A PI was first observed in the early operation
of the Advanced LIGO interferometers, where a 15.5 kHz
test mass mode interacted with a third-order transverse
optical mode of an arm cavity, exhibiting unstable growth
when the arm power exceeded 25 kW [10]. With 100 kWof
arm cavity power, several modes were potentially unstable
in each detector.*sgras@ligo.mit.edu
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In the first two observing runs, these unstable modes
were suppressed with one of two techniques. The first PI
was stabilized by shifting the eigenfrequency of the third-
order optical mode to reduce the optical gain at the
mechanical mode frequency [11]. This was done by
thermally decreasing the radius of curvature of one of
the cavity test masses, using a noncontacting radiative
heater that surrounds the barrel of each test mass. Unstable
modes have also been suppressed actively, using feedback
forces applied to the test masses to effectively reduce their
internal-mode Q-factors [12].
At full power, approximately ten modes in each test mass

would be unstable if not otherwise mitigated [10], and
neither of these techniques is expected to be robust at that
level. In the thermal tuning technique, thermally shifting
the optical higher-order mode spacing can decrease the
optical gain for some modes, but it will increase the optical
gain for other modes that will eventually become unstable.
The active damping approach becomes complicated in the
face of dozens of modes to damp, some of which are very
close in frequency. Each requires a suitable sensing signal
and careful signal processing to avoid interactions between
modes; it can quickly become a game of whack-a-mole.
A third approach is to reduce the test-mass Q-factors

passively, with the application of some type of damping
mechanism. The challenge of this approach is to provide
adequate damping in the (15–80) kHz band, while mini-
mally impacting the test-mass thermal noise around
100 Hz, in order to preserve the detector’s strain sensitivity.
This means the dampers must add negligible mechanical
loss at frequencies well below their resonances. Gras et al.
[8] investigated the use of metal rings and coatings applied
to the circumference of the test mass, but they could
achieve appreciable damping of the Q-factors only by
adding enough damping material that the test-mass thermal
noise was increased significantly. A more frequency-
selective damper was required, which led to the idea of
tuned dampers designed to resonantly damp modes in the
critical frequency band of (15–80) kHz [13]. The prototype
acoustic mode damper (AMD) reported in Ref. [13]
showed promising performance in terms of mode damping,
but was estimated to more than double the thermal noise at
100 Hz if applied to the test mass, and thus was also not a
practical design.
In this article, we present a new design of a much lower-

noise AMD, suitable for application in advanced gravita-
tional-wave detectors. The basic design of the AMD
remains the same as that presented in Ref. [13], but each
element of the damper has been modified and optimized to
reduce its noise impact. These AMDs have been applied
to all four test masses of both LIGO interferometers.
The resulting measured Q-factors are roughly an order
of magnitude smaller than without the dampers, consistent
with our model predictions. The AMDs are enabling
instability-free operation in the (15–80) kHz band during

Advanced LIGO’s third observation run (O3) at up to 30%
of full power. We project that all modes should remain
stable at or close to full-power operation in that frequency
band. The estimated degradation of the Advanced LIGO
design strain noise due to the AMDs is at most 1.0%, and
we present a measurement that is consistent with this
projection.

B. Parametric instabilities

The process that leads to PI can be viewed as a closed-
loop feedback mechanism [3] involving interactions
between three modes: the fundamental optical mode of
the arm cavity (Hermite-Gaussian TEM00 mode), a higher-
order transverse optical mode of the arm cavity, and an
internal vibrational mode of a test mass. Feedback occurs
when the cavity fundamental mode reflects from a test-
mass surface that is vibrating at a mechanical eigenmode
(e.g., due merely to thermal excitation), scattering a very
small fraction of the fundamental mode into higher-order
optical modes in the cavity. Via radiation pressure, the beat
note of the fundamental and higher-order optical modes
exert a spatially varying force on the cavity test masses,
which oscillates at the mechanical mode frequency. This
force can further drive the amplitude of the mechanical
mode, closing the loop. Depending on the frequency
relationship between the mechanical and optical modes,
the feedback may be positive or negative.
The dynamics of this process are commonly described

in terms of the parametric gain R, with R > 1 being the
threshold for instability. The parametric gain for a mechani-
cal mode m with eigenfrequency fm can be expressed as

Rm ¼ 2Parm

πλc
Qm

Mf2m

X∞

n¼0

Re½Gn�B2
m;n; ð1Þ

where Parm is the laser power stored in the cavity, M is the
mass of the test mass, c is the speed of light, λ is the laser
wavelength, and Qm is the Q-factor of the mechanical
mode. The factor Bm;n is the geometrical overlap between
the mechanical mode m and an optical mode n, and Re½Gn�
is the real part of the optical gain for mode n. The
summation is over all higher-order optical modes which
can contribute to the Rm value, though typically only one is
relevant [10].
The amplitude of the mode m is governed by an

exponential, et=τpi , with the time constant

τpi ¼
τm

ðRm − 1Þ ; ð2Þ

where τm is the natural decay time of the mechanical mode
m in the absence of the optomechanical interaction, and is
related to the Q-factor as Qm ¼ πτmfm.
For Rm < 1, the time constant is negative, and the mode

amplitude decays exponentially, at a rate that may be longer
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or shorter than the natural decay time. For values of
Rm > 1, τpi is positive, indicating exponential growth
of the mechanical mode. The parametric gain scales
linearly with Parm and Qm, and the strategy behind the
AMD is to lower the Q-factors so that R stays below unity
for all modes.

II. LOW-NOISE ACOUSTIC MODE DAMPER
CONCEPT

Tuned mass damping is a well-established technique for
controlling mechanical vibrations [14–17], and piezoelec-
tric tuned mass dampers are being developed as energy
harvesting devices [18]. Designing tuned dampers for the
test masses of a gravitational-wave detector presents unique
challenges, as they must not only provide broadband Q
reduction in the PI band, (15–80) kHz, but they must also
preserve the inherently low mechanical loss of the test mass
in the gravitational-wave band to maintain a low level of
thermal noise in that band.

In this section, we first describe the AMD and its
interaction with the test mass with a simple one-
dimensional model in order to illustrate the concept and
its feasibility. Then we show how the specific design is
optimized using a complete finite-element model of the
entire system.

A. One-dimensional model of the AMD

The AMD concept is shown in Fig. 1. It consists of four
key components: a base, a single piezoelectric plate (PZT)
shunted with a resistor, a reaction mass, and adhesive bonds
used for the AMD assembly as well as for direct installation
on the test masses. Each component is chosen carefully to
limit its associated thermal noise. The components and
their properties are summarized in Table I and Fig. 2.
The main element of the resonator is a piezoelectric

plate, which converts the strain energy of a mechanical
mode into charge. This charge is shunted into a resistor to
dissipate the electrical energy as heat. A shunted PZT is

FIG. 1. Overview of the low-noise acoustic mode damper. The AMD can be described as a small damper of massm attached to a larger
vibrating mass M, as illustrated in the top left. To cover a broader frequency bandwidth, each test mass is equipped with four different
AMDs distributed on the optic’s flats, as shown in panel A. Each AMD is made of a base, a shunted shear plate, and a reaction mass
(panel B). The shunted shear plate is used as a lossy tunable spring with a complex stiffness kAMD. Its polarization direction is oriented
perpendicular to the cavity axis to limit thermal noise injection (panel C). Finally, the top face of the base and the entire reaction mass are
gold coated for electrical conductivity, assuring current flow between the PZT plate and the resistor. The bonds with the PZT plate are
made of epoxy mixed with graphite nanoparticles for conductivity. A detailed description of AMD components can be found in Table I.
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equivalent to a tunable lossy spring, which, in conjunction
with the reaction mass, determines the AMD principal
resonances. In a one-dimensional model, corresponding to
the PZT being loaded uniaxially with either a normal or
shear stress, the spring constant Kpzt;sh of the shunted PZT
is a function of the angular frequency ω ¼ 2πf:

Kpzt;shðωÞ ¼ Y½1þ iηrðωÞ�
S
h
; ð3Þ

where Y is the Young’s modulus of the PZTmaterial (bulk or
shear), S is the surface area, and h is the height of the plate.
The term ηr is the loss due to the resistor shunting [22]:

ηrðωÞ ¼
RCωk2

ð1 − k2Þ þ ðRCωÞ2 ; ð4Þ

where R is the shunt resistance and C the capacitance of the
PZT plate. The electromechanical coupling coefficient k is a
constant of the PZT material; its square represents the
percentage of mechanical strain energy which is converted
into electrical energy [23]. The peak value of ηr, which
occurs at ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
=RC, is tuned with the resistor to the

frequency range where most unstable modes exist. For this
model we are neglecting mechanical loss in the PZT, but it
will be included in the next section when calculating the
thermal noise due to the AMD.
A reaction mass m is attached to this lossy spring to

create the AMD oscillator, with resonant frequency fD,
which is then attached to the test mass. The AMD and test-
mass system can be described as a pair of coupled
oscillators with a large mass ratio. The test-mass acoustic
mode we wish to damp is represented in this model by a
mass M, equal to the modal mass of the acoustic mode,
attached to a fixed reference with a lossless spring, with a
resonant frequency fm. For this system of coupled oscil-
lators, Ref. [13] shows that the resulting Q-factor of the
acoustic mode is

Qm ≃
η2r þ ð1 − ρÞ2

ηrμρ
; ð5Þ

where ρ ¼ fm=fD, and the mass ratio, μ ¼ m=M, is
assumed to be small.
When the AMD resonance is near that of the test mass,

ηr ≫ j1 − ρj, and the test mass modeQ-factor is reduced to
Qa ≃ ηr=μ. We can thus estimate the size of the reaction
mass required to reduce the Q-factors from ≳107 to
105–106, sufficient to suppress PIs. With ηr ¼ 0.1 and
an acoustic mode modal mass M ¼ 10 kg, this would
require a reaction mass of 1–10 mg. This simple model

TABLE I. List of AMD components and their properties. The reaction masses (RM1–4) are slightly different in size to target different
frequencies, and their shape is noncircular to widen the effective bandwidth of each AMD. The loss factors were either extracted from
literature or directly measured with the mechanical oscillator described in Ref. [19].

Component Material Dimensions Mass Loss factor

Base SiO2, Au ϕ 5 mm × 4 mm 0.17 g 1 × 10−6
a

PZT, PI Ceramic PIC181, PbðZr;TiÞO3 3 × 3 × 1.5 mm3 0.11 g ½1.76–2.79� × 10−3
b

RM1 Aluminum ϕ 11.5 mm × 2.0 mm 0.53 g 1 × 10−4
a

RM2 6061-T6 ϕ 9.75 mm × 1.5 mm 0.27 g 1 × 10−4
a

RM3 Gold plated ϕ 8.5 mm × 1.0 mm 0.12 g 1 × 10−4
a

RM4 � � � ϕ 5.5 mm × 0.75 mm 0.05 g 1 × 10−4
a

Resistor (shunt) TiO2;Al2O3, epoxy 2 × 1.25 × 0.55 mm3 0.01 g 0.25c

Epoxy, EPO-TEK 302-3M 1.0 μm thick 13 μg 38.8 × 10−3b
Epoxy (conductive) 302-3M+graphite 1.2 μm thick 15 μg 38.8 × 10−3b

aFrom Refs. [20] and [21].
bMeasured using the test setup described in Ref. [19].
cη peak values, see Fig. 2.
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10 -2
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PI bandandPI bandddndnPI bandddPI b

FIG. 2. Loss factors of the different AMD materials as a
function of frequency. The resistor values are chosen to maximize
the damping efficiency of the AMD’s active direction in the PI
band, while limiting the thermal noise reinjection at lower
frequencies.
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turns out to underestimate the required reaction mass, for a
few reasons. One of these is that the AMD cannot always
be placed at the point of maximum displacement of a given
mode, which can be described as an effective increase of
the modal mass by the square of the ratio of the displace-
ment at the AMD location to that of the mode’s antinode,
M0 ¼ Mðxmax=xAMDÞ2. Other factors include the multiple
coupled degrees of freedom of the AMD and the directional
nature of the piezomaterial, both of which are covered in
the following section.

B. Optimizing the AMD design

Moving beyond this simple model, we need to include
the loss of the PZT material and the loss of the adhesive
used to bond the AMD elements to each other and to the
test mass. These loss factors are not significant for the
acoustic mode damping, but they can be significant in
the thermal noise band, and therefore it is important to
choose low-loss materials.
The thermal noise impact of the AMD can be further

limited through careful choice of geometry. One of these
choices takes advantage of the fact that the test-mass
acoustic modes will generally exhibit surface displacement
in all directions, while thermal noise is determined largely
by motion in the direction of the optic axis. Thus, the PZT
plate is mounted with its active direction perpendicular to
the optic axis. Furthermore, a compressive PZT plate will
always exhibit some charge generation even for acceler-
ations orthogonal to the poling directions due to bending
of the plate. Therefore, the AMD uses a shear plate PZT
to better isolate the active direction from the optic axis
direction.
Next, we consider the size and shape of the reaction

mass. Higher masses will provide more damping of
acoustic modes, but they will also introduce more thermal
noise. The latter can be understood qualitatively by con-
sidering that when the AMD experiences an acceleration,
a higher reaction mass will induce more strain in the
lossy elements of the AMD due to inertia. Thus, we choose
a reaction mass as small as possible, but still sufficient
for acoustic mode damping. As shown in Table I, all of
the reaction masses are less than 1 g. In contrast to the
prototype presented in Ref. [13], the reaction mass is made
from a low-density material (aluminum) so that its moment
of inertia can be increased without increasing its mass. This
means we can achieve the desired mechanical resonant
frequencies of the AMD assembly using less mass, thereby
limiting the thermal noise impact. Finally, the reaction
mass shape is intentionally not symmetric (see Fig. 1),
which breaks the degeneracy of principal resonances in
orthogonal directions to widen the effective bandwidth of a
single AMD.
The size of the fused silica base is also chosen to

minimize thermal noise. To do this, it is important to
minimize the area of the bond to the test mass, so the base

diameter is just large enough for the PZT. The base height
of 4 mm is larger than it needs to be so that in the thermal
noise band, the AMD structure deforms mostly in the low-
loss base, rather than in the higher-loss PZT.
Finally, epoxies are used to bond the AMD elements

together and to bond the AMD to the test mass. Though the
volume and mass of the epoxies are much smaller than
those of the other elements, epoxies have relatively high
mechanical loss, and they need to be chosen carefully.
Several epoxies were evaluated in terms of their minimum
bond thickness, curing requirements, and mechanical loss.
The loss factor of the chosen epoxy (see Table I) displayed
a significant dependence on bond thickness [24], becoming
larger for thicknesses less than a couple of microns. Thus,
the thermal noise impact of the epoxy is not minimized by
making the thinnest possible bond; instead, we found the
optimal bond thickness to be approximately 1 micron. The
bonds to the PZT plate require a conductive medium, and
for these we mixed graphite nanopowder with the epoxy.
We confirmed that the graphite-filled epoxy had the same
loss factor as the regular epoxy.

C. Modal damping efficiency

Efficient damping of the test-mass acoustic modes
requires that the AMD principal resonances have good
overlap in frequency with these modes. The AMD design
has five principal resonances: two bending or “flagpole”
resonances, two antiflagpole resonances, and a single
torsional mode, as shown in Fig. 3. Each of these modes
involves large strain in the active direction of the PZT
element, and efficient conversion of mechanical energy
to electrical energy. The compression mode is not
considered herein, as it has very little coupling to shear
in the PZT plates.
Models of a test mass with various numbers of AMDs

attached were analyzed via finite element analysis (FEA)
[25]. The test mass is a right circular cylinder (34 cm ϕ×
20 cm thick), with two flats polished on opposing sides
(see Fig. 1). For ease of attachment, the AMDs are mounted
on these flats, within a specific area at the top of the flat and
adjacent to the test-mass front face. The test-mass modes

FIG. 3. Three different types of AMD principal resonances
which have nonzero strain in the active PZT direction (shear).
There are five principle resonances in total per AMD. Due to the
asymmetry of the reaction mass and the 45 degree orientation of
the PZT plate, the flagpole and antiflagpole modes appear in
doublets. The torsion mode is also effective for damping due to
the anisotropy of the PZT material.
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are first calculated with FEA in the absence of AMDs. This
model uses a bulk loss for the fused silica of 10−7 and
includes the much higher loss (≃10−4) several-micron-thick
coating that creates the mirror surface. The acoustic mode
Q-factors from this model (sans AMD) range from 1 −
4 × 107 for modes in the 15–80 kHz band.
Modeling the system with AMDs mounted on the flats,

we find that a set of at least four AMDs with evenly spaced
principal resonances is required to cover the entire PI
frequency band. The AMD resonances are spread out by
using different RM dimensions and masses for each AMD,
and different shunting resistors are used to spread the peaks
of ηr across the (15–80) kHz range. The properties of each
AMD are given in Table I.
The quality factor Qm for a test-mass mechanical mode

with AMDs attached is calculated with the following
formula:

QmðfmÞ ¼
EsðfmÞP

iEiðfmÞηiðfmÞ
; ð6Þ

where Es is the total modal strain energy of the test
massþ AMD, and Ei is the strain energy of the individual
component i with the loss factor ηi. The sum is over all of
the AMD elements listed in Table I, as well as the test-mass
elements that are in the model (bulk and coating). The
strain energy values are obtained with the FEA, and the loss
values are taken from Table I and Fig. 2 (for the ηr values).
For the set of four AMDs, 98% of the acoustic mode Q’s
are suppressed by a factor of 10 or more compared to their
values without AMDs, and if fm is very close to an AMD
principal resonance, the suppression factor can be 100
or more.
These Qm values from the FEA can be used to calculate

the parametric gain Rm using Eq. (1), but uncertainties in
several of the parameters prevent an accurate calculation of
the gain for a given mode. Instead, we use the Monte Carlo
method described in Ref. [3] to determine the range of
potential parametric gain values for each acoustic mode.
The key parameters for this simulation are given in Table II.

Each arm cavity comprises a partially transmissive “input
test mass” and a highly-reflective “end test mass,” which
differ only in their mirror coatings and radii of curvature.
The FEA parameters (mode frequencies andQ’s) for an end
test mass are used in this PI analysis. From the Monte Carlo
results, we identify the 95% bound on the parametric
gain—i.e., the level that 95% of the values do not exceed—
and denote this value as R95. The results for the target
design power in the arm cavities (750 kW) are given in
Fig. 4, which shows that all modes within (15–80) kHz
should be stable when the test masses are outfitted with
AMDs. For the mode at 15.5 kHz, which is the strongest PI
observed in LIGO, R95 is reduced from 44 down to 0.7.
One mechanical mode at 10.4 kHz is still likely to

produce an instability at full power, with an R95 of 3.4. This
is a drumhead mode of vibration, where there are no nodal
diameters, and the faces of the test mass vibrate primarily
along the cavity optic axis (similar to the fundamental
mode of a circular membrane). Since this mode shape is
similar to the test-mass deformation relevant for thermal
noise, the AMDs are designed to avoid coupling to it to
minimize their thermal noise impact. Furthermore, the
mode has an extremely high Q-factor; the FEA predicts
an intrinsic Q of 6.2 × 107, which is damped only to 3.0 −
4.0 × 107 by the AMDs. This mechanical mode couples
mainly to a second-order transverse optical mode, the

TABLE II. Monte Carlo parameters for computation of the
expected parametric gain, with the varied parameters listed in the
first three rows. One-way Gouy phases for the signal-recycling
and power-recycling cavities (SRC and PRC, respectively) are
held constant, whereas the radii of curvature (RoC) of the test
masses and the acoustic mode eigenfrequencies are varied.

Input test-mass RoC 1936–1945 m
End test-mass RoC 2248–2254 m
Acoustic mode fm uncertainty �2%

SRC Gouy phase 19 deg.
PRC Gouy phase 25 deg.
No. of mechanical modes 4200
No. of iterations 200 000

10 20 30 40 50 60 70 80
10 -3

10 -2

10 -1

10 0

10 1

10 2

FIG. 4. Comparison of the expected parametric gains at full
power (Parm ¼ 750 kW) without AMDs (red circles) and with
AMDs (black circles), for a single test mass. Each data point
corresponds to the 95% bound on the gain, R95, as explained in
the text. With AMDs, all modes at and above 15 kHz should
become stable (R < 1). Each colored vertical bar corresponds to a
principal mode of that AMD, with the bar width indicating the
resonance 3 dB points. Four AMDs provide good overlap of
AMD principal resonances with all potentially unstable mechani-
cal modes above 15 kHz.
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Laguerre-Gauss LG1;0 cavity mode. The instability asso-
ciated with this mode can still be controlled via thermal
tuning, and should not present a limitation.

D. Thermal noise estimation

The power spectral density St of thermal noise fluctua-
tions can be computed using the generalized fluctuation
dissipation theorem [26]. We follow Levin’s method [27]
and use FEA harmonic analysis to compute St:

StðfÞ ¼
4kBT
πfF2

0

X

i

EiðfÞηiðfÞ; ð7Þ

where kB is Boltzmann’s constant and F0 is the amplitude
of an oscillating pressure field applied to the front surface
of the test-mass model. The spatial profile of the pressure
field corresponds to the laser beam intensity incident on the
test mass—a fundamental mode Gaussian with a beam
radius of either 6.2 cm (end test mass) or 5.3 cm (input test
mass). The pressure field creates a deformation in each
element of the model, and from the FEAwe can extract the
strain energy Ei in each element. The total thermal noise
due to each AMD is found by summing Eq. (7) over its
elements, with loss factors coming from either Fig. 2 [for
ηrðωÞ] or Table I (all other elements).
The FEA thermal noise results are shown in Table III.

For one test mass, the estimated thermal noise from four
AMDs is 1.16 × 10−21 m=

ffiffiffiffiffiffi
Hz

p
at 100 Hz. With all four

interferometer test masses (16 AMDs), this corresponds
to a total noise contribution of 2.32 × 10−21 m=

ffiffiffiffiffiffi
Hz

p
at

100 Hz. This is to be compared to the target design
sensitivity of Advanced LIGO [2] at 100 Hz, which, at

16.3 × 10−21 m=
ffiffiffiffiffiffi
Hz

p
, is dominated by quantum noise and

thermal noise from the test-mass mirror coatings.
The spectrum of displacement thermal noise due to the

AMDs is shown in Fig. 5, along with the Advanced LIGO
design spectrum and its noise contributors. The plot also
shows the degradation of the design spectrum due to the
AMDs, indicating a maximum noise penalty of 1.0%
at 70 Hz.

III. EXPERIMENTAL RESULTS:
PI MITIGATION

For LIGO’s O3 observing run, all test masses at both
observatories have been fitted with the set of four AMDs
described above. No parametric instabilities are observed
in the (15–80) kHz range, even without implementing any
thermal mode tuning or active damping. This is at an arm
power level of Parm ¼ 230 kW, in contrast to the situation
without AMDs, in which the first instability would appear
at 25 kW arm power.
To quantitatively assess the performance of the AMDs,

we make three types of measurements: Q-factor measure-
ments of test-mass acoustic modes, with and without
AMDs; parametric gain of a specific mode versus thermal
cavity geometry tuning; and a noise measurement to bound
the thermal noise impact.

A. Test-mass Q-factors

Suspended adjacent to each test mass is a reaction mass
that includes a pattern of electrodes which can be driven to
apply electrostatic forces to the test mass. These actuators
are used to excite the test-mass acoustic modes and measure

TABLE III. Thermal noise budget of the four AMDs at 100 Hz
for 293 K. The thermal noise level is strongly correlated with the
mass of the reaction mass. The largest thermal noise contributors
are the epoxy layers and the PZT material. The very small
contribution from the shunt is a result of orienting the PZT
polarization direction perpendicular to the cavity optic axis.

Thermal noise at 100 Hz

[×10−22 m=
ffiffiffiffiffiffi
Hz

p
]

AMD1 AMD2 AMD3 AMD4

Base 0.19 0.12 0.07 0.06
RM 0.50 0.23 0.10 0.03

Epoxy between
Test mass & base 6.52 4.19 3.00 2.46
Base & PZT 4.16 2.24 1.21 0.73
PZT & RM 2.49 1.23 0.54 0.2

PZT (structural) 4.48 2.31 1.16 0.62
PZT (shunt) 0.031 0.009 0.011 0.003
Total AMD 9.30 5.43 3.48 2.65
Total noise for 1 test mass → 11.62
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FIG. 5. Displacement noise amplitude spectra for AMD ther-
mal noise (red curve) and the major noise contributors to the
Advanced LIGO design at full power, Parm ¼ 750 kW. Equiv-
alent detector strain noise is derived by dividing by 4000 m. The
AMD curve corresponds to 16 total AMDs (four per test mass).
The blue dashed line shows the sensitivity degradation in percent
as a result of adding the AMDs.
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their Q-factors from the ringdowns recorded in the main
gravitational-wave channel. Test-mass modes were excited
while the interferometer was operating at low laser power,
in order to avoid parametric gain significantly altering the
ringdown times.
Wewere able to measureQ-factors for 13 modes, usually

on multiple test masses, in the band (10–50) kHz. For the
ten lowest-frequency modes, we could identify their par-
ticular mode shapes and so can compare the measurements
to the finite element model predictions (above 30 kHz, the
mode density is so high that it is not possible to uniquely
identify the modes). The Q-factor measurements from
the LIGO Livingston interferometer are shown in Fig. 6;
the results from the Hanford interferometer are similar. The
plot also includes 11 Q-factors from one of the Livingston
test masses measured before the AMDs were installed. As
expected, the Q-factors for all but one of the modes at
15 kHz and above are reduced by nearly an order of
magnitude or more. The variations in Q from test mass to
test mass, and from the modeled values, are not too
surprising given realistic deviations in AMD and test-mass
parameters; for example, any frequency mismatch between
the AMD resonances and the test-mass modes will reduce
the damping. The FEA of the test mass predicts acoustic
mode frequencies with a typical error of 0.5%, or up to a
few hundred Hz. In addition, some AMD parameters are
difficult to control during assembly and installation. We
estimate that the epoxy bond thickness could vary by up to
−50% or þ20% from the 1 μm nominal thickness, which

would limit the accuracy of the AMD principal resonance
to about 5 kHz. Also, the installed locations of the AMDs
on the test masses could differ from the model by several
millimeters, due to varying mounting constraints from test
mass to test mass.

B. Optical mode transient test

According to Eq. (1), parametric gain scales linearly with
the gain of the higher-order optical mode Gn, assuming one
relevant optical mode. Gn in turn depends on how close the
acoustic mode frequency is to the optical mode frequency
[4]: Gn ∝ ðΔf2n þ 4Δf2Þ−1, where Δfn is the linewidth of
the higher-order mode n, and Δf ¼ fm − fn, where fn is
the frequency of the higher-order mode relative to the
frequency of the arm cavity TEM00 mode. Thermal tuning
of a test mass’s curvature will shift fn, and thereby change
Δf and the optical gain. By tuning an optical mode to be
very close to its acoustic-mode PI partner, fn ≈ fm, we can
determine the maximum possible parametric gain for that
acoustic mode.
We performed such a measurement when AMDs were

installed on a single end test mass in one arm cavity (the
X arm) at the LIGO Livingston Observatory. We locked the
interferometer with 100 kW of power in the arm cavities,
and took advantage of the small absorption in the mirror
coatings (sub-ppm), which creates a thermal tuning tran-
sient with a time constant of approximately 1 hour. We
monitored the amplitude of the 15.5 kHz acoustic mode of
both X-arm test masses, the mode most prone to instability
through interaction with a third-order transverse optical
mode; details of these mechanical and optical modes can
be found in Ref. [10]. The transient thermal tuning shifts
the third-order optical mode higher in frequency, towards
15.5 kHz. The acoustic mode is separated by about 4 Hz
between the two test masses (one with AMDs and one
without), so the light scattered from each experiences
nearly the same optical gain as Δf changes. We periodi-
cally excited the 15.5 kHz mode of the end test mass with
its electrostatic actuator and measured the ringdown time,
from which the parametric gain was extracted using Eq. (2).
The evolution of the 15.5 kHz mode amplitude in

both test masses is shown in Fig. 7. The input test
mass, which did not have AMDs, becomes unstable
with a measured parametric gain of R ¼ 1.2 before it
drives the interferometer out of lock. On the other hand,
the end test mass, with AMDs, remains stable with a
highest measured gain of R ¼ 0.176. While we cannot be
certain that this corresponds to the highest possible optical
gain, Fig. 7 shows that R ≤ 0.176 for a range of thermal
tunings. Since the 15.5 kHz mode is the strongest in terms
of parametric instabilities, this end test mass R value can
be used to estimate the maximum arm power at which
the interferometers should be stable under most ther-
mal tuning conditions: Pmax¼100 kW=0.176¼570 kW.
Furthermore, any instabilities that occur when the full
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FIG. 6. Measured Q-factors of test-mass acoustic modes. The
green crosses correspond to pre-AMD measurements of one of
the Livingston Observatory test masses. The post-AMD Q-
factors are shown as black dots. The blue bars indicate the
spread of Q’s measured across several test masses (with AMDs),
and the purple triangles represent the model prediction of Q’s
with AMDs.
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design power of 750 kW is reached should be avoidable
with thermal cavity tuning.

C. Thermal noise impact

The additional thermal noise introduced by the AMDs is
expected to be small, increasing the detector’s design strain
noise by at most 1.0% at 70 Hz. It is not possible to verify
the thermal noise impact at that level, but we can set an
upper limit by comparing the measured interferometer
noise to noise model expectations, and to measured noise
before AMDs were installed. An increase in thermal noise
would first be evident in the band (40–200) Hz (see Fig. 5),
but the detector’s noise spectrum is limited by quantum
shot noise at frequencies above the 50 Hz range, masking
thermal and other classical noises. The classical noise
spectrum underneath the quantum noise can, however,
be revealed using the cross-correlation technique described
in Ref. [28]. This technique takes advantage of the fact that
the light at the output port is split into two equal-intensity
beams, and homodyne detection is performed on each
beam. Quantum shot noise and photodetector dark noise
are uncorrelated in these two detection channels, and
therefore their contribution to the cross-spectrum of the
two channels diminishes with more averages, leaving the
coherent, classical noise.
Data were analyzed for the Livingston detector during

low-noise operating states both before and after all AMDs
were installed. Between O2 and O3, several detector
improvements and changes were made in addition to the

AMDs, so the before/after comparison of classical noise
does not test only the effect of the AMDs. However, it can be
used to verify that the classical noise did not increase with
the presence of AMDs. In addition, we can compare the
measured cross spectrum with the modeled classical noises,
which are well known in the frequency band of interest.
Figure 8 shows spectra of the total interferometer noise

and the classical noise measured with the cross spectrum,
both with and without AMDs on the test masses. The total
noise in the case with AMDs is lower than the earlier, sans
AMD data due to higher-circulating arm power (225 kW vs
100 kW), which reduces the quantum shot noise contri-
bution. The small decrease in classical noise after AMD
installation is likely due to an unrelated reduction in a
different classical noise, such as scattered light. We see that
the measured classical noise with AMDs (dashed red curve)
matches the noise model estimate for the dominant classical
noises well in most of this frequency band. The discrepancy
between the AMD measurement 100–150 Hz and the
model is within the ∼2% detector calibration uncertainty
[29] and model uncertainties which are larger than cali-
bration uncertainty. These model contributions are coating
thermal noise and phase noise due to residual gas in the
beam tubes. There is no evidence that the AMDs are
introducing significant additional thermal noise.

D. Effect of beam decentering

The PI simulations that produced the data in Fig. 4
assumed that the cavity beams are centered on the test-mass
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FIG. 7. Thermal transient of the 15.5 kHz modes on input
(ITMX) and end (ETMX) test masses. As expected, the ITMX
without AMDs became unstable during thermal transient, with
rapidly rising amplitude. Contrary, the ETMXwhich has attached
AMDs remains stable with parametric gain below unity. The
rising envelope of the ETMX signal is a result of imperfect
filtering out of the ITMX signal.
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FIG. 8. Noise spectra of the Livingston interferometer before
and after the installation of all AMDs. The solid lines show
the total noise level measured (classicalþ quantum noise). The
dotted lines show the level of classical noise only, after the
quantum has been subtracted via a cross-correlation technique.
Coating thermal noise and residual gas noise—the dominant
classical noise contributions in this region—are also shown.
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faces. In practice, during the O3 observing run, the cavity
beams are intentionally decentered on several of the test
masses in order to avoid small defects in their mirror
coatings. The typical beam decentering of 20 mm can
significantly increase the geometrical overlap Bm;n

between some mechanical and optical modes, thereby
increasing their PI probability [30]. This is particularly the
case for a pair of acoustic modes at 10.2 and 10.4 kHz,
which have a displacement pattern on the test-mass face
similar to the Zernike trefoil polynomial. These modes
overlap only weakly with the Hermite-Gaussian second-
order modes (HG0;2;HG2;0 and HG1;1) when the cavity
beam is centered, but the overlap factor can increase by
several orders of magnitude when the beam is off center.
For example, B2

m;n between the HG1;1 mode and the
10.4 kHz mode increases from 2 × 10−8 to 6 × 10−3 for
a decentering of 18 mm.
Indeed, instabilities have been observed at both 10.2 and

10.4 kHz in one arm of the LIGO Hanford interferometer,
at a power level of Parm ¼ 230 kW. The 10.4 kHz mode
could be either the trefoil mode just mentioned, or the
drumhead mode mentioned in Sec. II C; it is difficult to
distinguish between the two, as their eigenfrequencies
differ by only ∼10 Hz. Both instabilities are stabilized
by shifting the second-order optical modes by ∼100 Hz
using the ring heater on the end test mass (i.e., thermal
cavity geometry tuning).

IV. CONCLUSION

We have presented a simple yet effective passive device
to mitigate parametric instabilities in interferometric gravi-
tational-wave detectors. The significant advantage of these
acoustic mode dampers compared to previous mitigation
techniques [11,12] is that they act on all instabilities
simultaneously without requiring further tuning or inter-
vention. Acoustic mode dampers designed to provide tuned
damping of the (15–80) kHz internal modes of the LIGO
test masses have been installed on all four test masses in

both LIGO interferometers. With these dampers in place,
no instabilities have been observed in the (15–80) kHz
range at arm circulating powers as high as 240 kW.
Two instabilities have been observed in one interferometer
near 10 kHz, and these have been controlled with a small
amount of thermal tuning. Importantly, no active damping
has been required on either interferometer to achieve long-
term stability.
At the full design power of Parm ¼ 750 kW, assuming

the cavity beams are then centered on the test masses, the
AMDs should stabilize all acoustic modes except for the
10.4 kHz drumhead mode, and possibly the 15.5 kHz
modes. The drumhead mode will need to be stabilized,
most likely with thermal tuning (active damping may be
difficult, as the electrostatic actuators do not couple
strongly to this mode). If we can improve the accuracy
with which the AMD principal resonances can be made to
match their design values, we can better target the 15.5 kHz
modes to decrease their probability of being unstable.
Attaching any components to the test masses must be

done carefully in order to avoid increasing the thermal
noise in the gravitational-wave detection band. Our model
predicts that the detector’s equivalent strain noise will be
degraded by at most 1.0% around 70 Hz by the addition of
the AMDs. Our measurement of the classical noise present
in the interferometer is not accurate enough to verify such a
small impact, but it does show that there is no significant
increase in thermal noise.
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