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In this paper, we give formal results of Schwinger pair production correction in thermal systems with
external background field by using the evolution operator method of thermofield dynamics, in which
especially tree-level correction of thermal photons is considered, within the approach of linear response to
an effective mass shift. We consider initial systems in two types of vacuums as zero temperature and
thermal vacuum, respectively, with the correction of thermal photons included or not. For an example, we
give results of these corrections to pair production for a constant external background electric field.
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I. INTRODUCTION

In an early work of Schwinger, it is shown that a very
strong constant electric field decays to real charged
pairs [1]. The produced charged pairs are observable but
not observed directly yet for the absence of strong electric
field near the critical field strength Ec ¼ m2

ec3=eℏ ¼ 1.3 ×
1016 V=cm in laboratories. Recently, a series of papers
showed that direct tests of vacuum decay are planned in the
near future [2–4]. Besides, some calculations indicate
thermal enhancement of pair production [5–10], and it is
similar to dynamically assisted Schwinger pair production
[11]; consequently, an experiment on thermal assisted pair
production is proposed [12].
The thermal gauge field theories have been constructed

and used in quantum field-theoretical phenomena [13–17]
and mainly summarized in imaginary- [18] or real-time
[19] form. For thermal correction to Schwinger pair
production, various methods obtain identical results at
zero temperature [20] but have distinct results at finite
temperature for thermal pair production studied in different
mechanisms. Early discussion [21–23] combined with
Schwinger’s approach proved that there is no thermal
contribution to the imaginary part of an effective one-loop
action. But recent papers using the worldline instants
technique, in which charged particles absorb thermal
photons to reach maximum decay at a specific temperature

[5–10], prove that the thermal effect enhances pair pro-
duction. These also indicate that there is a temperature
threshold Tc ¼ qE=2πm [7] and discrete resonant peaks
T� ¼ nqE=2πm [9] in a constant electric field E, where q
andm are charge and mass. Moreover, Kim and Lee’s work
[24] using the operator method and Gavrilov et al.’s works
[25,26] using the density matrix method show that there are
thermal corrections in thermal QED pair production. Here,
we would like to emphasize the following three points.
First, the Schwinger pair production is a nonequilibrium
process, particularly when the field strength is greater than
temperature. Second, in imaginary-time form, the asymp-
totic structure of charged particles is changed by inserting
the thermal conditions in the Lagrangian, and the redefini-
tion of asymptotic statesmay cause a counting problem [27].
Last, the relation of the decay rate, effective Lagrangian,
and pair production number ΓðAÞ¼2ImLeffðAÞ¼
�P

k lnð1�N kÞ [1] changes at finite temperature in real-
time form [28]. Therefore, at finite temperature, the imagi-
nary part of effective Lagrangian may not be equal to the
measured pair production rate. Furthermore, in general
thermal QED systems, the thermal photons are present
and usually are considered in loop corrections but ignored
in tree-level calculations. We notice that they also influence
the structure of vacuum, consequently affecting the result of
pair production.
Therefore, to obtain a measurable pair production rate at

finite temperature, and to make a distinction among thermal
charged particles, thermal photons, and external electro-
magnetic fields, we use the operator method of thermofield
dynamics (TFD), adding an effective mass shift approach.
The core of our paper is to combine Bogoliubov trans-
formation, which depends on the solution of the Klein-
Gordon equation or Dirac equation under external fields
[24]; thermal transformation, which depends on the choice
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of inequivalent thermal vacuums; and effective mass
corrections, which concern the effect of thermal photons.
Our approaches adopt almost-independent approximation
for particles; consequently, all interactions among charged
particles are ignored, and the single-particle equations have
the same accuracy with the one-loop effective Lagrangian
[24], and the high-order corrections are negligible [29]. In
Dirac vacuum, a negative energy (frequency) electron
absorbs photons to become electrons, and its in and out
states depend on background fields, which are assumed
to consists of an external space-time dependent field,
Aex
μ ðxÞ, and temperature-dependent field, Aγ

μðTγÞ, so that
Aμ ¼ Aex

μ ðxÞ þ Aγ
μðTγÞ. Assuming that thermal fields are

turned off when t → ∞ (before measurement) and employ-
ing semiclassical mass shift m�2 ¼ m2 − q2hAγ;μAγ

μi to
reflect the corrections of thermal photon fields, we find
that Tγ appears in the exponent, which decreases the
threshold of tunneling so that it enhances the rate of pair
production.
The paper is organized as follows. In Sec. II, we revisit

the pair production in vacuum and then consider it in
thermal charged particles, thermal photons, and their
mixture. We will show their similar results only with a
change in thermal photons and the mixture when temper-
ature is small Tγ ≪ m. In Sec. III, we apply the method to a
constant electric field and give the integral form and low-
temperature polynomial form. In Sec. IV, we summarize
our results and point out future directions. We use the
natural units in which c ¼ ℏ ¼ kB ¼ ε0 ¼ 1. The inverse
of temperature is denoted as β ¼ 1=T. The charge and the
mass of boson and fermion have unified marks as q and m.

II. QED PAIR PRODUCTION IN THERMAL
SYSTEMS

This method is based on motion equation, and it is
convenient to take the Dirac equation and Klein-Gordon
equation into the form

�
ð∂μ− iqAμÞ2þm2þ2q

�ðBþ iEÞ ·σs
ðB− iEÞ ·σs

��

×ϕs¼ 0; ð1Þ

where B and E are magnetic and electric fields and σs is
half of Pauli matrix for a fermion and zero matrix for a
boson. In this equation, the difference depends on their
spin, where spin s ¼ �1=2 for a spinor QED and spin s ¼
0 for a scalar QED.

A. QED pair production at zero temperature

The annihilation operator of incoming state ϕðþÞ
k;in is

akðtin ¼ −∞Þ for the particle and bkðtin ¼ −∞Þ for the

antiparticle state ϕð−Þ
k;in, and similarly the annihilation

operators of outgoing states ϕðþÞ
k;out and ϕð−Þ

k;out are defined

by akðtout ¼ þ∞Þ and bkðtout ¼ þ∞Þ. The subscript k
denotes (k; s), including momentum and spin, and the
superscript s(þ) and (−) distinguish the positive energy and
negative energy states. The incoming states and outgoing
states depend on the gauge potential AðxÞ that determines
the asymptotic solutions of Eq. (1).
The in-vacuum and out-vacuum j0; ini and j0; outi are

defined in the particle number representation as

j0; ini ¼
Y
k

⊗ j0k; ini ð2Þ

and

j0; outi ¼
Y
k

UkðAexÞj0; ini ¼ UðAexÞj0; ini: ð3Þ

The UðAexÞ is an evolution operator and satisfies

ak;out ¼ UkðAexÞak;inUþ
k ðAexÞ: ð4Þ

The outgoing operators and ingoing operators are related
through the Bogoliubov transformation

ak;out ¼
Z

d3k0

2Ekð2πÞ3
½hϕðþÞ

k;outjϕðþÞ
k0;iniak0;in

þ hϕðþÞ
k;outjϕð−Þ

k0;inibþk0;in�;

bþk;out ¼
Z

d3k0

2Ekð2πÞ3
½hϕð−Þ

k;outjϕðþÞ
k0;iniak0;in

þ hϕð−Þ
k;outjϕð−Þ

k0;inibþk0;in�: ð5Þ

The four projections of the in basis and out basis are
Bogoliubov coefficients that can be solved numerically by
solving Eq. (1) in an iterative algorithm with fast Fourier
transform [30,31] for arbitrary fields. When Eq. (1) has an
analytical solution in a certain field, Eq. (5) has a compact
form,

�ak;out
bþk;out

�
¼

�
μk ν�k
ηνk μ�k

��ak;in
bþk;in

�
; ð6Þ

where either η ¼ −1 for bosons or η ¼ 1 for fermions, and
the coefficients have the general form

μk ¼ hϕðþÞ
k;outjϕðþÞ

k;ini; ν�k ¼ hϕðþÞ
k;outjϕð−Þ

k;ini: ð7Þ

These Bogoliubov coefficients satisfy the relation

jμkj2 þ ηjνkj2 ¼ 1: ð8Þ

Combining the transformation relation (6) and number
operator aþinain leads to the number of produced pairs with
k momentum [32]:
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N k ¼ h0; outjaþk;inak;inj0; outi ¼ jνkj2: ð9Þ

Finally, the total number of produced pairs is

N ¼
Z

dk
ð2πÞ3 jνkj

2: ð10Þ

B. QED pair production in thermal charged particles

In thermal QED systems, real charged particles condense
when spontaneous vacuum breaking occurs, even under an
external current. Here, virtual particles are ignored for we
only consider one loop. Systems are assumed to be the ideal
canonical ensemble, in which the chemical potential is
ignored. The thermal vacuum is defined as [33,34]

j0; βq; ini ¼
X
k

X
nk

Z−1=2
in e−βqnkεk=2jnk; ñk; ini; ð11Þ

where nk and ñk are the numbers of particles correspond-
ing to ak;in and ãk;in, respectively, and satisfy nk ¼ ñk. The
thermal vacuum as a thermal rotation of the in-vacuum in
which UðθÞj0; ini ¼ j0; βq; ini, where

UðθÞ ¼ e−
P

k
θkðβqÞðc̃k;inck;in−cþk;inc̃þk;inÞ: ð12Þ

The relation between thermalized incoming particles and
original incoming particles is

�ck;inðθÞ
c̃þk;inðθÞ

�
¼
�

cosðhÞθk −sinðhÞθk
ηsinðhÞθk cosðhÞθk

��ck;in
c̃þk;in

�
; ð13Þ

where the fermion picks trigonometric function sin θ= cos θ
and the boson picks hyperbolic function sinh θ= cosh θ.
These are represented as

sinðhÞθk ¼
e−βqεk=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þηe−βqεk

p ; cosðhÞθk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þηe−βqεk
p :

ð14Þ

Note that the thermal and nonthermal annihilation operators
acting on the thermal and in vacuums, respectively, must
satisfy

ck;inðθÞj0; βq; ini ¼ c̃k;inðθÞj0; βq; ini ¼ 0;

ckj0; ini ¼ c̃kj0; ini ¼ 0: ð15Þ

Since all operators of dynamical observables consist of
only nontilde operators, the number operator is just cþc.
Now, we construct a doubling thermal vacuum,

j0; 0; βq; ini ¼
X
k

X
nk

X
mk

δnk;mk
Z−1=2
in e−βqðnkþmkÞεk=2

× jnk; ñk; ini ⊕ jmk; m̃k; ini; ð16Þ

where mk is the number of antiparticles corresponding to
bk;in and δnk;mk

presents charge conservation in every pure
state. We denote particles with a and antiparticles with b,
where ã and b̃ are corresponding tilde particles. Because
Eq. (15) shows that a tilde particle is produced when a
particle annihilates in thermal vacuum, the relation between
tilde annihilation operators ã and b̃ has inverse results
compared with Eq. (6):�

b̃k;out
ãþk;out

�
¼

�
μk ν�k
ηνk μ�k

��
b̃k;in
ãþk;in

�
: ð17Þ

Then, combining Eqs. (6), (13), and (17), the transforma-
tion of incoming particles under thermal rotation and
external electromagnetic fields is

0
BBBBB@

ak;outðθÞ
ãþk;outðθÞ
bþk;outðθÞ
b̃k;outðθÞ

1
CCCCCA ¼

0
BBB@

μk cosðhÞθk −μk sinðhÞθk ν�k cosðhÞθk −ν�k sinðhÞθk
ημ�k sinðhÞθk μ�k cosðhÞθk νk sinðhÞθk ηνk cosðhÞθk
ηνk cosðhÞθk −ηνk sinðhÞθk μ�k cosðhÞθk −μ�k sinðhÞθk
ην�k sinðhÞθk ν�k cosðhÞθk ημk sinðhÞθk μk cosðhÞθk

1
CCCA
0
BBB@

ak;in
ãþk;in
bþk;in
b̃k;in

1
CCCA: ð18Þ

This transformation can be expressed as TAB;outðθÞ ¼
UðθÞUðAexÞTAB;inUþðAexÞUþðθÞ. So we can calculate the
number of created pairs in thermal vacuum when t → ∞ as

N k;outðβqÞ ¼ h0;βq;outjaþk;inak;inj0;βq;outi
¼ h0; injUþðθÞUþðAexÞaþk;inak;in
×UðAexÞUðθÞj0; ini

¼ jμkj2 sin ðhÞ2θk þ jνkj2 cos ðhÞ2θk: ð19Þ

And there are particles condensing in initial thermal
vacuum when t → −∞, where

N k;inðβqÞ¼h0;βq;injaþk;inak;inj0;βq;ini¼sinðhÞ2θk: ð20Þ
So, the number of created pairs is

ΔN kðTqÞ¼N k;outðβqÞ−N k;inðβqÞ¼
� jνkj2ð1þ2nBkÞ
jνkj2ð1−2nFkÞ

;

ð21Þ
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where nB=Fk denotes either the Bose-Einstein distribution
nBk ¼ 1=ðeβqεk − 1Þ for scalar QED or nFk ¼ 1=ðeβqεk þ 1Þ
for spinor QED. This is consistent with Ref. [35]. In
Eq. (21), the factor jνkj2 response to the transformation
under external fields and 2jνkj2n̄B=Fk arises due to the
present thermal charged particles. The meaning of Eq. (21)
conforms to the Bose-Einstein condensation for the boson
and the Pauli blocking for the fermion.
When the density of particles and antiparticles is unequal

or does not reach equilibrium density, the system can be in
thermal but not in chemical equilibrium. We can redefine
the distribution functions by a replacement f� ¼ λ�n�
as Ref. [36], where superscript � represent particles/
antiparticles and λ� are fugacity factors for describing the
deviation from chemical equilibrium, and add the chemical
potential in density functions n�¼1=ðeβqðε∓μÞþηÞ. Taking
these replacements into Eqs. (14) and (18), we get

ΔN kðTq; κÞ ¼ jνkj2ð1 − ηðλ−n−k þ λþnþk ÞÞ

¼
(
jνkj2ð1þ ðλ−nB;−k þ λþnB;þk ÞÞ
jνkj2ð1 − ðλ−nF;−k þ λþnF;þk ÞÞ

: ð22Þ

When λþ ¼ λ− ¼ 1, total charges are conservative, and the
presence of the chemical potential enhances the thermal
correction for n−k þ nþk > 2nk. The fugacity factors depend
on the ratio of the experimental to equilibrium density [37].
Note that what we calculate is the number of incoming

particles ain, which is not thermalized particles ainðθÞ.
Because the thermal transformation is equivalent to the
Kubo-Martin-Schwinger condition, the thermal particles
aðθÞ satisfy the corresponding condition, i.e., ϕðtÞ ¼
�ϕðt − iβÞ. However, it is a basic condition in early
imaginary-time effective Lagrangian approaches at finite
temperature, in which the asymptotic particles are also
assumed to meet this condition. So, the number of thermal-
ized particles is

h0; βq; outjaþk;inðθÞak;inðθÞj0; βq; outi ¼ jνkj2: ð23Þ

This is just the result at zero temperature, so it may indirectly
explain why some early discussions infer the absence of
thermal corrections in pair production in one loop at finite
temperature.

C. Tree-level correction of thermal photons

Once charged pairs appear, thermal photons emerge as
heat mediums in equilibrium QED systems. Inspired by
Ref. [38], which discusses the change of mass when pairs
created in the periodic oscillating electromagnetic fields, it
is found that the thermal Abelian gauge fields also change
the mass of charged particles, which results in a vacuum
inequivalent to the original one. In this consideration, we
assume that the total background fields consist of external

fields and thermal fields, or, more generally, any electro-
magnetic fields can be divided into

Aμðx; TγÞ ¼ Aex
μ ðxÞ þ Aγ

μðTγÞ; ð24Þ

with the assumption

½Aex
μ ðxÞ; Aγ

μðTÞ� ¼ 0; ð25Þ

which means that the two fields are both classical fields and
only tree-level Feynman diagrams are included. We assume
that the external field is strong and the thermal field is
weak, so the two kinds of fields are absolutely separated,
and nonlinear terms are ignored.
Substituting Eq. (24) in Eq. (1) and averaging it, all

linear terms will be offset, for thermal photons are
isotropic. Only −q2hAγ;μAγ

μi is left and is equivalent to a
mass shift in Eq. (1):

m�2 ¼ m2 − q2hAγ;μAγ
μi: ð26Þ

This AγðTÞ is assumed to be the sum of linear free photon
fields, so the square term is proportional to invariant density
nω=2ω. After integrating, see the Appendix in detail, we
obtain

m�2 ¼ m2 þ q2T2

12
: ð27Þ

The square root of this shift part was also obtained in
Ref. [39] and called the effective mass of thermal photons
[40]. Before further discussions, we denote that m�þ ¼
m� ¼ mþmβ andm�2

− ¼m2−q2T2=12 andm�
− ≈m −mβ.

Next, we will indicate that different asymptotic time
conditions of thermal fields would lead to opposite thermal
corrections.
Now, we constrain a condition Aγðt ¼ �∞Þ ≠ 0, mean-

ing thermal fields are always existing and can be treated as
a static heat bath. Hence, j0; in;m�þi and j0; out;m�þi are the
dressed states in vacuum and out vacuum, where m�þ
denotes that physical massm of charged particles is directly
substituted by dressed mass m�þ. The corresponding num-
ber operator is N kðTγÞ ¼ aþk;in;m�

þ
ak;in;m�

þ , so what we

calculate is the number of dressed particles

NkðTγÞ ¼ h0; out;m�þjN kðTγÞj0; out;m�þi ¼ jνkj2m→m�
þ
:

ð28Þ

This means the threshold has increased (E�þ¼2m�þc2>
2mc2) and more energy is demanded to counteract the
oscillating force turning into potential energy of dressed
particles.
If we adopt a weaker condition Aγðt ¼ þ∞Þ ¼ 0, the

number operator should be a unaltered quantity which
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corresponds to the final measurement. This is to make the
physical mass m unaltered so that the measured mass is
equal to physical mass. In a physical process, we can think
that the pairs absorb surrounding thermal photons; con-
sequently, the Aγ vanish when t → ∞. In other words, the
out vacuum is supposed to in an equivalent measured Fock
space [34], or has the same mass term in the Lagrangian
compared with original one, and is denoted by j0; outi,
corresponding the vacuum after evolution under Aex and
Aγ . For the spinor, the physical mass is determined by
ð=p−mÞð=p−m�

−−mβÞ−1j=p¼m¼1, and the equivalent mass is

obtained: m�
− ¼ m −mβ. Then, the equivalent Lagrangian

is L ¼ iψ̄=Dψ −mψ̄ψ þmβψ̄ψ , where the third term is
treated as a kinetic term. The out vacuum is

j0; outi ≈ T ei
R

d4xψ̄ði=D−mÞψei
R

Ω d4xmβψ̄ψ j0; ini; ð29Þ

where
RΩ d4x ¼ R

d3x
RΩ dt and Ω is the turn-off time of

thermal fields. In addition, the in vacuum can be repre-
sented as the evolution of another in vacuum:

j0; ini ¼ T e−i
R

Ω d4xmβψ̄ψ j0; in;m�
−i: ð30Þ

Upon inserting it into (29) with m ¼ m�
− þmβ, we obtain

j0;outi≈T
�
ei
R
d4xψ̄ði=D−m�

−Þψe
i
R
Ω
d4xψ̄ δ

iδjβðxÞψ
�

×

�
e
i
R

Ω d4xψ̄ δ
iδjβðxÞψe−i

R
d4xmβjβðxÞ

�
jjβðxÞ¼0j0; in;m�

−i

¼UðAexÞ×UðAγjAexÞj0; in;m�
−i; ð31Þ

where the jβðxÞ is the external source of thermal fields and
is independent of the in vacuum as ðδ=δjβÞj0; ini ¼ 0. In
the above calculations, we use Eq. (27) and the assumption
that AγðTγÞ is small, so relation eAþB ≈ eAeB is used. In last
line of (31), the total evolution operator is divided into two
parts: the UðAexÞ, which undertakes the main evolution of
the vacuum, and UðAγjAexÞ, which changes the asymptotic
structure of the vacuum. It is obvious that

UðAexÞj0; in;m�
−i ¼ j0; out;m�

−i;
UðAγjAexÞj0; out;m�

−i ¼ j0; outi: ð32Þ

And the commutative relation ½UðAγjAexÞ; UðAexÞ� ¼ 0
holds due to Eq. (25); therefore, the evolutionary order
does not affect the final result. Furthermore, UðAγjAexÞ is a
unitary operator, for its power is purely imaginary.
Applying the above analysis and Eq. (30), we get that

UþðAγjAexÞak;inUðAγjAexÞUþðAγjAexÞj0; ini
¼ ak;in;m�

−
j0; in;m�

−i ¼ 0: ð33Þ

Now, with Eqs. (31) and (33), we can obtain the number of
produced pairs in this scenario as

NkðTγÞ ¼ h0; outjaþk;inak;inj0; outi
¼ h0; in;m�

−jUþðAexÞUþðAγjAexÞaþk;inak;in
×UðAγjAexÞUðAexÞj0; in;m�

−i
¼ h0; out;m�

−jaþk;in;m�
−
ak;in;m�

−
j0; out;m�

−i
¼ jνkj2m→m�

−
: ð34Þ

This result also works for a scalar with similar procedures.
Note that when UðAexÞ acts on the vacuum the result
depends on the asymptotic structure of the vacuum, and so
does UðθÞ. This means that in order to take the tree-level
correction of thermal photons into pair production, we only
need to do a mass shift in the Bogoliubov coefficient, so the
threshold has gone down (E�

− ¼ 2m�
−c2 < 2mc2), which

verifies our guess that the dressing of thermal photons
enhances pair production. In subsequent discussions, we
will adopt this approach.
More generally, stable equilibrium QED systems should

contain both thermal charged particles and thermal pho-
tons. Following the above approaches, the thermal out
vacuum also is an equivalent measured thermal vacuum,

j0;0;βq;outi¼UðAγjAexÞUðAexÞUðθÞj0;0; in;m�
−i: ð35Þ

Then, we do similar calculations as in Eq. (34), and pair
production in this situation is obtained as

NkðTq; TγÞ ¼ ½jνkj2ð1� nB=Fk Þ�m→m�
−
: ð36Þ

This result is just Eq. (21) with a negative mass shift, which
means that the tunneling particles and thermal particles all
have absorbed thermal photons. A remark is that the n̄F=Bk in
Eq. (36) depends on not only charged particles temperature
Tq in the Boltzmann factor eεk=Tq but also on thermal

photons temperature Tγ in εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2T2

γ=12þ k2
q

.

Here, we ignored any nonlinear and high terms due to
the assumptions that Tγ is small q2T2

γ=12 ≪ m2 and that
m�2

− is always positive.
Note that now we have obtained the general formal

results of Schwinger pair production for the arbitrary
external fields at finite temperature. Our study has taken
into account the tree-level correction of real thermal
photons, which is a useful complementary to the previous
works [5–9,12,21–23].

III. CONSTANT ELECTRIC FIELD

In this section, we apply the formal results above to an
external constant electric field. Before considering finite
temperature, we review the solutions of Eq. (1) in a
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constant electric field [24]. In the time-dependent gauge
Az ¼ −Et, Eq. (1) takes the form

½∂2
t þm2þk2⊥þðkz−qEtÞ2þ2isqE�ϕω;kðtÞ¼0: ð37Þ

When t ¼ −∞, the solution is expressed in terms of the
parabolic cylinder functions

ϕω;kðtÞ ¼ DpðzÞ: ð38Þ
And when t ¼ ∞, it turns to

DpðzÞ ¼ e−ipπDpð−zÞ þ
ffiffiffiffiffiffi
2π

p

Γð−PÞ e
−iðpþ1Þπ=2D−p−1ðizÞ;

ð39Þ
where

z ¼
ffiffiffiffiffiffi
2

qE

s
eiπ=4ðkz − qEtÞ;

p ¼ −
1

2
− i

m2 þ k2⊥ þ 2isqE
2qE

: ð40Þ
The Bogoliubov coefficients are

μk ¼
ffiffiffiffiffiffi
2π

p

Γð−pÞ e
−iðpþ1Þπ=2; νk ¼ eipπ: ð41Þ

So, the total number of produced pairs is

NðE; Tq ¼ Tr ¼ 0Þ ¼
X
k

jνkj2

¼ qE
4πð1 − jsjÞ

Z
d2k⊥
ð2πÞ2 e

−
πðm2þk2⊥Þ

qE

¼ q2E2

16ð1 − jsjÞπ3 e
−πm2

qE ; ð42Þ

where qE
4πð1−jsjÞÞ is the number of states along the z direction

and Eq. (42) is consistent with Schwinger’s result [1] when
jsj ¼ 1=2 for the spinor.
In the following, thermal gauge fields are assumed to be

turned off when t → ∞ as long as they are considered.
Meanwhile, we assume that all systems are in equilibrium
initially, although an external constant field is not good to
get asymptotically free states. In the limits of low temper-
ature and low density, the thermal dissipation and back-
reaction of the created pairs are both neglected. In other
words, systems are thermalized initially, but the process of
producing pairs is dynamic.

A. Tq = 0, Tγ ≠ 0

Now, we consider a pure thermal photon system with a
constant electric field, where the low-temperature limit
q2T2

γ=12 ≪ m2 is reasonable since no real particles exist
initially due to low quantum fluctuation. But the tunneling
particles are also dressed by thermal photons. In this way,

the number of produced pairs is obtained by substitutingm2

in Eq. (42) with m2 − q2T2
γ=12 according to Eq. (34),

NðE; TγÞ ¼
ðqEÞ2

16ð1 − jsjÞπ3 e
−πm2

qE e
πqT2γ
12E : ð43Þ

At small Tγ , this result has a series expanded form,

NðE; TγÞ ¼ NðE; Tq ¼ Tγ ¼ 0Þ

×
�
1þ πqT2

γ

12E
þ 1

2

�
πq
12E

�
2

T4
r þ � � �

�
: ð44Þ

The exponent T2
γ=E means that the stronger electric field

is, the less effect fixed thermal photons causes. In Ref. [41],
thermal photons are considered by two-loop calculation,
and the lowest-order thermal correction term contains T4,
but we get T2. This is because the thermal fields are treated
as an external current in our discussion, while those are
internal in Ref. [41], in which more double vertices in
diagram expansion exist.
The numerical result of Eq. (43) is shown in Fig. 1.

Note that the theoretical formula is valid under the low-
temperature limit Tγ ≪

ffiffiffiffiffiffiffiffiffiffiffi
3=πα

p
mc2=kB ≈ 11Tc, where

Tc ¼ mc2=kB. Figure. 1 shows that the enhancement of
pair production is small, even if the photons temperature is
8 times of critical temperature, see the top yellow line.

B. Tq ≠ 0, Tγ = 0

In this physical situation, the temperature Tq of thermal
charged particles is not supposed to be high enough to
produce real photons. Then, with a constant electric field,
the result is obtained directly by combining Eqs. (21) and
(42), that is,

FIG. 1. Number of produced pairs for 1/2 spinor fermion
depends on the constant electric field at three different photon
temperatures. Here the dimensionless parameters kBTγ=mc2 →
Tγ and qEℏ=πm2c3 → E are used.
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NðE; TqÞ ¼
qE

4πð1 − jsjÞ
Z

d2k⊥
ð2πÞ2 e

−
πðm2þk2⊥Þ

qE

×

�
1 −

2η

e
ffiffiffiffiffiffiffiffiffiffiffi
m2þk2⊥

p
=Tq þ η

�
: ð45Þ

Here, the longitudinal momentum of initial particles is
assumed to be zero, where an extra force is constructed
to neutralize the electric field force. As plotted in Fig. 2, it
returns to (42) when Tq → 0 but tends to either infinity for
bosons or zero for fermions when Tq → ∞. On the other
hand, from Fig. 2, one can see that the monotonous
dependence of created scalar or spinor pairs number to
the external field is a little larger or smaller for thermal case
than that of nonthermal case. When we return to Tq ≪ m,
the number of produced pairs (45) has an approximate form:

NðE; TqÞ ¼
ðqEÞ2

16ð1 − jsjÞπ3 e
−πm2=ðqEÞ

×

�
1 − η

qE
4π2

e−πm
2=ðqEÞ−m=Tq

�
: ð46Þ

C. Tq =Tγ ≠ 0

Finally, we assume that the initial systems are in absolute
equilibrium in which thermal photons and charged particles
have the same temperature Tq ¼ Tγ ¼ T with an external
constant electric field; the system is actually an ideal
particle-antiparticle-photon gas. Combining Eqs. (45)
and (36), the number of produced pairs is obtained as

NðE; Tq ¼ Tγ ¼ TÞ ¼ qE
4πð1 − jsjÞ

Z
d2k⊥
ð2πÞ2 e

−
πðm2þk2⊥Þ

qE þπqT2

12E

×

�
1 −

2η

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−q2T2=12þk2⊥

p
þ η

�
;

ð47Þ

which is plotted in Fig. 3, meanwhile, by the comparison
with Eq. (43) and Eq. (45), the other numerical results
are included. The figure shows that the correction of
thermal photons is much less than the correction by thermal
pairs. Of course Eq. (47) has an approximate form at
small T,

NðE;Tq ¼Tγ ¼T≪mÞ¼ qE
4ð1− jsjÞπe

−πm2

qE e
πqT2

12E

×

�
1−η

qE
4π2

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=T2−q2=12

p �
:

ð48Þ

So far, we have not used any limit on electric field E, but
the low-temperature limit for Tγ is necessary for our linear
assumption in Sec. II. C. In fact, we expect the external
field is much stronger than temperature so that the thermal
dissipation and backreactions can be neglected.

IV. DISCUSSION

In this paper, to calculate Schwinger pair production at
finite temperature, we generalize the evolution operator
method of TFD to generic thermal QED systems that
contain not only thermal charged particles but also photons.
Then, we get the thermal transformation relation of out-
going operators and incoming operators under external
fields. What we have done on the basis of Eq. (1) is similar
to Sauter’s calculation on the Dirac equation [42], except
for the part where we add thermal distribution. Then, we
use an effective substitute, m�2þ ¼ m2 þ q2T2=12, to re-
present the correction of thermal photons, but that has an
inverse substitution when the turning off of thermal fields is
considered. Lastly, applying the thermal average approach
hout − vacuumjaþinainjout − vacuumi, we get QED pair

FIG. 2. The number of scalar (dashed line) and spinor (solid line) pairs is plotted as a function of Tq and E, respectively [see Eq. (45)].
The normalized scheme is the same as in Fig. 1. Note that for a good eye guiding, the number of scalar pairs is doubled for keeping the
same starting when Tq ¼ 0.

SCHWINGER PAIR PRODUCTION CORRECTION IN THERMAL … PHYS. REV. D 100, 116016 (2019)

116016-7



production in thermal systems. In our results, jνkj2 corre-
sponds to the decaying part of incoming states under the
external field, and density nB=Fk arises for initial thermal
charged particles, and m�2þ represents effective mass of
both thermal particles and tunneling particles dressed by
thermal photons. In an external constant electric field, the
precise integral results and the approximate polynomial
results are obtained, and they both recover Schwinger’s
result at T ¼ 0.
Back to our results, we have not used any particular

fields but only the Bogoliubov coefficient νk in our formal
results, so it can be applied to arbitrary fields as long as we
obtain the coefficient. There are no poles or infinity to be
renormalized, since the number of produced pairs is an
observable quantity. If charged particles or photons are not in
ideal equilibrium initially, it can be completed by
using a corresponding distribution function to replace the
ideal one as we have done in Sec. II. B. It also can be
generalized to the thermal Bethe-Heitler process
ðγZ → eþe−ZÞ and thermal trident mechanism ðe−Z →
e−eþe−ZÞ in which thermal massive charged particle Z
exists [43] and the classical Coulomb field can be taken into
the background field as an equivalent approach, but the
regions need to be distinguished for the Debye shielding. So,
it may be helpful in relativistic plasma and heavy ion
collision.
On the experimental side, it is proposed to observe

thermal Schwinger pair production by a thermal bath of
photons in a constant electric field [28], and our results in a
constant E supplement neglected correction. What’s more
is that our formal results can be applied to general laser
fields by combining numerical simulation [44]. In addition,
momentum spectrum distribution of production particles is
given in our results, and spatial spectral distribution
also can be obtained by Fourier transform. These results
are available by comparisons with experimental data in
possible future experiments.

Again, our results mainly work in low-temperature limit
Tγ ≪ m, where backreactions and dissipations have not
been considered. With temperature increasing, the full
equilibrium description is more appropriate, and for more
detailed summary and review, one can refer to Ref. [12].
When the temperature is extremely high, the effective
Lagrangian approaches are more proper, which is beyond
the present study and is still an open topic problem for
future research.
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APPENDIX: THERMAL MASS CORRECTION
OF CHARGED PARTICLE

In Sec. II. B, we illustrate the use of mass shift with
thermal photons, that is,

m�2 ¼ m2 þ q2T2

12
; ðA1Þ

where q2T2=12 is same as Eq. (35) in Ref. [45] calculated
in imaginary form and Eq. (14) in Ref. [46] in real form, but
different from the effective photon mass, meff ¼ qT=3,
calculated in one-loop polarization [47]. Now, we derive it
with semiclassical approaches, beginning with

m�2 ¼ m2 − q2hAγ;μAγ
μi; ðA2Þ

where Ar is the linear sum of all thermal photons and hi
indicates averaging over time and space. We assume that all

FIG. 3. The number of scalar (dashed line) and spinor (solid line) pairs are plotted as three functions [Eqs. (43), (45), and (47)] of only
photons temperature Tγ , only pairs temperature Tq and both temperature Tγ ¼ Tq ¼ T when E ¼ 0.5. The normalized temperature and
field are the same as in Fig. 1.
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thermal photons are free and satisfy hAf;μAf
μi ¼ −1=2ω and

integrate this relation by

hAγ;μAγ
μi ¼ −

Z
∞

0

dω
nðωÞ
2ω

; ðA3Þ

where nðωÞ=2ω is the invariant density and nðωÞ is equal to

nðωÞ ¼ gðωÞ
eβω − 1

¼ ω2

π2ðeβω − 1Þ ; ðA4Þ

where gðωÞ is the energy density and its value is inserted
directly here. Combining Eqs. (A2)–(A4), we obtain
Eq. (A1).
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