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We show that whenever the symmetry group of a field theory commutes with one or more antiunitary
operators T, which do not have to but may represent the reversal of physical time, the number of linearly
independent contact two-body (quartic) terms is determined by the number of tensors that are even, or by
the number of tensors that are odd, under such T. The choice depends on the sign of T2 and on the statistics
of the fields. The theorem enables one to circumvent the usual computation of the Fierz matrix in
determining the independent interaction terms. Some physical examples of current interest in many-body
physics are discussed.
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I. INTRODUCTION

The problem of determining the form of a field theory
allowed by symmetry has been central to many branches of
many-body physics, be it the theory of classical phase
transitions, elementary particle physics, or quantum con-
densed matter. A large symmetry group is often quite
restrictive so that only a few low-order interaction terms are
possible and easy to guess. There are however situations
when this is not the case, and the symmetry alone allows for
several, sometimes even a large number of relevant inter-
action terms. It then becomes of central importance to
eliminate the possible redundancy and determine the set of
independent interactions. If these are, as is common,
quartic in the fields, they are related by the Fierz trans-
formations [1,2], which represent an expression of com-
pleteness of a chosen basis in the given Hilbert space, and
prescribe how to rewrite each allowed quartic term in terms
of all others. The dimension of the kernel of the matrix
produced by such an algorithm equals then the number of
independent quartic terms [3], and one can also find what
these are from the matrix. The “Fierz matrix” is real, but not
necessarily symmetric, and its calculation, while in prin-
ciple straightforward, is also a tedious task. In the well-
scrutinized electronic systems of monolayer and bilayer
graphene, for example, even assuming spinless fermions
the translational and rotational symmetry allows 9 quartic
terms, and thus calls for the computation of close to 80
elements of the Fierz matrix [4]. Including the electron spin
simply doubles the size of the matrix that needs to be

computed. It therefore appears to be of some value to think
of a shortcut to the solution, which would enable one to
determine the number of independent couplings and maybe
even their identity without doing the full calculation.
Here we point out that such a shortcut is, somewhat

unexpectedly, facilitated by an antiunitary operator that
commutes with the symmetry group in the given repre-
sentation, whenever such an operator exists. Assume that
the fields belong to some irreducible representation of a
given, continuous or discreet symmetry. Schur’s lemma
implies then that the only linear operator that commutes
with the whole group in the representation is proportional
to the unit operator. It does not forbid, however, antiunitary
such an operator, and indeed the case of an antiunitary
operator representing the time reversal which commutes
with the group of three-dimensional spatial rotations (in
any representation) is a textbook example. The existence of
such an operator is tantamount to (pseudo)reality of the
representation, and it will, for example, always exist if the
symmetry group derives from space rotations, which is
often true in condensed matter physics. For finite groups
its existence can be ascertained by the Frobenius-Schur
indicator. If the field representation of the group is
reducible, there could even be more than one such operator.
The main result of the present note is then the following:

if the fields are bosonic (complex numbers), the number of
independent quartic terms equals the number of tensors in
the given representation which are even under the anti-
unitary operator T that commutes with the symmetry group
of the theory, when T2 ¼ 1, i.e., when the representation
is “real.” It equals the number of tensors which are odd,
when T2 ¼ −1, and the representation is “pseudoreal.” For
fermionic (Grassmann) fields it is the other way around.
It then also follows that in reducible representations with
more than one such antiunitary operator T, all those that
have T2 ¼ 1 yield the same number of even tensors, which
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is in turn equal to the number of tensors odd under those
antiunitary operators with T2 ¼ −1. Important examples of
such redundancy which nevertheless yield unique conclu-
sions are provided by the above-mentioned graphenelike
systems.
In the rest of the paper we first define the general Fierz

transformation for both fermions and bosons, and then
introduce the “type-II” quartic terms which are the main
tool in the proof. After presenting the proof of the theorem
we discuss several physical examples which illustrate the
principles at work. A summary is provided at the end.

II. FIERZ TRANSFORMATION

Assume a global symmetry group of linear transforma-
tions G × Upð1Þ, and the field ΨðxÞ as a d-dimensional
column of complex or Grassmann numbers which trans-
forms under G, and acquires a phase under Upð1Þ. One can
think of x here as a coordinate, but it can be any such label.
There will be d2 linearly independent Hermitian matrices X
in the space of d-dimensional matrices. These can be
grouped into irreducible representations of G, so that the
bilinears Ψ†Xa

iΨ under the transformation Ψ → gΨ with
g ∈ G transform as

ΨðxÞ†Xa
iΨðxÞ →

X

j

cijΨðxÞ†Xa
jΨðxÞ; ð1Þ

while remaining invariant under a Upð1Þ transformation.
The upper index a numerates different irreducible tensors
under G, which are d × d matrices, and the lower indices i
and j numerate different components of the same tensor.
For example, if d ¼ 3 and G ¼ SOð3Þ, there are three such
tensors: scalar, vector, and irreducible (traceless) second-
rank tensor, which contain one, three, and five components,
respectively [5]. Orthogonality between matrices may be
defined as

1

d
TrXa

i X
b
j ¼ δijδab: ð2Þ

We assume for simplicity that all the quartic terms
invariant under G ×Upð1Þ can be written as linear combi-
nations of the local, call them “type-I” (or “particle-hole”),
terms in the form

X

i

ðΨ†ðxÞXa
iΨðxÞÞðΨ†ðxÞXa

iΨðxÞÞ; ð3Þ

with one such term existing for each tensor Xa. This will
typically be the case, but we will encounter exemptions
among our examples, and discuss them as well. Since the
set of all matrices Xa

j forms a basis one can deduce the Fierz
identities [2,3]

X

i

ðΨ†ðx1ÞXa
iΨðx2ÞÞðΨ†ðy1ÞXa

iΨðy2ÞÞ

¼ s
d

X

b;c;j;k;i

TrðXa
i X

b
jX

a
i X

c
kÞðΨ†ðx1ÞXc

kΨðy2ÞÞ

× ðΨ†ðy1ÞXb
jΨðx2ÞÞ; ð4Þ

where s ¼ 1 for complex (bosonic) fields, and s ¼ −1 for
Grassmann (fermionic) fields. Although the textbooks
discuss the fermionic case almost exclusively, it is easy
to see that the Fierz rearrangement formula is independent
of statistics and applies equally well to complex fields, only
with a different overall sign.
Under the assumption that all the G × Upð1Þ-symmetric

quartic terms are in the form of Eq. (3) above, only the
terms with b ¼ c and j ¼ k survive the summation on the
right-hand side of Eq. (4). This implies that the type-I terms
are not independent of each other: there is an equation
FQ ¼ 0, where Q is a column of all symmetry allowed
quartic terms, and F is a matrix produced by the Fierz
transformations. The number of independent terms is given
by the dimension of the kernel of the Fierz matrix F [3].
Our task is to determine this number, and maybe even the
identity of the independent terms, without actually com-
puting the matrix F.

III. TYPE-II TERMS

The gist of our method is the observation that the
bilinears such as

Ψ†ðxÞXa
j ðTΨðxÞÞ ¼ Ψ†ðxÞXa

jUΨ�ðxÞ ð5Þ

and

½Ψ†ðxÞXa
j ðTΨðxÞÞ�† ¼ sΨTðxÞU−1Xa

jΨðxÞ; ð6Þ

where T ¼ UK is the antiunitary operator, with U as its
unitary part and K standing for complex conjugation, also
transform the same way as the irreducible tensor Xa under
the transformation Ψ → gΨ, if T and all g ∈ G commute in
the given representation, i.e., if

Ug�U−1 ¼ g: ð7Þ

There exist therefore other G × Upð1Þ-invariant local
quartic terms in what one could call “type-II” (or
“particle-particle”) form,

X

i

½Ψ†ðxÞXa
i ðTΨðxÞÞ�½Ψ†ðxÞXa

i ðTΨðxÞÞ�†; ð8Þ

for each tensor Xa. From the ordering of the fields in the
type-II terms it is evident, however, that the Fierz trans-
formations in Eq. (4) relate them not to the other type-II
terms, but exclusively to the previous set of type-I terms.
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The type-II terms are therefore not truly new, but simply are
linear combinations of the terms introduced in the previous
section. The main point is that some of the type-II terms are
in fact identically zero. We then show that each such
vanishing type-II term yields a linearly independent con-
straint on the type-I terms, so that the number of non-
vanishing type-II terms equals in fact the number of linearly
independent type-I terms. This number ultimately depends
on the transformation property of the tensor under T (even
vs odd) and the statistics of the fields in a way that implies
the result announced in the introduction.

IV. PROOF

To show the above consider the bilinear

Ψ†ðxÞMðTΨðxÞÞ ¼ Ψ†ðxÞMUΨ�ðxÞ; ð9Þ

where M is a Hermitian d-dimensional matrix. By trans-
posing, we find that

Ψ†ðxÞMUΨ�ðxÞ ¼ sΨ†ðxÞUTMTΨ�ðxÞ; ð10Þ

with s as the previously introduced sign for the statistics of
the fields. For any matrix M for which it happens that
MU ¼ −sUTMT , the bilinear is therefore identically zero.
Let us assume that T2 ¼ t ¼ �1, so that UU� ¼ t,

and thus U� ¼ tU−1. Since U† ¼ U−1, we have that

UT ¼ ðU�Þ−1, so finally UT ¼ tU. Since M is Hermitian
and MT ¼ M�, the condition for the vanishing of the
bilinear is that MU ¼ −stUM�, or rewritten,

M ¼ −stUM�U−1: ð11Þ

We recognize the combination UM�U−1 ¼ TMT−1 as
precisely the matrix M transformed under T. The result
is that any bosonic, s ¼ 1, bilinear involving a matrix M
that is odd (even) under T will vanish if t ¼ 1 (t ¼ −1), and
any fermionic, s ¼ −1, bilinear with M that is even (odd)
will vanish if t ¼ 1 (t ¼ −1). When T commutes with the
elements of G all the components of the same tensor have
the same transformation under T, and therefore some of the
type-II terms are identically zero.
The number of independent linear Fierz constraints

therefore cannot exceed the number of type-II tensors that
yield vanishing bilinears in Eq. (5), but one could allow for
the possibility that their number is smaller. The remaining
step is therefore to prove that each vanishing type-II term
implies a linearly independent constraint between the type-I
terms. The number of independent quartic terms is then
simply given by the difference between the total number of
symmetry allowed type-I (or type-II) terms and the number
of vanishing type-II terms.
To that purpose let us write some vanishing type-II term

[Eq. (8)] and Fierz transform it first as

0 ¼
X

j

½Ψ†ðxÞXa
jUΨ�ðxÞ�½ΨTðxÞU−1Xa

jΨðxÞ�

¼ s
d

X

b;c;j;k;i

TrðXa
i UXb

jU
−1Xa

i X
c
kÞðΨ†ðxÞXc

kΨðxÞÞðΨTðxÞXb
jΨ�ðxÞÞ

¼ 1

d

X

b;c;j;k;i

TrðXa
i UXb

jU
−1Xa

i X
c
kÞðΨ†ðxÞXc

kΨðxÞÞðΨ†ðxÞðXb
j ÞTΨðxÞÞ; ð12Þ

where we have transposed the last factor in going from
the second to the third line. Since Xb

j is Hermitian,
ðXb

j ÞT ¼ ðXb
j Þ�. Changing the matrix ðXb

j Þ� → Xb
j in the

sum, the last line becomes

0 ¼
X

b;c;j;k;i

TrðXa
i UðXb

j Þ�U−1Xa
i X

c
kÞðΨ†ðxÞXc

kΨðxÞÞ

× ðΨ†ðxÞXb
jΨðxÞÞ: ð13Þ

One recognizes the matrix featuring under the trace

UðXb
j Þ�U−1 ¼ TXb

jT
−1 ¼ �Xb

j ; ð14Þ

with the sign depending only on the tensor (i.e., on the
upper index “b”) and not on its component (index “j”).
Every vanishing type-II term produces therefore one linear
equation on the type-I terms such as

X

b-even

X

j;i

TrðXa
i X

b
jX

a
i X

b
j ÞðΨ†ðxÞXb

jΨðxÞÞðΨ†ðxÞXb
jΨðxÞÞ

¼
X

b-odd

X

j;i

TrðXa
i X

b
jX

a
i X

b
j ÞðΨ†ðxÞXb

jΨðxÞÞ

× ðΨ†ðxÞXb
jΨðxÞÞ: ð15Þ

For that same tensor the type-I term could be, on the other
hand, written as

X

i

ðΨ†ðxÞXa
iΨðxÞÞðΨ†ðxÞXa

iΨðxÞÞ

¼ s
d

X

b-all

X

j;i

TrðXa
i X

b
jX

a
i X

b
j ÞðΨ†ðxÞXb

jΨðxÞÞ

× ðΨ†ðxÞXb
jΨðxÞÞ: ð16Þ
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The last two equations may then be combined into
X

i

ðΨ†ðxÞXa
iΨðxÞÞðΨ†ðxÞXa

iΨðxÞÞ

¼ 2s
d

X0

b

X

j;i

TrðXa
i X

b
jX

a
i X

b
j ÞðΨ†ðxÞXb

jΨðxÞÞ

× ðΨ†ðxÞXb
jΨðxÞÞ; ð17Þ

where the primed sum is taken only over the tensors Xb that
have the sign under the transformation T opposite of that of
the selected tensor Xa. Since there is one such equation for
each tensor Xa that yields a zero type-II term, and these by
construction do not appear on the right-hand side of the last
equation, such equations deriving from different tensors are
manifestly linearly independent. The number of linearly
independent Fierz constraints matches exactly the number
of tensors that yield vanishing type-II terms. The number of
independent type-I quartic terms is therefore the total
number of different tensors minus the number of tensors
that give vanishing type-II terms, as claimed.

V. EXAMPLES

Let us now consider some examples in order of increas-
ing complexity.
(1) The simplest example is probably G ¼ SUð2Þ, and

ΨðxÞ in the two-component representation. The
operator T ¼ σ2K is then unique, T2 ¼ −1, and
there is one scalar (12, unit matrix) and one vector
(σi, i ¼ 1, 2, 3), even and odd under T, respectively.
The number of independent quartic terms is thus in
both the bosonic (complex) and fermionic (Grass-
mann) case equal to 1, and it may simply be taken to
be the usual ðΨ†ðxÞΨðxÞÞ2.

(2) G ¼ SOð3Þ, with ΨðxÞ in the three-dimensional
(j ¼ 1) representation. In the adjoint representation
of the SOð3Þ, T ¼ K, unique, and T2 ¼ 1. There is a
scalar (even), vector (odd), and second-rank tensor
(even) in the space of Hermitian 3 × 3matrices, so if
Ψ is a complex field the number of independent
quartic terms is two. They may be taken to be
ðΨ†ðxÞΨðxÞÞ2 and jΨTðxÞΨðxÞj2, for example.
Assuming a Grassmann ΨðxÞ violates the spin-

statistics theorem, nevertheless, such a situation
could arise in solids if three bands cross at a point
in the Brillouin zone [6]. In the fermionic case we
have then only one independent quartic term, say
ðΨ†ðxÞΨðxÞÞ2.
It is interesting to add the spin-1=2 degree of

freedom, and consider the symmetry group to be
G ¼ SUð2Þ × SOð3Þ, and two three-component fields
ΨαðxÞ, α ¼ 1, 2, transforming as a doublet under the
SUð2Þ. Then T2 ¼ −1, and each of the above 3 × 3
scalar, vector, and second-rank tensor may be multi-
plied by either 12 (even) or σi (odd) in the spin space.

The total number of invariant terms is then six, and
there are three even and three odd terms under T. The
number of independent couplings is therefore equal to
three, for both complex or Grassmann fields [7].

(3) G ¼ SOð3Þ, with Ψ in the four-dimensional
(j ¼ 3=2) representation. T is unique with
T2 ¼ −1. For bosonic Ψ this violates the spin-
statistics theorem, and we know of no physical
realization. Nevertheless, since the space of 4 × 4
Hermitian matrices consists of a scalar (even), vector
(odd), irreducible second-rank (even), and irreduc-
ible third-rank (odd) tensors under SOð3Þ, there
are two independent couplings for both complex
and Grassmann Ψ. They can be taken to be
ðΨ†ðxÞΨðxÞÞ2 and ðΨ†ðxÞSiΨðxÞÞ2, where Si are
the generators of SOð3Þ, for example [8].

(4) Four-dimensional representation can also arise as a
spinor representation of the groupG ¼ SOð5Þ. In that
case there is a scalar (14); vector (γa, a ¼ 1;…5); and
second-rank tensor representation (i½γa; γb�=2),
where γa represent the generators of the Clifford
algebraCð5; 0Þ, i.e., are fivemutually anticommuting
4 × 4 Hermitian matrices that square to unity. Since
three of the γ-matrices may be chosen as real, say
a ¼ 1, 2, 3, and the remaining two as imaginary
[9,10], theuniqueantilinear operatorT that commutes
with the tengenerators i½γa; γb�=2 isT ¼ iγ4γ5K,with
T2 ¼ −1. Since the scalar and thevector are noweven
under T, whereas the second-rank tensor is odd, there
will be two independent couplings for theGrassmann
field, and only one for the complex field. The for-
mer can be taken to be ðΨ†ðxÞΨðxÞÞ2 and
ðΨ†ðxÞγaΨðxÞÞ2, for example [11].

(5) Assume again G ¼ SOð3Þ, but ΨðxÞ in five-
dimensional (j ¼ 2) representation, with a unique
T with T2 ¼ 1. Since there is now a scalar (even),
vector (odd), second-rank (even), third-rank (odd),
and fourth-rank tensor (even) available in the 5 × 5
matrix space, for a complex Ψ there are three
independent couplings [12–14], whereas for Grass-
mann Ψ there will be only two. Since for the
complex Ψ the difference

ðΨ†ðxÞΨðxÞÞ2 − jΨ†ðxÞΨ�ðxÞ
���2 ð18Þ

can in analogy to the derivation of the Eq. (17) be
shown to be the sum of two quartic terms that
contain the only odd tensor bilinears, the linearly
independent terms may be taken to be

ðΨ†ðxÞΨðxÞÞ2; jΨ†ðxÞΨ�ðxÞj2;
X3

i¼1

ðΨ†ðxÞSiΨðxÞÞ2;

ð19Þ
where Si are the j ¼ 2 generators of SOð3Þ, in the
representation in which T ¼ K.
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The results above in the case of even angular
momentum j and Ψ in the 2jþ 1-dimensional
representation of the SOð3Þ generalize into jþ 1
independent quartic terms for bosons and j inde-
pendent quartic terms for fermions. The same of
course follows from considering the addition of the
angular momentum and the symmetry of the two-
particle wave function [15]. For half-integer j, the
number is the same for both statistics, when it
equals jþ 1=2.

(6) Let us assume a four-component Grassmann Ψ in a
reducible representation of G ¼ SOð3Þ ×Uð1Þ. As-
sume further a Clifford algebra Cð5; 0Þ of 4 × 4
Hermitian matrices ðα1; α2; α3; β1; β2Þ, each one with
a square of unity, and αi real and βi imaginary [9,10].
Wewill consider the three Hermitian generators of the
SOð3Þ to be iαiαj, with i ≠ j, and the generator of the
Uð1Þ to be iβ1β2. This would be the symmetry group
of the Weyl fermion in condensed matter systems,
where the SOð3Þ is the group of rotations, and the
Uð1Þ is related to translation [3]. At low energies the
single-particle (Dirac) Hamiltonian may be taken to
beH ¼ αipi þOðp2Þ. The above symmetry group is
exact, however, and it holds beyond the leading term
in momentum expansion.
We can now discern the following six groups of the

16 Hermitean operators in the 4 × 4 space as being
irreducible representations of the above group: (1) 14,
which is scalar under both SOð3Þ and Uð1Þ (“scalar-
scalar,” respectively); (2) iβ1β2 (scalar-scalar); (3) αi,
i ¼ 1, 2, 3 (vector-scalar); (4) iαiαj, i ≠ j (vector-
scalar); (5) βi, i ¼ 1, 2 (scalar-vector); and (6) iβiαj,
i ¼ 1, 2, j ¼ 1, 2, 3, (vector-vector).
The antiunitary operator that commutes with the

symmetry group in this reducible representation is
now not unique: there is T1 ¼ iβ1β2 K, with
T2
1 ¼ −1, but also T2 ¼ K, with T2

2 ¼ 1. The first
one happens to commute with the HamiltonianH and
may be taken to represent the physical time reversal,
but this is not essential for our present purpose. We
want to check the assertion that even in this situation
our theorem leads to the unique answer for the
number of independent quartic terms. Take first
T1: the above six groups of operators are even,
odd, even, odd, even, odd, under T1, respectively.
One therefore has three independent terms, irrespec-
tively of the assumed statistics for the field. The same
conclusion follows from considering T2: the oper-
ators are then even, odd, even, odd, odd, even,
respectively. In spite of the reversal of the trans-
formation property of the last two terms the total
number of even (or odd) terms remained the same.
This example also provides an exception from the

requirement that all symmetric terms are in the same
form as in Eq. (3). There are now two different

tensors with the identical transformation property
under SOð3Þ ×Uð1Þ, namely, the two vector-scalars
on the above list. The symmetry group SOð3Þ ×
Uð1Þ alone therefore also allows a mixed term
between them. Only if we add the time reversal
and consider T1 × SOð3Þ × Uð1Þ as the symmetry
group does the mixed term become prohibited.
Alternatively, if one assumes the Weyl Hamiltonian
to be symmetric under parity, the matrices αi would
be parity-odd and iαiαj parity-even, which would
also eliminate the mixed term. Since the Weyl
Hamiltonian in a solid always respects either parity
or time reversal, the mixed term is in fact forbidden.

(7) The final example is the two-dimensional version
of the previous one: assume Grassmann four-
component Ψ, and the symmetry group to be only
G ¼ Uð1Þ ×Uð1Þ, with the left Uð1Þ being gener-
ated by iα1α2 and the right one with iβ1β2. The left
Uð1Þ is the group of rotations in the plane, and the
right one is still related to the translations. As a
physical example one may take the low-energy
Hamiltonian for single-layer (spinless) graphene,
H1 ¼ α1p1 þ α2p2 þOðp2Þ [3], or for bilayer
(spinless) graphene, H2 ¼ α1ðp2

1 − p2
2Þ þ 2α2p1p2þ

Oðp3Þ [4]. Both of these have in fact symmetry groups
larger than Uð1Þ ×Uð1Þ, but the inclusion of the
higher-order terms would reduce it to the one we are
considering.
The smallness of the groupG allows four antiunitary

operators that commute with it: (1) T1 ¼ iβ1β2K,
T2
1 ¼ −1; (2) T2 ¼ K, T2

2 ¼ 1; (3) T3 ¼ iα1α2K,
T2
3 ¼ −1; and (4) T4 ¼ α3K, T2

4 ¼ 1 (note that
α3 ¼ α1α2β1β2). T3 and T4 happen to commute with
the graphene Hamiltonian H1, and since this Hamil-
tonian actually describes spinless lattice fermions, T4

with a positive square represents the physical time-
reversal symmetry [9]. T1 and T2 commute with H2,
and similarly T2 is the physical time reversal.
The irreducible tensors in the 4 × 4 space under

the symmetry are now: (1) 14 (scalar-scalar); (2) iα1α2
(scalar-scalar); (3) iβ1β2 (scalar-scalar); (4) α3 (scalar-
scalar); (5) ðα1; α2Þ (vector-scalar); (6) ðβ1; β2Þ
(scalar-vector); (7) ðiα3α1; iα3α2Þ (vector-scalar);
(8) ðiα3β1; iα3β2Þ (scalar-vector); and (9) iαiβj,
i ¼ 1, 2, j ¼ 1, 2 (vector-vector).Wemay now choose
any of the four identified T-operators, and taking T2

seems like the simplest choice: the tensors are even,
odd, odd, even, even, odd, odd, even, even. Since the
chosen T2

2 ¼ 1 and Ψ is Grassmann the number of
independent terms matches the number of odd tensors,
which is four. Taking T4 also leads to four, albeit
different, odd tensors, whereas taking either T1 or T3

yields four even tensors, and thus to the same con-
clusion. This agrees with explicit computation of the
9 × 9 Fierz matrix [4,7]. The mixed terms are now
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forbidden by requiring both the time reversal and the
parity to be extra symmetries.
It is easy to see that adding the spin-1=2 degree of

freedom to the problem and considering two four-
component Grassmann fields Ψω with ω ¼ 1, 2 and
the group to be G ¼ SUð2Þ ×Uð1Þ ×Uð1Þ inevi-
tably leads to nine independent couplings. Take, for
example, the antiunitary Casimir operator to be
T ¼ σ2 ⊗ T2, with T2 ¼ −1. If the 4 × 4 operator
O was even under T2, operator 1 ⊗ O will be even
under T; if O was odd under T2, σi ⊗ O will also be
even. The number of tensors even under T is therefore
the number of tensors even under T2 plus the number
of tensors odd under T2, that is, the total number of
tensors before the spin doubling, which is nine.
This again agrees with the explicit computation of
the 18 × 18 Fierz matrix [4].

VI. CONCLUSION

In conclusion, the hidden role of the antiunitary operatorsT
that commute with the symmetry group G in a given repre-
sentation in determining the independent local quartic terms
in the field theory is revealed. When they exist, it suffices to
simply count theT-evenorT-odd tensors in the representation,
to tell the number and often the identity of the independent
terms. The crucial step in proving the above statement is the
identification of type-II, or particle-particle, G-invariant
quartic terms, which vanish identically. The theorem repro-
ducesmany results of explicit computations in the literature,
and hopefully will aid and guide similar efforts in future.
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