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We present the derivation of the Casimir-Polder interactions mediated by a massive photon between two
neutral systems described in terms of their atomic polarizability tensors. We find a compact expression for
the leading term at large distances between the two systems. Our result reduces, in the massless photon
limit, to the standard Casimir-Polder. We discuss implications of our findings with respect to recent
scenarios of physics beyond the standard model such as universal extra dimensions, Randall-Sundrum and
scale-invariant models. For each model we compute the correction to the Casimir-Polder interaction in
terms of the free parameters.
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I. INTRODUCTION

The Casimir effect is the famous and fascinating quan-
tum field theory phenomenon whereby two parallel plates
(perfect conductors) separated a distance a in vacuum
attract each other with interaction energy (Casimir energy),

EC ¼ −
π2

720

ℏc
a3

; ð1Þ

and it is today widely interpreted as arising from the
structure of the quantum vacuum [1–3]. The interaction
energy (and thus the force) between the plates is due to the
difference between the vacuum energy of the electromag-
netic field without and with the plates (i.e., without and
with geometrical boundary conditions). Such vacuum
energies, though infinite by themselves, turn out to differ
by a finite amount which originates the measurable Casimir
energy. In typical Casimir effect experiments [4] it is the
Casimir force PC ¼ −∂EC=∂a that is actually measured.
It is interesting to note that historically H. B. Casimir

computed initially [5] the interaction energy between two
neutral systems (atoms or molecules) at distance r from
each other and characterized by static polarizabilities αið0Þ,
(i ¼ 1, 2):

UðrÞ ¼ −
1

ð4πÞ3
23α1ð0Þα2ð0Þ

r7
; ð2Þ

by starting with the usual van der Waals-London forces and
correcting it for retardation effects. This was a standard
second order perturbation theory calculation in quantum
mechanics. Afterwards, apparently as a result of a con-
versation with Bohr [6], H. B. Casimir was able to show
that the same result in Eq. (2) could be derived “studying by
means of classical electrodynamics the change of the
electromagnetic zero point energy” [7]. Only later [8] he
applied the same method of the vacuum fluctuations to
derive the interaction energy between two perfectly con-
ducting plates as in Eq. (1) which has become known as the
Casimir effect. It is one of the most celebrated mechanical
effects of vacuum fluctuations [9].
From the experimental point of view, the first convincing

measurement of the Casimir effect appeared only in 1997
when it was measured [10] in the range 0.6 to 6 μm for the
configuration of a plane and a sphere whose force, when the
distance is small compared to the radius of the sphere, can
be deduced from that for parallel plates by using the
proximity force approximation. Subsequently, exact and
reliable numerical calculations triggered more refined
observations [11–14]. For a recent review see [15]. It
should be remarked that essentially all previously men-
tioned measurements refer to the plane-sphere configura-
tion. Indeed the measurement of the Casimir force between
conductor plates is plagued with difficulties in maintaining
the parallelism and by overwhelming electrostatic forces.
The first precise measurement of the Casimir effect carried
out in the configuration of the parallel plates was reported
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in [16]. The first conclusive measurements of the Casimir-
Polder interactions measured the force between an atom
and a pair of plates in a wedge configuration [17].
It should also be remarked that the Casimir energy and/or

force in the geometry of the parallel conductors plates can
be obtained via a pairwise integration of the Casimir-Polder
interactions of the atoms and molecules making up the
plates [1,4].
More recently, the Casimir effect has attracted attention

even in the field of superconductors. Indeed it is known that
many types of superconducting detectors naturally form
Casimir cavities (Superconducting Tunnel Junctions, and
Transition Edge Sensor geometries) for which Casimir
forces could be relevant. In these circumstances [18], since
gauge invariance is broken in a superconductor, it is clear
that the understanding of the Casimir effect with a massive
vector field (massive photon) may become relevant. The
Casimir force between two conducting lines (condensed
vortices) for a massive scalar field has been investigated in
[19]. In connection with these aspects, a pioneering work to
address the Casimir effect between perfect conductor plates
with a massive photon is that of Barton andDombey [20,21]
where Proca electromagnetism [22–24] is used to discuss in
detail themass dependence in the limit of small photonmass.
The Casimir effect with a massive vector field was then
generalized to other geometries (spherical concentric) [25]
and the case of real metal plates (two parallel dielectric
planes) [26,27] including also a discussion of temperature
effects.
In the literature, several beyond the Standard Model

(BSM) scenarios have been already investigated in con-
nection with the Casimir effect in recent years, for instance,
within models with a generalized uncertainty principle
(GUP) computing the first order correction in terms of
the minimal length (ℏ

ffiffiffi
β

p
) [28,29]. Other works include

investigating the Casimir effect within Randall-Sundrum
models [30,31], noncommutative Randall-Sundrummodels
[32], compactified universal extra dimensions (UED) [33]
and a scale invariant theory (unparticles) [34]. See also [35]
for an alternative approach to the unparticle Casimir effect,
based on the extended problem of Caffarelli and Silvestre
[36], of the quantization of the unparticle action of a scalar
field with scaling dimension dU . The Casimir effect has also
been investigated in extended theories of gravity [37,38] and
post-Newtonian gravity with Lorentz-violation [39]. The
Casimir force for parallel plates in the spacetime with one
extra spacelike dimension is computed in terms of the
decomposition into a Kaluza-Klein (KK) tower of massive
vector fields in [40,41].
On the other hand, one of the present authors inves-

tigated the effects of theories with a minimal length in
Casimir-Polder interactions [42]. To the best of our knowl-
edge, however, the implications of theories characterized
by a spectrum of massive particles have not yet been
addressed in the realm of Casimir-Polder interactions. This

work aims therefore at bridging such a gap by studying the
Casimir-Polder interaction with a massive vector field
(massive photon) and then applying the results to various
BSM scenarios such as universal extra dimensions (UED),
Randall-Sundrum models (RS) and scale invariant theories
(unparticles).
The organization of the paper is as follows: in Sec. II we

shall review the derivation of the Casimir-Polder inter-
actions: after reviewing the Casimir-Polder within ordinary
quantum electrodynamics (QED) we provide the compu-
tation of the Casimir-Polder interaction mediated by a
massive vector field (massive photon). In Sec. III we
discuss the Casimir-Polder energy arising within some
interesting scenarios of physics beyond the standard model
such as universal extra dimensions, Randall-Sundrum
models and a model with scale invariance, i.e., when the
interaction is mediated by an unparticle vector field. Finally
Sec. V is dedicated to our conclusions.

II. THE CASIMIR-POLDER INTERACTION
WITH A MASSIVE PHOTON

In this section, we offer a complete derivation of the
Casimir-Polder Force both for the electromagnetic field—
i.e., the standard Casimir-Polder Force—and for a massive
electromagnetic field.
We provide a unified approach, where the first part of the

computation is valid both in the standard QED (massless)
and in the massive case while in the second part we
consider separately the massless and the massive results
and in the end we check that the massless limit of the latter
is equal to the former.
We introduce first the free electromagnetic field and then

the interaction between the electromagnetic field and two
nonpolar molecules.
The Lagrangian density of a free vector field Aμ of mass

μ is the Proca Lagrangian density

L ¼ −
1

4
FμνFμν þ 1

2
μ2AμAμ

¼ 1

2
Aμ½ð□þ μ2Þgμν − ∂μ∂ν�Aν −

1

2
∂μðFμνAνÞ; ð3Þ

where

Fμν ¼ ∂μAν − ∂νAμ; ð4Þ

and the conjugate momenta of the field AμðxÞ is:

ΠμðxÞ ¼ Fμ0ðxÞ: ð5Þ

Then quantization of the Proca theory is carried out by
imposing canonical equal time commutation relations:
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δðt1 − t2Þ½Aμðx1Þ; Aνðx2Þ� ¼ 0; ð6aÞ

δðt1 − t2Þ½Aμðx1Þ;Πνðx2Þ� ¼ igμνδ4ðx1 − x2Þ: ð6bÞ

Since the Lagrangian density is defined up to a diver-
gence it can be rewritten as

L ¼ 1

2
Aμ½ð□þ μ2Þgμν − ∂μ∂ν�Aν: ð7Þ

The presence of the term in the derivatives of the second
order in Eq. (7) modifies [43] the standard Euler-Lagrange
equations as

∂L
∂Aμ

− ∂α
∂L

∂∂αAμ
þ ∂α∂β

∂L
∂∂α∂βAμ

¼ 0: ð8Þ

By substituting the Lagrangian density into the Euler-
Lagrange equation we get the Proca equation:

ð□þ μ2ÞAμ − ∂μ∂νAν ¼ 0: ð9Þ
In the massless case, the Proca equation becomes the
Maxwell equation:

□Aμ − ∂μ∂νAν ¼ 0: ð10Þ
In the massive case, by taking its divergence the Proca
equation can be rewritten as� ð□þ μ2ÞAμ ¼ 0;

∂μAμ ¼ 0;
ð11Þ

where the equations are formally equal to the Klein-
Gordon equation and the Lorentz Gauge, respectively.
The Feynman propagator in momentum space is obtained
by inverting the Fourier-transformed differential operator
contained in the Lagrangian density [[44], page 188]:

ðD−1ÞμνðkÞ ¼ −ðk2 − μ2Þgμν þ kμkν

¼ −ðk2 − μ2Þ
�
gμν −

kμkν
k2

�
þ μ2

kμkν
k2

: ð12Þ

Since the last expression is a spectral representation we get

½fðD−1Þ�μνðkÞ ¼ f½−ðk2 − μ2Þ�
�
gμν −

kμkν
k2

�

þ fðμ2Þ k
μkν
k2

; ð13Þ

where fðxÞ is any function. For fðxÞ ¼ x−1 we get

Dμ
νðkÞ ¼ −

gμν −
kμkν
k2

k2 − μ2
þ

kμkν
k2

μ2
¼ −

gμν −
kμkν
μ2

k2 − μ2
ð14Þ

and the Feynman propagator in momentum space is
therefore

DμνðkÞ ¼
−gμν þ kμkν

μ2

k2 − μ2 þ i0þ
; ð15Þ

where the pole is shifted as usual by adding a small
negative imaginary part to the mass in order to satisfy the
causality condition [[44], page 188]. The Feynman propa-
gator in position space is obtained by Fourier antitrans-
forming:

DμνðxÞ ¼
�
−gμν −

∂μ∂ν

μ2

�Z
d4k
ð2πÞ4

e−ikx

k2 − μ2 þ i0þ
: ð16Þ

The appearance of a divergent term as μ → 0 could lead to
the naive conclusion that it is not possible to recover
standard quantum electrodynamics, by taking the massless
limit of the Proca theory. However, gauge invariance will
save the day. Computation of physical observables will
involve gauge invariant quantities like, for instance, the
correlation functions of the field strength tensor compo-
nents (electric and/or magnetic fields). These correlations
functions will have a finite μ → 0 limit. Indeed by making
use of the equal time commutation relations given in
Eqs. (6a), (6b) the following identity can be proved:

h0jT½Fαβðx1ÞFγ0ðx2Þ�j0i ¼ þð∂1
αgβμ − ∂1

βgαμÞð∂2
γg0ν − ∂2

0gγνÞh0jT½Aμðx1ÞAνðx2Þ�j0i
− iðgα0gβγ − gβ0gαγÞδ4ðx1 − x2Þ ð17aÞ

¼ þið∂1
αgβμ − ∂1

βgαμÞð∂2
γg0ν − ∂2

0gγνÞDμνðx1 − x2Þ − iðgα0gβγ − gβ0gαγÞδ4ðx1 − x2Þ ð17bÞ

¼ þið∂αgβμ − ∂βgαμÞð−∂γg0ν þ ∂0gγνÞ
�
−gμν −

∂μ∂ν

μ2

�Z
d4k
ð2πÞ4

e−ikðx1−x2Þ

k2 − μ2 þ i0þ

− iðgα0gβγ − gβ0gαγÞδ4ðx1 − x2Þ ð17cÞ

¼ þið∂αgβμ − ∂βgαμÞð∂γg0μ − ∂0gγμÞ
Z

d4k
ð2πÞ4

e−ikðx1−x2Þ

k2 − μ2 þ i0þ

− iðgα0gβγ − gβ0gαγÞδ4ðx1 − x2Þ: ð17dÞ
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It can be seen that the divergent terms cancel out each
other in Eq. (17c) and the above correlations admit indeed a
well defined massless limit μ → 0.
The interaction Hamiltonian between the electromag-

netic field and the neutral systems (atoms/molecules)
placed at the positions r1 and r2 (with r2 ≠ r1) is the
dipole interaction:

HintðtÞ ¼ −Eðt; r1Þ · dð1ÞðtÞ − Eðt; r2Þ · dð2ÞðtÞ; ð18Þ

where Eðt; rÞ is the electric field operator, rk is the position
and dðkÞ is the electric dipole moment operator of the kth

atom/molecule (k ¼ 1, 2).
Since the neutral atoms/molecules are assumed to be

nonpolar hψ jdðkÞjψi ¼ 0 the potential energy from second
order perturbation theory [[45], page 348] vanishes.
The first nonvanishing contribution to the potential

energy comes then from fourth order perturbation theory
[[45], page 348]:

Uðμ; r1; r2Þ ¼
i
2t

Z
dt1dt2dt3dt4

× h0jT½Eiðt1; r1ÞEjðt2; r2Þ�j0i
× hψ2jT½d2jðt2Þd2lðt4Þ�jψ2i
× h0jT½Elðt4; r2ÞEkðt3; r1Þ�j0i
× hψ1jT½d1kðt3Þd1iðt1Þ�jψ1i; ð19Þ

which in the language of Feynman diagrams is represented
by a loop diagram with a two photon exchange.
When computing the correlation function h0jT½Eiðt1; r1Þ

Ejðt2; r2Þ�j0i the commutation of the time derivatives
which enter the electric fields Ei with the chronological
T-product introduces terms proportional to δ4ðx1 − x2Þ ¼
δðt1 − t2Þδ3ðr1 − r2Þ, as can be seen from Eq. (17a). Since
we are interested in the interaction energy between the
two systems located at r1, r2 with r1 ≠ r2, clearly
δ3ðr1 − r2Þ ¼ 0. Such terms proportional to the Dirac
distribution δ4ðx1 − x2Þ can be safely ignored and we
conclude that time derivatives can be taken out of the
T-product like the corresponding spatial derivatives.
Therefore from Eq. (17d) we get:

h0jT½Eiðt1; r1ÞEjðt2; r2Þ�j0i
¼ h0jT½Fi0ðt1; r1ÞFj0ðt2; r2Þ�j0i

¼ ið∂i∂j − ∂0∂0δijÞ
Z

∞

−∞

dω
2π

Dðω; r1 − r2Þe−iωðt1−t2Þ

¼ i
Z

∞

−∞

dω
2π

ðω2δij þ ∂i∂jÞDðω; r1 − r2Þe−iωðt1−t2Þ; ð20Þ

where we have defined the scalar function Dðω; rÞ as

Dðω; rÞ ¼
Z

d3k
ð2πÞ3

eik·r

k2 − μ2 þ i0þ
: ð21Þ

It can be shown that [[45], page 351]

hψkjT½dkiðt1Þdkjðt2Þ�jψki ¼ i
Z

∞

−∞

dω
2π

αijk ðωÞe−iωðt1−t2Þ;

ð22Þ

where αk
ij is the polarizability tensor of the kth molecule

and αk
ijð−ωÞ ¼ αk

ijðωÞ. By substituting Eq. (20) and
Eq. (22) in Eq. (19) and recognizing the Dirac delta
functions we get:

Uðμ; r1 − r2Þ ¼
1

4π
i
Z

∞

−∞
½ðω2δij þ ∂i∂jÞDðω; r1 − r2Þ�

× α2
jlðωÞ½ðω2δlk þ ∂l∂kÞDðω; r2 − r1Þ�

× α1
kiðωÞdω: ð23Þ

We readily recognize a trace in the expression above:

Uðμ; r1 − r2Þ ¼
1

4π
i
Z

∞

−∞
Tr½ðω21þHÞDðω; r1 − r2Þ�

× a2ðωÞ½ðω21þHÞDðω; r2 − r1Þ�a1ðωÞdω;
ð24Þ

where H ¼ ∂i∂j is the Hessian matrix, 1 ¼ δij is the
identity operator and ak ¼ αijk (k ¼ 1, 2) are the polariza-
tion tensors of the two neutral systems.
By using the facts that Dð−ω; rÞ ¼ Dðω; rÞ and

akð−ωÞ ¼ akðωÞ we get:

Uðμ;r1− r2Þ¼ i
Z

∞

0

dω
2π

Tr½ðω21þHÞDðω;r1− r2Þ

×a2ðωÞðω21þHÞDðω;r2− r1Þ�a1ðωÞ: ð25Þ

By using the fact that Dðω; rÞ ¼ Dðω; jrjÞ and considering
the case of isotropic molecules αijk ðωÞ ¼ αkðωÞδij [46]
follows:

Uðμ; rÞ ¼ i
Z

∞

0

dω
2π

α1ðωÞα2ðωÞTr½ðω21þ HÞDðω; rÞ�2;

ð26Þ

where r ¼ jr1 − r2j. By expanding αkðωÞ we can compute
α1ðωÞα2ðωÞ as a product of two series (Cauchy product),
and by using again αkð−ωÞ ¼ αkðωÞ we get the following
series:
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α1ðωÞα2ðωÞ ¼
X∞
n¼0

ω2n

ð2nÞ!
Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2ðn−kÞα2
dω2ðn−kÞ ð0Þ;

ð27Þ

and by using the fact that the Laplacian is the trace of the
Hessian matrix it follows:

Tr½ðω21þ HÞDðω; rÞ�2 ¼ 3ω4D2ðω; rÞ
þ 2ω2Dðω; rÞ∇2Dðω; rÞ
þ Trf½HDðω; rÞ�2g; ð28Þ

and in spherical coordinates:

HDðω;rÞ¼1

r
∂D
∂r ðω;rÞ

�
1−

xxT

r2

�
þ∂2D

∂r2 ðω;rÞ
xxT

r2
; ð29Þ

where 1 is the identity matrix, x is the position column
vector, xT denotes the transposed position vector and, of
course, we have used only the radial term of the Hessian
matrix. Since this is a spectral representation one can write:

f½HDðω; rÞ� ¼ f

�
1

r
∂D
∂r ðω; rÞ

��
1 −

xxT

r2

�

þ f

�∂2D
∂r2 ðω; rÞ

�
xxT

r2
; ð30Þ

where fðxÞ is a function. And, since we need to compute
Tr½HDðω; rÞ�2 in Eq. (28), for fðxÞ ¼ x2, the previous
Eq. (30) is:

½HDðω; rÞ�2 ¼
�
1

r
∂D
∂r ðω; rÞ

�
2
�
1 −

xxT

r2

�

þ
�∂2D
∂r2 ðω; rÞ

�
2 xxT

r2
: ð31Þ

The computation of the trace

Tr½HDðω; rÞ�2 ¼ 2

�
1

r
∂D
∂r ðω; rÞ

�
2

þ
�∂2D
∂r2 ðω; rÞ

�
2

ð32Þ

finally gives:

Tr½ðω21þHÞDðω;rÞ�2¼3ω4D2ðω;rÞ

þ2ω2Dðω;rÞ 1
r2

∂
∂rr

2
∂D
∂r ðω;rÞ

þ2

�
1

r
∂D
∂r ðω;rÞ

�
2

þ
�∂2D
∂r2 ðω;rÞ

�
2

:

ð33Þ

By substituting Eqs. (27) and (33) in Eq. (26) we obtain the
explicit expression for the potential energy:

Uðμ; rÞ ¼ i
X∞
n¼0

Z
∞

0

dω
2π

ω2n

ð2nÞ!
�
3ω4D2ðω; rÞ

þ 2ω2Dðω; rÞ 1
r2

∂
∂r r

2
∂D
∂r ðω; rÞ

þ 2

�
1

r
∂D
∂r ðω; rÞ

�
2

þ
�∂2D
∂r2 ðω; rÞ

�
2
�

×
Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ: ð34Þ

This will be the starting point for our analysis in the next
subsections.

A. Casimir-Polder interaction for massless photons

The scalar function Dðω; rÞ defined in Eq. (21) in the
massless photon case (when μ ¼ 0) is easily computed by
using standard methods as

Dðω; rÞ ¼
Z

d3k
ð2πÞ3

eik·r

k2 þ i0þ
¼ −

1

4π

eijωjr

r
: ð35Þ

By substituting Eq. (35) in Eq. (34) and differentiating

Uðμ ¼ 0; rÞ ¼ 4i
ð4πÞ3r6

X∞
n¼0

Z
∞

0

dωg0ð−iωrÞð2ωrÞ2n

× e2iωðrþi0þÞ
�
1

2r

�
2n 1

ð2nÞ!

×
Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ; ð36Þ

where

g0ðxÞ ¼ x4 þ 2x3 þ 5x2 þ 6xþ 3; ð37Þ

and we have regularized the integral. Changing the variable
x ¼ 2ωr in Eq. (36),

Uðμ ¼ 0; rÞ ¼ 1

ð4πÞ3
2i
r7
X∞
n¼0

Z
∞

0

dxg0

�
−i

x
2

�
x2neixð1þi0þÞ

×
ð 1
2rÞ2n
ð2nÞ!

Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ;

ð38Þ

and using the formula,

Z
∞

0

xneixð1þi0þÞdx ¼ inþ1n!; ð39Þ

we get the final result:
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Uðμ¼0;rÞ¼−
1

ð4πÞ3
1

r7
X∞
n¼0

ð4n2þ16nþ23Þðnþ2Þðnþ1Þ
2

×

�
−

1

4r2

�
nXn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ:

ð40Þ

The leading term of the series is the well known Casimir-
Polder potential energy between two neutral atomic sys-
tems with static polarizability α1;2ð0Þ given in Eq. (2).

B. Casimir-Polder interaction for massive photons

By using standard mathematical procedures (Jordan’s
lemma and Cauchy’s residue theorem) we get from Eq. (21)
in the case μ ≠ 0:

Dðω; rÞ ¼ −
1

4πr

(
e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r ðjωj ≤ μÞ

ei
ffiffiffiffiffiffiffiffiffiffi
ω2−μ2

p
r ðjωj ≥ μÞ:

ð41Þ

By substituting (41) in (34), differentiating and performing
the appropriate change of variables one obtains the follow-
ing expression:

Uðμ; rÞ ¼ U1ðμ; rÞ þ U2ðμ; rÞ ð42Þ

U1ðμ; rÞ ¼ −
1

ð4πÞ3
1

r7
X∞
n¼0

Z
2μr

0

xdx
2

½ð2μrÞ2 − x2�n−1
2

× gμ

�
x
2

�
e−x

�
1

2r

�
2n 1

ð2nÞ!

×
Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ ð43Þ

U2ðμ; rÞ ¼ −
1

ð4πÞ3
1

r7
X∞
n¼0

Z
∞

0

xdx
2

½ð2μrÞ2 þ x2�n−1
2

× gμ

�
−i

x
2

�
eixð1þi0þÞ

�
1

2r

�
2n 1

ð2nÞ!

×
Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ; ð44Þ

where in this case [both in Eq. (43) and Eq. (44)]:

gμðxÞ¼
2

i
½3ðμrÞ4−4ðμrÞ2x2þ2ðx4þ2x3þ5x2þ6xþ3Þ�;

ð45Þ

and we have regularized the integral in Eq. (44). Therefore,
for the massive case, the final result reads

Uðμ;rÞ ¼ −
1

ð4πÞ3
1

r7
X∞
n¼0

½2Knþ1ð2μrÞðμrÞnþ5

þ 8Knþ2ð2μrÞðμrÞnþ4

þ ð4n2 þ 16nþ 23ÞKnþ3ð2μrÞðμrÞnþ3�

×
ð− 1

4r2Þn
n!

Xn
k¼0

�
2n
2k

�
d2kα1
dω2k ð0Þ

d2n−2kα2
dω2n−2k ð0Þ; ð46Þ

where KnðxÞ is the modified Bessel function of the second
kind. Performing the limit μ → 0:

lim
x→0þ

Knð2xÞxn ¼
ðn − 1Þ!

2
; ð47Þ

we see that in the massless limit of Eq. (46) we recover the
series in Eq. (40). The first (dominant) term in the above
series (46) is:

Uðμ; rÞ ¼ −
1

ð4πÞ3
α1ð0Þα2ð0Þ

r7
½2K1ð2μrÞðμrÞ5

þ 8K2ð2μrÞðμrÞ4 þ 23K3ð2μrÞðμrÞ3�: ð48Þ

And of course in the limit μ → 0 from Eq. (48) we readily
recover the standard QED Casimir-Polder result, i.e.,
Eq. (2). We emphasize that Eq. (46) and Eq. (48) are
the central results of the present work. In the following, we
will use mainly Eq. (48) (the leading term) to address some
beyond the standard model scenarios with respect to the
Casimir-Polder interactions.

III. CASIMIR-POLDER INTERACTION
IN BSM MODELS

In this section we discuss the Casimir-Polder interactions
in a number of alternative scenarios of physics beyond
the standard model (BSM). Specifically, we consider:
(A) universal extra dimensions, (B) Randall-Sundrum
models and (C) scale-invariant models. For each of the
above BSM scenarios, the standard Casimir effect has been
already discussed in the literature (see references in the
introduction and in the following sections).

A. Universal extra dimensions (UED)

In the UED scenario [47], all standard model fields are
assumed to propagate in a bulk space-time with extra
spacelike dimensions compactified to a circle of radius R.
Upon quantization of the (4þ D) dimensional theory the
effect of the extra dimension(s) is, for a given standard
model field X, that there is a tower of Kaluza-Klein states
Xn, n ¼ 1; 2;… with masses:

m2
n ¼ m2

0 þ
n2

R2
; ð49Þ
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where m0 is the mass of the lowest lying state X0. For the
photonm0 ¼ 0 and thus the photon is then accompanied by
a Kaluza-Klein tower (KK-tower) of massive photons γn of
mass mn ¼ n=R. Recent bounds on the size of the extra
dimensions come from the nonobservation of Kaluza-Klein
excitations at Tevatron and are already quite stringent:
R ≤ 300 GeV−1 ≈ 10−9 nm [48–50]. Stronger bounds are
of course now available from LHC experiments and typical
ATLAS [51] and CMS analyses exclude now values
of R−1 smaller than ∼ð1 TeVÞ−1 [52] (or equivalently
the allowed values of R are those such that R ≤ 1 TeV−1 ≈
0.3 × 10−9 nm). Interestingly, considerations from the relic
density in the UED model assuming γ1 to be the lightest
Kaluza-Klein particle (LKP) give a preferred range for the
size of the extra dimension: R−1 ∼ 1.3–1.5 TeV [53] thus
providing also an upper bound for R−1 (or a lower bound
for R).
The Casimir effect in the geometry of parallel conductor

plates within UED has been addressed in [33,54], and the
bounds that can be obtained are quite less stringent:
R < 10 nm [33]. Given that typical current state of the
art Casimir/Casimir-Polder experiments can probe distan-
ces (r) down to the nanometer range if we assume the more
stringent high energy bound on the compactification size R
of the extra dimension (R ≈ 0.3 × 10−9 nm) the quantity
ξ ¼ r=R is a very large quantity ξ ≈ 1010. Clearly for each
one of the Kaluza-Klein massive photons γn we can
compute its contribution to the Casimir-Polder interaction
of the two neutral systems via the result obtained in the
previous section for the massive photon case in Eq. (46). In
particular let us consider only the dominant term in the
series in Eq. (46), that is the approximation in Eq. (48). We
can then estimate the total KK-tower contribution as
summing, for every mass eigenstate, a term given by
Eq. (48):

UKKðr; RÞ ¼
X∞
n¼1

U

�
n
R
; r

�

¼ −
1

ð4πÞ3
α1ð0Þα2ð0Þ

r7
X∞
n¼1

½2K1ð2nξÞðnξÞ5

þ 8K2ð2nξÞðnξÞ4 þ 23K3ð2nξÞðnξÞ3�ξ¼r=R:

ð50Þ

It turns out that the above series converges very quickly and
even a truncation with a limited number of terms yields a
stable numerical output. Therefore the expression of UKK
in Eq. (50) can be easily computed numerically. We can
nevertheless provide a compact integral representation of
Eq. (50) in terms of the PolyLog special functions which
will be also useful for numerical estimates. We recall the
following integral representation for the modified bessel
functions [55]:

KνðzÞ ¼
ffiffiffi
π

p ðz=2Þν
Γðνþ 1

2
Þ
Z

−∞

0

e−ztðt2 − 1Þν−1=2dt;

which allows to rewrite the infinite sums appearing in
Eq. (50) as

X∞
n¼1

Kνð2nξÞðnξÞα ¼
ffiffiffi
π

p
Γðνþ 1

2
Þ
Z

∞

1

dtðt2 − 1Þν−1
2

×

�X∞
n¼1

ðnξÞνþαe−2nξt
�
: ð51Þ

The series in the above relation can be rewritten in terms of
a PolyLog function: PolyLog½α; z� ¼ P∞

n¼1 z
n=nα:

X∞
n¼1

Kνð2nξÞðnξÞα ¼
ffiffiffi
π

p
ξνþα

Γðνþ 1
2
Þ
Z

∞

1

dtðt2 − 1Þν−1
2

× PolyLog½−ν − α; e−2ξt�: ð52Þ

Using the above result in Eq. (50) we can finally give an
exact integral representation of the ratio of the UKK
potential to the QED potential U of massless Casimir-
Polder, Eq. (2) in terms of a PolyLog function:

UKK

U
¼

ffiffiffi
π

p
ξ6

23Γð3=2Þ
Z

∞

1

dxPolyLog½−6; e−2ξt�

×
ffiffiffiffiffiffiffiffiffiffiffi
t2− 1

p �
2þ 16

3
ðt2− 1Þþ 92

15
ðt2− 1Þ2

�
ξ¼r

R

; ð53Þ

which may be used for a fast numerical computation of the
effect.
Further we discuss an approximation of the above result

or Eq. (50) given by a finite number of terms.
Given the constraints on the extra-dimension length R

we can assume the relevant values of the ratio will be such
that r ≫ R or r=R ≫ 1 and we can also give an approxi-
mated formula given by a finite number of terms which
might be useful for practical purposes. In order to get the
approximate formula we note that PolyLog functions of
negative order satisfy the following property:

X∞
k¼1

knzk ¼ PolyLog½−n; z�

¼ 1

ð1 − zÞnþ1

Xn−1
i¼0

	
n

i



zn−i; ð54Þ

i.e., they reduce to a finite number of terms where the

quantities
Dn
i

E
are the Eulerian number or the number of

permutations of the numbers from 1 to n in which exactly i
elements are greater than the previous element (permuta-
tions with i “ascents”)—they are the coefficients of the
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Eulerian polynomials. In turn the approximation in Eq. (53)
consists in assuming that the radial distance r is large
enough, so that ξ ¼ r=R ≫ 1, and the prefactor in right
hand side of Eq. (54) can be approximated by 1: z ¼
e−2ξt ≪ 1 and ð1 − zÞ−7 ≈ 1. Then the integrals in the t
variable in Eq. (53) can be computed analytically and the
final result for UKK=U is:

UKK

U
¼

X5
k¼0

	
6

k


�
2
K1ð2ð6 − kÞξÞ

6 − k
ξ5 þ 8

K2ð2ð6 − kÞξÞ
ð6 − kÞ2 ξ4

þ 23
K3ð2ð6 − kÞξÞ

ð6 − kÞ3 ξ3
�
ξ¼r

R

: ð55Þ

B. Randall-Sundrum models

We recall here that in the Randall-Sundrum (RS) model
[40,56,57] the underlying spacetime is a 5D anti–de Sitter
space (AdS5) with background metric:

ds2 ¼ gabdxadxb ¼ e−2κjyjημνdxμdxν − dy2; ð56Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the usual four dimen-
sional (4D) Minkowski spacetime metric. In Eq. (56) μ, ν
stand for the indices of the 4D 3-brane and they assume the
usual values from 0 to 3, while (a; b) are the indices in the
5D bulk ranging from 0 to 4. The y coordinate describes
the spacelike extra dimension which is compactified on the
orbifold S1=Z2. We see that the (4D) Minkowski metric is
multiplied by a factor, e−2κjyj, which depends on the
coordinate of the extra dimension y through the parameter
κ in terms of which is expressed the curvature tensor of the
underlying space (AdS5). The model is characterized by a
visible 3-brane at y ¼ 0 and an invisible one at y ¼ πRwith
opposite tension, R being the compactification radius of the
extra spacelike dimension described by the coordinate y.
The mass spectrum of the Randall-Sundrum model is
characterized by a tower of Kaluza-Klein states which,
differently from the UED model, are exponentially sup-
pressed. For the scalar field the KK-tower is given by:

mNeκR

κ
≈ π

�
N þ 1

4

�
N ¼ 1; 2; 3… ð57Þ

The standard Casimir effect between conducting parallel
plates in Randall-Sundrum models has been considered
first in [30] by adopting the scalar field analogy. However
here in order to estimate the Casimir-Polder interaction via
Eq. (46) we need to consider the KK spectrum of a vector
field which is different from that of a scalar field in
Eq. (57), and is given by [40]:

mN ¼ κzN N ¼ 1; 2; 3… ð58Þ

where zN are the roots, in the z variable, of the equation:

J0ðzÞY0ðzeπκRÞ − Y0ðzÞJ0ðzeπκRÞ ¼ 0: ð59Þ

The approximated roots of Eq. (59) are

zN ≈ N
π

eπκR − 1
N ¼ 1; 2; 3… ð60Þ

We can then compute the mass spectrum over which we
will have to sum Eq. (46) and/or Eq. (48) in order to get the
Randall-Sundrum contribution to the Casimir-Polder
potential. We have to compute the quantity μr into mNr
so that using the mass spectrum Eq. (60) we have:

mNr ≈ N
πκ

eπκR − 1
r

¼ N
πκR

eπκR − 1

r
R

N ¼ 1; 2; 3…; ð61Þ

and if we set:

a ¼ πκR
eπκR − 1

ð62aÞ

ξ ¼ r
R

ð62bÞ

we will have:

mNr ¼ Naξ N ¼ 1; 2; 3… ð63Þ

We conclude that the Randall-Sundrum Casimir-Polder
effect will be given again by the same formulas obtained for
the UED model, Eqs. (50), (53), (55), and simply making
there the replacement ξ → aξ, according to Eq. (61) and
Eqs. (62).

C. Unparticle Casimir-Polder

Based on the conjecture [58], we examine now a model
that introduces a new massive sector in the SM able to
preserve scale invariance properties. However, this is valid
only under the condition of exhibiting a noninteger number
of particles dU . In particular, for massive fields, scale
invariance can be described by the so called Banks-Zacks
fields (BZ) [59]. Then, in the unparticle description, one
can say that there is an energy scale ΛU that sets the
transition between free particle behavior at high energies
and unparticle behavior at lower energies. At this energy
scale ΛU , the BZ sector shows scale-invariant properties
and the number of particles is controlled by dU. This
parameter is generally restricted to be 2 ≥ dU ≥ 1. Where
the lower bound is given by unitarity constraints from
conformal field theory (CFT) [60] while the higher bound
dU ≥ 2 is introduced because the calculations are less
predictive due to the ultraviolet sector.
In a recent work [34,35] some of the present authors

derived the Casimir effect for the unparticle field in the
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geometry of the parallel conductor plates. The central result
is that the unparticle Casimir energy is given by a mass
integral over the Casimir energy at given mass:

EC
U ¼ AdU

πðΛ2
UÞdU−1

Z
∞

0

dμμ2dU−3ECðμÞ; ð64Þ

where AdU is a numerical constant:

AdU ≡
16π5=2

ð2πÞ2dU
ΓðdU þ 1=2Þ

ΓðdU − 1ÞΓð2dUÞ
; ð65Þ

routinely used in the literature of unparticle phenomenol-
ogy. But it is well known that the Casimir energy EC

between two parallel plates (and in general between two
given surfaces of arbitrary geometrical shape) [1,61] can be
related to a pairwise integration of the Casimir-Polder
interaction Uðr1 − r2Þ:

EC¼N 2

2

Z
a

0

dz1

Z
a

0

dz2

Z
d2r1⊥

Z
d2r2⊥Uðr1−r2Þ; ð66Þ

whereN is the number of atoms/molecules per unit volume
(number density) in the conductor plates (surfaces) [62,63].
The above result can be extended straightforwardly to the
massive case. A relation similar to Eq. (66) is also expected
to hold between the unparticle Casimir energy EC

U between
perfect conductor plates and the unparticle Casimir-Polder
interactions UdU ðr1 − r2Þ between atomic and/or molecular
systems:

EC
U ¼ N 2

2

Z
a

0

dz1

Z
a

0

dz2

Z
d2r1⊥

Z
d2r2⊥UdU ðr1 − r2Þ:

ð67Þ

Then by inserting Eqs. (67) and (66), respectively, in the
left and right members of Eq. (64) and given the arbitrarity
of the geometry considered we can infer that the unparticle
Casimir-Polder potential energy, UdU ðrÞ with r ¼ jr1 − r2j,
is the superposition of Casimir-Polder interactions at finite
mass μ, Uðμ; rÞ, and we have:

UdU ðrÞ ¼
AdU

πðΛ2
UÞdU−1

Z
∞

0

dμμ2dU−3Uðμ; rÞ: ð68Þ

By substituting Eq. (46) into Eq. (68) and using the
formula [64]:

Z
∞

0

Kað2xÞxbdx¼
1

4
Γ
�
aþbþ1

2

�
Γ
�
b−aþ1

2

�
; ð69Þ

we get:

UdU ðrÞ ¼ −
1

ð4πÞ2dUþ1

1

r7ðΛUrÞ2dU−2

×
X∞
n¼0

½2dU2 þ 6dU þ ð2nþ 3Þð2nþ 5Þ�

×
Γðnþ dU þ 2Þ
2Γðnþ 1ÞΓðdUÞ

�
−

1

4r2

�
nXn
k¼0

�
2n
2k

�
d2kαU1
dω2k ð0Þ

×
d2n−2kαU2
dω2n−2k ð0Þ: ð70Þ

In the “particle limit” (dU → 1) of Eq. (70) we recover the
series in Eq. (40).
The leading term of the series (70) is the potential

energy:

UdU ðrÞ ¼ −
1

ð4πÞ2dUþ1

αU1 ð0ÞαU2 ð0Þ
r7ðΛUrÞ2dU−2

×
ð2dU2 þ 6dU þ 15ÞðdU þ 1ÞdU

2
: ð71Þ

If we assume that the unparticle charges of protons and
electrons are opposite and equal in absolute value to λ,
atoms and molecules are neutral also with respect to the
unparticle charge, and nonpolar molecules are nonpolar
with respect to the unparticle charge too. Therefore the
unparticle dipole is:

dU ¼ λ

e
d;

and by using (22) the unparticle polarizability is

αUðωÞ ¼
�
λ

e

�
2

αðωÞ:

Therefore the final result is

UdU ðrÞ ¼ −
1

ð4πÞ2dUþ1

�
λ

e

�
4 α1ð0Þα2ð0Þ
r7ðΛUrÞ2dU−2

×
ð2dU2 þ 6dU þ 15ÞðdU þ 1ÞdU

2
: ð72Þ

The ratio of the unparticle contribution UdU to the standard
QED result U, Eq. (2), is therefore:

UdU

U
¼

�
λ

e

�
4 ð2dU2 þ 6dU þ 15ÞðdU þ 1ÞdU

2 × 23ð4πÞ2dU−2ðΛUrÞ2dU−2
: ð73Þ

IV. DISCUSSION AND RESULTS

We now discuss the previous analytical results and
provide some numerical estimates of the Casimir-Polder
contribution of the various BSM models considered in the
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previous Sec. III relative to the Casimir-Polder in standard
quantum electrodynamics (QED).

A. Universal extra dimensions

In Fig. 1 we show the contribution of the KK-tower of
massive states both in universal extra dimensions (UED)
and in Randall-Sundrum (RS) models UKK relative to the
standard QED result (for a massless photon). If one
assumes the current bound [65] from direct searches at
particle accelerators (LHC) R≤ð1TeVÞ−1≈0.3×10−9 nm
then the deviations to the Casimir-Polder interaction from
the Kaluza-Klein tower would be entirely negligible since
distances r that can be probed in current state of the art
Casimir/Casimir-Polder experiments [66] are at least in the
nanometer range (or larger) than ξ ¼ r=R > 3.3 × 109 and
from Fig. 1 we see that the ratioUKK=U isOð10−3Þ already
for ξ ≈ 10 and decreases exponentially fast. One can see
from Fig. 1 that the approximation in Eq. (55) is quite good
for values of the parameter ξ ¼ r=R ≈ 1 or greater.
However the fact that typical distances in Casimir and

Casimir-Polder experiments range from the nanometer up
to a few microns (3.3 × 109 ≤ r=R ≤ 3.3 × 1012Þ leaves
little hope that within the UED model the Casimir-Polder
interactions might actually be ever measured. From Fig. 1 it
is clear that such high values of r=R will provide an
extremely small correction to the standard QED Casimir
Polder.

B. Randall-Sundrum

In Fig. 1 we also show the contribution of the Randall-
Sundrum KK-tower relative to the standard Casimir-Polder
UKK=U as a function of ξ ¼ r=R. As discussed above the
Casimir-Polder interaction in the Randall-Sundrum model
is given by the same formulas of the UED case, Eqs. (50),
(53), and (55), with the replacement ξ → aξ with a given in
Eq. (62a). We show the results for three different values of
the dimensionless parameter κR ¼ 0.2, 0.4, 1.2. From
Fig. 1 we see that the Randall-Sundrum contribution to
the Casimir-Polder interaction has a better chance of being
non-negligible at values of the distance of experimental
interest (nanometers) for larger values of the parameter κR.
Indeed we find for instance that for a value of κR ¼ 8.2 and
R ≈ 1 TeV−1 ¼ 3 × 109 nm−1 the ratio UKK=U is for r ¼
10 nm (ξ ¼ 3.3 × 1010) about 0.04, or a 4% contribution
from the RS model.

C. Unparticles

In Fig. 2 we show the ratio of the unparticle Casimir-
Polder interaction, UdU , to the standard massless photon
QED Casimir-Polder potential, U, versus ΛUr, or the
distance in units of Λ−1

U for different values of the scaling
dimension of the unparticle field dU ¼ 1.05, 1.5, 2.
From Fig. 2 we see that higher values of dU have a better

chance of providing a contribution to the Casimir-Polder
interaction which has the potential of being measurable.
Indeed if we assume a scale of the unparticle model of the
order of the TeV, ΛU ¼ 1 TeV (≈ 3 × 109 nm−1), with
dU ¼ 1.05 (and λ ¼ 0.9), we obtain numerically that
UdU=U ¼ 0.049 for typical distances of Casimir experi-
ments in the nanometer range (ξ ¼ ΛUr ≈ 3.3 × 1010), i.e.,
a 5% contribution. The fact that the unparticle contribution

FIG. 2. Unparticle Casimir-Polder interaction potential UdU
relative to the standard QED (massless photon) Casimir-Polder
interaction U as a function of the distance, in units of Λ−1

U , at a
fixed value of the coupling λ=e ¼ 0.9. The solid (blue) line is the
result for dU ¼ 2, the long-dashed (orange) line is for dU ¼ 1.5
result and the short-dashed (green) line is for dU ¼ 1.05.

FIG. 1. Contribution of the KK-tower in the universal extra
dimension model to the Casimir-Polder interaction potential
relative to the standard QED (massless photon). The solid (blue)
line is the numerical result from Eq. (50) obtained truncating the
series at Nmax ¼ 60. The full (blue) disks are the results from
Eq. (53). The dotted (blue) line is the approximated form as given
in Eq. (55). The other curves represent the Randall-Sundrum
contribution for different values of the dimensionless parameter
κR (with ξ → aξ and a given in Eq. (62a)), respectively equal to
0.2 dashed (orange), 0.4 dot-dashed (orange) and 1.2 long-dashed
(orange). The full (orange) disks superimposed with the dashed
curve represent the result through Eq. (53) with ξ → aξ.
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becomes relevant and possibly detectable only for dU
values very close to unity parallels what has been found
in the analysis of the unparticle Casimir effect in Ref. [34].

V. CONCLUSIONS

The quite vast current literature of Casimir interactions in
relation to a massive photon discusses only the standard
Casimir effect in the geometry of two parallel conductor
plates. This had been studied in the pioneering work of
Barton and Dombey [20,21] and subsequently taken up by
several authors in other BSM scenarios [28–35,37–41],
but always considering the Casimir effect between parallel
plates.
In this paper we have studied the intermolecular Casimir-

Polder forces between neutral systems at a distance r from
each other, mediated by a massive vector field (assuming an
electromagnetic-type coupling) thereby filling a gap in the
existing literature of Casimir interactions.
Although this might appear at first to be a computation

with only a speculative interest it is instead of direct
application in deriving the Casimir-Polder interactions
between neutral systems in theories beyond the standard
model, such as universal extra dimensions (UED), Randall-
Sundrum (RS) models and scale invariant theories (unpar-
ticles). Moreover we have discussed the impact of the
contributions to the Casimir-Polder interactions in these
BSM models relative to the QED contribution and our
results could be used to discuss complementary bounds on
those BSM theories with future experiments. The above
mentioned scenarios are on the other end receiving a lot of
attention in other research domains, and especially so they
are well studied at high energy colliders like the LHC or its
future upgrades like the high luminosity or the high energy

LHC (HL-LHC or HE-LHC) [67], thus highlighting the
complementary value of the present work. Specifically we
have discussed, within the above BSM scenarios, the
deviations of the Casimir-Polder interactions relative to
the QED (massless photon) case as a function of the
distance r between the neutral systems and in relation to
the model free parameters. While the UED contribution to
the Casimir-Polder interaction appears to be too small to be
measurable in current experiments we have found that both
for the RS and the unparticle models there are values of the
parameters for which a sizeable contribution would result
which could, in principle, be detected.
It is the authors’ opinion that even in the absence of

observed deviations from the standard QED massless
Casimir-Polder one could use the results of the present
work to propose bounds on the BSM theories parameter
space (at least for the RS and unparticle cases) that could be
compared to those derived from other searches such as the
standard Casimir effect and/or even high energy accelerator
searches.
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