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The spontaneous production of electron-positron pairs from the vacuum—in a field configuration
composed of a high-frequency electric mode of weak intensity and a strong constant electric field—is
investigated. Asymptotic expressions for the single-particle distribution function ruling this nonperturba-
tive process are established by considering the low-density approximation in the Boltzmann-Vlasov
equation. An analytical formula for the density rate of yielded particles is established and is shown to
manifest a nonperturbative dependence on both the strong and weak electric fields and to generalize
previous findings by interpolating between the tunneling and multiphoton regimes. It is shown that—under
appropriate circumstances—the created plasma of electrons and positrons might reach densities for which
their recombinations into high-energy photons occurs copiously. On the basis of this feature, an
experimental setup for observing the dynamically assisted Schwinger effect is put forward.
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I. INTRODUCTION

Finding suitable and controllable experimental condi-
tions to materialize the all-permeating quantum vacuum
fluctuations has been a fundamental goal in particle physics
since the time when our inert vacuum perception strictly
changed into a nontrivial regulatory void, responsible for
mediating the interactions between elementary particles.
Even before the full establishment of QED, it was noted
that this sort of vacuum instability could be conceived by
producing electron-positron pairs if a macroscopic electric
field E is held in vacuum [1–3] (for a recent review, see
Ref. [4]). Notwithstanding, the corresponding pair-produc-
tion (PP) rate R ∼ exp½−πEcr=E� provides evidence that an
experimental verification of this so-called Schwinger
mechanism is far from our reach, unless yet unaccessible
field strengths–comparable to the critical scale of QED
Ecr ¼ m2=e ∼ 1016 V=cm—become available.1 Although
significant progresses toward high-intensity laser technol-
ogy are raising our hopes of reaching the required field

strengths within the focal spot of multipetawatt laser pulses,
it is rather likely that an experimental verification of the
Schwinger PP process remains a challenging task to
achieve, at least in a near future. This is because the
expected peak field strengths of order 10−2Ecr at the new
generation of laser systems, including the Extreme Light
Infrastructure (ELI) [5] and the Exawatt Center for Extreme
Light Studies (XCELS) [6], would keep the production rate
very small.
A central aspect in investigations aiming to relieve the

exponential suppression of R is the identification of field
setups, which may allow us to maximize the Schwinger
effect [7–13]. Perhaps the most robust configuration found
so far is the one implemented in what is nowadays known
as the dynamically assisted Schwinger mechanism [14,15],
where—in addition to a strong quasistatic electric field—a
weak but high-frequency field component is superimposed.
In the original papers on the subject, the combined field
was composed of two Sauter pulses [14] or a constant
electric field and a high-energy electromagnetic wave with
ω≲ 2m [15]. The latter ingredient—partially motivated by
the experimental verification of the nonlinear Breit-
Wheeler reaction [16]—stimulates the creation of pairs
substantially. Indeed, first estimates resulting from this
assisted scenario predict an enhancement of the PP rate
R ∼ exp½−κEcr=E� with 0 < κ ≪ 1, while its nonperturba-
tive feature in the strong field strength is kept. Similar
improvement has been predicted to take place in production
channels other than the one described so far, provided the
assisted high-frequency laser wave is present [17–19].
Qualitatively, this sort of catalysis is understood as a direct
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1Here and henceforth, the mass and the absolute charge of an
electron will be denoted by m and e, respectively. Besides,
throughout the manuscript, Heaviside-Lorentz units—with
the speed of light and the Planck constant set to unity
c ¼ ℏ ¼ 1—are used.
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consequence of the absorption of photons from the weak
field, which causes an effective reduction of the barrier
width that an electron has to tunnel from negative to
positive Dirac continuum. A large number of transitions are
thus facilitated—pairs are created copiously—leading to
increasing our chances for observing a signature of the
vacuum instability.
This paper is devoted to study the spontaneous produc-

tion of electron-positron pairs as might occur in a dynami-
cally assisted setup driven by the combination of a constant
and a purely time-dependent electric field. Our theoretical
approach relies on the quantum transport equation that
dictates the time evolution of the PP process [20–23]. It is
noteworthy that several investigations of this nature have
already been carried out, most of them by using numerical
techniques from which valuable information and features
have been extracted [24–32]. Meanwhile various researches
have focused on deriving formulae for the created particle
spectra [33–44]; this way crucial aspects are illuminated
from which an optimized version of the aforementioned
enhancement could be reached. Two recent papers went a
step further by providing analytical expressions for the total
probability of produced pairs [45,46]. In these investiga-
tions, a pertubative treatment in the weak field was used
within the Wentzel Kramers Brillouin (WKB) and the
worldline instanton methods, respectively. Particular atten-
tion was laid on weak fields with Sauter and Gaussian
profiles. However, the case of a periodically oscillating
mode was touched on only briefly. Here, we move a step
further in these analytical studies by using a quantum
kinetic approach in which both the weak and strong fields
are treated nonperturbatively. We discuss in detail the case
in which the assisted mode oscillates periodically and
obtain a formula for the density rate of yielded particles
which is shown to manifest a nonperturbative dependence
on both the strong and weak electric fields and to
interpolate between the tunneling and multiphoton regimes
[see Eq. (22)]. Our expression generalizes the correspond-
ing result in Ref. [45], which can be inferred from it by
taking a suitable asymptotic limit. Besides, our formula
allows us to understand the dependencies of the pair
creation rate found by numerical means [27] and might
eventually help—at the level of experiment—to elucidate
the production signal among undesirable noises.
The outcomes of this analysis are exploited to reveal

fundamental properties linked to the unstable nature of the
yielded electron-positron plasma. Particular attention is
paid to establish a formula for its lifetime. We show that this
timescale decreases as the produced particle rate grows. As
a consequence, the enhancement induced by the super-
position of the fast-oscillating wave onto the strong field
background does not translate necessarily into a beneficial
aspect for a direct experimental detection of the sponta-
neous production of pairs from the vacuum. In light of this,
we put forward a setup which aims to verify indirectly the

realization of the dynamically assisted Schwinger effect.
It relies on the detection of gamma photons, copiously
emitted as a result of pair recombinations once the back-
ground has been switched off, i.e., from the annihilation of
the residual plasma of electrons and positrons. The plausible
signalization of the standard Schwinger mechanism through
radiation channels has been subject to intense investigation.
This idea was launched originally in Ref. [47] and further
developed in a series of papers [48–51],most of them relying
on the emergence of single-photon electron-positron anni-
hilation processes taking place in the presence of the strong
laser pulse.2 Improvements on this line of research have been
reported recently in Ref. [61]. We complement these
investigations by studying annihilation of the created plasma
of electrons and positrons which remain after the external
field has been switched off. In case of the unassisted
Schwinger process, this yielded electron-positron plasma
has not been in the focus of interest because it typically
contains a very small amount of particles only. However, in
the present situation of the assisted Schwinger mechanism,
the residual plasma can be abundant, rendering an analysis
of its dynamical evolution with annihilation into photons
relevant. Consideration of the plasma evolution in the
absence of the field moreover has the advantage here that
no background of high-frequency photons, which have
triggered the assisted PP and from which the recombination
photons must be discriminated, is present anymore.
This paper is organized as follows. In Sec. II, we adopt the

model to be analyzed and briefly summarize themain aspects
linked to the quantumVlasovequation and its solutionwithin
the low-density limit. The aforementioned approximation is
particularized in Sec. III to the case in which the external
background combines a strong static electric field and a fast-
oscillating electric field. There, we establish an analytic
expression for the single-particle distribution function and
discuss its behavior invarious regimes of interest. Later on, in
Sec. IV, we derive a compact asymptotic formula for the PP
rate and reveal explicitly how the enhancement caused by the
weakmode is closely connectedwith the perturbative PP rate
associated with the absorption of photons. Details about
some special aspects of these calculations are given in the
Appendixes A and B. Finally, in Sec. V, we investigate the
evolution of the electron-positron plasma after its creationvia
the assisted Schwinger mechanism. An expression for the
total number of photons resulting from the annihilation of
pairs at early times is derived. Some insight on thementioned

2Generally speaking, in the field of the pulse, the theory admits
two independent one-photon radiation channels linked to the
tadpole and the field-dressed vertex, respectively. The study of the
former has also been exploited to reveal valuable insights in other
yet unobserved nonlinear QED phenomena. See, for instance,
Refs. [52–55]. The pair annihilation occurring during the time
when the field is on was first investigated numerically in Ref. [56].
Likewise, the electron-positron recombination driven by a plane
wave has been studied in Refs. [57–59]; see also Ref. [60].
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experimental setup aiming to detect these photons, and thus
the spontaneous production of pairs, is given afterward.

II. GENERAL ASPECTS

We consider the spontaneous production of electron-
positron pairs taking place in a time-dependent but homo-
geneous electric field combining a strong and a weak mode
with frequenciesΩ andω, respectively.Wewill suppose this
field is localized temporally between −T=2 ≤ t ≤ T=2, its
pulse length T ¼ 2πN=ω being determined by the number
of cycles N and ω. In the following, we further restrict the
model to the case in which the variation linked to the
perturbative mode is much faster than the one undergone by
the strong field counterpart (ω ≫ Ω) and where, accord-
ingly, N is very large. Hence, the PP problem can be
formulated as if the creation process were taking place in
a background characterized by a constant electric field and a
fast-oscillating mode, generated by the four-potential

AμðtÞ ¼ −
�
Estþ

Ew

ω
sinðωtÞ

�
♭μΘðtþ T=2ÞΘðT=2 − tÞ;

ð1Þ
where ♭μ ¼ ð0; 0; 1; 0Þ is the polarization four-vector and
ΘðxÞ denotes the unit step function: ΘðxÞ ¼ 1 at x ≥ 0 and
ΘðxÞ ¼ 0 at x < 0. Here, the subscripts “s” and “w” are used
to identify the strong and weak field strengths (Ew ≪ Es),
respectively.
Our investigation adopts the quantum kinetic approach

as a theoretical tool to describe the production of electron-
positron pairs. This formulation—which is equivalent to
other well-known approaches based on QED in unstable
vacuum [62,63]—comprises the dynamical information of
the PP process in the single-particle distribution function
Wðp; tÞ—summed over the spin projections—of electrons
and positrons to which the degrees of freedom in the
external field are relaxed at asymptotically large times
(t → �∞), i.e., when the electric field is switched off
Eð�∞Þ → 0. The time evolution of this quantity is dictated
by a quantum Boltzmann-Vlasov equation [20–23], the
integrodifferential version

_Wðp; tÞ ¼ Qðp; tÞ
Z

t

−∞
dt̃Qðp; t̃Þ

× ½1 −Wðp; t̃Þ� cos
�
2

Z
t

t̃
dt0wpðt0Þ

�
ð2Þ

of which manifests both the nonequilibrium nature of the
PP process and its non-Markovian feature.3 The formula
above assumes the vacuum initial conditionWðp;−∞Þ ¼ 0

and applies the notation _Wðp; tÞ≡ ∂Wðp; tÞ=∂t. Besides, it
is characterized by the function Qðp; tÞ≡ eEðtÞϵ⊥=w2

pðtÞ,
which depends on the transverse energy of the Dirac
fermions ϵ⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
and the respective total energy

squared w2
pðtÞ ¼ ϵ2⊥ þ ½pk − eAðtÞ�2 of a positron. Here,

p⊥ ¼ ðpx; 0; pzÞ and pk ¼ ð0; py; 0Þ are the components of
the canonical momentum perpendicular and parallel to the
direction of EðtÞ, respectively.
It is known that Eq. (2) can only be solved exactly for a

few special backgrounds, e.g., constant and Sauter-type
electric fields. Finding analytic solutions beyond the afore-
mentioned configurations is a difficult task. However,
estimates can be obtained by using the low-density approxi-
mation [Wðp; tÞ ≪ 1] within the Boltzmann-Vlasov equa-
tion. In such a case, the single-particle distribution function
at times, for which the field has been switched off
[WTðpÞ≡ limt→T Wðp; tÞ], can be approximated by [9,22]

WTðpÞ ≈
1

2

����
Z

T=2

−T=2
dt̃Qpðt̃ÞeiΛpðt̃Þ

����2 ð3Þ

with Λpðt̃Þ≡ 2
R
t̃
0dtwpðtÞ. We note that the integration

contained in this formula is nothing but the solution of the
linearized Riccati equation on which the study in Ref. [65]
relies. At this point, it turns out to be rather illuminating to
perform the change of variables τ ¼ ½pk − eAðt̃Þ�=ϵ⊥ and
τ̃ ¼ ½pk − eAðtÞ�=ϵ⊥. As a consequence, the integral in
Eq. (3) becomes

Z
T=2

−T=2
dt̃… ¼

Z γk
γ⊥þ

πN
γ⊥

γk
γ⊥−

πN
γ⊥

dτ
1þ τ2

exp

�
ϵ2⊥
eEs

SðτÞ
�
;

SðτÞ ¼ 2i
Z

τ

0

dτ̃
ð1þ τ̃2Þ1=2

1þ ε cosðωtÞ ; ð4Þ

where ε ¼ Ew=Es ≪ 1 parametrizes the relative weakness
of the fast-oscillating mode. The expression above con-
stitutes the starting point for further considerations. In its
second line, t has to be considered as a function of τ̃.
However, this inversion cannot be determined analytically,
but only through reversion of the corresponding series
[67,68]. In this case, the leading-order term

tðτ̃Þ ≈ 1

ω
ðγ⊥τ̃ − γkÞ ð5Þ

coincideswith the inverse of the function τðtÞ averaged over
a cycle of the weak field. Here, we have introduced the
dimensionless parameters

γk ¼ γ
pk
m

and γ⊥ ¼ γ
ϵ⊥
m

: ð6Þ

Observe that, in the limit of p⊥ → 0, γ⊥ reduces to the
combined Keldysh parameter [γ ¼ ωm=ðeEsÞ]. In order to

3The quantum field theoretical approach to the pair-production
problem—as encompassed by Eq. (2) concisely—can be for-
mulated alternatively through a Riccati equation [64,65] or via a
representation involving three coupled ordinary differential
equations. See, for instance, Refs. [34,37,66].
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suitably fit the external parameters to current and
foreseeable experimental setups, we will suppose hereafter
that m2 ≫ ðeEsÞ and 2m > ω. We note that an assisted
scenario with 2m > ω≳m4 is characterized by the restric-
tion γ⊥ ≥ γ ≫ 1. Conversely, ifω ≪ m3=ðeEsÞ—leading to
γ ≪ 1—the effective reduction of the barrier width between
the negative and positive continuum is expected to be almost
insignificant, and the oscillating field would not play a
significant role in the production of pairs.

III. PROPERTIES OF THE PARTICLE SPECTRUM

We wish to find closed-form analytic expressions for
Eq. (3) in the case characterized by the condition πN ≫ γ⊥,
jγkj. Therefore, the treatment developed in this subsection
is limited to small momentum components relative to the
one associated with the external field, i.e., to values jpkj ≪
eEsT=2 and jp⊥j ≪ eEsT=2. To facilitate the mathematical
treatment of the problem, we will formally extend the
outer integration limits in Eq. (4) to �∞. As a conse-
quence, the single-particle distribution functionWTðpÞ [see
Eq. (3)] approaches to a 2π-periodic function in γk.
Correspondingly, its dependence on this variable will be
investigated in the interval −π < γk ≤ π.
Since the factor ϵ2⊥=ðeEsÞ ≥ m2=ðeEsÞ ≫ 1, the expo-

nential in Eq. (4) oscillates very fast, and the steepest-
decent method represents a suitable tool to carry out its
outer integration. In order to apply this method, we first
extend the integration variables to the complex τ plane. As
it is characteristic in problems of this nature, the poles at
τ ¼ �i are also branch points of the integrand. The branch
cuts are then chosen from τ ¼ i to τ ¼ i∞ and from τ ¼ −i
to τ ¼ −i∞, i.e., τ2 þ 1 ¼ ðτ þ iÞðτ − iÞ ¼ jτ þ ijjτ −
ijeiφþeiφ− with −3π=2 ≤ φþ < π=2 and −π=2 ≤ φ− <
3π=2 referring to the local polar angle linked to τ ¼ þi
and τ ¼ −i, respectively. Still, in the cut τ plane, there exist
poles linked to the integrand of SðτÞ,

τ�k ¼ γk þ ð2k − 1Þπ
γ⊥

� i
γcr
γ⊥

; k ∈ Z; ð7Þ

where a loss of analyticity is exhibited. While the integer
value k manifests the periodicity in γk, the critical Keldysh
parameter [36,45,46,70]

γcr ¼ ln

�
2

ε

�
; ε ≪ 1 ð8Þ

rules two different scenarios depending on whether γ⊥ does
or does not exceed the value of γcr. Below, we will further
describe this point.

Now, the saddle points linked to the exponent (τ ¼ �i)
coincide with the branch points found previously. In a
vicinity of τ ¼ i, the preexponential of the integrand
behaves as 1=½2iðτ − iÞ�, whereas

SðτÞ ≈ i
2
S0 þ

1ffiffiffi
2

p jτ − ij3=2jκjei arg κþi3π
4
þi3

2
φþ ;

S0 ¼ 4

Z
i

0

dτ̃
ð1þ τ̃2Þ1=2

1þ ε cosðγ⊥τ̃ − γkÞ
: ð9Þ

In the first line, arg κ denotes the principal value of the
argument of κ ¼ ½1þ ε cos ðωtðiÞÞ�−1. Here, the directions
of the steepest descents can be locally approximated by
choosing φþ ¼ − π

2
þ 2

3
kπ − 2

3
arg κ, with k ∈ Z, such that

the condition cosðarg κ þ 3
4
π þ 3

2
φþÞ < 0 holds. In con-

nection, we find

φþ1 ¼
π

6
−
2

3
arg κ; φþ2 ¼ −

7π

6
−
2

3
arg κ: ð10Þ

Since the angles above must lie within the interval ½− 3π
2
; π
2
Þ

[read above Eq. (9)], arg κ turns out to be restricted to the
region − π

2
< arg κ ≤ π

2
, with

arg κ ¼ tan−1
�

ε sinhðγ⊥Þ sinðγkÞ
1þ ε coshðγ⊥Þ cosðγkÞ

�
þ si ð11Þ

with s1;4 ¼ 0, s2 ¼ π, s3 ¼ −π, where the choice of
the constant si corresponds to suitable values in each of
the four quadrants [71]. Manifestly, Eq. (11) reveals that the
directions of the steepest descents change as γ⊥ and γk are
varied. We remark that, in the absence of the perturbative
mode (ε ¼ 0 ⇔ arg κ ¼ 0), these directions are fully
specified: φþ1 ¼ π=6 and φþ2 ¼ −7π=6. It is worth
remarking that these angles do not change appreciably
when the fast oscillating field is turned on (ε ≠ 0) and
γcr ≫ γ⊥, no matter the value of γk. The situation does not
change either if ε ≠ 0, γ⊥ ≫ γcr with γ⊥ ≫ 1 and jγkj ≪ 1.
Even for jγkj ≪ 1 and γ⊥ ∼ γcr > 2, it can be verified that
arg κ ≈ 0, and the directions of the steepest descents
approach locally to those arising when the strong electric
field is present only.
We take advantage of the described feature to deform the

initial integration contour [see Eq. (4)], as depicted in
Fig. 1. The portion covering the real axis deviates several
times through circles ck with an infinitesimal radius
(r → 0). At this point, it should be understood that each
of them joins the real τ axis via parallel shortcuts with
opposite directions. However, in the picture, they have been
omitted for simplicity and because they do not contribute at
all. Here, k labels a circumvented pole between the most
distant extremes of the circuit [see Eq. (7)]. In the picture,
the imaginary parts of the poles have been taken with
γ⊥ ≫ γcr. For γ⊥ ≪ γcr, the pole locations are moved

4In connection with PP in this frequency regime, see
Refs. [27,69].
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upward, and many of them could lie above the path
Γ ¼ CR ∪ Cϵ ∪ CL. In such a situation, the contour of
integration is chosen similarly to the previous case: those
poles remaining below Γ are then eluded. Consequently,
Cauchy’s theorem allows us to expressZ

∞

−∞
dτ… ¼ − exp

�
iϵ2⊥
2eEs

S0

�

×
Z
Γ

dτ
2iðτ − iÞ exp

�
ϵ2⊥ffiffiffi
2

p
eEs

κ½iðτ − iÞ�3=2
�
;

ð12Þ
where we have taken into account that the contribution
linked to each pole’s circumvention, i.e., over ck, vanishes
as r → 0 (for details, read Appendix A). Likewise, we have
considered that the integrations over C� give no contribu-
tions when N → ∞. The details of this considerations are
summarized in Appendix B.
We point out that Eq. (12) can also be applied to

those cases in which the integration contour differs sub-
stantially from the one analyzed explicitly here, provided
no contribution arises from those circuits connecting the
region −πN=γ⊥ ≤ Re τ ≤ πN=γ⊥ with the sectors ending
in the steepest descents. Hereafter, we will suppose
that this is the case. Thus, by performing the map
w ¼ ϵ2⊥κ½iðτ − iÞ�3=2=½ ffiffiffi

2
p

eEs�, Eq. (12) becomes

Z
∞

−∞
dτ… ¼ 2πi

3
exp

�
iϵ2⊥
2eEs

S0

� I
Γ̃

dw
2πw

ew: ð13Þ

Observe that the closed path of integration Γ̃ (see
Fig. 2) encloses a single pole at infinity (w ¼ þ∞).
Hence, the application of the residue theorem leads toH
Γ̃ dwe

w=ð2πwÞ ¼ i [72]. We substitute this outcome into
Eq. (13). The resulting expression is inserted into Eq. (3)

afterward. As a consequence, the single-particle distribu-
tion function reduces to

WTð pÞ ≈ 2e−
ϵ2⊥
eEs

ImS0ðγ⊥;γkÞ; ð14Þ

where an unessential preexponential factor of the order of
unity has been omitted (π2=9 ≈ 1.1). We stress that
ImS0ðγ⊥; γkÞ is given in Eq. (9). By taking τ ¼ iy, it reads

ImS0ðγ⊥; γkÞ ¼ 4

Z
1

0

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
cos2ðϕyÞ

1þ ε coshðγ⊥yÞ cosðγkÞ
: ð15Þ

Here, the function ϕy is the angle determined by the tan−1

function involved in Eq. (11), with γ⊥ replaced by γ⊥y. We
remark that the expression above is an even function in γk.
Hence, we further restrict our investigation to 0 ≤ γk ≤ π. It
is worth noting that a similar expression for WTðpÞ can be
inferred from the WKB-method. This fact provides an
evidence that, although Eqs. (14) and (15) apply strictly in
the regimes γcr ≫ γ⊥ and γ⊥ ≫ max f1; γcrg; they can be
used as well to extrapolate the behavior of WTðpÞ to
intermediate regions [see, for instance, Fig. 3 below].
Observe that, in the limit of ε → 0, ImS0ðγ⊥; γkÞ ¼ π.

Hence, WTðpÞ reduces to the known expression in a
constant electric field [66]: WTðpÞ ≈ 2 exp½−πϵ2⊥=ðeEcrÞ�.
The situation changes when ε ≠ 0. To show this, we
investigate some analytic and asymptotic properties of
Eq. (15). First of all, when setting ∂ImS0ðγ⊥; γkÞ=∂γk to
zero, we find that the corresponding extreme points are
located at the borders of the region encompassed by
0 ≤ γk ≤ π. To elucidate which of them maximize and
minimize Eq. (15), wewill establish its asymptotic formulas
evaluated at γk ¼ 0 and γk ¼ π, respectively. Let us begin
with the case in which γ⊥ ≫ γcr with γ⊥ ≫ 1. We then
introduce a positive splitting parameter y0 satisfying the
conditions γ−1⊥ ≪ y0 ≪ 1 and γcr=γ⊥ ≪ y0. Afterward, the
y integration is divided as follows: ImS0ðγ⊥; γkÞ ¼
4
R y0

0 dy…þ 4
R
1
y0
dy…. In the integral defined over the

region ½0;y0�, the integration variable is very small (y ≪ 1),
which allows us to approximate the square root contained in

FIG. 1. Integration contour in the complex plane τ for arg κ ≈ 0.
The positive branch cut, defined from τ ¼ i to τ ¼ i∞, is
depicted by a vertical zigzag line. Here, the imaginary parts of
the poles have been taken smaller than unity (γcr ≪ γ⊥). Short-
cuts joining each circumventing circle with the real τ axis have
been omitted for simplicity. They give no contribution as, for each
circle, both lie infinitesimally close together and have opposite
orientation.

FIG. 2. Path of integration in the complex w plane. Note that it
encloses the outer region in counterclockwise sense.
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the integrand by unity [ð1 − y2Þ1=2 ≈ 1]. Conversely, the
main contribution to the integral defined over ½y0; 1� results
from those values of y fulfilling the condition y ≫ γcr=γ⊥, in
which case the integrand can be approximated by
∼�2 exp½−γ⊥y�=ε. Consequently,

ImS0ðγ⊥; γkÞ ≈ 4

Z
∞

0

dy
1� ε coshðγ⊥yÞ

� 8

ε

Z
1

y0

dye−γ⊥y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q

− 4

Z
∞

y0

dy
1� ε coshðγ⊥yÞ

: ð16Þ

While the positive sign corresponds to γk ¼ 0, the negative
one is associated with γk ¼ π. Now, the first integral
involved in this expression can be calculated by using
Eq. (3.513.2) in Ref. [73]. The remaining two can be
combined in an integral independent of the parameter y0.
Indeed, note that, as γ⊥ ≫ 1, the integrand in

R
1
y0
dy…

behaves as approximately exp½γ⊥y�, whereas the one defined
in ½y0;∞Þ can be approximated by �2 exp½−γ⊥y�=ε.
Keeping all these details in mind, we obtain

ImS0ðγ⊥; γkÞ ≈ 4

( γcr
γ⊥ −

1
γ⊥ e

−γ⊥ for γk ¼ 0;
γcr
γ⊥ þ 1

γ⊥ e
−γ⊥ for γk ¼ π:

ð17Þ

As the extreme points linked to γk coincide with the
borders of the interval [0, π], and ImS0ðγ⊥; πÞ >
ImS0ðγ⊥; 0Þ, the quantity ImS0ðγ⊥; γkÞ as a function of
γk grows monotonically in this region for any γ⊥ satisfying
the conditions γ⊥ ≫ γcr and γ⊥ ≫ 1. This behavior is also
verified by looking at the solid curves in Fig. 3, which have
been obtained by setting γk ¼ 0 (black), γk ¼ π=2 (red),
and γk ¼ π (darker cyan). Furthermore, the formula above
reveals that the amplitude of oscillations in γk decreases as
8 exp½−γ⊥�=γ⊥ when γ⊥ grows, a fact exhibited clearly in
Fig. 3 (compare the solid curves in black and darker cyan at
γ⊥ ¼ 10, for instance). We remark that this trend changes,
as the condition γcr ≫ γ⊥ is fulfilled. Under this circum-
stance, all instances in Eq. (15) depending on ε can be
Taylor expanded. After the integration,

ImS0ðγ⊥; γkÞ ≈ π −
2π

γ⊥
εI1ðγ⊥Þ cosðγkÞ; ð18Þ

where Eq. (3.534.1) in Ref. [73] has been used. Here,
I1ðxÞ ¼ x

2
þ x3

224
þ x5

22426
þ � � � denotes the modified Bessel

function of the first kind with order 1 [74]. The formula
above coincides with Eq. (37) in Ref. [36]. It manifests
clearly a monotonic growing in 0 ≤ γk ≤ π. Furthermore,
in the current regime, the amplitude of oscillation in γk
scales as approximately 2πε.

Interestingly, when γ⊥ moves away from γcr toward
larger values, all solid curves in Fig. 3 show a significant
falling as compared to the characteristic value linked to the
constant field case (ImS0 ≈ π). Indeed, at γ⊥ ¼ 20, they
have fallen to ImS0 ≈ 1. Besides, as Eq. (17) applies for
γ⊥ ≫ γcr with γ⊥ ≫ 1, the exponential contributions can be
safely ignored. This fact implies that ImS0ðγ⊥; γkÞ does not
undergo an appreciable variation in γk. Keeping all these
details in mind, we find that the single-particle distribution
function [see Eq. (14)] behaves as

WTðpÞ ≈ 2

�
ε

2

�4ϵ⊥
ω

; γ⊥ ≫ max f1; γcrg. ð19Þ

This expression deserves further comments. First, at p ¼ 0,
the exponent associated with this asymptotic formula
coincides with the minimal “number” of quanta necessary
to produce a pair at rest from the weak mode solely. This
observation already provides evidence that an enhancement
in WTðpÞ could take place via the absorption of a quantum
from the fast-oscillating field, as compared with the case in
which only a constant electric field drives the vacuum
instability. Indeed, let us suppose the particles are created
in an assisted field setup characterized by the following
parameters: ω ¼ 1.7 m, Es ¼ 10−1 Ecr, i.e., γ ≈ 17, and
Ew ¼ 10−3 Ecr corresponding to ε ¼ 10−2 [γcr ≈ 5.3].
Under such circumstances, we find that WTð0Þ ∼ 10−5

exceeds by 9 orders of magnitude the corresponding dis-
tribution functionWTð0Þ ∼ 10−14 of the standard Schwinger
mechanism.Apparently, the enhancement becomes stronger
as Es decreases gradually. However, it is worth pointing out
that such a trend is justified whenever WTðpÞ remains
smaller than unity [read discussion above Eq. (3)].

FIG. 3. Behavior of the function ImS0ðγ⊥; γkÞ as a function of
γ⊥: γk ¼ 0 (black), γk ¼ π=2 (red), and γk ¼ π (darker cyan). The
horizontal dashed line in olive corresponds to the value
ImS0ðγ⊥; γkÞ ¼ π that results when the fast-oscillating wave is
not present, whereas the asymptotic trends [Eqs. (18) and (17)]
linked to the cases in which γk ¼ 0 and γk ¼ π are shown in
dotted style. Here, the vertical dashed line indicates the critical
value γcr ≈ 5.3 corresponding to ε ¼ 10−2.
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Hence, at p ¼ 0, this condition translates into the restriction
Es ≫ 1

2
Ew2

ω
4m, and by using the parameters above, for

instance, it will imply that Es ≫ 7 × 10−4 Ecr.

IV. PAIR-PRODUCTION RATE

The density of created electron-positron pairs follows
from integration of the single-particle distribution function
over the three momentum components. When exploiting
the 2πmγ−1-periodicity of WTðpÞ in pk [see below
Eq. (15)], we can write

N ¼
Z

d3p
ð2πÞ3WTðpÞ

¼ eEsT
2π2

Z
π

0

dγk

Z
∞

0

dp⊥
2π

p⊥WTðpÞ; ð20Þ
where the even feature ofWTðpÞ inpk has also been used. To
satisfy the condition under which WTðpÞ was derived
(see the first paragraph in Sec. III), the integral over p⊥
must be performed over the region ½0; pmax � with
pmax ≪ eEsT. However, the fast damping of its integrand
in this variable allows us to extend its upper integration limit
to infinity with no appreciable error. In contrast, due to the
periodic feature of WTðpÞ in pk, the integration over this
variable–originally covering the region ð−∞;∞Þ has been
limited to the domain jpkj⩽ 1

2
eEsT.

At this point, it turns out to be convenient to carry out the
change of variable s2 ¼ ω2ϵ2⊥=ðeEsÞ2 in Eq (20) and to go
over to the rate of created pairs. Consequently,

_N ≡N
T

≈
ðeEsÞ3
2π3ω2

Z
π

0

dγk

Z
∞

γ
ds

× s exp

�
−
eEs

ω2
s2ImS0ðs; γkÞ

�
; ð21Þ

where Eq. (14) has been inserted. Observe that the function
s2ImS0ðs; γkÞ grows monotonically in both s and γk and
eEs

ω2 s2ImS0ðs; γkÞ ≥ Ecr
Es
ImS0ðγ; γkÞ ≫ 1.5 Therefore, we

integrate by parts in s and expand the resulting integrand
around γk ∼ 0. Consequently,

_N ≈
ðeEsÞ2
8π4

erf
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
m
ωhεðγÞ

q
π
	

1 − gεðγÞ − 1
2
γg0

εðγÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω

mhεðγÞ

s
exp

�
−π

m2

eEs
f1 − gεðγÞg

�
ð22Þ

with erfðxÞ ¼ 2ffiffi
π

p
R
x
0 dte

−t2 denoting the error function [74].

The formula above constitutes our main analytic result.

It complements insights already gained by numerical
studies [25–30] by allowing us in particular to obtain
the scaling behavior of the process with the field param-
eters. This offers genuine advantages for optimizing the
pair-production yield and discriminating it from undesir-
able backgrounds. Notice that its preexponential portion
contains the functions gεðγÞ and g0

εðγÞ≡ ∂gεðsÞ=∂sjs¼γ

with

gεðγÞ ¼ 1 −
1

π
ImS0ðγ; 0Þ

≈

8>><
>>:

2ε
γ I1ðγÞ for γ ≪ 1;

1 − 4
π
γcr
γ for γ ≫ max f1; γcrg

ð23Þ

characterizing the decrement of the exponential function.
As before, I1ðxÞ ¼ x

2
þ x3

224
þ x5

22426
þ � � � refers to the modi-

fied Bessel function of the first kind with order 1 [74].
Additionally, Eq. (22) introduces the function

hεðγÞ≡ γ
∂2

∂γ2k
ImS0ðγ; γkÞ

����
γk¼0

¼ 8εγ

Z
1

0

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
½1þ ε coshðγyÞ�3

×

�
1

2
coshðγyÞ þ ε

�
1 −

1

2
cosh2ðγyÞ

��
; ð24Þ

the behavior as a function of the parameter γ of which is
depicted in Fig. 4. All curves exhibited there remain below
1 [hεðγÞ < 1]. They manifest fast decaying laws for both
γ ≫ 1 and γ ≪ 1. These trends can be understood when
looking for their asymptotes, which turn out to be

FIG. 4. Behavior of the function hεðγÞ [see Eq. (24)]. The
asymptotic trends [Eq. (25)] linked to each curve are shown in
dotted style.

5We note that the insertion of Eq. (17) into the condition
Ecr
Es
ImS0ðγ; γkÞ ≫ 1 provides a restriction Es ≫ 1

2
Ewe

ω
4m, which is

similar to the one given at the end of Sec. III.
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hεðγÞ ≈
8<
:

2πεI1ðγÞ for γ ≪ 1;

4 γcr
γ2

for γ ≫ max f1; γcrg. ð25Þ

We note that the expression linked to the case γ ≪ 1 can
even be applied to study the behavior of hεðγÞ in regions
for which γ ≳ 1. The dotted curves in the left portion of
Fig. 4 reveal to us that the loss of accuracy in such a case is
almost undiscernible.
In the regime characterized by the conditions γ ≪ 1 and

m < ω≲ 2m, the argument of the error function is very
small, and its leading order contribution behaves as erfðxÞ∼
2x=

ffiffiffi
π

p
. In such a scenario, Eq. (22) reproduces the known

rate for the Schwinger mechanism (quasistatic limit)

_N ≈
ðeEsÞ2
4π3

exp

�
−π

Ecr

Es

�
: ð26Þ

When γ exceeds unity and the critical value γcr significantly
(γ ≫ 1 and γ ≫ γcr) withm < ω≲ 2m, the small-argument
behavior of the error function still can be applied to
Eq. (22), and the production rate approximates

_N ≈
eEs

8π2
mω

ln ½2 Es
Ew
�

�
1

2

Ew

Es

�4m
ω

: ð27Þ

Interestingly, this formula manifests a nonperturbative
dependence not only in Es but also in the field strength
Ew associated with the weak electric mode. Clearly, in the
intermediate regime not covered by these asymptotic cases,

the density rate for pair production [see Eq. (22)] mixes
both tunneling and multiphoton effects.
In order to extend further our knowledge on _N , we

show in Fig. 5 its behavior as a function of the strong (left
panel) and weak (right panel) field strengths. The results
exhibited in both panels have been obtained by setting the
frequency of the fast-oscillating field to ω ¼ 1.7 m.
Following the discussion at the end of Sec. III, the left
panel has been generated by varying the strong field
between 5 × 10−2 ≤ Es=Ecr ≤ 3 × 10−1. Here, the dashed
curve corresponds to the standard Schwinger mechanism
[see Eq. (26)], whereas the dotted curves result from the
case in which the pair-production process is driven by the
fast-oscillating mode only. The expression used to generate
the curves linked to the latter scenario is given in
Refs. [75–77]. Here, by increasing the weak field amplitude
by an order of magnitude, the production rate grows by a
factor 104, indicating that the process occurs in the
perturbative regime with absorption of two quanta ω.
For comparison, we note that the curves for the assisted
setup differ by relative factors of about 200 each at
Es ≈ 6.6 × 10−2 Ecr. We observe besides that, on average,
the slope linked to the rate of the standard Schwinger effect
is larger than the ones corresponding to the assisted setup.
Hence, as the ratio Es=Ecr grows, the enhancing due to the
fast-oscillating field becomes less pronounced. This fact
corroborates the idea that, in an assisted scenario, there
exist two channels for increasing the pair-production rate,
either by growing the strong field strength or via the
absorption of quanta from the fast-oscillating mode. The

FIG. 5. Pair-production rate per unit of volume in a field configuration in which a constant strong field is assisted by a weak but fast-
oscillating electric mode. Its dependences on the strong and weak fields are shown in the left and right panels, respectively. In the left
panel, the dashed curve results from the standard Schwinger mechanism, whereas the horizontal dotted lines have been obtained by
considering the effect of the fast-oscillating field only. Likewise, in the right panel, the dotted curve in olive describes the behavior of the
rate when the strong field is not present and only the perturbative mode drives the pair-creation process. The corresponding expression
associated with this scenario can be found in Refs. [75–77].
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former path rules the process as Es grows, while the latter
dominates as the contrary condition occurs.
Figure 6 is intended to provide insight about the trend of

the rate with the change of ω. It has been obtained by
setting the strong field to Es ¼ 6.6 × 10−2 Ecr. As in Fig. 5,
the dashed line follows from the expression associated with
the Schwinger mechanism [see Eq. (26)]. We note that all
solid curves closely approach the value of the standard
Schwinger mechanism when ω ≪ m.
Wewish to put our outcomes in context. So, let us suppose

an experiment driven by the strong field to be reached at the
forthcoming ELI laser system. Accordingly, we take Es ≈
6.6 × 10−2 Ecr as a reference parameter. To achieve a peak
field strength of this nature, a strong focusing—close to the
diffraction limit—is required. Consequently, we will sup-
pose that the spatial extent and the temporal length of the
laser pulse are l ∼ 1 μm and T ∼ 1 fs, respectively. This
laser is expected to operate with a central frequency
Ω≈1.55 eV. Notice that, if the fast-oscillating mode oper-
ates at ω ≈ 1.7 m, the number of cycles it makes during the
pulse length T is N ≈ 2.1 × 105, which exceeds largely the
combined Keldysh parameter γ ≈ 26. Under such a circum-
stance, the number of pairs yielded from an assisted
configuration characterized by Ew ¼ 10−3 Ecr is ne−eþ ¼
_Nl3T ≈ 7.4 × 1016 (curve in cyan in the left panel of Fig. 5),
which would exceed the result associated with the
Schwinger mechanism (black dashed curve) ne−eþ ∼ 1 by
16 orders of magnitude roughly. However, when comparing
this value with the dotted curve in cyan—corresponding
to the case in which PP is due to the fast-oscillating mode
only—we find ne−eþ ≈ 7 × 109, which leads to an effective
enhancement by 7 orders of magnitude, approximately.

Some comments are in order. First, we note that the
discussed improvements have been obtained from a single
laser shot only. Certainly, our study provides evidences that
the pair-production enhancement increases significantly for
frequencies m≲ ω < 2m. We note that, in such an energy
regime, differences between pair production in an oscillat-
ing electric field and pair production in a standing laser
wave have been pointed out, owing to the spatial depend-
ence and magnetic component of the latter [78–80]. Hence,
the results presented here are expected to describe only
qualitatively the phenomenon taking place in realistic laser
fields. Notwithstanding this, the general physical conclu-
sions drawn regarding the dependence on the electric field
strengths of both the strong and the fast-oscillating fields
are expected to find their counterparts in a laser-based
experiment for the assisted Schwinger mechanism.

V. HIGH-ENERGY PHOTON EMISSION AS A
PROBE OF THE DYNAMICALLY ASSISTED

SCHWINGER MECHANISM

The enhancement induced by the superposition of the
fast-oscillating wave onto the strong field background
might facilitate the experimental verification of the sponta-
neous production of pairs from the vacuum, by detecting
the generated particles directly. However, the high densities
of residual pairs promote their recombinations (see Fig. 7),
and thus the emission of photons. Hence, the created
electron-positron plasma has a pronounced unstable nature,
and the number of pairs evolves according to the law
ne−eþðtÞ ¼ ne−eþ½1þ δt=τ�−1, where ne−eþ is the number
of pairs at the moment when the external field is switched
off (δt≡ t − T=2 ¼ 0), whereas τ denotes the plasma
lifetime.6 An estimate for τ will be given below. It is worth
remarking that the number of photons emitted simulta-
neously at time t is

ΔnγðtÞ ¼ ntotalðtÞ −nγðTÞ

¼ ne−eþ
δt
τ

1

1þ δt
τ

: ð28Þ

While ntotalðtÞ denotes the total number of photons present
at the time t,nγðTÞ refers to the existing background of them

FIG. 6. Frequency dependence of the pair-production rate per
unit of volume associated with the assisted Schwinger mecha-
nism. Here, the horizontal dashed line follows from the expres-
sion associated with the Schwinger mechanism.

FIG. 7. Feynman diagrams contributing to the electron-positron
recombination into two photons.

6This decay law arises when assuming that the associated rate
is proportional to both the number of electrons and of positrons
present at time t, i.e., for _ne−eþðtÞ ¼ − 1

τn
2
e−eþðtÞ.
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when the external field is switched off. In what follows, we
suppose the latter causes only a minor effect on the single-
particle distribution functionWTðpÞ [see Eqs. (14), (18), and
(19)]. In contrast to previous investigations [47–51,61],
we will limit ourselves to the number of photons produced
after the field has been switched off, i.e., when the stability
of the quantum vacuum is reestablished and the two-photon
emission process becomes dominant (see Fig. 7).
Clearly, in a time interval of the order of τ or larger—in

addition to the electron-positron annihilation process—also
scattering events of particles and antiparticles are very
likely to take place. As a consequence, the initial particle
spectrum is supposed to change significantly. In contrast,
for a δt ≪ τ, i.e., for early times, neither the single-particle
distribution function nor the initial number of pairs is
expected to change appreciably [ne−eþðtÞ ≈ne−eþ].
Likewise, the total number of emitted photons approaches

ΔnγðtÞ ≈ne−eþ
δt
τ
: ð29Þ

This formula constitutes a good approximation only when
ΔnγðtÞ ≪ ne−eþ , in which case the consequences of both
annihilation and scattering processes can be treated per-
turbatively. Under such circumstances, the differential
number of recombination events per unit volume and unit
time approaches

d_ν ¼ 1

2
e4đ3k1đ3k2đ3pþđ3p−δ

4
k1þk2;pþþp−

×WTðpþÞWTðp−ÞM2
e−eþ→γγðk1; k2; pþ; p−Þ; ð30Þ

where the 1=2-factor arises since the emitted photons of the
final state are indistinguishable. For the sake of simplicity,
the shorthand notations δ4p;q ¼ð2πÞ4δ4ðp−qÞ, đ3k1;2¼
d3k1;2=½2ωk1;2ð2πÞ3�, and đ3p�¼d3p�=½2wp�ð2πÞ3� with
p� ¼ ðwp� ; p�Þ and k1;2 ¼ ðωk1;2 ; k1;2Þ have been used.
Positive and negative subscripts identify the positron and
electron momentum, respectively. Notice that wp� ¼
½p2⊥;� þ p2

k;� þm2�1=2 is the energy of the positron

and the electron when the field has been switched off.

Here,M2
e−eþ→γγ denotes the unpolarized squared invariant

amplitude of the annihilation process (see Fig. 7).
The precise expression of this object can be found in text
books—see, for instance, Ref. [81]—and reads

M2
e−eþ→γγ ¼ 2

�
k2p−

k1p−
þ k1p−

k2p−

þ 2m2k1k2
ðk1p−Þðk2p−Þ

−
m4ðk1k2Þ2

ðk1p−Þ2ðk2p−Þ2
�
: ð31Þ

At this point, it turns out to be convenient to take into
account the identity

R
đ3ki ¼

R d4ki
ð2πÞ4 δðk2i ÞΘðki0Þ and per-

form the integrations over k2 and ωk1. As a consequence,

d_ν
dφdθ sin θ

¼ 1

2
α2

Z
đ3pþđ3p−WTðpþÞWTðp−Þ

×
ðm2 þ pþp−ÞM2

e−eþ→γγ

ðwpþ þwp− − p− · n − pþ · nÞ2 ; ð32Þ

where α ¼ 1=137 is the fine-structure constant. Here, θ is
the polar angle that the wave vector n ¼ k1=jk1j forms with
the polarization direction of the switched-off field. In
contrast, φ represents the azimuthal angle. In the expression

above,M2
e−eþ→γγ must be understood as function depend-

ing only on p� and kμ1 ¼ ωk1ð1; nÞ with

ωk1 ¼
m2 þ pþp−

wpþ þwp− − p− · n − pþ · n
: ð33Þ

The integrals over p⊥;� can also be carried out approx-
imately. To this end, we first develop the change of variables
γ2⊥;� ¼ ðm2 þ p2⊥;�Þω2 =ðeEsÞ2 and consider the fact that
the exponent associated with WTðpþÞ [WTðp−Þ] grows
monotonically with γ⊥;þ [γ⊥;−]. Hence, after integrating
over these variables by parts separately, we end up with

d_ν
dφdθsinθ

≈
α2

32π4

�
Es

Ecr

�
2

m4

Z πN
γ m

−πN
γ m

dpk;þ
2wpk;þ

×
Z πN

γ m

−πN
γ m

dpk;−
2wpk;−

M2
e−eþ→γγðpk;þ;pk;−;θÞ

×
m2þwpkþwpk;− þpk−pkþ

½wpk;þ þwpk;− − ðpk;þ−pk;−Þcosθ�2

×
exp ½−Ecr

Es
ImS0ðγ;pk;þÞ�

½ImS0ðγ;pk;þÞþ 1
2
γ ∂
∂γ ImS0ðγ;pk;þÞ�

×
exp ½−Ecr

Es
ImS0ðγ;pk;−Þ�

½ImS0ðγ;pk;−Þþ 1
2
γ ∂
∂γ ImS0ðγ;pk;−Þ�

: ð34Þ

The applied procedure manifests that the main contri-
bution of these integrations results from the region in
which p⊥;�=m ≪ 1. This result is somewhat expected
since the single-particle distribution function [see
Eqs. (14), (18), and (19)] is sharply peaked at p⊥ ¼ 0,
and the typical value of momentum perpendicular to the
field direction (hp⊥i ¼ 0)7

7Here, hOi ¼ R
d3pOðpÞW∞ðpÞ=

R
d3pW∞ðpÞ. For comput-

ing the integration with OðpÞ ¼ p2⊥, a procedure similar to the
one used for obtaining Eq. (22) has been followed.

SELYM VILLALBA-CHÁVEZ and CARSTEN MÜLLER PHYS. REV. D 100, 116018 (2019)

116018-10



p⊥ ∼ hp2⊥i1=2

≈
mffiffiffi
π

p
�
Es

Ecr

�
1=2 1

½1 − gεðγÞ − 1
2
γg0

εðγÞ�1=2
ð35Þ

remains much smaller than m. Hence, the photons are
emitted quasi-isotropically on the polar plane, while their
azimutal distribution follows a nontrivial law to be deter-
mined in brief. Still, the main trend of this angular
distribution can be anticipated when noting that the typical
value of momentum parallel to Es grows linearly with the
pulse length (hpki ¼ 0):

pk ∼ hp2
ki1=2 ≈

1

2
ffiffiffi
3

p eEsT: ð36Þ

As this largely exceeds p⊥ from Eq. (35), we find that, on
average, the angle between the momentum of the created
particles and the external field θ ∼ hp2⊥i1=2=hp2

ki1=2 ≪ 1.
Moreover, Eq. (36) provides evidence that the yielded
electrons and positrons are mostly ultrarelativistic because
eEsT=m ¼ 2πN=γ ≫ 1. Indeed, their average energy turns
out to be

hwp�i ≈
1

4
eEsT ð37Þ

with a standard deviation Δwp� ≈�hwp�i=
ffiffiffi
3

p
. When the

energy momentum balance linked to the recombination
process pμ

þþpμ
−¼ kμ1þkμ2 is considered, it turns out that—

on average—the outcoming photons are emitted back to
back with a mean energy hωk1i ≈ hωk2i ≈ hwp�i. With a
strong field strength Es ≈ 6.6 × 10−2Ecr and a pulse length
T ∼ 1 fs corresponding to N ≈ 2.1 × 105 for ω ¼ 1.7m
(γ ≈ 26), the mean photon energy is hωk1i ≈ 6.3 GeV.
Returning back to Eq. (34), the integrals which remain

there cannot be computed analytically. To approximate
them, we first develop the change of variables γk;� ¼
pk;�ω=ðeEsÞ and decompose them in sums over integrals
defined over regions with 2π-extensions,Z πN

γ m

−πN
γ m

dpk;�… ¼ eEs

ω

Z
πN

−πN
dγk;�…

¼ eEs

ω

X
m

Z ð2mþ1Þπ

ð2m−1Þπ
dγk;�…; ð38Þ

where m runs from mmin ¼ −bðN − 1Þ=2c to mmax ¼
bðN − 1Þ=2c with bxc referring to the integer value of x.
Observe that the main contribution of each individual
integration results from the region of γk;i ∈ ½ð2m−1Þπ;
ð2mþ1Þπ� for which the exponent isminimized. Following
our discussion in Sec. III, this takes place at γk;i ¼ 2mπ.
Hence, we expand each exponent up to the order ðγk;i −
2mπÞ2 and set γk;i ¼ 2mπ in each preexponent. Afterward,
γk;� are integrated out, and we obtain

d_ν
dφdθ sin θ

≈
α2π2

ðmωÞ2
_N 2Fðγ; θÞ; ð39Þ

where Eq. (22) has been inserted. Here, the functionFðγ; θÞ
encodes the angular distribution in the polar plane and reads

Fðγ; θÞ ¼
X
m;m0

Qm;m0

EmEm0 ½fmðθÞ þ fm0 ðθÞ�2

×

�
fmðθÞ
fm0 ðθÞ þ

fm0 ðθÞ
fmðθÞ þ

2½fmðθÞ þ fm0 ðθÞ�2
fmðθÞfm0 ðθÞQm;m0

−
½fmðθÞ þ fm0 ðθÞ�4

fmðθÞ2fm0 ðθÞ2Q2
m;m0

�
: ð40Þ

Other functions contained in the expression above are
given by

Qm;m0 ¼ 1þ2mπ

γ

2m0π
γ

þEmEm0 ;

fmðθÞ¼ Em−
2mπ

γ
cosθ;

fm0 ðθÞ¼ Em0 þ2m0π
γ

cosθ;

Em¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4π2m2

γ2

s
; Em0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4π2m02

γ2

s
: ð41Þ

An estimate for the number of emitted photons
ΔnγðtÞ ¼ Δνl3 in a volume l3 can be established from
Eq. (39) and reads

ΔnγðtÞ ≈
4α2π3

ðmωÞ2
_Nne−eþ

δt
T

Z
1

0

dxFðγ; xÞ; ð42Þ

where the change of variable x ¼ cos θ has been carried
out andZ

1

0

dxFðγ;xÞ¼1−
X

m;m0≠0

Qm;m0

EmEm0

�
2Gm;m0

EmþEm0

−
�
1þ 2

Qm;m0
þ 2

Q2
m;m0

� ln ½EmEm0
fm0 ð1Þ
fmð1Þ �

2πm0
γ Emþ 2πm

γ Em0

þ 1

Q2
m;m0

�
1

Em0fm0 ð1Þþ
1

Emfmð1Þ
��

:

ð43Þ

Here, the function Gm;m0 reads

Gm;m0 ¼
(
1 for m ¼ m0;

1
fmð1Þþfm0 ð1Þ for m ≠ m0:

ð44Þ

It is worth remarking that, to be consistent with our early-
time requirement [see below Eq. (29)], the relation
ΔnγðtÞ ≪ ne−eþ has to be satisfied. Observe that such a
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condition translates into δt ≪ τ, where the characteristic
timescale ruling the perturbative treatment is given by

τ ¼ T

�
4α2π3

ðmωÞ2
_N
Z

1

0

dxFðγ; xÞ
�−1

: ð45Þ

This expression can be interpreted as a relaxation time of an
electron (positron) till annihilation occurs. We point out that
analogous expressions are obtained when elastic scattering
processes are considered instead. However, as the differ-
ential cross sections linked to such phenomena are compa-
rable in magnitude with the one associated with the
annihilation process, the corresponding timescales should
not differ significantly from the one given above. Observe

that the _N −1 dependence exhibited in Eq. (45) indicates
explicitly that this timescale becomes shorter as the density
of pairs increases. Consequently, the enhancement supplied
by the assisted setup might not favor the direct detection of
the yielded electron-positron pairs. To have a notion about
plausible values of τ, we refer to the results shown in the left
panel of Fig. 5. For a field configuration characterized by
Es≈6.6×10−2Ecr,Ew ¼ 10−3Ecr, a pulse length T ∼ 1 fs—
corresponding to N ≈ 2.1 × 105 for ω¼1.7m—the com-
bined Keldysh parameter is γ ≈ 26,

R
1
0 dxFðγ; xÞ ≈ 5.5 ×

104 and _N ≈ 7.4 × 1016 fs−1 μm−3. Under such a circum-
stance, the relaxation time amounts to τ≈1.3 ns. This
number exceeds—to establish a comparison—the parapo-
sitronium lifetime (τ0 ≈ 0.12 ns) by an order of magnitude.
Alternative detection routes allowing us to exploit the

enhancement induced by the assisted Schwingermechanism

are desirable. Motivated by this demand, we put forward a
plausible experimental setup for verifying the dynamically
assisted Schwinger mechanism via the detection of photons
resulting from the recombination of yielded electron-
positron pairs. We propose a scenario in which the high-
density electron-positron plasma is generated between two
photon detectors, both placed perpendicular to the polari-
zation direction of the strong field (θ ¼ π=2). We suppose
both of them equidistant from the plasma region at a distance
L ≈ 2 × 102 cmwith their centers forming a right anglewith
respect to the propagation direction of the colliding pulses
(see Fig. 8). In addition, we will assume both detectors
characterized by a length scaleD ≈ 1 cm, so that the angular
openings on the polar and azimuthal planes are very small
(δφ, δθ ≈ 10−2 rad). With all these details in mind, we can
proceed—starting from Eq. (39) and taking into account
Eq. (45)—to estimate the amount of photons reaching a
detector due to the recombination after the field has been
switched off,

ndet ∼ne−eþ
βδφδθFðγ; x ¼ 0Þ
4π

R
1
0 dxFðγ; xÞ ; ð46Þ

where the parameter β ¼ δt=τ accounts for the smallness of
δt relative to τ [see Eq. (45)]. In order to satisfy safely the
early-time restriction, we take β ¼ 10−2; i.e., the measure-
ment time should be δt ≈ 10 ps. It is worth remarking that
for our reference parameters—see the paragraph that follows
Eq. (45)—the form factor attains the value Fðγ; x ¼ 0Þ≈
6.9 × 103. With these details in mind, we find that ndet ≈
7.4 × 108 photons should be detected. Notably, if the weak
field is reduced by 2 orders of magnitude while the
remaining parameters keep their values, the initial number
of pairs changes to ne−eþ ≈ 1.2 × 1012 (see red curve in
Fig. 5), and the number of photons to be detected ndet ≈
1.2 × 104 appears still viable experimentally.

VI. CONCLUSIONS

An analytical investigation of the assisted Schwinger
mechanism has been carried out starting from the low-
density approximation to the single-particle distribution
function. We have revealed fundamental aspects associated
with this process when a weak oscillating field mode is
superimposed onto a strong constant field background. It
has been shown that the particle spectrum is characterized
by tiny oscillations along the external field direction,
whereas perpendicular to it, the spectrum falls with the
growing of p⊥ significantly more slowly than in the case
where the production process is driven by the strong field
only. Once the field has been switched off, the mean-
squared values of the momentum depend nontrivially on
the external field parameters, and the quantity linked to the
parallel component to the field exceeds largely the one
associated with the perpendicular momentum. As a

FIG. 8. Schematic diagram for an experimental setup which
probes the possible realization of the dynamical assisted
Schwinger mechanism via the emission of high-energy photons
(in orange) coming out from electron-positron annihilations of
the residual plasma.
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consequence, most of the particles yielded at that time
move approximately parallel to the field direction.
Likewise, we have found that the created plasma is
composed mostly of ultrarelativistic particles and
antiparticles.
Both the single-particle distribution function and the

density rate of yielded pairs depend on the strong and weak
field strengths in a nonperturbative way. While the pair
production is predicted to increase significantly in a
dynamically assisted setup, the yielded electron-positron
plasma has a pronounced unstable nature. This feature
demanding to carry out experimental measurement in time
intervals significantly smaller than the plasma lifetime;
otherwise, the beneficial aspect conceded by the assisted
setup is lost. In connection, we have argued that—under the
early-time circumstance—the number of photons emitted
as a result of electron-positron recombinations could be
large enough to constitute an indirect signal of the
spontaneous production of pairs from the vacuum. Based
on this effect, a plausible experimental setup for their
observation has been put forward. The robustness of our
estimates for the number of photons to be detected supports
the viability of the proposed setup as a genuine channel for
verifying the Schwinger mechanism, provided strong field
strengths comparable to those to be reached at ELI and
XCELS lasers are exploited.
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APPENDIX A: SUM OF INTEGRALS OVER ck

This Appendix is devoted to determining the contribu-
tion due to the poles circumvented by the chosen integra-
tion path (see Fig. 1). Explicitly,

X
k

I
ck

dτ
1þ τ2

exp

�
2iϵ2⊥
eEs

Z
τ

0

dτ̃fðτ̃Þ
�
; ðA1Þ

where the function involved in the exponent is

fðτ̃Þ ¼ ð1þ τ̃2Þ1=2
1þ ε cosðγ⊥τ̃ − γkÞ

: ðA2Þ

Over each circle ck, we have τ ¼ τþk þ r=γ⊥eiφ with
3π=2 ≤ φ < −π=2, and r is an infinitesimal quantity
(r → 0). Consequently,

X
k

I
ck

…≈
ir
γ⊥

X
k

1

1þ τ2þk

Z
−π=2

3π=2
dφ

×exp

�
iφþ2iϵ2⊥

eEs

Z
τþkþ r

γ⊥e
iφ

0

dτ̃fðτ̃Þ
�
: ðA3Þ

In the following, we will show that the dependence on r of
the integral over φ guarantees that, at r → 0, the right-hand
side of Eq. (A3) vanishes. To this end, we will focus on
determining the leading-order dependence of the integral
involved in the exponent. While our exposition will center
on the sector in which Re τþk > 0, an extension to the
remaining case, i.e., Re τþk < 0, is straightforward.
The first step toward our aim is to deform appropriately

the integration contour of the integral involved in the
exponent [see Eq. (A3)]. However, this procedure depends
on the value of φ. Indeed, if π=2 < φ ≤ 3π=2 or
−π=2 < φ < arg τþk, the path can be chosen without
enclosing the pole τþk. Two plausible circuits, covering
the described situation, are shown Fig. 9 in dotted and
dot-dashed styles. Conversely, if arg τþk ≤ φ ≤ π=2, the
contour is chosen such that the pole is enclosed by the
trajectory. Observe that those cases in whichφ ¼ arg τþk or
φ ¼ π=2 demand surrounding the pole with a small arc
of radius r=γ⊥ (see Fig. 9). Obviously, the situation
described previously implies that the integral over φ has
to be split into three portions, each ofwhich covers one of the
described φ-sectors:

Z
−π=2

3π=2
dφ…¼ lim

η1;η2→0þ

�Z
π=2þη1

3π=2
dφ…

þ
Z

arg τþkþη2

π=2−η1
dφ…þ

Z
−π=2

arg τþk−η2
dφ…

�
: ðA4Þ

Let us consider the integration over the path enclosing
the pole via the arc (see Fig. 9). As a consequence of the
residue theorem (Re τþk > 0),

FIG. 9. Four plausible integration contours chosen to estimate
the behavior of the integral involved in the exponent of Eq. (A3)
as a function of r. Here, we have assumed Re τþk > 0. The
dotted path applies when the angle φ lies in the sector
ðπ=2; 3π=2�, whereas the trajectory in dot-dashed style is suitable
when −π=2 < φ < arg τþk. None of these contours encloses the
pole at τ̃ ¼ τþk. However, the solid curve in which the arc is not
present shows a plausible integration path applicable when
arg τþk < φ < π=2. Conversely, the trajectory including the
arc will apply if φ ¼ arg τþk. The corresponding integration
circuits linked to the case Re τþk < 0 result from reflections with
respect to the imaginary axis (Re τ̃ → −Re τ̃) and by taking a
counterclockwise sense.

SIGNATURES OF THE SCHWINGER MECHANISM ASSISTED BY … PHYS. REV. D 100, 116018 (2019)

116018-13



Z
τþkþ r

γ⊥e
iðπþarg τþkÞ

0

dτ̃fðτ̃Þ

¼ 2πiRes½τþk;fðτÞ� þ J arcðrÞ
þ J Re τðrÞ þ J verðrÞ;

J arcðrÞ ¼
ir
γ⊥

Z
πþarg τþk

arg τþk

dϕ eiϕf
�
τþk þ r

γ⊥
eiϕ

�
;

J Re τðrÞ ¼
Z

Re τþkþ r
γ⊥ cosðarg τþkÞ

0

dxfðxÞ;

J verðrÞ ¼ i
Z

Im τþkþ r
γ⊥ sinðarg τþkÞ

0

dy

× f
�
Re τþk þ r

γ⊥
cosðarg τþkÞ þ iy

�
: ðA5Þ

In those cases in which the integration contour avoids the
pole, the Cauchy theorem applies, and the integral of
interest, i.e., the left-hand side in the first line of Eq. (A5)
with π þ arg τþk → φ, is determined by two contributions
similar to J Re τðrÞ and J verðrÞ, with arg τþk → φ and φ
taking values within the respective sector [see below
Eq. (A3)]. Conversely, if the inclusion of the pole is required
without the necessity of a circumventing arc, the expression
for the integral involved in the exponent will coincide with
Eq. (A5) up to J arcðrÞ, provided the replacement π þ
arg τþk → φ in the first line of Eq. (A5) is carried out.
Likewise, onewill be forced to replace arg τþk → φ in both
J Re τðrÞ and J verðrÞ. Thus, the analysis of the expression
above allows us to infer the outcomes related to the diverseφ
values.
Both the residue of the function fðτ̃Þ at τþk as well as

the leading-order contribution linked to the tiny arc in
Fig. 9,

J arcðrÞ ≈r→0
−

π

γ⊥
ð1þ τ2þkÞ1=2; ðA6Þ

are independent of r. Regarding the behavior of the integral
J Re τðrÞ, i.e., the third contribution in the right-hand side
of Eq. (A5), here the oscillatory contribution present
in its integrand is always much smaller than unity. As a
consequence, one can ignore its effect by approaching
½1þ ε cosðγ⊥x − γkÞ�−1 ≈ 1, and the integral

lim
r→0

J Re τðrÞ ≈
1

2

�
Re τþk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Re τþk�2

q
þ sin−1ðRe τþkÞ

�
ðA7Þ

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Re τþk�2

p
≥ 0 becomes independent of r

as r → 0.
Now, we focus on the last integral J verðrÞ in Eq. (A5),

the calculation of which requires a somewhat elaborate
procedure, mainly because its dependence on Im τþk leads
to analyze the regimes Im τþk ≪ 1 and Im τþk ≫ 1 sep-
arately. As this is the only plausible contribution which may

provide a nontrivial dependence on r, we will replace in it
arg τþk by φ and consider φ taking values within the
integration region in Eq. (A3).

1. Case of strong enhancement: Im τ +k ≪ 1

Let us consider first the situation in which Im τþk ≪ 1.8

Because of this, the square root involved in the integrand
of J verðrÞ is approximately independent of y≡ Im τ̃:
ð1þ ½Re τþk þ iy�2Þ1=2 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Re τþk�2

p
. Indeed, when

the condition Im τþk ≪ 1 holds, one can exploit the fact
that y is much smaller than unity (1 ≫ y). Observe that this
also implies that argð1þ ½Re τþk þ iy�2Þ ≈ 0, for all
allowed values of Re τþk. Consequently,

J verðrÞ ≈ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Re τþk�2

q Z
Im τþkþ r

γ⊥ sinφ

0

dy

×
1

1 − ε coshðγ⊥y − ir cosφÞ : ðA8Þ

At this point, it turns out to be very convenient to perform
the change of variable s ¼ exp½γ⊥y�. The calculation of the
resulting integral is simplified once its integrand is decom-
posed into partial fractions. The described procedure leads
us to writeZ

Im τþkþ r
γ⊥ sinφ

0

dy… ∼r→0 −
1

γ⊥
ðln rþ iφÞ; ðA9Þ

where an unessential imaginary term independent of r and
φ has been omitted. Inserting Eq. (A9) into Eq. (A8), we
find that the essential contribution of the integral involved
in the exponent is

Z
τþkþ r

γ⊥e
iφ

0

dτ̃fðτ̃Þ ∼r→0 −
i
γ⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½Re τþk�2

q
ðln rþ iφÞ:

ðA10Þ

Correspondingly, the outer integration in Eq. (A3) [see also
Eq. (A4)] behaves asZ

−π=2

3π=2
dφ… ∼r→0r

2ϵ⊥
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½Re τþk�2

p
;

which guarantees that—in the regime particularized by
the strong enhancement (Im τþk ≪ 1)—the sum over the
circles eluding the poles gives no contribution to the single-
particle distribution function WTðpÞ, provided the appro-
priate limit r → 0 is taken.

2. Case of weak enhancement: Im τ +k ≫ 1

The pole always lies below the line CR and to the left of
Cþ [read also the discussion above Eq. (12)]. This provides

8Note that Im τþk ¼ γcr=γ⊥ is actually independent of k.
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the following condition for the real and imaginary parts of
the pole τþk:ffiffiffi

3
p

½Im τþk − 1� < Re τþk <
πN
γ⊥

;

Im τþk <
1ffiffiffi
3

p Re τþk þ 1 <
1ffiffiffi
3

p πN
γ⊥

: ðA11Þ

However, here, we will restrict ourselves to the case in
which Im τþk ≫ 1. As a consequence, Re τþk ≫ 1, and the
square root involved in the integrand of J verðrÞ [see
Eq. (A5)] behaves as ð1þ½Reτþkþ iy�2Þ1=2≈Reτþkþ iy
and

J verðrÞ≈ i
Z

Imτþkþ r
γ⊥ sinφ

0

dyðReτþkþ iyÞ
1− εcoshðγ⊥y− ir cosφÞ :

ðA12Þ

The part of the integration that contains Re τþk can be
calculated following the procedure described to determine
the integral in Eq. (A8). Taking into account Eq. (A9),

J verðrÞ ∼r→0−
i
γ⊥

Reτþkðln rþ iφÞ

−
1

γ2⊥

Z
eγcrþrsinφ

1

ds

�
lnðsÞ
s− sþ

−
lnðsÞ
s− s−

�
; ðA13Þ

where the change of variable s ¼ exp½γ⊥y� has been used.
Here, sþ ¼ 2

ε exp½ir cosφ� and s− ¼ ε
2
exp½ir cosφ�.

The main contribution to the first integral in Eq. (A13)
results from s ∼ sþ. Therefore, up to an unessential
imaginary term independent of r and φ, we find

1

γ2⊥

Z
eγcrþr sinφ

1

ds
lnðsÞ
s − sþ

≈
r→0

Im τþk

�
Im τþk þ 1

γ⊥
ðln rþ iφÞ

�
: ðA14Þ

Conversely, the integration variable linked to the last
integral in Eq. (A13) satisfies the condition s ≥ 1 ≫ s−.
Hence, by safely ignoring s− in the denominator, we end up
with

lim
r→0

1

γ2⊥

Z
eγcrþr sinφ

1

ds
lnðsÞ
s − s−

≈
1

2
½Im τþk�2: ðA15Þ

Combining the outcomes in Eq. (A14) and (A15) into
Eq. (A13), we obtain

J verðrÞ ∼r→0 −
1

γ⊥
½Im τþk þ iRe τþk� ln r

−
1

γ⊥
½Re τþk þ iIm τþk�φ: ðA16Þ

Inserting this result into Eq. (A5), it is straightforward to
verify that the outer integration in Eq. (A3) behaves asZ

−π=2

3π=2
dφ… ∼r→0r

2ϵ⊥
ω Re τþkðcosϑ − i sin ϑÞ ðA17Þ

with ϑ ¼ 2ϵ⊥ω−1 ln jrjIm τþk. Therefore, in the limit of
r → 0 and under the condition Im τþk ≫ 1, the sum over
the circles ck [see Eq. (A3)] provides no contribution to the
single-particle distribution function WTðpÞ, either.

APPENDIX B: NO CONTRIBUTION OVER C�
In this Appendix, we show that the integrals over the

vertical segments C� (see Fig. 1) give no contribution in the
limit N → ∞. Let us first denote

I� ¼
Z
C�

dτ
1þ τ2

exp

�
2iϵ2⊥
eEs

Z
τ

0

dτ̃fðτ̃Þ
�
: ðB1Þ

The function contained in the exponent can be found in
Eq. (A2). Along Cþ, the complex integration variable is
characterized by τ ¼ πN=γ⊥ þ iy. In contrast, over C− the
parametrization τ ¼ −πN=γ⊥ þ iy applies. Over the former
trajectory, the minimum and maximum values of y are
ymin ¼ 0 and ymax ¼ πN=ð ffiffiffi

3
p

γ⊥Þ þ 1. Conversely, over the
latter, these values exchange their roles. For a very large
value of N ≫ 1,

jI�j <
γ2⊥

π2N2

Z
ymax

0

dy exp

�
−

ϵ2⊥
2eEs

ImJ �

�
;

J � ≡ J
�
� πN

γ⊥
þ iy

�
¼

Z �πN
γ⊥þiy

0

dτ̃fðτ̃Þ: ðB2Þ

In the following, the integrals J � are evaluated by
modifying the corresponding paths. However, these defor-
mations depend upon whether the outer integration variable
y is smaller or greater than Im τþk. Because of this, it turns
out to be beneficial to introduce a positive parameter
y0 → 0þ and split the integral over y accordingly,

Z
ymax

0

dy… ¼ lim
y0→0þ

�Z
Im τþk−y0

0

dy…þ
Z

ymax

Im τþkþy0

dy…

�
:

ðB3Þ

Within the sector Im τþk þ y0 ≤ y ≤ ymax—covered by the
second integral in the right-hand side of Eq. (B3)—
the chosen integration circuit exhibited in Fig. 10 avoids
the poles at τþk withk ∈ Z [see Eq. (7)]. Conversely, if the
outer integration variable lies within 0 ≤ y ≤ τþk − y0, we
can integrate J �—inside the first contribution of the right-
hand side in Eq. (B3)—via a similar trajectory, with the
particularization that its vertical path ends at y ≤ τþk − y0,
returning to the origin afterward (dotted line in Fig. 10). As
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all poles are located above the dotted line, no circum-
vention of them is required in this case.
We will focus on the result coming from the path in

which the poles are eluded. However, we will extract
parallelly the outcomes linked to the contour in which
these circumventions are not necessary. The next step in our
analysis is the application of Cauchy’s theorem to the
problem under consideration. Correspondingly,

J � ¼
Z �πN

γ⊥

0

dxfðxÞ þ i
Z

y

0

dỹfð�πN=γ⊥ þ iỹÞ

þ
X
k

I
σk

dτ̃fðτ̃Þ: ðB4Þ

When 0 ≤ y ≤ τþk − y0, the expression for J � is only
given by the first line of this formula. We note that
the integral over the Re τ̃ axis is purely real as well as
the leading-order contribution of each integration over the
small circle σk (τ¼τþkþr=γ⊥eiχ with 3π=2 ≤ χ < −π=2):I

σk

dτ̃fðτ̃Þ ≈r→0 2π

γ⊥
ð1þ τ2þkÞ1=2: ðB5Þ

Therefore, neither
R�πN

γ⊥
0 dxfðxÞ nor the involved sum

contributes to ImJ �, which is precisely what we need
[see Eq. (B2)]. In the second integration, we can exploit the
condition πN=γ⊥ ≫ 1 to approximate the multivalued func-
tion ½1þ ðπN=γ⊥ � iyÞ2�1=2 ≈ πN=γ⊥ � iy. Consequently,

ImJ � ≈ Imi
Z

y

0

dỹfð�πN=γ⊥ þ iỹÞ

≈
N→∞ πN

γ⊥

Z
y

0

dỹ
1

1þ εð−1ÞN coshðγ⊥ỹÞ
: ðB6Þ

The integral involved in this expression belongs to the class
of integrals treated previously in Appendix A and can be
calculated straightforwardly. This leads us to write

ImJ � ≈
πN
γ2⊥

�
yγ⊥ − ln

����1þ ε

2
ð−1ÞNeγ⊥y

����
�
: ðB7Þ

With this expression at our disposal, the estimation of the
integral defined over the sector 0 ≤ y ≤ Im τþk − y0 [see
Eq. (B3)] can be carried out without much difficulty. At this
point, it is worth mentioning that its integrand has an
exponent of which the absolute value grows monotonically
with y (see Fig. 11). Hence, the main contribution toR τþk−y0
0 dy… results from those values y ≪ Im τþk − y0.
Accordingly, ImJ � ≈ πNy=γ⊥, and

lim
y0→0þ

Z
Im τþk−y0

0

dy… ≈
2eEs

ϵ2⊥
γ⊥
πN

�
1 −

�
ε

2

�eEs
2ω2

πN
�
: ðB8Þ

Contrary to the previous case, the integral defined over
Im τþk þ y0 ≤ y ≤ ymax depends on whether the number of
cycles is odd or even. In the former case, the absolute
value of the exponent decreases sharply with the increasing
of y toward the value ∼ϵ2⊥ImJ �=ð2eEsÞ with ImJ � ≈
πNγcr=γ2⊥. However, in the latter situation (N even), there
exists an almost unappreciable growing toward the same
value, as the integration variable y increases (see Fig. 11).
Hence, the area below both curves approaches

lim
y0→0þ

Z
ymax

Im τþkþy0

dy… ≈
�
ε

2

�eEs
2ω2

πN
�

πNffiffiffi
3

p
γ⊥

− Im τþk

�
: ðB9Þ

FIG. 10. Integration contours chosen to estimate the behavior of
J þ [see Eq. (B2)] in terms of the number of cycles N. While the
thick trajectory is suitable for y > Im τþk, the path in dotted style
is appropriate if y < Im τþk. The corresponding integration
circuits linked to J − result from reflections with respect to
the imaginary axis (Re τ̃ → −Re τ̃) and by taking a counterclock-
wise sense. Shortcuts joining each circumventing circle with the
real τ̃ axis have been omitted for simplicity. As in Fig. 1, they give
no contribution as both lie infinitesimally close together and have
opposite orientation.

FIG. 11. Behavior of the integral in Eq. (B6). The curves have
been obtained for ε ¼ 10−2 (dashed), ε ¼ 10−3 (solid), and ε ¼
10−4 (dotted). The vertical dashed line in olive depicts the value
γcr ≈ 5.3, the solid one corresponds to γcr ≈ 7.6, whereas γcr ≈ 9.9
is shown in dotted style. While the curves in black have been
obtained for an even number of cycles, those in darker cyan
follow for an odd value of N. Each curve manifests a monotonic
growth for 0 ≤ y ≤ γcr=γ⊥. For y > γcr=γ⊥, the curves in darker
cyan—corresponding to an odd N—fall very fast toward the
respective values of γcr. In contrast, each curve in black tends
smoothly to the due γcr parameter.
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Observe that the insertion of Eqs. (B8) and (B9) into
Eq. (B3) ensures the convergence to zero of the right-hand
side of the first line in Eq. (B2) as N → ∞. Therefore, no

contribution to the single-particle distribution function
WTðpÞ results from the integrals over C�. We remark that
this statement applies independently of the value of Im τþk.

[1] F. Sauter, Über das Verhalten eines Elektrons im homogenen
elektrischen Feld nach der relativistischen Theorie Diracs,
Z. Phys. 69, 742 (1931).

[2] W. Heisenberg and H. Euler, Folgerungen aus der dirac-
schen theorie des positrons, Z. Phys. 98, 714 (1936).

[3] J. S. Schwinger, On gauge invariance and vacuum polari-
zation, Phys. Rev. 82, 664 (1951).

[4] F. Gelis and N. Tanji, Schwinger mechanism revisited, Prog.
Part. Nucl. Phys. 87, 1 (2016).

[5] http://www.eli-laser.eu.
[6] https://xcels.iapras.ru/.
[7] F. Hebenstreit, R. Alkofer, G. Dunne, and H. Gies, Mo-

mentum Signatures for Schwinger Pair Production in Short
Laser Pulses with Sub-Cycle Structure, Phys. Rev. Lett. 102,
150404 (2009).

[8] S. S. Bulanov, V. D. Mur, N. V. Narozhny, J. Nees, and V. S.
Popov, Multiple Colliding Electromagnetic Pulses: A Way
to Lower the Threshold of eþe Pair Production from
Vacuum, Phys. Rev. Lett. 104, 220404 (2010).

[9] D. B. Blaschke, B. Kämpfer, A. D. Panferov, A. V.
Prozorkevich, and S. A. Smolyansky, Influence of laser
pulse parameters on the properties of e−eþ plasma created
from vacuum, Contrib. Plasma Phys. 53, 165 (2013).

[10] C. Kohlfürst, M. Mitter, G. vonWinckel, F. Hebenstreit, and
R. Alkofer, Optimizing the pulse shape for Schwinger pair
production, Phys. Rev. D 88, 045028 (2013).

[11] A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim,
M. Marklund, G. Mourou, and A. Sergeev, Probing Non-
perturbative QED with Optimally Focused Laser Pulses,
Phys. Rev. Lett. 111, 060404 (2013).

[12] F. Hebenstreit and F. Fillion-Gourdeau, Optimization of
Schwinger pair production in colliding laser pulses, Phys.
Lett. B 739, 189 (2014).

[13] C. Banerjee, M. P. Singh, and A. M. Fedotov, Phase control
of Schwinger pair production by colliding laser pulses,
Phys. Rev. A 98, 032121 (2018).

[14] R. Schützhold, H. Gies, and G. Dunne, Dynamically
Assisted Schwinger Mechanism, Phys. Rev. Lett. 101,
130404 (2008).

[15] G. Dunne, H. Gies, and R. Schützhold, Catalysis of
Schwinger vacuum pair production, Phys. Rev. D 80,
111301 (2009).

[16] D. L. Burke et al., Positron Production in Multiphoton
Light-by-Light Scattering, Phys. Rev. Lett. 79, 1626 (1997).

[17] A. Di Piazza, E. Lötstedt, A. I. Milstein, and C. H. Keitel,
Barrier Control in Tunneling eþ–e− Photoproduction, Phys.
Rev. Lett. 103, 170403 (2009).

[18] M. J. A. Jansen and C. Müller, Strongly enhanced pair
production in combined high- and low-frequency laser
fields, Phys. Rev. A 88, 052125 (2013).

[19] S. Augustin and C. Müller, Nonperturbative Bethe-Heitler
pair creation in combined high- and low-frequency laser
fields, Phys. Lett. B 737, 114 (2014).

[20] S. M. Schmidt, D. Blaschke, G. Röpke, S. A. Smolyansky,
and A. V. Prozorkevich, A quantum kinectic equation for
particle production in the Schwinger mechanism, Int. J.
Mod. Phys. E 07, 709 (1998).

[21] Y. Kluger, E. Mottola, and J. M. Eisenberg, Quantum
Vlasov equation and its Markov limit, Phys. Rev. D 58,
125015 (1998).

[22] S. M. Schmidt, D. Blaschke, G. Röpke, A. V. Prozorkevich,
S. A. Smolyansky, and V. D. Toneev, Non-Markovian ef-
fects in strong-field pair creation, Phys. Rev. D 59, 094005
(1999).

[23] R. Alkofer, M. B. Hecht, C. D. Roberts, S. M. Schmidt, and
D. V. Vinnik, Pair Creation and an X-ray Free Electron
Laser, Phys. Rev. Lett. 87, 193902 (2001).

[24] A. Monin and M. B. Voloshin, Semiclassical calculation of
photon-stimulated Schwinger pair creation, Phys. Rev. D
81, 025001 (2010).

[25] M. Orthaber, F. Hebenstreit, and R. Alkofer, Momentum
spectra for dynamically assisted Schwinger pair production,
Phys. Lett. B 698, 80 (2011).

[26] M. Jiang, W. Su, Z. Q. Lv, X. Lu, Y. J. Li, R. Grobe, and Q.
Su, Pair creation enhancement due to combined external
fields, Phys. Rev. A 85, 033408 (2012).

[27] I. Akal, S. Villalba-Chávez, and C. Müller, Electron-
positron pair production in a bifrequent oscillating electric
field, Phys. Rev. D 90, 113004 (2014).

[28] P. Copinger and K. Fukushima, Spatially Assisted
Schwinger Mechanism and Magnetic Catalysis, Phys.
Rev. Lett. 117, 081603 (2016); Erratum, Phys. Rev. Lett.
118, 099903(E) (2017).

[29] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Dynami-
cally assisted Schwinger effect beyond the spatially-
uniform-field approximation, Phys. Rev. D 97, 116001
(2018).

[30] I. Sitiwaldi and B. S. Xie, Pair production by three fields
dynamically assisted Schwinger process, Phys. Lett. B 777,
406 (2018).

[31] I. Taya, Franz-Keldysh effect in strong-field QED, Phys.
Rev. D 99, 056006 (2019).

[32] K. Krajewska, W. Gac, M. Twardy, and J. Z. Kamiński,
Difraction at a time grating in the dynamical sauter-
schwinger process, J. Phys. 1206, 012018 (2019).

[33] C. Fey and R. Schützhold, Momentum dependence in the
dynamically assisted Sauter-Schwinger effect, Phys. Rev. D
85, 025004 (2012).

[34] A. Otto, D. Seipt, D. Blaschke, B. Kämpfer, and S. A.
Smolyansky, Lifting shell structures in the dynamically

SIGNATURES OF THE SCHWINGER MECHANISM ASSISTED BY … PHYS. REV. D 100, 116018 (2019)

116018-17

https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/j.ppnp.2015.11.001
https://doi.org/10.1016/j.ppnp.2015.11.001
http://www.eli-laser.eu
http://www.eli-laser.eu
http://www.eli-laser.eu
https://xcels.iapras.ru/
https://xcels.iapras.ru/
https://xcels.iapras.ru/
https://doi.org/10.1103/PhysRevLett.102.150404
https://doi.org/10.1103/PhysRevLett.102.150404
https://doi.org/10.1103/PhysRevLett.104.220404
https://doi.org/10.1002/ctpp.201310029
https://doi.org/10.1103/PhysRevD.88.045028
https://doi.org/10.1103/PhysRevLett.111.060404
https://doi.org/10.1016/j.physletb.2014.10.056
https://doi.org/10.1016/j.physletb.2014.10.056
https://doi.org/10.1103/PhysRevA.98.032121
https://doi.org/10.1103/PhysRevLett.101.130404
https://doi.org/10.1103/PhysRevLett.101.130404
https://doi.org/10.1103/PhysRevD.80.111301
https://doi.org/10.1103/PhysRevD.80.111301
https://doi.org/10.1103/PhysRevLett.79.1626
https://doi.org/10.1103/PhysRevLett.103.170403
https://doi.org/10.1103/PhysRevLett.103.170403
https://doi.org/10.1103/PhysRevA.88.052125
https://doi.org/10.1016/j.physletb.2014.08.042
https://doi.org/10.1142/S0218301398000403
https://doi.org/10.1142/S0218301398000403
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1103/PhysRevD.59.094005
https://doi.org/10.1103/PhysRevD.59.094005
https://doi.org/10.1103/PhysRevLett.87.193902
https://doi.org/10.1103/PhysRevD.81.025001
https://doi.org/10.1103/PhysRevD.81.025001
https://doi.org/10.1016/j.physletb.2011.02.053
https://doi.org/10.1103/PhysRevA.85.033408
https://doi.org/10.1103/PhysRevD.90.113004
https://doi.org/10.1103/PhysRevLett.117.081603
https://doi.org/10.1103/PhysRevLett.117.081603
https://doi.org/10.1103/PhysRevLett.118.099903
https://doi.org/10.1103/PhysRevLett.118.099903
https://doi.org/10.1103/PhysRevD.97.116001
https://doi.org/10.1103/PhysRevD.97.116001
https://doi.org/10.1016/j.physletb.2017.12.060
https://doi.org/10.1016/j.physletb.2017.12.060
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1088/1742-6596/1206/1/012018
https://doi.org/10.1103/PhysRevD.85.025004
https://doi.org/10.1103/PhysRevD.85.025004


assisted Schwinger effect in periodic fields, Phys. Lett. B
740, 335 (2015).

[35] A. Otto, D. Seipt, D. Blaschke, S. A. Smolyansky, and B.
Kämpfer, Dynamical Schwinger process in a bifrequent
electric field of finite duration: survey on amplification,
Phys. Rev. D 91, 105018 (2015).

[36] M. F. Linder, C. Schneider, J. Sicking, N. Szpak, and R.
Schützhold, Pulse shape dependence in the dynamically
assisted Sauter-Schwinger effect, Phys. Rev. D 92, 085009
(2015).

[37] A. D. Panferov, S. A. Smolyansky, A. Otto, B. Kämpfer,
D. B. Blaschke, and Ł. Juchnowski, Assisted dynamical
Schwinger effect: Pair production in a pulsed bifrequent
field, Eur. Phys. J. D 70, 56 (2016).

[38] C. Schneider and R. Schützhold, Dynamically assisted
Sauter-Schwinger effect in inhomogeneous electric fields,
J. High Energy Phys. 02 (2016) 164.

[39] C. Schneider and R. Schützhold, Prefactor in the dynami-
cally assisted Sauter-Schwinger effect, Phys. Rev. D 94,
085015 (2016).

[40] G. Torgrimsson, J. Oertel, and R. Schützhold, Doubly
assisted Sauter-Schwinger effect, Phys. Rev. D 94, 065035
(2016).

[41] G. Torgrimsson, C. Schneider, and R. Schützhold, Sauter-
Schwinger pair creation dynamically assisted by a plane
wave, Phys. Rev. D 97, 096004 (2018).

[42] A. Otto, H. Oppitz, and B. Kämpfer, Assisted vacuum decay
by time dependent electric fields, Eur. Phys. J. A 54, 23
(2018).

[43] G. Torgrimsson, Thermally versus dynamically assisted
Schwinger pair production, Phys. Rev. D 99, 096007 (2019).

[44] X. G. Huang and H. Taya, Spin-dependent dynamically
assisted Schwinger mechanism, Phys. Rev. D 100, 016013
(2019).

[45] G. Torgrimsson, C. Schneider, J. Oertel, and R. Schützhold,
Dynamically assisted Sauter-Schwinger effect—non-
perturbative versus perturbative aspects, J. High Energy
Phys. 06 (2017) 043.

[46] G. Torgrimsson, Perturbative methods for assisted non-
perturbative pair production, Phys. Rev. D 99, 096002
(2019).

[47] D. Blaschke, A. V. Prozorkevich, C. D. Roberts, S. M.
Schmidt, and S. A. Smolyansky, Pair Production and
Optical Lasers, Phys. Rev. Lett. 96, 140402 (2006).

[48] G. Gregori et al., A proposal for testing subcritical vacuum
pair production with high power lasers, High Energy
Density Phys. 6, 166 (2010).

[49] D. B. Blaschke, G. Ropke, S. M. Schmidt, S. A. Smolyansky,
and A. V. Tarakanov, Kinetics of photon radiation off an
e−eþ plasma created from the vacuum in a strong laser field,
Contrib. Plasma Phys. 51, 451 (2011).

[50] S. A. Smolyansky, D. B. Blaschke, A. V. Chertilin, G.
Roepke, and A. V. Tarakanov, Role of vacuum polarization
for the annihilation channel in a strong laser field,
arXiv:1012.0559.

[51] D. B. Blaschke, V. V. Dmitriev, G. Ropke, and S. A.
Smolyansky, BBGKY kinetic approach for an e−eþγ
plasma created from the vacuum in a strong laser-generated
electric field: The one-photon annihilation channel, Phys.
Rev. D 84, 085028 (2011).

[52] F. Karbstein and R. Shaisultanov, Stimulated photon
emission from the vacuum, Phys. Rev. D 91, 113002
(2015).

[53] H. Gies, F. Karbstein, and C. Kohlfürst, All-optical sig-
natures of Strong-Field QED in the vacuum emission
picture, Phys. Rev. D 97, 036022 (2018).

[54] F. Karbstein, A. Blinne, H. Gies, and M. Zepf, Boosting
Quantum Vacuum Signatures by Coherent Harmonic
Focusing, Phys. Rev. Lett. 123, 091802 (2019).

[55] A. Blinne, H. Gies, F. Karbstein, C. Kohlfürst, and M.
Zepf, All-optical signatures of quantum vacuum non-
linearities in generic laser fields, Phys. Rev. D 99, 016006
(2019).

[56] R. Ruffini, L. Vitagliano, and S. S. Xue, On plasma
oscillations in strong electric fields, Phys. Lett. B 559, 12
(2003).

[57] B. Henrich, K. Z. Hatsagortsyan, and C. H. Keitel, Posi-
tronium in Intense Laser Fields, Phys. Rev. Lett. 93, 013601
(2004).

[58] A. Ilderton, P. Johansson, and M. Marklund, Pair annihi-
lation in laser pulses: Optical versus x-ray free-electron laser
regimes, Phys. Rev. A 84, 032119 (2011).

[59] A. I. Voroshilo, S. P. Roshchupkin, and V. N. Nedoreshta,
Resonant two-photon annihilation of an electron-positron
pair in a pulsed electromagnetic wave, Phys. Rev. A 94,
032128 (2016).

[60] M. G. Mustafa and B. Kämpfer, Gamma flashes from
relativistic electron-positron plasma droplets, Phys. Rev.
A 79, 020103 (2009).

[61] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Photon
emission in strong fields beyond the locally-constant field
approximation, Phys. Rev. D 100, 116003 (2019).

[62] D. M. Gitman, Processes of arbitrary order in quantum
electrodynamics with a pair-creating external field, J. Phys.
A 10, 2007 (1977).

[63] E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman, Quan-
tum Electrodynamics with Unstable Vacuum (Springer-
Verlag, Berlin, 1991).

[64] C. K. Dumlu, Quantum kinetic approach and the scattering
approach to vacuum pair production, Phys. Rev. D 79,
065027 (2009).

[65] C. K. Dumlu and G. V. Dunne, Interference effects in
Schwinger vacuum pair production for time-dependent laser
pulses, Phys. Rev. D 83, 065028 (2011).

[66] F. Hebenstreit, R. Alkofer, and H. Gies, Schwinger pair
production in space- and time-dependent electric fields:
Relating the Wigner formalism to quantum kinetic theory,
Phys. Rev. D 82, 105026 (2010).

[67] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[68] S. P. Kim and D. N. Page, Improved approximation for
fermion pair production in inhomogeneous electric field,
Phys. Rev. D 75, 045013 (2007).

[69] K. Krajewska and J. Z. Kamiński, Threshold effects in
electron-positron pair creation from the vacuum: Stabiliza-
tion and longitudinal versus transverse momentum sharing,
Phys. Rev. A 100, 012104 (2019).

[70] I. Akal and G. G. Moortgat-Pick, Euclidean mirrors:
Enhanced vacuum decay from reflected instantons, J. Phys.
G 45, 055007 (2018).

SELYM VILLALBA-CHÁVEZ and CARSTEN MÜLLER PHYS. REV. D 100, 116018 (2019)

116018-18

https://doi.org/10.1016/j.physletb.2014.12.010
https://doi.org/10.1016/j.physletb.2014.12.010
https://doi.org/10.1103/PhysRevD.91.105018
https://doi.org/10.1103/PhysRevD.92.085009
https://doi.org/10.1103/PhysRevD.92.085009
https://doi.org/10.1140/epjd/e2016-60517-y
https://doi.org/10.1007/JHEP02(2016)164
https://doi.org/10.1103/PhysRevD.94.085015
https://doi.org/10.1103/PhysRevD.94.085015
https://doi.org/10.1103/PhysRevD.94.065035
https://doi.org/10.1103/PhysRevD.94.065035
https://doi.org/10.1103/PhysRevD.97.096004
https://doi.org/10.1140/epja/i2018-12473-x
https://doi.org/10.1140/epja/i2018-12473-x
https://doi.org/10.1103/PhysRevD.99.096007
https://doi.org/10.1103/PhysRevD.100.016013
https://doi.org/10.1103/PhysRevD.100.016013
https://doi.org/10.1007/JHEP06(2017)043
https://doi.org/10.1007/JHEP06(2017)043
https://doi.org/10.1103/PhysRevD.99.096002
https://doi.org/10.1103/PhysRevD.99.096002
https://doi.org/10.1103/PhysRevLett.96.140402
https://doi.org/10.1016/j.hedp.2009.11.001
https://doi.org/10.1016/j.hedp.2009.11.001
https://doi.org/10.1002/ctpp.201110016
https://arXiv.org/abs/1012.0559
https://doi.org/10.1103/PhysRevD.84.085028
https://doi.org/10.1103/PhysRevD.84.085028
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.97.036022
https://doi.org/10.1103/PhysRevLett.123.091802
https://doi.org/10.1103/PhysRevD.99.016006
https://doi.org/10.1103/PhysRevD.99.016006
https://doi.org/10.1016/S0370-2693(03)00299-5
https://doi.org/10.1016/S0370-2693(03)00299-5
https://doi.org/10.1103/PhysRevLett.93.013601
https://doi.org/10.1103/PhysRevLett.93.013601
https://doi.org/10.1103/PhysRevA.84.032119
https://doi.org/10.1103/PhysRevA.94.032128
https://doi.org/10.1103/PhysRevA.94.032128
https://doi.org/10.1103/PhysRevA.79.020103
https://doi.org/10.1103/PhysRevA.79.020103
https://doi.org/10.1103/PhysRevD.100.116003
https://doi.org/10.1088/0305-4470/10/11/026
https://doi.org/10.1088/0305-4470/10/11/026
https://doi.org/10.1103/PhysRevD.79.065027
https://doi.org/10.1103/PhysRevD.79.065027
https://doi.org/10.1103/PhysRevD.83.065028
https://doi.org/10.1103/PhysRevD.82.105026
https://doi.org/10.1103/PhysRevD.75.045013
https://doi.org/10.1103/PhysRevA.100.012104
https://doi.org/10.1088/1361-6471/aab5c4
https://doi.org/10.1088/1361-6471/aab5c4


[71] M. J. Ablowitz and A. S. Fokas, Complex Variables In-
troduction and Applications, 2nd ed. (Cambridge University
Press, New York, 2003).

[72] E. Brezin and C. Itzykson, Pair production in vacuum by
alternating field, Phys. Rev. D 2, 1191 (1970).

[73] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products, 7th ed. (Elsevier, San Diego, 2007).

[74] F. W. J. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark,
NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, England, 2010).

[75] V. S. Popov, Resonance pair production in strong electric
fields, Pis’ma Zh. Exp. Theor. Fiz. 18, 435 (1973) [JETP
Lett. 18, 255 (1973)].

[76] A. Ringwald, Pair production from vacuum at the focus
of an X-ray free electron laser, Phys. Lett. B 510, 107
(2001).

[77] V. S. Popov, The Schwinger effect and possibilities for its
observation using optical and X-ray lasers, Sov. Phys. JETP
94, 1057 (2002).

[78] M. Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan,
and C. H. Keitel, Pair Production in Laser Fields Oscil-
lating in Space and Time, Phys. Rev. Lett. 102, 080402
(2009).

[79] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Momen-
tum distribution of particles created in space-time-dependent
colliding laser pulses, Phys. Rev. D 96, 076006 (2017).

[80] Q. Z. Lv, S. Dong, Y. T. Li, Z. M. Sheng, Q. Su, and
R. Grobe, Role of the spatial inhomogeneity on the
laser-induced vacuum decay, Phys. Rev. A 97, 022515
(2018).

[81] W. Greiner and J. Reinhart, Quantum Electrodynamics,
3rd ed. (Springer, Heidelberg, 2003).

SIGNATURES OF THE SCHWINGER MECHANISM ASSISTED BY … PHYS. REV. D 100, 116018 (2019)

116018-19

https://doi.org/10.1103/PhysRevD.2.1191
https://doi.org/10.1016/S0370-2693(01)00496-8
https://doi.org/10.1016/S0370-2693(01)00496-8
https://doi.org/10.1134/1.1493156
https://doi.org/10.1134/1.1493156
https://doi.org/10.1103/PhysRevLett.102.080402
https://doi.org/10.1103/PhysRevLett.102.080402
https://doi.org/10.1103/PhysRevD.96.076006
https://doi.org/10.1103/PhysRevA.97.022515
https://doi.org/10.1103/PhysRevA.97.022515

