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In this paper we propose to use convolutional neural networks (CNNs) to improve the precision
measurement of the Higgs boson-gluon effective coupling at lepton colliders. The CNN is employed to
recognize the Higgs boson and a Z boson associated production process, with the Higgs boson decaying to
a gluon pair and the Z boson decaying to a lepton pair at the center-of-mass energy 250 GeVand integrated
luminosity 5 ab−1. By using CNNs, the uncertainty of the effective coupling measurement can be decreased
from 1.94% to about 1.28% using the PYTHIA data and from 1.82% to about 1.22% using the HERWIG data
in the Monte Carlo simulation. Moreover, the performance of CNNs using different final state constituents
shows that the energy distributions of the leading and subleading jets constituents play a major role in the
identification and the optimal uncertainty of effective coupling using CNNs is reduced by about 35%
compared to that using conventional method.
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I. INTRODUCTION

The Higgs boson occupies a distinct place in the
Standard Model (SM) of particle physics. Many lingering
physics problems are linked to the Higgs boson, for
instance, the stability of the vacuum, electroweak hierarchy
problem, and dark matter. These problems imply the
existence of new physics beyond the SM and require a
good understanding of the Higgs properties. The effective
coupling of the Higgs boson to a gluon pair is one of the
most important parameters. Many theories beyond the SM
predict that the Higgs boson-gluon coupling may have
deviation from the SM prediction by direct or indirect
effects, for example, the stop in supersymmetry or the T
quark in little Higgs models can contribute to the coupling
through the loop effects [1–10]. Therefore, the precision
measurement of the Higgs boson-gluon coupling will be a
touchstone of the SM and may lead to a breakthrough for
new physics.

Although the gluon fusion is the most important
process of the Higgs boson production at the CERN
Large Hadron Collider, the Higgs boson-gluon coupling
is still difficult to be determined accurately due to the
overwhelming large QCD radiation [11,12]. The better
candidates for the precision measurement of Higgs
boson-gluon coupling can be electron positron colliders,
which have the clean environment and the high lumi-
nosity. The possible future electron positron colliders,
which are usually called the Higgs factory at 250 GeV
center-of-mass energy, include the Circular Electron-
Positron Collider [13–15], Future Circular Collider-
electron-positron [16–18], and International Linear
Collider [19–23]. At the Higgs factory, the measurement
on most of the Higgs properties can reach percent level
accuracy [11,12,24]. For the Higgs boson-gluon effective
coupling the κg [5,14] is always used to parametrize its
deviation from the SM prediction, where κSMg ¼ 1. With
the conventional method (only using the kinematic cuts
and b tagging) [25] the uncertainty of the κg will reach
about 2.2% for the channel of a Z boson decaying to a
lepton pair including the detector effect at the Circular
Electron-Positron Collider.
The measurement accuracy of the Higgs boson-gluon

coupling can be further improved through an effective
identification of jet types. In the last few decades, many
different observables motivated by color charge, color
connections, electrical charge, or spin have been proposed
and achieved good performance [26–28]. For example,
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the jet energy profile is one of the useful jet substructure
observables to distinguish quark and gluon jets by the
energy distribution of jet constituents. By using the jet
energy profile, the uncertainty of the Higgs boson-gluon
coupling can be further reduced to about 1.6% for the
channel of a Z boson decaying to a lepton pair [29].
However, an observable usually only describes a certain

aspect of the jets or some special processes. Although it is
better to choose a set of complementary observables to
extract more comprehensive characteristics to identify
different types of jets or events, the applicable scope of
different observables and the degree of association between
them will also be difficult problems. Moreover, the deeper
correlations between the jet or event constituents may be
difficult to be extracted by the artificial observables.
Deep learning has been applied to solvemany complicated

problems in particle physics. In particular, deep neural
networks have been employed to distinguish different types
of jets, includingHiggs boson tagging [30], boostedW boson
tagging [31,32], boosted top tagging [33,34], single merged
jet tagging [35], heavy-light quark discrimination [36], and
quark-gluon discrimination [37–40]. They all get an exciting
recognition capability and superior to the conventional
method. A convolutional neural network (CNN) is one of
the most popular and powerful algorithms. Its powerful
ability of image recognition makes it easy to extract more
comprehensive and deeper features to analyze the jet sub-
structure. It is very suitable for jet tagging and also for testing
different shower and hadronization schemes by comparing
different Monte Carlo (MC) generators.
In this paper, we propose to use the CNN for the precision

measurement of Higgs boson-gluon effective coupling by
distinguishing the background processes from the process of
a Z boson decaying to a lepton pair and a Higgs boson
decaying to a gluon pair (2l2g) at lepton colliders. The
global information in an event is used for the training of the
CNN instead of the jet information. We will use events from
different event generators for neural network training and
testing to illuminate the difference between the different
shower and hadronization schemes.
The content is organized as follows. In the next section,

the CNN is briefly reviewed. In the third section, the MC
events are generated by PYTHIA and HERWIG. The produc-
tion of images and CNN architecture are introduced in the
fourth section. In the fifth section, we show the results
using the CNN. The conclusion is made in the last section.

II. CONVOLUTIONAL NEURAL NETWORKS

A neural network is one of the most popular algorithms in
machine learning. Generally, a neural network consists of an
input layer, hidden layer, and output layer. A layer is dense if
each of its units connects to all of the units in the previous
layer. If a neural network consists of a dense layer com-
pletely, it will tune a large number of parameters and waste a
lot of computing resources. Actually, each neuron only needs

to perceive the local image instead of the global image for
image recognition, and then the global information can be
obtainedby integrating the local informationat a higher level.
This motivates the design of the CNN [41]. In the last few
years, based on the development of computer technology, the
CNN has been a mainstay of many major breakthroughs in
various fields.
In the image identification, the images in the CNN will

pass a convolutional layer, pooling layer, and dense layer.
The function of the convolutional layer is extracting features
of the image. This can be implemented by the convolution of
the filter and the image. A filter is a n × n grid of weights,
where n is the filter size. The convolution is that each weight
in a filter multiplies the corresponding pixel intensity in a
patch the same size as an image. Then, we sum the convolu-
tional values, add a bias, and feed it to an activation function.
Activation functions introduce the nonlinear properties into
neural networks, which enable the neural networks to learn
the deeper information. The most used activation function in
CNNs are rectified linear units (ReLU), which are defined as
fðxÞ ¼ maxf0; xg. Each convolutional layer usually has
many different filters to extract different features of a image.
For the multichannel images, there are different colors and
convolutional filters in each channel. Each color or channel
will be solved by a corresponding filter, like the single color
image, and will be accumulated in the final step.
Then, a pooling layer, following the convolutional layer, is

used to reduce the number of parameters. The filter of the
pooling layer is them ×m grid, wherem is the pooling size.
The max pooling and average pooling are the most common
pooling functions. Max pooling takes the largest value while
average pooling takes the average of all values in a filter
region. A dropout usually is added to avoid the overfitting.
It refers to the random discarding of some neural network
units at certain probability in each training [42]. Finally, the
dense layers are added to integrate the features in the feature
maps extracted by the convolution layers and pooling layers
to obtain the high-level meanings of the features and then use
them for image recognition.
The error of the model can be quantified by the binary

cross entropy loss function [43]

floss ¼ −
1

N

XN

i¼1

½yi lnYi þ ð1 − yiÞ lnð1 − YiÞ�; ð1Þ

where N is the number of training events. The yi and Yi are
the real value and the predicted value by the CNN of the ith
event. The training process is tuning the parameters in the
model to minimize the loss function.

III. PREPROCESSING

The main process of the Higgs boson production is
eþe− → Z�=γ� → Zh at the future eþe− colliders. We
choose the process of the Z boson decaying to a lepton
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pair and the Higgs boson decaying to a gluon pair (2l2g) as
the signal process since the Z boson can be reconstructed
very well by the lepton pair. The process of different Z
boson decay modes Z → eþe− and Z → μþμ− are dis-
cussed first. Then the two lepton channels are combined as
Z → lþl−. The backgrounds are divided into two-fermion
leptonic (final states are a lepton pair from the Z or γ�

intermediate states), two-fermion hadronic (final states are
two quarks), four-fermion leptonic (final states are four
leptons from the vector boson pair intermediate states),
four-fermion semileptonic (final states are a pair of charged
leptons and a pair of quarks from the vector boson pair
intermediate states), four-fermion hadronic (final states are
four quarks), and the Higgs boson production with the final
states, which are different from the signal [mainly the Higgs
boson and a Z boson associated production process with
the Z boson decaying to a lepton pair and the Higgs boson
decaying to a b=c quark pair (hbb=hcc) orW=Z boson pair
(hWW=hZZ)] [15,44]. Both the signal and background
events are simulated at future eþe− colliders [13–23] for
the center-of-mass energy 250 GeV and integrated lumi-
nosity 5 ab−1. The parton level MC events are generated by
WHIZARD 1.95 [45,46] and transferred to hadron level by
PYTHIA 6 [47] and HERWIG 7 [48], respectively. For clarity,
we call them PYTHIA data and HERWIG data, respectively.
We select a pair of isolated leptons to reconstruct the Z

boson. The rest of the final state constituents are clustered
into jets via FASTJET 3.3.0 [49] using the anti-kt algorithm
with a large jet cone of R ¼ 1.5, and the energy of each jet
is required to be more than 5 GeV. To suppress the two-
fermion leptonic and four-fermion leptonic backgrounds
[15], we add two cuts at first. One is the number of the
stable charge particles in the final state Ncharge ≥ 10, and
another is the electromagnetic energy ratio in the final state
REM < 0.99. Then, the kinematic cuts, i.e., invariant mass,
recoil mass, and other constraints of the lepton pair and jet
pair, are used to ensure that the lepton pair and jet pair,
respectively, come from the Z boson and the Higgs boson
to reject the two-fermion hadronic and four-fermion had-
ronic backgrounds. More details of the analysis can be
found in Ref. [29]. The reference also shows that the c
tagging cannot decrease the κg uncertainty effectively since
its mistag rate for the gluon jet will exclude some gluon
jets. Therefore, we only use the b tagging in this paper.
The kinematic cuts and b tagging can remove a large

number of the distinct backgrounds, which will greatly
improve the efficiency of the neural network. The remain-
ing backgrounds contain the hbb, hcc, hWW, hZZ, and
four-fermion semileptonic. The jets in the backgrounds
hbb=hcc and four-fermion semileptonic are mainly heavy
quark jets and light quark jets, respectively. But the jets in
the backgrounds hWW=hZZ are W=Z jets and light quark
jets since quite a few of the light quark jets are merged into
the W=Z jets with a large jet cone of R ¼ 1.5. It is the

complex jet types in the backgrounds that make the signal
identification be a challenge.
After all the cuts, the uncertainties of κg should be

evaluated. The evaluation of systematic uncertainties
requires a detailed detector study and is unknown yet for
the Higgs factory. But the statistical uncertainty of κg
around the SM prediction can be explicitly expressed as

δκg ¼
ffiffiffiffi
N

p

2Ng
; ð2Þ

where Ng and N are the numbers of the Higgs boson
decaying to gluon pair events and total events, respectively.
In Table I, the second and the third lines are the

uncertainties of κg with the conventional method using
PYTHIA data and HERWIG data, respectively. The difference
between the results using PYTHIA data and HERWIG data
may come from the different shower and hadronization
schemes. The kT-ordered and the angular-ordered schemes
are used for shower effect, and the Lund string and the
cluster models are used for the hadronization effect in
PYTHIA6 and HERWIG7, respectively.

IV. ARCHITECTURE OF THE CNN

For the training of the CNN, we use the combined lepton
channel Z → lþl−. The entire spherical surface, where the
azimuthal angle ϕ ∈ ½−π; π� and the polar angle θ ∈ ½0; π�,
is treated as a two dimensional plane image. Each image is
designed to have a 66-pixel length in the ϕ direction and a
34-pixel length in the θ direction. The energy of all the final
state stable particles is discretized into pixels as our pixel
intensity at lepton colliders. The images of the signal
process 2l2g are given the sign one and the other images as
the background process are given the sign zero. All the
images are divided into the training, validation, and test sets
in proportion to 8∶1∶1.
The neural network is implemented by using Keras [43]

with TensorFlow backend. Our CNN architecture is
inspired by the VGGNet [50] architectures and consisted
of four iterations of convolutional layers and maxpooling
layers shown in Fig. 1. Then the feature map is flattened
and fed to a dense layer with 128 units. Finally, a dense
layer with one unit and a sigmoid activation is added to
classify the signal and background processes. Each con-
volutional layer consists of 64 or 128 filters with filter size
3 × 3 and a ReLU activation. The uniform distribution is
used to initialize the filters. The stride length of the

TABLE I. The uncertainties of κg in the different Z boson decay
modes with the conventional method using PYTHIA data and
HERWIG data.

Z → eþe− Z → μþμ− Z → lþl−

PYTHIA 2.93% 2.53% 1.94%
HERWIG 2.67% 2.47% 1.82%
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convolution is 1. The first convolutional layer is set without
padding to weaken the influence of the edge information of
the image at the beginning while the others are set with
padding to keep all the information of the feature map.
Each maxpooling layer performs a 2 × 2 down-sampling
with a stride length of 2. A dropout layer follows each
maxpooling layer and the dense layer to avoid overfitting.
All the dropout rates of dropout layers are 0.5 except that
the first one is 0.25.
The binary cross entropy is used as the loss function. The

optimization of training uses the Adam algorithm [51] and
the learning rate is 0.0005. The training is set with batch
sizes 128 and 100 epochs and an early stopping patience
of 5. Thus, the training will stop early if the value of the
validation loss does not go down 5 times.1

The receiver operator characteristic (ROC) curve is
usually used to quantify the performance of neural net-
works. A ROC curve is generated by plotting the true
positive rate against the false positive rate. The area under
the curve (AUC) is defined to compare the overall perfor-
mance of the neural networks. In this paper, the true
positive rate is the signal process (2l2g) acceptance
efficiency Rg and the false positive rate is the mistag
efficiency RB of the background processes.
Then we test the performance of our neural network and

compare it to several different neural networks. Figure 2
shows the background rejection rate 1 − RB as a function of
the signal acceptance efficiency Rg for the CNN with
different architectures. The lines marked as “3-conv,”
“Alex,” and “MiniVGG” represent the performance of
the CNN architectures in Refs. [40,52,53], respectively.
The green dotted line is the result using the neural network,
which contains three iterations of a convolutional layer and
a maxpooling layer. The blue dashed line is the result using
the famous AlexNet, which uses a stack of convolutional
layers to increase the nonlinearity of the neural network
and bigger filter size to increase the receptive field. So, the
performance of the AlexNet has a significant improvement
compared to that of the 3-conv. The red dash-dotted line is
the result using the neural network, which is inspired by the

MiniVGGNet architecture but with a bigger filter size in the
first two convolutional layers. More iterations of the
convolution layer stack further enhance the nonlinearity
of the neural network and lead to improved performance.
According to the advantages of the VGGNet, our neural
network uses a stack of convolutional layers with 3 × 3
filter size instead of a single convolutional layer with a big
filter size, which can increase the nonlinearity of the neural
network and reduce the number of parameters. The black
solid line is the result using our neural network architecture,
which is better than other three neural network structures for
the identification of our signal and background processes.

V. RESULTS

In this section, wewill present the improvement on the κg
uncertainty archived by using the CNN.
Figure 3 shows the background rejection rate 1 − RB as a

function of the signal acceptance efficiency Rg for our
CNN. The area under these curves are the AUC values of
the different cases. Both training and testing have been
applied to the PYTHIA and HERWIG data. For convenience,
The symbol PðHÞ þ PðHÞ is used to represent training with
the PYTHIA (HERWIG) data and testing with the PYTHIA

(HERWIG) data. It can be found that at around Rg ¼ 80% the
background rejection rate can reach about 80%; mean-
while, the signal acceptance efficiency could still be
acceptable. Furthermore, it can be seen that the AUC value
of the “Hþ H” is slightly better than that of the “Pþ P.”
More specifically, the curves of the Pþ P and Hþ H are
very similar at the low signal acceptance efficiency region
Rg < 70%, but the curve of the Hþ H is higher than that of
the Pþ P at the high signal acceptance efficiency region
Rg > 70%. In general, the performances of the Pþ P and

FIG. 1. The architecture of our CNN.

FIG. 2. The background rejection rate 1 − RB as a function of
the signal acceptance efficiency Rg for the CNN with different
architectures.

1Example code is provided at https://github.com/zhaoli-IHEP/
Higgs-ML.
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Hþ H are similar, which indicates the similar performance
of the shower and hadronization schemes in PYTHIA and
HERWIG.
The “Hþ P” and “Pþ H” are training and testing with

different data as a cross-check to illustrate the universality
of the CNN model. It makes sense to compare the
performance of the CNN models, which are trained with
the different data but tested with the same data. The CNN
models are universal if their performances are similar. By
comparing the “Pþ PðHÞ” to the “Hþ PðHÞ” in Fig. 3, the
performance of the CNN model tested with different data is
just slightly worse than that tested with same data in all the
signal acceptance efficiency regions. It means that our
CNN models do not have too much overfitting since they
are not overly dependent on the certain data.
The different ratios of the remaining signal and back-

grounds can be obtained on the ROC curve in Fig. 3. The
uncertainty of κg after using the CNN at each point ðRg; RBÞ
can be expressed as

δκCNNg ðRg; RBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NgRg þ NBRB

p

2NgRg
: ð3Þ

Figure 4 presents the uncertainty of κg after the CNN as a
function of the signal acceptance efficiency Rg using the
PYTHIA and HERWIG data. At the optimal point Rg ¼ 70%,
δκCNNg can reach about 1.28% by using the Pþ P and
1.22% by using the Hþ H. Compared to Table I, it shows
that δκCNNg can be further reduced by 34% for the Pþ P and
33% for the Hþ H. The results using the Hþ H is about
5% smaller than that using the Pþ P. The small difference
of the results may come from the different shower and
hadronization schemes in PYTHIA and HERWIG. The results

of the cross check are slightly worse than that of the
training and testing with the same data. Comparing the
Pþ P to the Hþ P, the uncertainties of κg using the Hþ P
is slightly worse than that using the Pþ P. But the
difference between the Pþ P and the Hþ P is less than
0.1%, which far exceeds the measurement accuracy of the
future electron positron colliders. The Hþ H and the Pþ H
are in the same situation. The similar results mean that our
CNN models do not have too much overfitting and the
results are reliable.
In the previous part, one image is constructed with the

information of all the final state stable particles in an event.
To gain insight into the improvement by the CNN and find
the most important features of the signal and background,
different images are constructed with different final state
constituents. The following analysis only uses the PYTHIA

data. Figure 5 shows the uncertainty of κg after the CNN as
a function of the signal acceptance efficiency Rg using the
different images. The line marked as “all” is the result using
the images constructed with the information of all the final
state stable particles, and the line marked as “multijet” is
the result using the images constructed with the information
of all the jets clustered by anti-kT algorithm in an event.
The multijet result is slightly better than the all result in the
region Rg ∈ ½60%; 70%�. However, the difference of the all
and multijet results is less than 0.2% at the optimal points

FIG. 3. The background rejection rate 1 − RB as a function of
the signal acceptance efficiency Rg for our CNN. The symbol
“PðHÞ þ PðHÞ” means training with the PYTHIA (HERWIG) data
and testing with the PYTHIA (HERWIG) data.
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FIG. 4. The uncertainty of κg after the CNN as a function of the
signal acceptance efficiency Rg. Both training and testing use the
PYTHIA and HERWIG data.
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FIG. 5. The uncertainty of κg after the CNN as a function of the
signal acceptance efficiency Rg using the different images, which
are constructed with the information of all the final state stable
particles, all the jets, or the first two jets sorted by their energy.
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and can be ignored. This indicates that the information of
jets makes a major contribution to the identification of the
signal and background processes. The reason is that most
of the information except the jets in an event is the lepton
pair, which are very similar in the signal and background
processes after using the kinematic cuts. The line marked
as “dijet” is the result using the images only constructed
with the information of the leading and subleading jets.
The all and dijet results are very similar, which shows that
the leading and subleading jets nearly contribute all the
features for the CNN. The multijet and dijet results are
also very similar since most of the events only have two
jets with a large jet cone of R ¼ 1.5. If the images are
constructed only with the leading and subleading jets, the
center of the two jets can be chosen as the image center.
Then the constituents of the two jets are discretized into
pixels to obtain the “dijet translation” images. By this
operation, the jets will not be split into two parts at the
margins of the image. It can be seen that the dijet translation
and the dijet results are also very similar, which indicates
that the symmetry property in the ϕ direction has been
recognized by the CNN.
After showing that the information of the leading and

subleading jets makes a major contribution to the identi-
fication of the signal and background processes, we further
analyze the contribution of each jet. Figure 6 shows the
uncertainty of κg after the CNN as a function of the signal
acceptance efficiency Rg using the different single-jet
images. Each single-jet image has the size 2R × 2R with
the jet cone R ¼ 1.5 and is designed to have 34 × 34 pixels.
The jet axis is chosen at the image center so that there is a
complete jet on the single-jet image. The lines marked as
“leading jet” and “subleading jet” represent the results using
the leading jet images and the subleading jet images,
respectively. We can see that the leading and subleading
jets are equally important for the identification. Then the
leading and subleading jet images as two different channels
are combined as the “dijet two-channel” by analogy with
the recognition of color images, with red, green, and blue
intensities treated as separate input layers. Compared to the
dijet, which puts the leading and subleading jets in one

image, the dijet two-channel removes the relative location
information of the two jets. It can be seen that the dijet
two-channel result is just slightly worse than the dijet result,
so the relative location information of the jets is not important
for this discrimination. From the above analysis, we can
conclude that the leading and subleading jets make a major
contribution to the identification of the signal and back-
ground processes.
In the third section, the analysis shows that the jets in the

signal process are mainly gluon jets and the jets in the
background processes can be mainly divided into quark jets
and W=Z jets. The three types of jets have different energy
distributions of their constituents. Each jet image using
energy as pixel intensity records the energy distribution of
the jet constituents. This information can be extracted from
the jet images by the CNN to identify the signal and
background processes. Therefore, the energy distributions
of the leading and subleading jets constituents make a
major contribution to the identification of the signal and
background processes.
Figure 7 shows the best result using the CNN (the line

marked as multijet) and the result using the conventional
method (the line marked as “conventional”) for the PYTHIA

data. Comparing to the result using the conventional
method, the CNN has a significant improvement in a wide
signal acceptance efficiency region. At the optimal point
Rg ¼ 70%, the uncertainty of κg can be decreased from
1.94% to about 1.26% by using the CNN and reduced by
about 35% compared to that using the conventional method
for the PYTHIA data. Moreover, the result using the HERWIG

data is similar to that using the PYTHIA data.

VI. CONCLUSIONS

In this paper, the CNN is used to improve the precision
measurement of the Higgs boson-gluon effective coupling
at lepton colliders. By using the CNN the uncertainty of
κg can be decreased from 1.94% to about 1.28% using the
PYTHIA data and from 1.82% to about 1.22% using the
HERWIG data in the channel of a Z boson decaying to a
lepton pair in the MC simulation for the center-of-
mass energy 250 GeV and integrated luminosity 5 ab−1.
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FIG. 6. The uncertainty of κg after the CNN varies with the
signal acceptance efficiency Rg using different single-jet images,
which are constructed only with the leading jet or subleading jet.
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FIG. 7. The best result using the CNN is compared to the result
using the conventional method for the PYTHIA data.
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The difference between the expected κg uncertainties using
the PYTHIA and the HERWIG data is less than 0.1%.
Moreover, the performance of the CNN using different
final state constituents is proof that the energy distributions
of the leading and subleading jets constituents play a major
role on the identification and the optimal uncertainty of κg
using the CNN is reduced by about 35% compared to that
using the conventional method.
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