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The Bloch theorem in ordinary quantum mechanics means the absence of the total electric current in
equilibrium. In the present paper, we analyze the possibility that this theorem remains valid within quantum
field theory relevant for the description of both high-energy physics and condensed matter physics
phenomena. First of all, we prove that the total electric current in equilibrium is the topological invariant
for the gapped fermions that are subject to periodical boundary conditions; i.e., it is robust to the smooth
modification of such systems. This property remains valid when the interfermion interactions due to the
exchange by bosonic excitations are taken into account perturbatively. We give the proof of this statement
to all orders in perturbation theory. Thus, we prove the weak version of the Bloch theorem and conclude
that the total current remains zero in any system, which is obtained by smooth modification of the one
with the gapped charged fermions, periodical boundary conditions, and vanishing total electric current.
We analyze several examples, in which the fermions are gapless. In some of them, the total electric current
vanishes. At the same time, we propose the counterexamples of the equilibrium gapless systems, in which
the total electric current is nonzero.
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I. INTRODUCTION

According to the conventional quantum mechanical
formulation of the Bloch theorem [1] in the infinitely large
equilibrium system, the total electric current is zero. The
proof of this theorem is known within the framework of
ordinary quantum mechanics with a fixed finite number of
particles. There have been several attempts to generalize the
Bloch theorem to quantum field theory (QFT).1 However,
this extension has been limited so far by the consideration
of specific models. For example, a continuum model in
the presence of magnetic field is considered in Ref. [2],
while some lattice models are discussed in Refs. [3–5]. In
Ref. [6], the attempt is made to prove the Bloch theorem for
the QFT of general type. The proof presented in Ref.f [6],
however, seems to us not clear enough. Moreover, below,
we present the example of the QFT system, in which the

Bloch theorem in its conventional formulation does not
work. In the recent paper [7], the proof of the Bloch
theorem has been presented for the arbitrary lattice one-
dimensional model. This proof may also be extended to the
higher-dimensional lattice systems, which are infinite in
one particular direction and are compact in the other
directions. In this setup, the Bloch theorem states the
absence of a persistent current in the direction in which
the system is infinite. The same form of the Bloch theorem
is proposed in Ref. [8]. The possible extension of the Bloch
theorem to the QFT may be important for the applications
of the QFT techniques to the condensed matter physics
(see, e.g., Refs. [9–31]).
In the present paper, we analyze the possible form in

which Bloch theorem survives in an infinite fermionic QFT
system. First of all, we demonstrate that in the conventional
formulation the Bloch theorem does not hold: we present
the example of an infinite system, in which there is the
persistent current in equilibrium. Instead of the conven-
tional Bloch theorem, we prove its weakened version. It
states that the total electric current in the equilibrium
infinite system with periodical spatial boundary conditions
and gapped charged fermions is the topological invariant;
i.e., it is not changed when the system is modified
smoothly. The whole set of the gapped QFT systems
may be divided into the homotopic classes. Within each
class, the systems are connected by continuous modifica-
tion. Therefore, if the total electric current vanishes in one
of such systems, it vanishes in all systems that belong to the
same homotopic class. On the technical side, we will use
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1Quantum field theory represents both the mathematical basis
for the description of the high-energy physics and the condensed
matter physics. The difference between the corresponding models
is actually in symmetry. The high-energy physics systems obey
Lorentz invariance, while typical condensed matter systems do
not. Aside from the Lorentz symmetry, the description of the
condensed matter systems and the description of the high-energy
physics systems are completely equivalent. If we consider lattice
regularization of the high-energy physics models, then the
analogy becomes more complete.
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Wigner-Weyl formalism [32–35] adapted in Refs. [36–46]
to the lattice models of solid state physics combined with
the ordinary perturbation theory. In the presence of the
external fields, which break the translational symmetry
[47], the Wigner transformation of the Green’s functions is
more useful for our purposes than the Fourier transforma-
tion. Using the technique of Wigner transformation, we
express the response of electric current to the external
electromagnetic field. The Feynman diagrams written in
terms of the Wigner-transformed Green’s functions contain
the same amount of integrations over momenta as the
Feynman diagrams in the homogeneous theory. This
facilitates the calculations considerably. At the moment,
we cannot establish any definite analog of the Bloch
theorem for the gapless QFT systems of general type.
Instead, we analyze several particular examples, in which
the Bloch theorem holds/does not hold.
The paper is organized as follows. In Sec. II A, we

describe the formulation of fermionic QFT models using
Wigner-Weyl formalism. In Sec. II B, we present the proof
that in the noninteracting gapped fermionic systems with
periodical spacial boundary conditions the total electric
current is the topological invariant. In Sec. II C, we
demonstrate that the conventional lattice models with
noninteracting gapped fermions have a vanishing total
current. Notice that the perturbative inclusion of inter-
actions via the exchange by neutral bosons does not
change this conclusion. The proof is given in Sec. II D.
In Secs. III B, III C, and III D, we consider the particular
gapless systems. In Sec. III B, we discuss the typical
example of the system, in which the Bloch theorem holds.
In Sec. III C, we consider the counterexample of the
equilibrium system, in which the Bloch theorem does
not hold. Notice that this system does not satisfy the
additional conditions needed for the validity of Bloch
theorem proposed in Refs. [8,25]. In Sec. III D, we discuss
the example of the system that obeys the Bloch theorem at a
certain range of the values of Fermi energy and does not
obey it for another ranges of the Fermi energy. In Sec. IV,
we end with conclusions.

II. GAPPED FERMIONS

A. Noninteracting fermions and Wigner-Weyl
formalism

Let us consider the continuum system of noninteracting
particles. In the homogeneous case, the partition function
of such a system in momentum space has the form
[36,37,45]

Z ¼
Z

Dψ̄Dψ exp

�Z
M

dDp
jMj ψ̄

TðpÞQðpÞψðpÞ
�
: ð1Þ

Here, jMj ¼ ð2πÞD, where D is the dimension of space-
time. ψ̄ and ψ are the anticommuting multicomponent

Grassmann variables defined in momentum space. Matrix
QðpÞ is given by

Q ¼ iω − ĤðpÞ:

Here, p ¼ ðω;pÞ. Introduction of the external gauge field
AðxÞ defined as a function of coordinates results in Peierls
substitution (see, for example, Refs. [36,37,45]),

Z ¼
Z

Dψ̄Dψ exp

�Z
M

d3p
jMj ψ̄

TðpÞQðp−Aði∂pÞÞψðpÞ
�
;

ð2Þ

where the products of operators inside expression
Qðp − Aði∂pÞÞ are symmetrized.
We denote for the operators Q̂ ¼ Qðp − Aði∂pÞÞ and

Ĝ ¼ Q̂−1 their matrix elements by Qðp; qÞ and Gðp; qÞ
correspondingly,

Qðp; qÞ ¼ hpjQ̂jqi; Gðp; qÞ ¼ hpjQ̂−1jqi;

where jpi and jqi are momentum eigenstates. The basis of
the Hilbert space of functions is normalized as hpjqi ¼
δðDÞðp − qÞ. The mentioned operators satisfy

hpjQ̂ Ĝ jqi ¼ δðDÞðp − qÞ:

We insert here the complete set of momentum eigenstates
fjkig and obtain

Z
Qðp; kÞGðk; qÞdk ¼ δðp − qÞ: ð3Þ

Equation (2) may be rewritten as

Z ¼
Z

Dψ̄Dψ exp

�Z
M

d3p1ffiffiffiffiffiffiffiffiffijMjp
Z
M

d3p2ffiffiffiffiffiffiffiffiffijMjp

× ψ̄Tðp1ÞQðp1; p2Þψðp2Þ
�
; ð4Þ

while the Green’s function is

Gabðk2; k1Þ ¼
1

Z

Z
Dψ̄Dψ exp

�Z
M

d3p1ffiffiffiffiffiffiffiffiffijMjp
Z
M

d3p2ffiffiffiffiffiffiffiffiffijMjp

× ψ̄Tðp1ÞQðp1; p2Þψðp2Þ
�
ψ̄bðk2ÞffiffiffiffiffiffiffiffiffijMjp ψaðk1ÞffiffiffiffiffiffiffiffiffijMjp :

ð5Þ

Indices a and b enumerate the components of the fermionic
fields, which will be omitted later for simplicity.
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The Wigner transformation of G is defined as

GWðx; pÞ≡
Z

dqeixqGðpþ q=2; p − q=2Þ: ð6Þ

Here, the integral is over q that belong to momentum space.
The Weyl symbol of operator Q̂ is defined in a similar way:

QWðx; pÞ≡
Z

dqeixqQðpþ q=2; p − q=2Þ:

In the following, we will use the following identity of
Wigner-Weyl formalism: if Cðp1; p2Þ ¼

R
Aðp1; qÞBðq;

p2Þdq, then the Wigner transformations of A, B, C obey
CWðx; pÞ ¼ AWðx; pÞ⋆BWðx; pÞ. In continuous theory,
from Eq. (3), it follows that the Weyl symbol of Q̂ and
the Wigner transformation of G obey the Groenewold
equation (see, for example, Refs. [36,37,45])

1 ¼ GWðx; pÞ⋆QWðx; pÞ
¼ GWðx; pÞei

2
ð∂⃖x∂⃗p−∂⃖p∂⃗xÞQWðx; pÞ: ð7Þ

This equation is also satisfied for the case of the lattice
model with a compact Brillouin zone, provided that the
fields entering Q̂ vary slowly; i.e., their variations at the
distance of the order of the lattice spacing may be neglected
[44,46]. In practice, this requirement is always satisfied in
the real solids if the inhomogeneity is caused by external
magnetic field or by elastic deformations. In spite of the
appearance of the complicated star products, the use of

Wigner-transformed Green’s function GW has certain
advantages compared to the use of the ordinary momentum
space Green’s functionGðp; qÞ. Feynman diagrams written
in terms of GW are more concise. In what follows, we will
see that these expressions contain the same number of
integrations over momenta as the Feynman diagrams of the
homogenous theory.
The Grassmann-valued Wigner function may be

defined as

Wðp; qÞ ¼ ψ̄ðpÞffiffiffiffiffiffiffiffiffijMjp ψðqÞffiffiffiffiffiffiffiffiffijMjp :

We may define operator Ŵ½ψ ; ψ̄ �, the matrix elements of
which are equal to Wðp; qÞ ¼ hpjŴ½ψ ; ψ̄ �jqi.
If the field A is slowly varying, then QWðp; xÞ ¼

QWðp − AðxÞÞ [45]. As a result, the partition function
receives the form

Z ¼
Z

Dψ̄Dψe
P

x

R
dp

ð2πÞDTrWW ½ψ ;ψ̄ �ðp;xÞ⋆QWðp;xÞ
;

where by WW we denote the Weyl symbol of Ŵ.

B. Equilibrium current as topological invariant
for the gapped noninteracting fermions

In this subsection, we consider gapped noninteracting
charged fermions in the presence of periodical boundary
conditions. Let us consider the variation of the partition
function

δ logZ ¼ −
1

Z

Z
Dψ̄Dψ exp

�X
x

Z
dp

ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ⋆QWðp − AðxÞÞ
�

×
X
x

Z
dp

ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ⋆∂pk
QWðp − AðxÞÞδAkðxÞ

≈ −
1

Z

Z
Dψ̄Dψ exp

�Z
x

Z
dp

ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ⋆QWðp − AðxÞÞ
�Z

dx

×
Z

dp
ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ⋆∂pk

QWðp − AðxÞÞδAkðxÞ: ð8Þ

The current density integrated over the whole volume of the system appears as the response to the variation of A:

hJki ¼ −
T
Z

Z
Dψ̄Dψ exp

�Z
x

Z
dp

ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ⋆QWðp − AðxÞÞ
�

×
Z

dDx
Z

dp
ð2πÞD TrWW ½ψ ; ψ̄ �ðp; xÞ∂pk

QWðp − AðxÞÞ

¼ −T
Z

dDx
Z

dp
ð2πÞD TrGWðp; xÞ∂pk

QWðp − AðxÞÞ: ð9Þ

In the presence of periodic boundary conditions, the properties of the star product allow us to rewrite the last equation in the
following way:
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hJki ¼ −T
Z

dDx
Z

dDp
ð2πÞD TrGWðp; xÞ⋆∂pk

QWðp − AðxÞÞ: ð10Þ

Provided that there are no divergencies in this expression, it is the topological invariant; i.e., it is not changed when the
system is modified continuously. The proof is as follows. Let us consider an arbitrary variation QW → QW þ δQW , and the
related variation of the Green’s function, GW → GW þ δGW , according to Eq. (7). The variation of the electric current
receives the form

δJk ¼ −Tδ
Z

dDx
Z

dDp
ð2πÞD TrGW⋆∂pk

QW

¼ −T
Z

dDx
Z

dDp
ð2πÞD TrðδGW⋆∂pk

QW þGW⋆∂pk
δQWÞ

¼ −T
Z

dDx
Z

dDp
ð2πÞD Trð−GW⋆δQW⋆GW⋆∂pk

QW þGW⋆∂pk
QWÞ

¼ −T
Z

dDx
Z

dDp
ð2πÞD TrðδQW⋆∂pk

GW þGW⋆∂pk
δQWÞ

¼ −T
Z

dDx
Z

dDp
ð2πÞD ∂pk

TrðδQW⋆GWÞ ¼ 0; ð11Þ

In the last step, we assume the periodical boundary con-
ditions in p space. This occurs, in particular, for the lattice
tight-binding model with compact Brillouin zone. In the
above proof, it has also been implied that the integrals are
convergent. This assumes the absence of both ultraviolet and
infrared divergencies. The latter are absent if neither Ĝ nor Q̂
has poles. The ultraviolet divergencies may be eliminated if
the theory on the lattice (the tight-binding model) is
considered. This guarantees that the ultraviolet divergencies
at large spacial momenta are absent. For the noninteracting
system with Q̂ ¼ iω − Ĥ, the uncertainty in the integral over
ω remains. However, if the aim is to calculate the conduc-
tivity [i.e., the response of Eq. (10) to the external electric
field], then the corresponding integral in ω that follows from
Eq. (10) is convergent at ω → ∞ because the expression in
the integral behaves as 1

ωs with s > 1 at ω → ∞. The integral
over ω is to be regularized if we are interested in the
expression for the current out of the linear response to
external gauge field. The standard regularization used for
the calculation of various vacuum averages of the bilinear
combination of operators results in the modification

GWðp; xÞ → GðregÞ
W ðp; xÞ ¼ eiτωGWðp; xÞ, where τ is to

be set to τ → þ0 at the end of calculations. Correspondingly,

we regularize QWðp;xÞ→QðregÞ
W ðp;xÞ¼e−iτωQWðp;xÞ.

This regularization allows us to save the topological invari-
ance of the regularized Eq. (10). The integral

R
dω eiωτ

iω−En
entering Eq. (10) (here, En is the nth eigenvalue of the
Hamiltonian) may be calculated using the residue theorem

Z
dω

eiωτ

iω − En

����
τ¼þ0

¼ 2πθð−EnÞ;

provided that En ≠ 0. In the case in which the value of En
vanishes, this integral remains infrared divergent.
We come to the conclusion that the total electric current

is not changed if the gapped system with a compact
Brillouin zone is modified smoothly. This conclusion holds
also when the interactions between the fermions are taken
into account (see Sec. II D).

C. Example of the system with vanishing
total current

Let us discuss the case of the noninteracting fermions
with Hamiltonian Ĥ. Then,

Q̂ ¼ iω − Ĥ:

For the case of the homogeneous system with Ĥ ¼ Hðp̂Þ,
Eq. (10) receives the form

hJki ¼ V
Z

dωdD−1p
ð2πÞD Tr

1

iω −HðpÞ ∂pk
HðpÞ: ð12Þ

The integral over ω is to be regularized, GWðp; xÞ →
GðregÞ

W ðp; xÞ ¼ eiτωGWðp; xÞ, where τ → þ0. The integral
entering Eq. (12) may be calculated using the residue
theorem,

Z
dω

eiωτ

iω − En

����
τ¼þ0

¼ 2πθð−EnÞ;

provided that En ≠ 0. We have
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hJki ¼ V
Z

dD−1p
ð2πÞD−1 Trθð−HðpÞÞ∂pk

HðpÞ: ð13Þ

For the case of the periodical boundary conditions in
momentum space (say, for the lattice model with a compact
Brillouin zone), we obtain hJki ¼ 0. Any other system of
gapped noninteracting fermions connected with such a
homogeneous system by smooth transformation will have
vanishing total electric current.

D. Introduction of interactions between the fermions

Now, let us take into account interactions between the
fermions. Our consideration here, to some extent, repeats
the one presented in Ref. [44]. To calculate the electric
current, we consider a variation of the partition function
caused by the variation of external electromagnetic field A.
To introduce interaction among the fermions, we consider
the system with the Euclidean action

S ¼
Z

dpψ̄pQ̂ðp; i∂pÞψp

þ α

Z
dpdqdkψ̄pþqψpṼðqÞψ̄kψqþk: ð14Þ

Here, operator Q̂ depends on the operators of spatial
coordinates i∂p because the external field has been
included [see Eq. (2)]. For definiteness, we consider the
Coulomb interaction VðxÞ ¼ 1=jxj ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
, for

x ≠ 0. However, the other types of interactions that occur
due to the exchange by bosonic excitations are similar.
Then, the Fourier transformed Coulomb potential is
ṼðqÞ ¼ P

x
eiq·xffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p . The Coulomb interaction contributes

to the self-energy of the fermions, and the leading-order
contribution is proportional to α. The Green’s function can
be calculated through the Feynman diagrams as

Gαðx;yÞ ¼G0ðx;yÞþ
Z

G0ðx;z1ÞΣðz1; z2ÞG0ðz2; yÞdz1dz2

þ
Z

G0ðx; z1ÞΣðz1; z2ÞG0ðz2; z3Þ

×Σðz3; z4ÞG0ðz4; yÞdz1dz2dz3dz4 þ � � � ; ð15Þ

where

Σðz1; z2Þ ¼ αG0ðz1; z2Þδðτ1 − τ2ÞVðz1 − z2Þ þOðα2Þ;

with zi ¼ ðzi; τiÞ. Using Wigner transformation, one finds
that

Gα;WðR;pÞ
¼G0;WðR;pÞþG0;WðR;pÞ⋆ΣWðR;pÞ⋆G0;WðR;pÞþ �� � ;

ð16Þ

where G0;WðR; pÞ satisfies Q0;WðR; pÞ⋆G0;WðR; pÞ ¼ 1,
equivalent to Eq. (7), while ΣW is Wigner transformation
of Σ. It is easy to find that Gα;WðR; pÞ satisfies

Qα;WðR; pÞ⋆Gα;WðR; pÞ ¼ 1; ð17Þ

where Qα;WðR; pÞ ¼ Q0;WðR; pÞ − ΣW .
Without loss of generality, we can consider only the

electric current along the x axis, Jx, i.e., k ¼ 1 in Eq. (10).
In what follows, we will denote I ¼ hJxi. It is convenient to
expand Gα;WðR; pÞ in powers of the coupling constant α
as Gα;W ¼ G0 þ αG1 þ α2G2 þ… The average total elec-
tric current divided by the system volume V may also be
expanded in powers of α:

IðαÞ ¼ T
V

Z
dDR

Z
dDp
ð2πÞD TrGα;WðR; pÞ⋆ ∂

∂px
Q0;WðR; pÞ

¼ T
V

Z
dDR

Z
dDp
ð2πÞD Tr½G0;W

þ
X

n¼1;2;…

G0;Wð⋆ΣW⋆G0;WÞn�⋆ ∂
∂px

Q0;WðR; pÞ:

ð18Þ

The corresponding Feynman diagrams are shown in
Fig. 1(a). We represent ΣW ¼αS1þα2S2þ…, and the
current (x component) is given by I¼I0þαI1þα2I2þ…,

in which I0¼ T
V

R
dDR

R dDp
ð2πÞDTrG0;W⋆∂px

Q0;W , and

(a)

(b)

FIG. 1. (a) Feynmann diagrams for IðαÞ ¼ R
TdDR
V

dDp
ð2πÞD TrGα;W

∂px
Q0;W (expression for the electric current). The filled circles

mark ΣW . The external wavy line marks the position of ∂px
Q0;W .

(b) Feynmann diagrams for ΔIðαÞ ¼ R
TdDR
V

dDp
ð2πÞD TrGα;W∂px

ΣW.

The filled circle with the external wavy line marks ∂px
ΣW .
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Ir ¼
Z

TdDRdDp
Vð2πÞD Tr

X
l1þ���þln¼r

G0;W⋆
Yn
i¼1

½Sli⋆G0;W⋆� ∂
∂px

Q0;W; ð19Þ

with r ≥ 1. Let us compare the obtained expression for the total electric current with the following expression written through
the interacting Green’s function:

ĨðαÞ¼
Z

TdDRdDp
Vð2πÞD TrGα;WðR;pÞ⋆ ∂

∂px
Qα;WðR;pÞ: ð20Þ

For this purpos, we calculate the difference ΔIðαÞ ¼ IðαÞ − ĨðαÞ. Because Qα;W ¼ Q0;W − ΣW , ΔIðαÞ is given by

ΔI ¼
Z

TdDR
V

Z
dDp
ð2πÞD TrGα;WðR; pÞ⋆ ∂

∂px
ΣWðR; pÞ

¼
Z

TdDR
V

Z
dDp
ð2πÞD TrðG0;W þ

X
n¼1;2;…

G0;Wð⋆ΣW⋆G0;WÞnÞ⋆ ∂
∂px

ΣWðR; pÞ

¼ α

Z
TdDR
V

Z
dDp
ð2πÞD TrG0;W⋆ ∂

∂px
S1ðR; pÞ þ α2

Z
TdDR
V

Z
dDp
ð2πÞD

�
TrS1⋆G0;W⋆ ∂

∂px
S1ðR; pÞ⋆G0;W

þ TrG0;W⋆ ∂
∂px

S2ðR; pÞ
�
þ � � � ð21Þ

The Feynmann diagrams corresponding to ΔI are repre-
sented in Fig. 1(b). Let us consider the diagram with n self-
energy functions ΣW (in addition to an extra self-energy with
a photon tail),

ΔIðnÞ ¼
Z

TdDR
V

dDp
ð2πÞD TrðG0;W⋆ΣW⋆ÞnG0;W⋆∂px

ΣW;

ð22Þ

which appeared in the third line in Eq. (21). After partial
integration, we obtain

ΔIðnÞ ¼ðnþ1Þ
Z

TdDRdDp
Sð2πÞD TrG0;W⋆∂px

Q0;W⋆G0;W…⋆ΣW

−n
Z

TdDRdDp
Sð2πÞD TrG0;W⋆∂px

ΣW⋆…⋆ΣW⋆G0;W⋆ΣW:

We come to the relation

ðnþ 1ÞΔIðnÞ ¼ ðnþ 1Þ
Z

TdDR
V

dDp
ð2πÞD TrG0;W⋆∂px

Q0;W

⋆G0;W⋆…⋆ΣW⋆G0;W⋆ΣW; ð23Þ

which gives ΔIðnÞ ¼ Iðnþ1Þ, where Iðnþ1Þ is the contribution
to the electric current with nþ 1 insertions of ΣW repre-
sented schematically in Fig. 1(a) (the nþ 1th term in the
sum). Overall, we obtain

ΔIðαÞ ¼ IðαÞ − Ið0Þ ¼ IðαÞ − Ið0Þ:

We find that the total current is given by an integral of
Eq. (20) as long as the value of the total current remains
equal to its value without interactions. We will prove that,
indeed, IðαÞ ¼ Ið0Þ in the region of analyticity in α, i.e., as
long as the perturbation theory in α may be used.
The electric current in the absence of interactions is

given by I0 ¼
R

TdDR
V

R dDp
ð2πÞD TrG0;WðR; pÞ⋆ ∂

∂px
Q0;WðR; pÞ.

Below, we will prove that this expression does not receive
corrections from interactions, i.e., for j ≥ 1, I j ¼ 0. First,
let us consider I1 [shown in Fig. 2(a)], which can be
expressed explicitly as

(a)

(b)

FIG. 2. Loop diagram contributions to electric current I (left
side of the figure) and the corresponding diagrams of self-energy
function (right side). Crosses X represent ∂px

Q0;W . (a) The
diagrams in the first order. (b) One of the second-order diagrams.
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I1 ¼ −
Z

TdDR
V

Z
dDpdDq
ð2πÞD

× TrðG0;WðR; p − qÞDðqÞÞ⋆ ∂
∂px

G0;WðR; pÞ

¼ −
Z

TdDR
V

Z
dDpdDq
ð2πÞD TrðG0;WðR; p − qÞDðqÞÞ

×
∂

∂px
G0;WðR; pÞ: ð24Þ

Here, DðqÞ is the Fourier transformation of function

Dðz1 − z2Þ ¼ αδðτ1 − τ2ÞVðz1 − z2Þ:

Because DðqÞ is an even function, for each value of R, the
above expression is proportional to

Z Z
FRðp − qÞDRðqÞF 0

RðpÞdpdq ¼ 0; ð25Þ

where FRðqÞ ¼ G0;WðR; qÞ,and F 0 is the first derivative of
F . This representation allows us to prove that I1 ¼ 0 (we
perform the integration by parts and show that I1 ¼ −I1).
Let us now consider the next-order contribution I2.

We have

I2 ¼ −
Z

TdDRdDp
Vð2πÞD TrS2⋆ ∂

∂px
G0;W

−
Z

TdDRdDp
Vð2πÞD TrS1⋆G0;W⋆S1⋆ ∂

∂px
G0;W:

First, similar to the proof of I1 ¼ 0, the contribution of the
diagram shown in Fig. 2(b) is also zero. The only necessary
change in the proof is to replace DðqÞ in Eq. (24) by
DðqÞΠðq2ÞDðqÞ, where Πðq2Þ is the vacuum polarization.
Taking self-energy S2 in the rainbow (r.b.) approximation,
we get

I ðr:b:Þ
2 ¼ −

Z
TdDRdDpdDkdDq

Vð2πÞ2D Tr½G0;WðR; p − kÞ

⋆G0;WðR; p − k − qÞDðqÞ⋆G0;WðR; p − kÞ�
×DðkÞ⋆∂px

G0;WðR; pÞ

−
Z

TdDRdDpdDkdDq
Vð2πÞ2D TrG0;WðR; p − qÞDðqÞ

⋆G0;WðR; pÞ⋆G0;WðR; p − kÞDðkÞ⋆∂px
G0;WðR; pÞ

In the first term, the star before ∂px
may be eliminated. It

may then be inserted before DðkÞ, thus giving

I ðr:b:Þ
2 ¼−

Z
TdDRdDpdDkdDq

Vð2πÞ2D Tr½G0;WðR;p− kÞ⋆G0;WðR;p− k−qÞDðqÞ⋆G0;WðR;p− kÞ�⋆DðkÞ∂px
G0;WðR;pÞ

−
Z

TdDRdDp
Vð2πÞD TrG0;WðR;p−qÞDðqÞ⋆G0;WðR;pÞ⋆G0;WðR;p− kÞDðkÞ⋆∂px

G0;WðR;pÞ

¼−
1

2

Z
TdDRdDpdDkdDq

Vð2πÞ2D ∂px
Tr½G0;WðR;p− kÞ⋆G0;WðR;p− k−qÞDðqÞ⋆G0;WðR;p− kÞ�⋆DðkÞG0;WðR;pÞ ¼ 0:

ð26Þ

Notice that the last expression without a derivative with respect to px corresponds to the diagram similar somehow to the
one called a “progenitor” in [48]. We present the form of the corresponding Feynmann diagram in Fig. 3(a) and call it the
progenitor for the diagrams presented in Fig. 4. In essence, our present proof is an extension of the one given in Ref. [48].
The remaining two-loop diagrams (see Fig. 5) give the contribution that may be written as follows:

I ðcrossÞ
2 ¼ −

Z
Tr½G0;WðR;p− k1Þ⋆G0;WðR;p− k1 − k2Þ⋆G0;WðR;p− k2Þ�Dðk1ÞDðk2Þ∂px

G0;WðR;pÞ
TdDRdDpdDk1dDk2

Vð2πÞ2D

¼ −
1

4

Z
TdDRdDpdDkdDq

Vð2πÞ2D ∂px
Tr½G0;WðR;p− k1Þ⋆G0;WðR;p− k1 − k2Þ⋆G0;WðR;p− k2Þ

⋆G0;WðR;pÞ�Dðk1ÞDðk2Þ ¼ 0: ð27Þ

Here, the star ⋆ ¼ ei∂⃖R∂⃗p=2−i∂⃖p∂⃗R=2 acts only on G but does
not act on DðkiÞ (which does not depend on R or p). The
last line of the above expression corresponds to the diagram
of Fig. 3(b).

One can see that I2 ¼ 0. In the same way, the
higher orders may be considered. One can check
that I j ¼ 0 for j > 0 to all orders of the perturbation
theory.
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The higher-order corrections may be considered in the
similar way. The example of the higher-order diagram is
considered in Fig. 6. The sum of the Feynman diagrams
represented in Figs. 6(c), 6(d), and 6(e) contribute the
Fermion self-energy that enters an expression for the total
current presented in Fig. 1(a) [the diagrams in Figs. 6(d)
and 6(e) are to be counted twice). The resulting contribu-
tion to the electric current is equal to the integral over the
momentum of the derivative of the progenitor diagram
represented in Fig. 6(a). This integral is zero for the system
with compact momentum space (when lattice regularization
is used). The diagrams of Fig. 6(c), 6(d), and 6(e) appear
when the diagram of Fig. 6(b) is cut at the positions of the
crosses.
The obtained results mean the following:
(1) The interaction corrections to the total electric

current vanish.

(2) There is the following representation for the total
average electric current divided by the system
volume in the considered system:

IðαÞ¼
Z

TdDRdDp
Vð2πÞD TrGα;WðR;pÞ⋆ ∂

∂px
Qα;WðR;pÞ:

ð28Þ

Notice that our proof does not rely on the precise
expression of the Coulomb potential. In Eq. (25), we only
used that the Fourier-transformed potential is an even
function of momentum. Therefore, the generalization of
our result to the case of the other interactions is straightfor-
ward. In the similar way, the Yukawa interaction, the
exchange by gauge bosons, and the four-fermion inter-
actions may be considered.

III. GAPLESS FERMIONS

A. Electric current in the system of gapless
noninteracting charged fermions

In this section, we discuss the case of the gapless
fermions. Let us start from the consideration of the non-
interacting fermions with Hamiltonian Ĥ. Then,

Q̂ ¼ iω − Ĥ:

For the case of the homogeneous system with Ĥ ¼ Hðp̂Þ,
Eq. (10) receives the form

hJki ¼ V
Z

dωdD−1p
ð2πÞD Tr

1

iω −HðpÞ ∂pk
HðpÞ: ð29Þ

As was mentioned above, the integral over ω is to be
regularized if we are interested in the expression for the

FIG. 5. Two-loop Feynmann diagrams for the self-energy Σ
beyond the rainbow approximation (right side of the figure) and
the corresponding three-loop contributions to electric current I
(left side of the figure). The crosses point out the positions of the
derivatives ∂px

Q0;W .

(a)

(b)

(c)

(d)

(e)

FIG. 6. An example of the high-order corrections. (a) is the
progenitor diagram, and the possible contributions to the electric
current appear when in (b) one of the crosses is substituted by the
derivative ∂pQ0;W . Using each of those crosses, we form the
diagram, which contributes to the electric current. Diagrams (d),
(e), and (f) are the corresponding self-energy diagrams.

FIG. 4. Two-loop Feynmann diagrams for the self-energy Σ in
the rainbow approximation (right side of the figure) and the
corresponding three-loop rainbow contributions to electric cur-
rent I (left side of the figure). The crosses point out the positions
of the derivatives ∂px

Q0;W .

(a) (b)

FIG. 3. (a) The progenitor diagram for the two-loop rainbow
contribution to electric current. (b) The progenitor diagram for the
two-loop contribution to electric current (which is beyond the
rainbow approximation).

C. X. ZHANG and M. A. ZUBKOV PHYS. REV. D 100, 116021 (2019)

116021-8



current out of the linear response to the external gauge field.

We modify GWðp;xÞ→GðregÞ
W ðp;xÞ¼eiτωGWðp;xÞ, where

τ is set to τ → þ0 at the end of the calculations. The
integral

R
dω eiωτ

iω−En
entering Eq. (29) (here, En is the nth

eigenvalue of the Hamiltonian) may be calculated using the
residue theorem,

Z
dω

eiωτ

iω − En

����
τ¼þ0

¼ 2πθð−EnÞ;

provided that En ≠ 0. In the case in which the value of En
vanishes, this integral is divergent. This breaks the topo-
logical nature of Eq. (29) but does not mean that the whole
Eq. (29) is divergent itself. Namely, we have

hJki ¼ V
Z

dD−1p
ð2πÞD−1 Trθð−HðpÞÞ∂pk

HðpÞ: ð30Þ

For the case of the one-dimensional (D ¼ 2) system with
one branch of the spectrum, we get

hJi ¼ V
2π

Z
p2

p1

dp∂pHðpÞ ¼ V
2π

ðHðp2Þ −Hðp1ÞÞ; ð31Þ

where p1 and p2 are the end points of the piece of the
branch of the spectrum with HðpÞ ≤ 0. If both p1 and p2

are finite, then Hðp1Þ ¼ Hðp2Þ ¼ 0; therefore, hJki ¼ 0.
This occurs for the compact Brillouin zone that appears for
the lattice tight-binding model. If one of the points p1 and
p2 is placed at infinity, then the value of the total current
may differ from zero. In this case, it is clear that this
expression depends continuously on the smooth variation
of the Fermi energy.
Thus, we are able to give another weakened version

of the Bloch theorem valid for the gapless systems: the
homogeneous lattice model of noninteracting fermions
cannot have the nonvanishing total electric current. Since
we cannot formulate at the present moment a more general
version of Bloch theorem for the gapless QFT system, we
consider below several particular examples. Some of them
break the conventional Bloch theorem.

B. Example of the system that obeys
the Bloch theorem

In this subsection, we consider the planar system placed
in the ðxyÞ plane: in the region x < 0, there is an infinitely
high potential, while in the region x > 0, there is the
constant electric field directed toward the positive x axis
and uniform magnetic orthogonal to the (x, y) plane.
The electron in such a system satisfies the Schrödinger

equation

−
1

2m
∂2
xψ þ ð−i∂y − BxÞ2

2m
ψ þ VðxÞψ ¼ ϵψ ; ð32Þ

where VðxÞ ¼ Ex for x > 0. Notice that we use the
relativistic system of units with ℏ ¼ c ¼ 1. Separating
variables ψðx; yÞ ¼ eipyyϕðxÞ, one obtains the equation for
ϕðxÞ as follows:

ϕ00ðxÞ − B2

�
x −

pyB −mE

B2

�
2

ϕðxÞ

þ
�
2mϵ −

2mpyE

B
þm2E2

B2

�
ϕðxÞ ¼ 0: ð33Þ

We rescale variable x ¼ κs, with κ ¼ 1=
ffiffiffiffiffiffi
2B

p
, and arrive at

f00ðsÞ − 1

4
ðs − s0Þ2fðsÞ þ

�
νþ 1

2

�
fðsÞ ¼ 0; ð34Þ

where s0 ¼
ffiffiffiffiffiffiffiffi
2=B

p
py −mE

ffiffiffiffiffiffi
2B

p
=B2, and

νþ 1

2
¼ mϵ

B
−
mpyE

B2
þm2E2

2B3
: ð35Þ

Solution of Eq. (34) with the requirement s → ∞, f → 0
is the parabolic cylinder function Pðν; s − s0Þ. From the
boundary condition fðs ¼ 0Þ ¼ 0, we obtain the relation
between ν and s0 (see Fig. 7).
ν linearly depends on energy ϵ and momentum py, while

s0 linearly depends on momentum py. Finally, we obtain
the relation between ϵ and py, which is shown in Fig. 8.
The total current is equal to

jy ¼
X
i¼1;2

Z
pðrightÞ

pðleftÞ

dpy

2π
∂py

EiðpyÞ;

where the integral is between the two crossing points
py ¼ pðleftÞ, pðrightÞ (of the Fermi level and the given branch
of the spectrum). One can see that the total current is equal
to zero. Therefore, the Bloch theorem is valid in this case.

FIG. 7. ν vs s0 in the model of Sec. III B.
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C. Counterexample

Now, let us consider another example. This is an infinite
planar system in the xy plane with magnetic field B
penetrating the plane: in the region x < 0, there is a
uniform magnetic field Bz ¼ −B < 0, while in the region
x > 0, there is a uniform magnetic field in the opposite
direction, i.e., Bz ¼ B > 0.
An electron in such a system satisfies the following

Schrödinger equation:

−
1

2m
∂2
xψ þ ð−i∂y − BxÞ2

2m
ψ þ VðxÞψ ¼ ϵψ ; x > 0

ð36Þ

−
1

2m
∂2
xψ þ ð−i∂y þ BxÞ2

2m
ψ þ VðxÞψ ¼ ϵψ ; x < 0:

ð37Þ

After the separation of variables and rescaling x via x ¼ κs,
one obtains

f00ðsÞ − 1

4
ðs − s0Þ2fðsÞ þ

�
νþ 1

2

�
fðsÞ ¼ 0; ð38Þ

for s > 0, where s0 ¼
ffiffiffiffiffiffiffiffi
2=B

p
py and

νþ 1=2 ¼ mϵ=B:

The equation for the region s < 0 is similar; the only
difference is a sign change in front of s in Eq. (38). The
solution can be expressed in terms of parabolic cylinder
function:

fðsÞ ¼
�
C1Pðν; s − s0Þ x > 0;

C2Pðν;−s − s0Þ x < 0.
ð39Þ

The boundary condition is that fðsÞ and f0ðsÞ should be
continuous at s ¼ 0. If we denote the derivative function of
Pðν; sÞ with respect to x as Qðν; sÞ, the boundary condition
implies Pðν;−s0Þ ¼ 0 (then, C1 ¼ −C2) or Qðν;−s0Þ ¼ 0
(then C1 ¼ C2). We find the energy spectrum, which is
shown in Fig. 9.
From this spectrum, one can see that if the Fermi level is

between ðB=mÞð0þ 1=2Þ and ðB=mÞð1þ 1=2Þ it crosses
both branches of spectrum E1;2ðpyÞ corresponding to the
blue and brown lines in Fig. 9. The total current is equal to

jy ¼
X
i¼1;2

Z
∞

pðiÞ

dpy

2π
∂py

EiðpyÞ;

where the integral is between the crossing point py ¼ pðiÞ

(of the Fermi level and the given branch of the spectrum)
and py ¼ þ∞. One can see that the total current is nonzero.
Therefore, the Bloch theorem is violated in this case.

D. System with magnetic field in the quantum well

Now, let us consider the more realistic example. This
is an infinite planar system in the xy plane with magnetic
field B penetrating the plane as in the previous section:
in the region x < 0, there is a uniform magnetic field
Bz ¼ −B < 0, while in the region x > 0, there is a uniform
magnetic field in the opposite direction, i.e., Bz ¼ B > 0.
Besides, we add the potential VðxÞ of the quantum
well: VðxÞ ¼ 0 for x ∈ ½−L;þL� and VðxÞ ¼ V0 for
x ∈ ð∞;−LÞ ∪ ðþL;þ∞Þ.
An electron in such a system satisfies the following

Schrödinger equation:

FIG. 9. ν as a function of s0 in the model of Sec. III C. The blue
lines come from the condition Pðν;−s0Þ ¼ 0, while the brown
lines from the condition Qðν;−s0Þ ¼ 0.

FIG. 8. Relation between energy and momentum in the model
of Sec. III B. The vertical axis is mϵ=ðBÞ, while the horizontal
axis is s0. We take the particular case of mE=B2 ¼ 0.1.
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−
1

2m
∂2
xψ þ ð−i∂y − BxÞ2

2m
ψ þ VðxÞψ ¼ ϵψ ; x > 0

ð40Þ

−
1

2m
∂2
xψ þ ð−i∂y þ BxÞ2

2m
ψ þ VðxÞψ ¼ ϵψ ; x < 0:

ð41Þ

After a separation of variables and rescaling x via x ¼ κs,
one obtains

f00ðsÞ − 1

4
ðs − s0Þ2fðsÞ þ

�
νþ 1

2

�
fðsÞ ¼ 0; ð42Þ

for 0 < s < l ¼ L=κ, where s0 ¼
ffiffiffiffiffiffiffiffi
2=B

p
py and

νþ 1=2 ¼ mϵ=B:

When s > l, fðsÞ satisfies

f00ðsÞ − 1

4
ðs − s0Þ2fðsÞ þ

�
ν0 þ 1

2

�
fðsÞ ¼ 0; ð43Þ

where ν0 ¼ ν −mV0=B. The equation for the region s < 0
is similar; the only difference is a sign change in front of s
in Eqs. (42) and (43). The solution can be expressed in
terms of parabolic cylinder function and the hypergeomet-
ric function:

fðsÞ¼

8>>><
>>>:

C1F1ðν;s−s0ÞþC2F2ðν;s−s0Þ; 0<x<L;

C3Dνðs−s0Þ; x>L;

C0
1F1ðν;−s−s0ÞþC0

2F2ðν;−s−s0Þ; −L<x<0;

C0
3Dνð−s−s0Þ; x<−L:

ð44Þ

F1 and F2 are given by F1ðν;xÞ¼e−x
2=4Fð−ν=2;1=2;x2=2Þ

and F2ðν;xÞ¼xe−x
2=4Fð1=2−ν=2;3=2;x2=2Þ. According

to the boundary conditions, fðsÞ and f0ðsÞ are continuous
at s ¼ 0, �L, which leads to six linear equations. The
corresponding determinant (6 × 6) should be zero,
which guarantees the nonzero solutions for Ci and C0

i.
After linear transformations, the determinant can be decom-
posed into the product of two 3 × 3 determinants:
Det ¼ 2 · Detð1Þ · Detð2Þ, with

Detð1Þ ¼

��������

A B −P
F G −Q
R1 R2 0

��������
Detð2Þ ¼

��������

A B −P
F G −Q
S1 S2 0

��������
;

ð45Þ

where A¼F1ðν;l−s0Þ, B¼F2ðν;l−s0Þ,R1¼F1ðν;−s0Þ,
R2 ¼ F2ðν;−s0Þ, P ¼ Dν0 ðl − s0Þ, and Q ¼ D0

ν0 ðl − s0Þ.
The derivatives of F1ðν; xÞ and F2ðν; xÞ with respect to x
are denoted by g1ðν; xÞ and g2ðν; xÞ, and then F ¼
g1ðν; l − s0Þ, G ¼ g2ðν; l − s0Þ, S1 ¼ g1ðν;−s0Þ, and
S2 ¼ g2ðν;−s0Þ. Det ¼ 0 is equivalent to Detð1Þ ¼ 0 or
Detð2Þ ¼ 0 from which we find the energy spectrum, i.e.,
the relation between ν and s0, shown in Fig. 10.
From this spectrum, one can see that if the Fermi level is

between V0 þ ðB=mÞð0þ 1=2Þ and V0 þ ðB=mÞð1þ 1=2Þ
it crosses both branches of spectrum E1;2ðpyÞ correspond-
ing to the blue and brown lines in Fig. 10. The total current
is equal to

jy ¼
X
i¼1;2

Z
∞

pðiÞ

dpy

2π
∂py

EiðpyÞ;

where the integral is between the crossing point py ¼ pðiÞ

(of the Fermi level and the given branch of the spectrum)
and py ¼ þ∞. One can see that the total current is nonzero.
Therefore, the Bloch theorem is violated in this case.

IV. CONCLUSIONS

In the present paper, we consider the possibility of
formulating the analog of the quantum mechanical Bloch
theorem for the field theoretical systems. In the non-
relativistic quantum mechanics of fixed number of par-
ticles, the total current vanishes in equilibrium according to
the conventional Bloch theorem. The essential difference
from the quantum field theory is that in the latter the
number of (quasi)particles is not fixed while the single-
particle Hamiltonian may have the more complicated form.
Moreover, the interactions with the time delay complicate

FIG. 10. ν as a function of s0 in the model of Sec. III D. The
parameters of the model are l ¼ 3 and mV0=B ¼ 1.3. The blue
lines come from the condition Detð1Þ ¼ 0, while the brown lines
come from the condition Detð2Þ ¼ 0.
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the system even more. As a result, the direct analog of the
Bloch theorem in the QFT has not been established, despite
several attempts [7,24–28].
We consider separately the gapped and the gapless

systems. Below, we list the obtained results:
(1) First of all, we demonstrate that for the gapped

homogeneous noninteracting system with a compact
Brillouin zone the total electric current vanishes.

(2) Next, we prove that the total electric current for the
gapped noninteracting system is the topological
invariant in the presence of periodical spatial boun-
dary conditions; i.e., it is not changed when the
system is modified smoothly. Therefore, any non-
homogeneous smooth modifications of the system
mentioned above in item 1 also lead to a vanishing
total electric current.

(3) Interactions due to exchange by bosonic excitations
do not alter the total electric current for the above-
mentioned gapped systems as long as the inter-
actions may be taken perturbatively. We prove this
statement to all orders in the coupling constant.

(4) Considering the gapless systems, we find that the
total electric current vanishes for the homogeneous
ones with a compact Brillouin zone in the absence of
interactions.

(5) We do not formulate any analogs of the Bloch
theorem for the gapless nonhomogeneous systems.
Instead, we consider several particular examples.

Along with the ones in which the total current
vanishes in equilibrium, we present examples in
which the total electric current is nonzero. In those
examples, space is divided into the pieces with
different directions of magnetic field. The total
current appears along the interphase between the
two pieces. Notice that this setup does not satisfy
conditions of the version of the Bloch theorem
proposed in Refs. [7,8]. Namely, the considered
system is infinite in the direction orthogonal to the
persistent equilibrium current.

We conclude that the Bloch theorem in its traditional
formulation (there is no total electric current in equilibrium)
does not hold in quantum field theory. The examples that
demonstrate this are those with gapless noninteracting
fermions. At the same time, we formulate the weakened
version of the Bloch theorem for the gapped interacting
systems (items 1, 2, and 3 above).
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