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We show that the Hamiltonian of isotropic loop quantum cosmology is selected by physical criteria plus
a choice implementing Occam’s razor. We also parametrize the freedom when this choice is relaxed and
show boundedness of energy density for a broad class of cases. A criterion used is covariance under
dilations, the continuous diffeomorphisms remaining in this context, which are not canonical but
conformally canonical transformations. We propose how to implement such transformations in quantum
theory. Removal of the infrared regulator makes the result independent of ordering ambiguities.
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I. INTRODUCTION

The epistemic value of “simplicity” in a theory—in the
sense of parsimony of postulates—goes beyond aesthetics.
Simplicity is central to the effectiveness of the scientific
method itself. Given a prediction from a theory, there is the
question: If the prediction fails, how should the theory be
modified? The more postulates in a theory, the more
unmanageable this part of the scientific method becomes.
Cast another way: another epistemic value central to
science is that a theory make “risky” predictions [1].
The fewer the postulates, the fewer ways there are to
modify the theory in the face of a negative result, and hence
the greater the risk.
The role of uniqueness theorems is to reduce a theory to

a minimal set of postulates. With predictions starting to be
made in loop quantum cosmology (LQC) [2–5], it is thus
important to have uniqueness theorems for LQC. Previous
works [6–8] have addressed the uniqueness of the kin-
ematics of LQC. The present work extends those results to
include dynamics. Together, these works show that the
predominant model of LQC is uniquely determined by
basic physical principles, plus only two choices, thus
bringing out its simplicity.
A simple formulation of a theory also makes clear to the

wider scientific community the assumptions that underlie
it. By stripping out the technicalities and revealing the
physical content of LQC, the present work makes the
theory more compelling to those working outside the field.
Loop quantum cosmology is a quantization of the

gravitational degrees of freedom at the cosmological scale
using the methods of loop quantum gravity (LQG), an
approach to quantum gravity in which Einstein’s funda-
mental principle of general covariance—or equivalently,
in its active form, diffeomorphism covariance—is central.

The predominant model for LQC is the so-called
“improved dynamics”, introduced by Ashtekar,
Pawlowski, and Singh (APS) [9]. With the results of this
paper, it is established that both the kinematics and
dynamics of this model are uniquely selected by the
following physical principles:

(i) (Residual) diffeomorphism covariance of both the
kinematical framework as well as the Hamiltonian
operator Ĥ.

(ii) that Ĥ be Hermitian.
(iii) that Ĥ have the correct classical limit.

together with the following two choices:
(1) That the phase space functions with direct quantum

analogues be the restrictions of those in LQG. This is
the only place where LQG enters into the assump-
tions. We call this the loop hypothesis.

(2) That the number of terms in Ĥ, naturally defined, be
minimal.

The first of the above two choices, via the kinematical
uniqueness theorems [6,7,10], selects a unique kinematical
Hilbert space of states, namely that of [11]. In the present
work, which focuses on dynamics, the loop hypothesis thus
implies that the Hamiltonian must act on this space of
states.
Part of what makes the present uniqueness theorem

possible is that, in LQC, one must take the limit of a large
volume of the fiducial cell, which serves as an infrared
cutoff [12]. Specifically, the commutators among the basic
variables in LQC scale as the inverse of the volume of the
fiducial cell [13,14], so that in the limit in which the
infrared regulator is removed, all operator ordering ambi-
guities in the definition of Ĥ disappear. This is what allows
the present uniqueness result to be stronger than that in the
prior work [14], where only uniqueness up to leading and
subleading orders in ℏwas achieved. Similar reasoning was
used in [12], where the authors point out that inverse
volume corrections to the Hamiltonian do not have any
physical meaning because they are cell-dependent and
vanish once the regulator is removed.
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A second key element of the present work is a quantum
equation expressing covariance of a given operator with
respect to residual diffeomorphisms in LQC. These residual
diffeomorphisms—dilations—are not canonical but, rather,
conformally canonical transformations. We introduce a
method for implementing such transformations in quantum
theory which strictly generalizes the standard way of
implementing canonical transformations. The resulting
quantum covariance condition is well defined for any
operator. This contrasts with the covariance condition
introduced in [14], which is more complicated and is well
defined only for operators satisfying a certain analyticity
assumption, but is otherwise equivalent to the condition
defined here.
We furthermore note that the question of uniqueness of

dynamics in LQC was first investigated in the work [15],
which showed how residual diffeomorphism invariance
selected the standard dynamics of LQC [9] from a one-
parameter family of possible dynamics. The present work
starts from no such restriction.
It is also important to mention that if the single choice

being imposed on the dynamics—minimality—is removed,
then Hamiltonians other than the standard one also become
possible, in particular the “μ̄” versions of the dynamics
proposed and investigated in [2,16–21]. The present
work gives a compact parametrization of the possible
Hamiltonians when minimality is relaxed. We note that
even when minimality is relaxed, for any finite number of
terms, as defined in this paper, the Big Bang singularity is
resolved in the sense that energy density is bounded.
This paper summarizes the results and central argument

of a more detailed companion paper to appear soon [10].

II. BACKGROUND

In this section we briefly review the required background
material (for more details, see [12,22,23]). In LQG the
gravitational phase space variables are given by a SU(2)
connection Ai

a and a densitized triad Ea
i . We will consider

the simple, k ¼ 0, spatially homogeneous and isotropic

model. Let e
∘a
i be an arbitrarily chosen flat fiducial triad,

and ω
∘ i
a the corresponding cotriad. Then by fixing the gauge

we can write

Ai
a ¼ c̃ω

∘ i
a; Ea

i ¼ p̃e
∘a
i : ð1Þ

Thus, the phase space is two-dimensional and parametrized
by ðc̃; p̃Þ. Because the fields are homogeneous on a
noncompact slice, the integral defining the symplectic
structure, and hence Poisson brackets, requires introducing
an infrared regulator. A choice of compact region V, the
“fiducial cell”, provides such a regulator, which must be
removed before extracting physical results from the theory.
Let Vo denote the volume of V with respect to the metric

q
∘
ab determined by e

∘a
i . The nonvanishing Poisson brackets

are then

fc̃; p̃g ¼ κγ

3Vo
: ð2Þ

Upon defining the rescaled variables

c ≔ V1=3
o c̃; p ≔ V2=3

o ðdet q∘Þ−1=2p̃;

we obtain Poisson brackets independent of Vo,

fc; pg ¼ κγ

3
;

where κ ¼ 8πG with G the Newton constant and γ is the
Barbero-Immirzi parameter. Because of the underlying
symmetries only the Hamiltonian constraint remains to
be imposed. We choose as our lapse function N ¼ jpj3n=2,
so that n ¼ 0 corresponds to the proper time gauge, and
n ¼ 1 corresponds to the harmonic time gauge—both
common choices in the literature. The gravitational part
of the Hamiltonian constraint is then given by

H ¼ −3
κγ2

jpj3nþ1
2 c2:

The group of diffeomorphisms preserving the gauge-fixing
(1), and acting nontrivially on (c; p), is generated by parity
and the one-parameter family of dilations. Parity is defined

by Π�e
∘a
i ¼ −e∘ai and ΠðpoÞ ¼ po with po an arbitrary

center, with resulting action ðc; pÞ ↦ ð−c;−pÞ. The dila-
tions are diffeomorphisms generated by the “radial” vector
field ra defined by ∂bra ¼ δab and raðpoÞ ¼ 0, where ∂a is

the covariant derivative determined by q
∘
ab. The resulting

action is

ðc; pÞ ↦ ðe−tc; e−2tpÞ; ð3Þ

with real parameter t, with H transforming as

Hðe−tc; e−2tpÞ ¼ e−3ðnþ1ÞtH: ð4Þ

Note that the action of dilations here differs from that in [6]:
in contrast to that work, the methods developed in this
paper do not require dilations to act on the fiducial cell.
The set of phase space functions with direct quantum

analogues in LQG is that spanned by fluxes of Ea
i through

analytic surfaces, and products of holonomies of Ai
a along

analytic paths. When restricted to the above cosmological
phase space, this reduces to the span of p, eiμc (for μ ∈ R),
and functions of c vanishing at infinity [24], and generates,
in the sense of [25,26], a quantum algebra known as the
reduced holonomy-flux algebra [6]. There is more than one
action of residual diffeomorphisms on this algebra con-
sistent with the action (3) on c and p. No matter which
action is chosen, there exists a unique cyclic representation
of the quantum algebra in which the action is unitary, and
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this representation is independent of the action chosen
[6,7,10]. The representation so selected acts on the Hilbert
space with orthonormal basis jpi for p ∈ R. The states jpi
are then the eigenstates of p̂, and the action of deiμc on these
states is given by deiμcjpi ¼ jpþ κγℏ

3
μi. Note that no basic

operator corresponding to c exists in the quantum theory—
only eiμc.
We extend the definition of the basic operators to include

operators of the form deifðpÞc, such that they map each
momentum eigenstate jpi to jFðpÞi, where FðpÞ is the
flow, evaluated at unit time, generated by the vector field
κγℏfðpÞ d

dp. In particular, for fðpÞ ¼ λjpj−1=2 with λ ∈ R,

one has the operator deiλb, with b and its corresponding
conjugate variable v defined as

b ¼ jpj−1=2c; v ¼ sgnðpÞjpj3=2; fb; vg ¼ 1

2
κγ:

The action of deiλb on v̂ eigenstates is therefore simplydeiλbjvi ¼ jvþ κγℏ
2
λi [9,23]. Under parity, ΠdeiλbΠ ¼ de−iλb

and Πv̂Π ¼ −v̂. b=γ is the Hubble rate and contains all
diffeomorphism-invariant gravitational information.
Note that the limit of removal of the infrared

regulator—Vo → ∞ as ðAi
a; Ea

i Þ and hence ðc̃; p̃Þ are held
constant—is equivalent to v → ∞ with b held constant.

III. SELECTION OF THE QUANTUM
HAMILTONIAN CONSTRAINT

A. Residual diffeomorphism covariance
and Hermiticity

Classically, the flow of a phase space function F under
the canonical transformation generated by the Hamiltonian
vector field XΛ, associated to a phase space function Λ, is
given by

_F ¼ LXΛ
F ¼ fΛ; Fg:

This has the standard quantization

_̂F ¼ 1

iℏ
½Λ̂; F̂�:

Isotropic dilations are not canonical, but they are con-
formally canonical: they are generated by a vector field of
the form

X ¼ ωXΛ;

whose corresponding flow thus takes the form

_F ¼ LXF ¼ ωLXΛ
F ¼ ωfΛ; Fg:

In the case considered in this paper, Λ turns out to be
proportional to c, so that only its exponential has an
operator analogue in LQC. This leads us to rewrite the
above equation as

_F ¼ ω
1

iλ
e−iλΛfeiλΛ; Fg: ð5Þ

This leads to the quantum equation

_̂F ¼ ω̂ ⋆
�
−1
λℏ

de−iλΛ½deiλΛ; F̂��; ð6Þ

where ⋆ denotes a choice of ordering for operator products.
Note that Eq. (5) is independent of λ; however, the
quantization (6) is not. In the case when ω is a constant
and one uses the Schrödinger representation, (6) reduces to
the standard flow generated by Λ only in the λ → 0 limit,
and hence we make this choice:

_̂F ¼ −1
ℏ

ω̂ ⋆ lim
λ→0

�
1

λ
de−iλΛ½deiλΛ; F̂��: ð7Þ

We now use the fact that X is the generator of dilations,
so that LXp ¼ −2p and LXc ¼ −c, and X ¼
ωðc; pÞXΛðc;pÞ. Because c has no operator analogue in
LQC, we make ω independent of cwhich, together with the
requirement that XΛ be a generator of canonical trans-
formations, determines ω up to an overall factor M:
ω ¼ −Mv. Then Λ is determined up to an additive constant
l, Λ ¼ 6

κγ ðM−1bþ lÞ, and we get

X ¼ −MvX 6
κγðM−1bþlÞ:

Because of their natural appearance, we will use the
variables (b; v) at this point. The Hamiltonian flows under
the action of dilations as LXH ¼ −3ðnþ 1ÞH, and thus

we impose the covariance condition _̂H ¼ −3ðnþ 1ÞĤ.
Equation (7), for F̂ ¼ Ĥ, then gives

−M
ℏ

v̂ ⋆ lim
λ→0

�
1

λ
b
e−i

6λ
κγðM−1bþlÞ ½bei6λκγðM−1bþlÞ; Ĥ�

�
¼ 3ðnþ 1ÞĤ:

As expected, l drops out of the equation. Rescaling λ by Mκγ
6

we obtain

2v̂ ⋆ lim
λ→0

�
1

λ
de−iλb½deiλb; Ĥ�

�
¼ −ℏκγðnþ 1ÞĤ: ð8Þ

As mentioned above, there is an ordering ambiguity in
the product ⋆. For now we choose the Weyl ordering,
v̂ ⋆ Ô ≔ 1

2
ðv̂ Ôþ Ô v̂Þ, and address alternative choices in

the next section:
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−ℏκγðnþ 1ÞĤ ¼ lim
λ→0

ðv̂ de−iλb ½deiλb; Ĥ� þ de−iλb½deiλb; Ĥ�v̂Þ:
ð9Þ

Equation (9) can be rewritten in terms of the matrix
elements of the operator Ĥ (in the jvi basis),

− ðnþ 1ÞHðv00; v0Þ

¼ v0 þ v00

2
lim
λ̃→0

1

λ̃
ðHðv00; v0Þ −Hðv00 þ λ̃; v0 þ λ̃ÞÞ;

where λ̃ ¼ λℏκγ
2
. Then, by using the substitution

fwðuÞ ¼ Hðwþ u; uÞ, we obtain the differential equation,

wþ 2u
2

f0wðuÞ ¼ ðnþ 1ÞfwðuÞ:

The general solution to this equation is

Hðv00; v0Þ ¼ fv00−v0 ðv0Þ ¼ Bv00−v0 ðsgnðv00 þ v0ÞÞ
���� v00 þ v0

2

����nþ1

ð10Þ

for some functions BwðσÞ. Using d
ei

2u
κγℏbjvi ¼ jvþ ui, we

have

Ĥjv0i¼
X
v00

Hðv00;v0Þ d
ei

2ðv00−v0Þ
κγℏ bjv0i¼

X
w

d
ei

2w
κγℏbHðv̂þw;v̂Þjv0i:

Plugging in (10), we can write the operator Ĥ as

Ĥ ¼
X
w

d
ei

2w
κγℏb Bw

�
sgn

�
v̂þ w

2

������v̂þ w
2

����nþ1

¼
X
w

dei w
κγℏb Bwðsgnðv̂ÞÞjv̂jnþ1 dei w

κγℏb: ð11Þ

Next we impose that Ĥ be Hermitian and parity
invariant. These two conditions together force
B−wðσÞ� ¼ BwðσÞ ¼ B−wð−σÞ. This implies

BwðσÞ ¼ ajwj þ iσsgnðwÞbjwj
for some ajwj; bjwj real, so that

Ĥ ¼
X
w

dei w
κγℏbðajwj þ isgnðwv̂ÞbjwjÞjv̂jnþ1 dei w

κγℏb

¼
X
w>0

dei w
κγℏbðaw þ isgnðv̂ÞbwÞjv̂jnþ1 dei w

κγℏb

þ H:c:þ ã0jv̂jnþ1; ð12Þ
where H.c. stands for Hermitian conjugate.
Notice that in the Eqs. (11) and (12), the following

quantization prescription naturally appears:

dgðvÞeiλb ≔ deiλb=2 dgðvÞ deiλb=2 : ð13Þ
For brevity, we use this prescription to write expressions for
Ĥ in what follows.
We define a “classical analogue” of Ĥ to be an element

of its preimage under a quantization map. The classical
analogue of Ĥ only makes sense if the sum over w > 0 in
(12) contains a countable number of nonzero terms. Let
these terms correspond to w ¼ vi for i ¼ 1;…; N with N
possibly infinite. Then we get

Ĥ ¼
XN
i¼1

bðãi þ ib̃isgnðvÞÞjv̂jnþ1eiÃib þ H:c:þ ã0jv̂jnþ1;

ð14Þ
where ã0, ãi ≔ avi , and b̃i ≔ bvi are real, and Ãi ≔

2vi
κγℏ > 0.

Under the quantization prescription (13), the classical
analogue of (14) is therefore

H ¼
XN
i¼1

ðãi þ ib̃isgnðvÞÞjvjnþ1eiÃib þ c:c: þ ã0jvjnþ1;

ð15Þ
where c.c. stands for complex conjugate.
We will now go back to using the standard (c; p)

variables to facilitate comparison with APS [9]. In these
variables we get

H ¼
XN
i¼1

ðãi þ ib̃isgnðpÞÞjpj
3ðnþ1Þ

2 e
iÃi

cffiffiffi
jpj

p þ c:c:þ ã0jpj
3ðnþ1Þ

2 :

ð16Þ
Note that this H transforms as expected under the action of
dilations [see (4)]. We thus conclude that the method used
in this paper to impose that Ĥ be dilation covariant—
condition (9)—is in fact equivalent to the method used to
impose such covariance in [14], while at the same time
eliminating technical assumptions that were needed in [14]
and leading to a much simpler argument.

B. Single length scale and correct classical limit

To take the classical limit we let the coefficients ã0;
ãi; b̃i; Ãi depend on the classicality parameter lp ≔

ffiffiffiffiffiffiffi
ℏG

p
:

ã0ðlpÞ; ãiðlpÞ; b̃iðlpÞ; ÃiðlpÞ. We assume now that lp is
the only length scale in the theory. Dimensional arguments
easily lead to ÃiðlpÞ ¼ Ailp and ã0ðlpÞ ¼ a0=ðGl2

pÞ;
ãiðlpÞ ¼ ai=ðGl2

pÞ; b̃iðlpÞ ¼ bi=ðGl2
pÞ. This yields

Ĥ ¼ l−2
p

G

�XN
i¼1

bðai þ ibisgnðpÞÞjpj
3ðnþ1Þ

2 e
iAilp cffiffiffi

jpj
p

þH:c:þ a0
djpj3ðnþ1Þ

2

�
: ð17Þ
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We define the classical limit to be the limit lp → 0, ℏ → 0

of a classical analogue of (17). In this limit classical
analogues do not depend on the ordering chosen for the
quantization map. Using the ordering (13), one obtains

H ¼ l−2
p

G

�XN
i¼1

ðai þ ibisgnðpÞÞjpj
3ðnþ1Þ

2 e
iAilp cffiffiffi

jpj
p

þ c:c:þ a0jpj
3ðnþ1Þ

2

�
: ð18Þ

We expand the exponentials in powers of lp and
match the classical limit to the classical Hamiltonian
H ¼ −3

8πGγ2 jpj
3nþ1
2 c2:

lim
lp→0

l−2
p

G
jpj3ðnþ1Þ

2

�
a0 þ

XN
i¼1

�
2ai − 2biAilpsgnðpÞ

cffiffiffiffiffiffijpjp
− aiA2

i l
2
p
c2

jpj þOðl3
pÞ
��

¼ −3
8πGγ2

jpj3nþ1
2 c2;

giving the following conditions:

a0 þ
X
i

2ai ¼ 0 ð19Þ
X
i

Aibi ¼ 0 ð20Þ
X
i

A2
i ai ¼

3

8πγ2
: ð21Þ

The class of Hamiltonians (17), (19)–(21), selected only
by physical criteria and the loop hypothesis, is the first
result of this paper. Note, in particular, for N ¼ 4, the “μ̄”
versions of the Hamiltonians studied in [2,16–21] are
included in our framework, while “μo” versions of
Hamiltonians [27,28] are excluded.
Let us consider a general Hamiltonian Ĥ in this class.

Analysis of various LQCmodels confirms that the quantum
evolution of sharply peaked coherent states is excellently
described by an effective Hamiltonian, calculated as the
expectation value of the quantum Hamiltonian [9,17,
29–32]. In each case, this effective Hamiltonian, on
removing the infrared regulator, is exactly equal to the
classical analogue in the sense we have defined above. This
leads us to use (18) as the effective Hamiltonian Hgrav for
Ĥ. From Hgrav þHmatt ¼ 0 we get

l−2
p

G

�XN
i¼1

ðai þ ibisgnðpÞÞjpj
3ðnþ1Þ

2 e
iAilp cffiffiffi

jpj
p

þ c:c:þ a0jpj
3ðnþ1Þ

2

�
¼ −Hmatt:

For any minimally coupled matter, Hmatt is related to the
matter energy density ρ by Hmatt ¼ 2Njpj32ρ with the lapse
N ¼ jpj3n2 using our conventions. We obtain

l−2
p

�XN
i¼1

ðai þ ibisgnðpÞÞe
iAilp cffiffiffi

jpj
p þ c:c:þ a0

�
¼ −2Gρ:

For finite N the left-hand side is manifestly bounded,
whence matter density is bounded, so that the Big Bang
singularity is resolved in at least this sense. Thus, the
present work shows that singularity resolution is achieved
in at least one sense for a very broad class of Hamiltonians
parametrized above.

C. Minimality

Now we introduce the second key choice: that the
number of terms N be the smallest such that the
Eqs. (19)–(21) are satisfied. This can be viewed as an
implementation of Occam’s razor. Then Ĥ is unique up to a
single parameter A:

Ĥ ¼ 3

4πA2Gγ2l2
p

� djpj3ðnþ1Þ
2 e

iAlp cffiffiffi
jpj

p þ H:c: − 2
djpj3ðnþ1Þ

2

	
:

In LQG the area operator has the minimum eigenvalue Δl2
p

with Δ a dimensionless number. If the parameter A is
chosen to be 2

ffiffiffiffi
Δ

p
and we choose the lapse with n ¼ 0, we

obtain exactly the “improved dynamics” Hamiltonian
introduced in APS [9], including ordering.

IV. ORDERING AMBIGUITY AND THE ROLE
OF THE LARGE-VOLUME LIMIT

In the previous sections we assumed a particular ordering
prescription for the operator product ⋆ [see (9)]. We will
now address this apparent ambiguity by considering alter-
native choices. Specifically, we demonstrate that in the final
quantum theory of cosmology this choice bears no physical
significance.
Let us choose an alternative ordering in (8). A general

ordering for the operator product v̂ ⋆ Ô for Ô arbitrary can
be written as

v̂ ⋆ Ô ¼
X
i

αiv̂λi Ôv̂1−λi ; ð22Þ

with coefficients αi such that
P

i αi ¼ 1. Then, proceeding
as in the previous section, one gets from (8) a differential
equation in terms of the matrix elements of the Hamiltonian
with alternative ordering Ĥa. In the companion paper [10]
we give the explicit expressions for the general solution for
these matrix elements and show that the operator and its
classical analogue take the form

Ĥa ¼
XN
i¼1

b
B̃i

�
j

�
v

Ãi

��
g

�
v

Ãi

�
eiÃib

;
ð23Þ

Ha ¼
XN
i¼1

B̃i

�
j

�
v

Ãi

��
g

�
v

Ãi

�
eiÃib; ð24Þ
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where the hat and the classical analogue are again
defined as in Eq. (13) and the subsequent text. Here
j∶ R → f0;…;Mg, M ∈ N, and g∶ R → Rþ are deter-
mined by the ordering choice (22), whereas Ãi ∈ R and
B̃i∶f0;…;Mg → R, N ∈ N ⊔ f∞g are free integration
constants.
Recall that v is the physical volume of the fiducial cell

which serves as the infrared regulator. This regulator does
not have any physical significance: it has been introduced
only to provide a well-defined symplectic structure for
quantization and has to be removed—that is, the limit
v → �∞ taken—as a final and necessary step in defining
the quantum theory. In this limit, holding the Hubble rate
b=γ constant, the classical analogue (23) turns out to have
the asymptotic form Ha ∼

P
N
i¼1 Bið�Þjvjnþ1eiÃib, which,

upon imposing that Ĥa be Hermitian and parity invariant,
yields the same classical analogue (15), and therefore the
same effective dynamics.
We can also ask whether the exact quantum Hami-

ltonians are equivalent in this same limit, in the sense that

lim
ðjv00j;jv0jÞ→ð∞;∞Þ

Haðv00; v0Þ þ C
Hðv00; v0Þ þ C

¼ 1; ð25Þ

where C is any nonzero constant introduced to avoid
division by zero. Also this much stronger condition is
true, as long as the number of terms in (23) is finite. For the
technical details of these arguments, we refer the reader to
the companion paper.
In this paper we have shown how the dynamics of LQC

are uniquely selected by standard physical criteria plus
minimality. We have parametrized the possible dynamics
when minimality is relaxed, and have shown singularity
resolution, in the sense of boundedness of energy density,
as long as the number of terms is finite.
A crucial physical criterion imposed is covariance of the

Hamiltonian operator under residual diffeomorphisms.
A definition of the action of such diffeomorphisms as a
flow in the space of operators has been introduced in this
paper and makes the strong uniqueness result possible. This
definition arises as an application of a more general
solution to the problem of implementing noncanonical
transformations in quantum theory which we have also here
proposed, with potentially broad applicability outside
quantum gravity. Any approach to quantum cosmology,
whether loop or not, must grapple with this problem in view
of the symmetries of general relativity and must use a
solution such as the one in the present work.
This solution provides a useful tool for future inves-

tigations in quantum cosmology. In full quantum gravity,
all states are invariant under all diffeomorphisms, including
dilations; that states in quantum cosmology are not is an

artifact of the infrared regulator. The implementation of
dilations in this paper opens the interesting possibility of
considering mixed states, that is, density matrices, in
quantum cosmology, which are invariant under dilations
as well. In LQC specifically, this tool can also be used to
improve the kinematical uniqueness results in [6] as we
show in the companion paper [10]. In particular, such an
improvement dispenses with the need to define dilations as
acting on the fiducial cell.
In the parallel work [10] we have also extended this

result by including matter degrees of freedom, in particular
the free massless scalar field commonly used in LQC.
Using new results by Fleischhack [33], this work first
establishes kinematical uniqueness which selects the poly-
mer quantization for the scalar field [34,35]. The same
criteria used in the foregoing sections of this paper then
lead to a unique matter part of the Hamiltonian operator
[10]. For the lapse equal to 1, in the limit of removal of the
infrared regulator, the matrix elements of this uniquely
selected Hamiltonian are asymptotic, and therefore equiv-
alent, to those in Sec. II of [34], hence, by the argument in
this same reference, equivalent to those of the usual matter
Hamiltonian used in the LQC literature.
Extensions to other spatially flat homogeneous loop

quantum cosmologies are also possible. In particular, for
Bianchi I, we obtain results [10] similar to those in [14], but
now with the exact uniqueness made possible by the
removal of the infrared regulator considered in this paper.
The fact that physical principles, together with the loop

hypothesis and minimality, are sufficient to uniquely
determine the dynamics is remarkable. However, this
means that the resulting dynamics knows nothing about
any particular choice of dynamics for full loop quantum
gravity. To allow for information about such a choice, it
seems that one must relax the minimality assumption. If
one does this, the family of Hamiltonians (17), (19)–(21)
selected in this paper becomes a potentially powerful tool
for determining which LQC dynamics correspond to a
given full theory dynamics: By truncating the sum at some
finite N, the family has only a finite number of parameters,
which then can be fixed by comparing a finite number of
calculations in LQC with the corresponding calculations in
the full theory using the dynamics of interest. In particular,
such a method for determining the LQC dynamics guar-
antees that the result will be of the “μ̄” type known to be
required for results consistent with known physics [9].
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