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We derive one-loop matching relations for the Ioffe-time distributions (ITDs) related to the pion
distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a
universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice
calculations of the pion DA and GPDs within the parton pseudodistributions approach.
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I. INTRODUCTION

Extraction of parton distribution functions (PDFs) from
lattice simulations attracts now a considerable interest and
efforts (for a recent review see Ref. [1]). An intensive deve-
lopment in this field has started with the paper by X. Ji [2],
who proposed the concept of parton quasi-distributions
(quasi-PDFs) formalized later within a general framework
of the large momentum effective theory (LaMET) [3]. The
basic idea of Ref. [2] (preceded in Refs. [4,5]) to study
equal-time correlators is also used in the “good lattice
cross sections” approach [6,7] and in the pseudo-PDF
approach [8-10].

The conversion of the Euclidean-space lattice data into
the standard light-cone PDFs is performed with the help of
the matching relations. In the quasi-PDF approach, such
relations were derived for the usual PDFs [2,11-15], the
pion distribution amplitude (DA) [16] and generalized
parton distributions (GPDs) [16—18]. Matching relations
between pseudo-PDFs and the usual light-cone PDFs were
discussed in Refs. [13,19-22].

It should be noted that, in all the papers mentioned
above, the derivation of the matching relations was based
on separate calculations of the relevant one-loop Feynman
diagrams. However, as pointed out in our paper [20],
the one-loop correction in the coordinate-representation
approach of Ref. [23] may be calculated in the operator
form, i.e., without specifying the matrix element character-
istic of a particular parton distribution.

The diagram by diagram results of such one-loop
calculation for a nonsinglet quark operator are given in
Ref. [20], and they were used there to obtain the matching
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relations between the nonsinglet pseudo-PDF and the
corresponding PDF. It was also stated there that the same
result obtained on the operator level may be used to derive
matching relations for the pion distribution amplitude and
the nonsinglet generalized parton distributions.

It is the goal of the present paper to describe the
derivation of these matching relations. They can be used
in future lattice extractions of the pion DA and nonsinglet
GPDs within the pseudo-PDF approach.

To make the paper self-contained, we describe in Sec. 11
the derivation of the known matching relations for non-
singlet PDFs. In Sec. III, we derive matching relations for
the pion distribution amplitude. The matching relations for
nonsinglet GPDs are derived in Sec. IV. Section V contains
the summary of the paper.

II. MATCHING CONDITIONS IN THE
COORDINATE SPACE

A. Operators and parton distributions

In the present paper, we will consider the valence parton
distribution functions, the pion distribution amplitude (DA)
and nonsinglet generalized parton distributions. They all
are given by matrix elements of nonsinglet operators of a
generic form

0(x) = pOrEO. 2 AW(z).  (21)
where I'* = y or y%ys. The factor E (0,z;A) is the standard

0 — z straight-line gauge link in the quark (fundamental)
representation

E(0,2;A) = Pexp {igzb /01 dtf\”(tz)]. (2.2)

In particular, studying the parton distribution functions,
we deal with the forward matrix elements
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M%(z,p) =

(p|O*(2)|p) (2.3)

between the hadronic states |p) with momentum p. By
Lorentz invariance, M%(z, p) may be represented as a sum
of two structures

M*(z, p) = 2p" M(=(zp),

—2%) + 2" M. (=(zp), —2*)

(2.4)

involving the amplitudes depending on two Lorentz scalars:
the interval z> and the invariant (pz) = —-v, the Ioffe
time [24].

The twist-2 PDF is determined by the loffe-time pseu-
dodistribution M(v,—z?), while M, (v, —z?) is a purely
higher-twist contamination. It can be eliminated by an
appropriate choice of z and p. The usual way to define
twist-2 PDF is to use z in a purely “minus” light-cone
direction, i.e., z = z_ and take a = +. To exclude M, in
lattice calculations, one may use z =z3 and a =0, as
suggested in Ref. [25]. We will follow this prescription for
all the parton distributions that we consider in the
present paper.

B. One-loop correction in the operator form

The one-loop correction to 0°(z3) was calculated in the
operator form in Ref. [20], and is given by

1—u
50°%(z3) =——CF/ du/ dv iy (uzz )My (vz3)

fpol] sl Jofoas”
ool o] )

+Z<Z3>5<u>a<v>}.

| =i

(2.5)

Here we use the notation v = 1 — v, # = 1 — u, etc. In what
follows, we will also use the variable w = 1 — u — v. The
plus-prescription at zero is defined by

Al"” BLFW = [)lduZWu)—F[on, (2.6)

assuming that F(0) is finite.

In our result (2.5), we have used the dimensional
regularization for collinear singularities, and applied the
MS scheme subtraction with pg serving as the scale
parameter.

The function Z(z) accumulates information about local
corrections associated with the ultraviolet-divergent con-
tributions. This function is also known (see Ref. [13]), but,
in the pseudo-PDF approach, we do not need its explicit

form. As we will see, such terms cancel when one forms the
reduced loffe-time pseudodistributions.
In Feynman gauge, the terms

(ol o))
(o] s f5).)

containing &(u) or &(v) in the coefficient function of
Eq. (2.5) are produced by vertex diagrams, while the
“+1” and “—1” u, v-independent additions to them come
from the box diagram (see Ref. [20]). So, we will use
sometimes “vertex”” and “box” to refer to these two types of
contributions.

and

C. Matching for parton distribution functions

In the PDF case, the one-loop correction to M%(z3, p) is
given by the forward matrix element (p|5O°(z3)|p). The
right-hand side of Eq. (2.5) brings then the matrix element

Mo(uv, ov) = (pp(uzs) Dy (3z3)|p),  (2.7)
where v = p;z3 is the loffe time [24].
Using translation invariance, the “vertex” terms

containing &(u) or &§(v) are trivially reduced to one-

dimensional integrals involving, say, (it/u), M,(0,av)

or (9/v),My(0,7v). Changing u or v to a

common variable 1-—w, we get the w-integral of

2(w/w), My(0,wr) with the plus-prescription at w = 1.
For the “box” terms, we get

Al du K—" dv M (0, (1 — u — v)v)

_ / L aw(1 = w) Mo (0, wr).

0

(2.8)

We can represent (1 — w) as the sum of the term (1 —w)__
that has the plus-prescription at w =1 and the delta-
function term 15(w) that we add to Z(z3), denoting the
changed Z-function by Z(z3). As a result, we have

M. 2) = [1 —;’—;CFZ(Z3)]MO(U)

a, 1 1+w? eretl
_27[CF/0 dW{ T—w In <Z%ﬂ]2R4

w _o(1 - w)}+M0(Wy), (2.9)

+4
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where we have abbreviated M(0,v) to My(v) and
similarly for M (0, wv).

The structure of Eq. (2.5) implies a scenario in which the
z3-dependence at short distances is determined by the
“hard” logarithms In z% generated from the initially “soft”
distribution M (v, z3) having only a polynomial depend-
ence on z3 that is negligible for small z3. For this reason,
we have skipped the z3-dependence in the argument
of M-functions, leaving just their v-dependence. The
combination

Lt Wz] (2.10)

B(W):[l—w

is the nonsinglet Altarelli-Parisi (AP) evolution kernel [26].
The latter is usually defined for PDFs, i.e., in the
momentum-fraction space. However, introducing the
pseudo-PDF P(x,z3) [8] by

1 [ .
P(x,23) :2”/ dve ™ M(v,z3),  (2.11)
or by the inverse transformation
1 .
M(v, z3) :/ dy e”P(y. z3), (2.12)
-1

with P(x,0) = f(x) being the usual PDF, we see that
Eq. (2.9) converts into

Plx.22) = f(x) - ;”—” Crin(22) / L awB(w)

0

X/_idy5(x—wy)f(y)+~--

= ) =52 Crtn(ad) [ B/ 0) oo

(2.13)

in which the In z3 part has the standard form of the DGLAP
(for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [26-28])
evolution equation.

The next step is to introduce the reduced Ioffe-time
pseudodistribution

M(v, 23)

S = h0.4)

(2.14)

of Refs. [8—10]. When the momentum p is also oriented in
the z3 direction, ie., p={E,0.,ps}, the function
M(0, z2) corresponds to the “rest-frame” p; = 0 distribu-
tion. According to Eq. (2.9), it is given by

M(0,23) = M,(0) [1 — ;‘—ﬂ CFZ(Z3)] . (2.15)

As a result, the Z(z3) terms disappear from the O(a;)
correction to the ratio M (v, z3)/M(0, z3), and we have

M(v. 23)
055 1 1+W2 62}’E+1
= mo(l/) —%CF/O dW|: T—w In <Z%”12RT>
In(1 —
Lgl=w) o —w)} My (wo). (2.16)
1—w +

Such a cancellation of ultraviolet terms for M (v,z3)
will persist in higher a, orders, reflecting the multiplica-
tive renormalizability of the ultraviolet divergences of
M(v, z3) [29-31].

A similar calculation can be performed for the light-cone
Ioffe-time distribution I (v,u*) [32] obtained by taking
72 =0 in M(v, —z%) and regularizing the resulting light-
cone singularities using dimensional regularization and the
MS subtraction specified by a factorization scale . The
result may be symbolically written as

ag 1 1+ w?
-2 C d
21 FA W[l—wL

x In (g /1?) Mo (wo).

I(v,p*) = My(v)
(2.17)

Combining Egs. (2.16) and (2.17) gives the matching
condition for the light-cone ITD [13,19-22]

(o) = M. ) + 2 CF/ldwim(wy,z%)

2 eZyE+l
4

41‘1(1_ W) o - )}

(2.18)

+

that allows to get Z (v, 4*) from lattice data on I (v, z3). By
definition [32], the light-cone ITD Z (v, 4?) is related to the
PDF f(x,4*) by

T(v,2) = / L e F(x, ). (2.19)

Thus, f(x,u?) is formally given by the inverse trans-
formation

1
/ dve ™I (v, u?).
2n

However, lattice calculations provide Z (v, 4?) in a rather
limited range of v, which makes taking this Fourier

flap?) = (2.20)
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transform rather tricky (see Ref. [33] for a detailed
discussion). An easier way was proposed in our paper
[8]. The idea is to assume some parametrization for f(x, u?)
similar to those used in global fits (see, e.g., Ref. [34]), and
to incorporate Eq. (2.19) to fit its parameters using the
lattice data for Z (v, u?).

An equivalent realization of this idea (similar to that
of Ref. [35]) is to represent M (v, z%) in terms of
I(v,u?) (see, e.g., Eq. (5.1) in Ref. [36]), which, in
turn is written through its definition (2.19) as a Fourier
transform of PDF

1 . a; 1
M) = [ ave ) -Sicy [ansten)

1

1 . (14 w? eretl
d IxXwv __ ,ixv 1 2,2
XA w (e e )L_W H<Z3ﬂ 1

M—Z(l —w)]

1 —
E/ dx {e”"’ —ZCFR()W, z%yz)] flx,u?).

(2.21)

The kernel R(xv, z3u?), introduced in the equation above,
may be calculated as a closed-form expression and is
given by

R(y.23u?)
1 eretl :
— 1 2,2 1—i iy
72 n (23/4 1 > { 1y +e

x {2@ —14 2y2{Ci<y> ~iSi) = In(y) =7 +§1H }

+diyeV F4(1,1,1;2,2,2; —iy)

~ Sl iy = (14 57/2) (222)

(see also Ref. [13]), where Ci(y) and Si(y) are the
integral cosine and sine functions, and ;F 3(1, 1,1;
2,2,2;—iy) is a hypergeometric function.

One may split f(x) in its symmetric f*(x) and anti-
symmetric f~(x) parts. For positive x, they are related
to the quark f,(x) and antiquark f;(x) distributions
by f7(x) = fq(x) = fa(x) and f~(x) = fo(x) + f5(x),
respectively (see, e.g., Ref. [10]). Then the real part of
R(y, z3u%) generates the real part of M (v, z3) from f*(x),
while the imaginary part of R(y,z3u*) connects the
imaginary part of MM (v, z3) with f~(x).

Thus, assuming some parametrizations for the £+ (x, u?)
distributions, one can fit their parameters and «, using
Egs. (2.21), (2.22) and the lattice data for I (v, z3).

III. MATCHING FOR PION DISTRIBUTION
AMPLITUDE

A. Definition and general properties

The pion distribution amplitude, initially introduced in
our 1977 paper (see Ref. [37]) may be defined using the
matrix element

M°(z, p) = (0@ (0)y?ysE(0, z; A)w(z)|p). (3.1)

where |p) is a pion state with momentum p. A similar
object was introduced within the light-front quantization
formalism [38] (see Ref. [39] for comparison of the two
definitions).

Again, on the lattice, we take z = z3 and @ = 0 to extract
the p®M (v, —z) part of the decomposition of M%(z, p)
over Lorentz structures, and then form the reduced Ioffe-
time distribution M(v, 23) = M(v, 23)/ M(0, 23).

It can be shown [40] that, for all contributing Feynman
diagrams, the Fourier transform of the pseudo-ITD
M(v, z3) [and, hence, of M(v, z3)] with respect to v has
the 0 < x < 1 support. In other words, for any z3, we may
write

1 .
M(v, 23) :A dx e ®(x, 23), (3.2)

where @(x,z3) is the pion pseudodistribution amplitude
(pseudo-DA). Sometimes it is convenient to use the
(—z/2,z/2) endpoints instead of (0, z). Using translation
invariance, we get

(O (=23/2)...w(z3/2)|p) = e > M(v. 23)

= M(v,z3). (3.3)

To apply the general one-loop formula (2.5), we will
need also a parametrization of the (0| (uz3) - -y (9z)|p)
matrix element. Again, by translation invariance,

(Ol (uz3)...w(vz3)|p) = e Mo[(1 —u = v)]

1 o
= [(avermay). (4
0

This formula just says that the quark at vz3 has the yp;
momentum, while that at uz; carries yps.

B. Structure of contributing terms

Let us start with the evolution terms in Eq. (2.5), i.e.,
with those accompanied by In(z3) in Eq. (2.5). Take first
the “vertex” part. In this case,
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A du / " {0 (uz)r 75w (523) )

<]+l

:/)lde (0@ (0)r°ysw (z3)|p)
—|—A1du[

Using translation invariance, we see that this is equal to

[SEIIST

IR

]+<0|u7(u13)7°y5w(Z3)|p>- (35)

/0 L dw H MOu)(1 + ), (3.6)

Transforming to the M-function using Eq. (3.3) in the form
M(wv) = e™/2 M(wv), we find that Eq. (3.6) reduces to

ev/? Al du [Z_W} M(wv) cos(wy/2).  (3.7)

w

Take now the “box” part. It is given by

1 1—u
/ du / Ao (0 (uzs) rsw (923) )
0 0

1 1—-u
= / du/ dve™ My((1 —u—v)v).
0 0

Changing u + v = 1 —w, u = (1 — w){, integrating over ¢

(3.8)

and switching to the M-function gives

1
ei”/z/ dw 51n(w1//2)M0(wy)
0

o (3.9)

Note that if we would calculate the correction to the
function M(v,z2) = =2 M(v,z3) rather than to
M(v, 23), the overall factor of ¢*/> in Egs. (3.7) and
(3.9) would be absent.

C. Matching

In a similar way, one can derive formulas for other terms
from Eq. (2.5). As, a result, we obtain an analog of
Eq. (2.9), namely

M, 22) = [1 —z—cFZ(z3)]J\20(y)

62y5+1:|

a, -
~ . Cr [) dw Mg(wv) {ln [Z%ﬂ%R Y

: ( L2__ww} N cos(Wy/2) + sm(yv;ivzﬂ))

+4 [@} X cos(Wy/2) — ZM}

1 v/2
(3.10)
To form the reduced pseudo-ITD,
N A 2
M(v, 23) EM, (3.11)
M(0,73)

we need M (0, z3), which is given by
M(0.23) = [1 - 2_CFZ<Z3):| Mo(v)

a, . - 62)/5-&-1
_%CFEMO(O){IH |:Z3ﬂIR T:| - 2}
(3.12)

Thus, the sin(wv/2)/(v/2) terms present in Eq. (3.10)
change into sin(wv/2)/(v/2) — 5 5(w) in the expression for
the reduced pseudo-ITD. This combination does not
have a plus-prescription form, i.e., it differs from
[sin(wr/2)/(v/2)],, in contrast to the PDF case, when
(1 —w) —38(w) could be written as (1 —w)_.

However, just like in the PDF case, the Z(z3) term drops
from the O(a) correction to the reduced pseudo-ITD. As a
result, the matching condition in the pion DA case is

Z(v. p?)
1 —~ eZyE—H
M (v, Z3)+ CF/ dwfm(wz/,z%){ln [zg;ﬂ 1 }
0

y < Lz_—ww} eos(iw/2) + Smgji”z/z) - %5@))
4 [%} cos(i2) - 2“37”2/2) + 6<v‘v>}-
(3.13)

The “tilde” ITD Z (v, u?) is related to the light-cone pion
DA ®(x, u?) by

~ 1 .
Z(u,/ﬂ):A dx e 7120 (x, 4?).

Again, the simplest way to extract @ (x, u) is to assume
some parametrization for it, like N(xX), and fit a from the
lattice data on Z (v, y?).

(3.14)
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Alternatively, in analogy with Eq. (2.21), one may write

M(v,z3) in terms of @(x,u?) and fit a, and the para-
meters of the ®(x,u ?) model using the lattice data for

M(v, 23). The analog of R(xv, z3u?) of Eq. (2.21) is also
straightforward-calculable as a closed-form expression.

A few more words about the lattice implementation.
While the function MM (v, z3) is directly given by the matrix
element of the operator with the (—z3/2, z3/2) endpoints, a
more practical way to calculate it is to use the (0, z3)
endpoints and multiply the function MM (v, z3) obtained in

this way by the e=/2 factor to get fil\n/(u, z3). The reason is
that z3/2 on the lattice should be an integer multiple of the
lattice spacing a, say z3/2 = na. But then z3 = 2na, i.e.,
the total separations z3 given by an odd number of lattice
spacings are lost if one uses the (—z3/2,z3/2) endpoints.

D. Checking the ERBL kernel

While the matching formula (3.13) has a more involved
form than that for PDFs, the difference is basically the
presence of sines and cosines of wr/2, which are smooth
functions of w.

On the other hand, it is well known that the ERBL (for
Efremov-Radyushkin-Brodsky-Lepage [38,41,42]) kernel
V(x,y) governing the evolution of the pion DA is given by
different functions for x <y and x >y, i.e., it is only
piecewise smooth, with singularities like cusps, etc., for
x=y. So, one may wonder if Eq. (3.10) correctly
reproduces the ERBL evolution equation

a 1
50(x, ) = 32 CrIn(23) / dy V(x.y)®o(y) + -
(3.15)

Let us take first the “vertex” part corresponding to
Eq. (3.6) and write it in terms of the DA,

w

/0 L aw H +M(wy)(l + )
= ['aw H [ dvermagn e 3a6)

w 0

Applying the Fourier transformation

D(x,23) = %/_Z dve ™M(v,z3)  (3.17)
that converts M(v) into @(x), gives
A ' dw m 13— wy) +8(=% - w3)]
_ [y/x o4 |2
- L_y]f(w )+ [y_x]f(wx), (3.18)

which is a well-known part of the ERBL kernel V(x,y)
(see, e.g., Ref. [38]). As expected, it has different analytic
forms in the regions x <y and x > y.

For the “box” part given by Eq. (3.8), we have

1 1—-u
/ du/ dve™ M((1 —u—v)v)
0 0

I 1—u 1 )
:/ du/ dve’””/ dy e?1=u=vrd(y).  (3.19)
0 0 0

Applying the Fourier transform (3.17) gives the remaining
part

1 1-u
/du/ dvé(x—y—u+y(u+v))
0 0
x

=200 <y)+ §e<x <y) (3.20)

of the ERBL kernel V(x, y). As a function of x, it is given
by two straight lines intersecting at x =y, with a cusp at
this point. Its integral over x gives 1/2, and the —15(1 — w)
term in Eq. (3.13) gives the contribution —48(x —y) that
provides the plus-prescription for the kernel of Eq. (3.20).

IV. MATCHING FOR GPDS

A. Definitions and kinematics

For the pion, one may define the light-cone GPDs
H(x, & t; /42) [43] (see also Refs. [44,45]) at a factorization
scale u by

(P2l (=2/2)y"E(=2/2.2/2; A)w(z/2)|py)

1 .
= 273“/ dx e""”’Z)H(x, Etu?),
-1

(4.1)

where P = (p, + p,)/2 is the average momentum, the
coordinate z has only the z_ light-cone component and
a = +. The invariant momentum transfer is given by
t = (p; — p»)*. In principle, the r.h.s. of Eq. (4.1) has
also the r* term, where r = p; — p, is the momentum
transfer. However, the convention is to write r™ = P,
where £ is the skewness variable. In general, £ may be
defined as

= (P12) = (P27) (42)

(P12) + (P22)

For the nucleon, a similar definition holds for the
spin nonflip GPD H(x, &, t;z%), with 2P* substituted
by i(pa)y u(py).

On the lattice, as discussed above, it is more convenient
to take the y(0)...y(z) operator. By translation invariance,

116011-6



GENERALIZED PARTON DISTRIBUTIONS AND ...

PHYS. REV. D 100, 116011 (2019)

(P2l (0)...w(2)|p1)

= =PI/ 2422 (p) g (=2/2)..p(2/2)|py).  (4.3)

To introduce pseudo-GPDs, we choose z = z3. Then
only the value of the third component of the average
momentum P is essential in the scalar product (Pz). So, we
can take P11 = {Elv Al.L» Pl} and P2 = {EQ, AZ.L’ P2} As
a result, we have two loffe-time invariants v = —(p,z) =
Pyz3 and v, = —(p,z) = P,z3. The skewness variable £ in
this case is given by

(P123) — (P223) _ P, —P, _u-n
(P1z3) + (p2z3) Pi+Py vi+1u,

E= (4.4)

Note, that if we choose a =0, then both z* and
A9 contributions will be absent in the parametrization
of (palw(=2/2)r"E(=2/2.2/2;A)w(z/2)|p1). Hence, we
can define the double Ioffe-time pseudodistribution
M(”lv”Zv t,Z%)

<P2|l/7(0)70---W(Z3)|P1> = ZPOM(Vl,Uz’ L Z%)- (4.5)

Using the ¢&-definition (4.4), we may write P; =
(1 +¢&)P and P, = (1 — &)P, where P = P5. Denoting

v+,
=1r% 4,
2 ’ ( 6)

we define the generalized loffe-time pseudodistribution
(pseudo-GITD) by

M(vi vy, 1;23) = M(v.&.1:23), (4.7)
and parametrize it by the pseudo-GPD
) 1 .
M, E1,23) = elf’“/ dx e™H(x, & 1, 23). (4.8)
-1

This formula tells us that the third momentum component
of the quark at the point z3 is (x + £)P, as expected. The
inverse transformation is given by

1 [ .
H(x, & 1,23) = —/ dve T M, €, 123).  (4.9)

27 )

Note that originally we had two loffe-time parameters v
and v,. However, the Fourier representation (4.9) involves
integration over just one v-parameter, proportional to their
sum. The difference vy — v, is expressed in terms of v and
the skewness & that plays the role of an external fixed
parameter like 7 or z3.

Just like in the pion DA case, it is convenient to introduce
the “tilde” pseudo-GITD

M, & t,22) = e M, &, 1, 23) (4.10)

that is directly conjugate to the pseudo-GPD

_ 1 ,
M(v, €, t;z%)z/ dx e™H(x, &, 1, 23).
|

(4.11)

In deriving the matching relation, we will also need the
representation

(P2l (uz3)...w(Vz3)|p1)
= ! M V(1 —u—v), &)

= 2 M (wr, €). (4.12)

B. Structure of contributing terms

Let us now collect the terms resulting from taking
Eq. (2.5) between the (p,|...|p;) brackets. Take first the
“vertex” part. Proceeding as in the DA case, we start with

A v H +l/‘/(0)7"l//(17Z3)

. _
+ [fanls] v @
0 u +
Taking matrix elements we arrive at
/ldv H Mo(u(1 = v).&)
0 v +
+ /] du F] e Mo (v(1 —u), &)
0 uj,
= /1 dw H (1 + €)My (wr, €). (4.14)
0 Wiy

Switching to the M-function, we transform this expres-
sion into

ei‘f”/ldw {2—W] cos(Evin) Mo (wr, &). (4.15)
0 1 +

- W

Again, the overall e’ factor tells us that this is a correction

to the M-function written in terms of the Mo—functions.

To check what kind of evolution kernel we have now,
write the last line of Eq. (4.14) in terms of the GPD. This
gives

w

1 o 1 ,
:/ de (1 4 e2ev) / dy e’ H (v, &).
0 + -

w 1
(4.16)
Applying the Fourier transformation (4.9) that converts M

into H, we get the following representation for the “vertex”
part of the GPD evolution kernel
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Ko = [aw M [ o+ -+ )

w

+o((y=&w—(x=9)I. (4.17)

It is easy to check that, for & = 0, this expression gives the
“vertex” part of the AP kernel, while for £ = 1 it gives the
“vertex” part (3.18) of the ERBL kernel.

Consider now the “box” part. Then we deal with

1 I—u
/ du/ dv e  Mo((1 —u —v)v). (4.18)
0 0

N — .
T, & t,pu?) = M(v, & 1, 23) +;_7STCF/0 dwI(wy, &, 1, z%){ln [Z%/tz

X <[12_Ww} . cos(wév) +

that gives the light-cone GITD

~ 1 .
I(v, & t,p4?) :/ dxe™H(x,E t;u*)  (4.21)
-1
in terms of the reduced pseudo-GITD
an M 9 ki t? 2
W(v, &1, 2) = AL (4.22)
M(0,0,0,z3)

To extract H(x, &, t; 4*), we again propose to take some
parametrization for it, and then fit the parameters using the
lattice data on M (v, &, 1, Z%) Doing this, one should keep in
mind that the GPD has a nontrivial polynomiality property
[43-45]. It amounts to the requirement that, in the non-
singlet case, its x moment should be a polynomial of the
Nth degree in £. A possible way to satisfy it is to use the
double distribution Ansatz [46].

An equivalent alternative strategy, similar to that in the
PDF and DA cases, is to start with the matching relation
between the reduced pseudo-GITD M (v, ¢, ¢, z%) and the
light-cone GITD Z(v,& t,u*) written in terms of
H(x,& t;4%) through Eq. (4.21), and fit the parameters

of H(x,& t; %) from the lattice data on M(v, &, 1, 23).

C. Remarks on lattice implementation
Just like in the pion DA case, on the lattice it is more
practical to measure matrix elements M (v, v, t; Z%) of the
operators with the (0, z) endpoints, and then to multiply
them by e~ = ¢~(*172)/2 to convert the result into the

} . cos(wév) — 2

Changing u + v = 1 —w, u = (1 — w)(, integrating over {
and switching to the M-function gives

U gin(iéy) —
e‘f”A dwsm(gfy)./\/lo(wy). (4.19)

Just like in Eq. (4.15), we have here an overall factor of elsr,
as expected.

Further steps go absolutely in parallel with the derivation
of the matching relation for the pion DA. Skipping these
steps, we present here the final result

6275+1
4

sin(wév) 1 _, _
& _25(W))

sin(wév)

P 5(w)} (4.20)

M(v, & t, z%) functions corresponding to the (—z/2,z/2)
endpoints.

Furthermore, on the lattice, the measurements will be
done on a discrete set of values for coordinates z3 = n,a
and longitudinal momenta P, = 2zN,/L, P, = 2zN,/L,
where L = na is the lattice size in the z; direction. Thus,
possible values of the Ioffe-time parameters are limited to
discrete sets vy =2an,N;/n and v, =27n.N,/n.
Correspondingly, possible values for skewness are given
by a set of rational numbers

P\ —P, N =N,

‘5:P1+P2_N1+N2'

(4.23)

In particular, changing N; and N, from 0 to 6, gives 13
possible values for & ranging from O to 1 and rather well
representing the whole 0 < £ < 1 segment.

However, varying the value of £ also changes the value of
the momentum transfer 7. Namely, taking purely longi-
tudinal momenta

p1=1{E, 0., P} ={E, 0., (1+&)P}

P2 =1{E», 01, Py} ={E», 0., (1 -¢)P} (4.24)
with
E, = \/M?*+ P?, E, = \/M?* + P3, (4.25)

we get
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_ 2MP(Py = P,)?
M? + PPy + \/M?* + P}\/M? + P3
= to(Py, P2, M),

(4.26)
or, in the {&, P} variables,
~ 8E2 M2

@24y \/(1_§2+Jg_j)2+4£2%_j-

ty = (4.27)

When M?/P? is small (this is not a very realistic situation
for the nucleon, but still), we have

4§2M2
fo~ — . 4.28
0 1 — 52 ( )
For small £, we can approximate
4§2M2
IR ——————. 4.29
T 1+ M/ P? (4.29)

In these formulas, ¢, increases when & increases. In any
case, this value of ¢ is £-dependent, while we need to extract
GPDs as functions of x for fixed & and .

To solve this problem, one may add a transverse
component A, to the momentum transfer. We propose
touse p; = {E|,A,P,} and p, = {E,,0,, P,}. Just like
in the z3 case, the asymmetric choice (A |, 0, ) on the lattice
increases the number of possible discrete values for A |
compared to the (A, /2,—A, /2) choice. Then

t:2M2+2P1P2—Ai

S2 /M PR AL\ M P (430)

Since we will have a discrete set of possible A% values on
the lattice, it is impossible to arrange exactly the same value
of t for different values of £&. A more modest goal is to
collect a set of data with close values of ¢, and then make
interpolation to a chosen ¢-value.

Another strategy is to choose first some particular values
of P, and P,. This fixes the value of £. The next step is to
take several different values of A| to change ¢. That will
give the t-dependence for fixed £ and v. After this, changing

73, we will change v leaving £ and ¢ unchanged. Finally,
using the matching conditions to convert the v-dependence
into the x-dependence, we will end up with H(x, &, t; uz) for
a fixed £ as a function of x and r.

V. SUMMARY

In this paper, we have derived the matching relations for
the pion distribution amplitude and nonsinglet generalized
parton distributions that connect them with their off-the-
light-cone counterparts, the pseudo-DA and pseudo-GPDs.
The latter may be calculated in lattice simulations, and the
matching relations are crucial in converting them into the
experimentally measurable (in principle) light-cone parton
distributions.

We have also derived matching relations for the usual
parton distribution functions. One of them, given by
Eq. (2.22), allows to express the lattice-measurable reduced
pseudo-ITD M(v,z3) with its PDF f(x,u*). Similar
relations may be derived for the lattice matrix elements
renormalized using the RI/MOM schemes. Then one may
be able to directly fit these matrix elements by a chosen
model for the PDF.

The main feature of our derivations is that we start with a
universal expression for the one-loop correction in an
operator form. In particular, we show how this universal
expression produces particular matching conditions for
ITDs related to different parton distributions. In fact, these
different matching relations have a rather similar structure.
Also, these relations are much simpler than the matching
relations for quasi-PDFs, quasi-DAs and quasi-GPDs given
in Refs. [2,11-15].

The matching relations for the pseudo-PDFs have been
already used in lattice calculations [10,21,47-49], while
these for the pion DA and GPDs will be used in the ongoing
lattice calculations.
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