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We show how the semiclassical formulas for radiation emission of Baier, Katkov and Strakhovenko for
arbitrary initial and final spins of the electron and arbitrary polarization of the emitted photon can be
rewritten in a form which numerically converges quickly. We directly compare the method in the case of a
background plane wave with the result obtained by using the Volkov state solution of the Dirac equation,
and confirm that we obtain the same result. We then investigate the interaction of a circularly polarized
short laser pulse scattering with GeVelectrons and see that the finite duration of the pulse leads to a lower
transfer of circular polarization than that predicted by the known formulas in the monochromatic case. We
also see how the transfer of circular polarization from the laser beam to the gamma ray beam is gradually
deteriorated as the laser intensity increases, entering the nonlinear regime. However, this is shown to be
recovered if the scattered photon beam is collimated to only allow for passage of photons emitted with
angles smaller than 1=γ with respect to the initial electron direction, where γ is the approximately constant
Lorentz factor of the electron. The obtained formulas also allow us to answer questions regarding radiative
polarization of the emitting particles. In this respect we briefly discuss an application of the present
approach to the case of a bent crystal and high-energy positrons.
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I. INTRODUCTION

In view of recent and upcoming experiments involving
radiation emission from relativistic electrons [1–5] and of
high-intensity laser facilities under construction like the
Extreme Light Infrastructure (ELI), it is fitting to inves-
tigate efficient approaches to calculating the high-energy
radiation emitted when ultrarelativistic electrons collide
with such an intense laser field with as much generality as
possible. The semiclassical formalism of Baier, Katkov and
Strakhovenko allows for the approximate determination of
the spectrum of emitted photons from an ultrarelativistic
electron in a virtually arbitrary external electromagnetic
field [6]. For numerical applications the formulation with a
single time integration, as found in [7,8] for the spin and
polarization averaged result, is most useful. In this paper
we show how the basic result of the semiclassical method
with explicit electron spin and photon polarization can also
be treated numerically in a similar fashion. We use the
obtained formulas in the case of a background plane wave,
as the Dirac equation then can be solved analytically [9], to
do a direct comparison with the spectrum obtained using

the exact solution of the Dirac equation (Volkov states)
[9–11]. This is the usual approach for such processes
[12–27]. We consider the case of a short circularly
polarized laser pulse and find agreement, as expected.
The advantage of the presented approach is the possibility
of calculating the radiation emission under general circum-
stances, i.e., also for very complicated field configurations
as one only needs the classical trajectory in the external
field, which can easily be found numerically for a given
field. The presented formulas allow us to find the polari-
zation properties of the radiation depending on the spin of
the initial and final electrons, which also allows us to
determine if the electrons become polarized. The latter
would occur if the spin-flip radiation has a different yield
for each of the possible initial spin states (see e.g., [28]),
i.e., a generalization of the Sokolov-Ternov effect [29] to
fields other than that of a permanent magnetic field [30,31].
We briefly demonstrate this in the case of positrons
channeling in a bent germanium crystal, where one has
two kinds of motion superimposed—the oscillatory chan-
neling motion between the bent planes, which in the unbent
case would not lead to polarization, along with the motion
along the bending arc, which leads to transverse polariza-
tion of the positrons. When the crystal is strongly bent, i.e.,
close to the so-called Tsyganov radius [32,33], the polari-
zation as in a magnetic field is obtained, while smaller
bending radii lead to smaller degrees of polarization, which
the presented method allows us to predict.
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Below, e indicates the positron charge, and units are
used, such that the fine-structure constant α is given by e2,
whereas the relativistic metricþ − −− is employed.We use
Feynman notation to write =a ¼ aμγμ, where aμ is a generic
4-vector.

II. SEMICLASSICAL APPROACH

Below, we study the emission by an electron of a single
photon in a given background electromagnetic field. The
basic result of the semiclassical method of Baier et al. in its
most general form for the single-photon radiation proba-
bility is expressed as [6]

dP ¼ αω

ð2πÞ2
����
Z

∞

−∞
RðtÞeik0xdt

����
2

dΩdω; ð1Þ

where xμ ¼ ft; xðtÞg is the electron 4-position as obtained
by the Lorentz force equation in the external field,
k0μ ¼ ω0f1; ng, ω0 ¼ ε

ε0 ω, ω is the energy of the emitted
photon, ε0 ¼ ε − ω, ε the initial electron energy, n the
direction of emission, and

RðtÞ ¼ ϕ†
f½AðtÞ þ iσ · BðtÞ�ϕi: ð2Þ

Here, ϕi and ϕf are the spinors of the initial and final
electron states (characterized by the electron 4-momentum
and the electron spin in its asymptotic rest frame), σ denotes
the vector of the Pauli spin matrices, and

AðtÞ ¼ Cϵ� · vðtÞ; ð3Þ

BðtÞ ¼ ϵ� × ½D1vðtÞ þD2n�; ð4Þ

with ϵ being the polarization vector of the emitted photon,
vðtÞ ¼ dxðtÞ=dt being the electron velocity, and the con-
stants being given by

C ¼ ε

2
ffiffiffiffiffiffi
εε0

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þm
εþm

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r #
; ð5Þ

D1 ¼
ε

2
ffiffiffiffiffiffi
εε0

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þm
εþm

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r #
; ð6Þ

D2 ¼
ω

2
ffiffiffiffiffiffi
εε0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εþm
ε0 þm

r
; ð7Þ

where m is the electron mass. To evaluate the quantity
in Eq. (1) we need to carry out the two time integralsR
vðtÞeik0xdt and R

eik
0xdt. However, a direct computation

of these integrals converges slowly, and integrations
beyond times when the acceleration is different from zero
must be included, as explained classically in [34]. From the
relations shown in [8], which are already used there in the

case without polarization and spin averaging, it is quite
easy to relate these quantities to the quantities whose
integrands are proportional to the acceleration. By doing
this, we have that

Z
∞

−∞
vðtÞeik0xdt ¼ i

ω0 ðnJ − IÞ; ð8Þ

Z
∞

−∞
eik

0xdt ¼ i
ω0 J; ð9Þ

where

I ¼
Z

∞

−∞

n × ½ðn − vÞ × _v�
ð1 − n · vÞ2 eik

0xdt; ð10Þ

J ¼
Z

∞

−∞

n · _v
ð1 − n · vÞ2 e

ik0xdt: ð11Þ

In [8] it is shown in detail how to calculate the electron
trajectory and the quantities I and J numerically. In
particular, it is appropriate to analytically carry out the
cancellations between large terms, as in e.g., 1 − n · v
because n · v is close to 1 for ultrarelativistic particles,
as the radiation is emitted in a narrow cone around the
direction of the velocity. Finally, we may write

Z
∞

−∞
RðtÞeik0xdt ¼ −

i
ω0 ϕ

†
f½Cϵ� · I

þ iσ · ðϵ� × ½ID1 − ðD1 þD2ÞnJ�Þ�ϕi;

ð12Þ

and therefore we obtain the emission probability as

dP
dΩdω

¼ α

ð2πÞ2
ω

ω02 × jϕ†
f½Cϵ� · I

þ iσ · ðϵ� × ½ID1 − ðD1 þD2ÞnJ�Þ�ϕij2: ð13Þ

As this is a semiclassical approach there are limitations to
its validity; however, these are difficult to find in practice.
We discussed this in [35], but to briefly summarize, for
the method to be valid, one should have ultrarelativistic
particles, such that the angle of emission θ around the
instantaneous velocity may be assumed to be small, θ ≪ 1.
Furthermore, the motion should be meaningfully described
by the classical trajectory; i.e., the principal quantum
number connected with the motion should be large.
Therefore, the approach works for relativistic particles in
magnetic fields of laboratory field strengths but cannot
describe the radiation from e.g., electrons closely bound in
hydrogen. In [36] we showed how one could see slight
differences in the semiclassical result and the fully quantum
result for some cases in crystal channeling.
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III. VOLKOV-STATE APPROACH

If the background field is a plane wave, i.e., if the
4-vector potential AμðφÞ only depends on the phase
φ ¼ k0x, where k0 ¼ ðω0; k0Þ is the 4-momentum associ-
ated with the photons of the plane wave and ω0 ¼ jk0j, the
corresponding Dirac equation

ði=∂ þ e=A −mÞψ ¼ 0 ð14Þ

can be solved analytically [9]. Below we assume that the
plane wave propagates along the negative z direction,
and we choose the 4-vector potential AμðφÞ in the
Lorenz gauge where A0ðφÞ ¼ A3ðφÞ ¼ 0. The positive-
energy solution reads

ψðxÞ ¼ 1ffiffiffiffiffi
2ε

p
�
1 −

e=k0=A
2k0p

�
ueiS; ð15Þ

where p is the asymptotic 4-momentum of the electron (we
have set the quantization volume equal to 1),

S ¼ −pxþ e
k0p

Z
φ
dφ0

�
pAðφ0Þ þ e

2
A2ðφ0Þ

�
ð16Þ

is the classical action of the electron in the plane wave,
and u is a short notation for the constant vacuum bispinor
(which is characterized by the electron spin in the corre-
sponding electron rest frame and by the electron
4-momentum p). The leading-order matrix element for
single-photon emission is given by

Sfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r Z
d4xψ̄fðxÞ=ϵ�eikxψ iðxÞ; ð17Þ

where ψ i=fðxÞ indicates the Volkov state corresponding to
the initial/final electron state, and the differential proba-
bility of emission is then

dP ¼ jSfij2
d3pf

ð2πÞ3
d3k
ð2πÞ3 : ð18Þ

In the gauge we are working with, the 4-potential can be
written as

AμðφÞ ¼
X2
j¼1

aμjfjðφÞ; ð19Þ

where aμj are two 4-vectors such that ajk0¼0 and a1a2 ¼ 0

and where fjðφÞ are two arbitrary (physically well-
behaved) functions. By setting the arbitrary phase in the
indefinite integrals in the phase of Volkov states to zero, we
introduce the quantities

FjðφÞ ¼
Z

φ

0

fjðφ0Þdφ0; ð20Þ

GjðφÞ ¼
Z

φ

0

f2jðφ0Þdφ0: ð21Þ

Then, by inserting the expressions of Eqs. (15) and (19)
into Eq. (17), we obtain that

Sfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1ffiffiffiffiffiffiffiffiffiffi
4εfεi

p
Z

d4x

× ūf

�
=ϵ� þ

X2
j¼1

½BjfjðφÞ þ Cjf2jðφÞ�
�
ui

× e−iðpi−pf−kÞxeið
P

2

j¼1
½αjFjðφÞþβjGjðφÞ�Þ; ð22Þ

where we have defined

αj ¼ e

�
piaj
k0pi

−
pfaj
k0pf

�
; ð23Þ

βj ¼
e2a2j
2

�
1

k0pi
−

1

k0pf

�
; ð24Þ

and

Bj ¼ −
�
e=aj=k0
2k0pf

=ϵ� þ =ϵ�
e=k0=aj
2k0pi

�
; ð25Þ

Cj ¼
e=aj=k0
2k0pf

=ϵ�
e=k0=aj
2k0pi

¼ −
e2a2j

2ðk0pfÞðk0piÞ
ðϵ�k0Þ=k0; ð26Þ

with j ¼ 1; 2 [we have set ϵμ ¼ ð0; ϵÞ]. Now, we can write
the functions in Eq. (22) as a Fourier transform

fnj ðφÞe
i

�P
2

j¼1
½αjFjðφÞþβjGjðφÞ�

	
¼

Z
∞

−∞
An;jðs; α; βÞe−isφds;

ð27Þ

where

An;jðs; α; βÞ ¼
1

2π

Z
∞

−∞
dφfnj ðφÞeiðsφþ

P
2

j¼1
½αjFjðφÞþβjGjðφÞ�Þ;

ð28Þ

defined for n ¼ 0; 1; 2. When n ¼ 0, the j subscript is
superfluous, and we therefore denote this function as
A0ðs; α; βÞ. This function is however problematic as it
diverges, but it can be regularized by using the identity (see
also [14,16,17])
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0 ¼
Z

∞

−∞
eihðφÞh0ðφÞdφ; ð29Þ

where

hðφÞ ¼ sφþ
X2
j¼1

½αjFjðφÞ þ βjGjðφÞ�: ð30Þ

In this way, we obtain

A0ðs; α; βÞ ¼
1

2π

Z
∞

−∞
eiðsφþ

P
2

j¼1
½αjFjðφÞþβjGjðφÞ�Þdφ

¼ −
1

s

X2
j¼1

½αjA1;j þ βjA2;j�: ð31Þ

By replacing these expressions in Eq. (22), and carrying
out the integration over d4x, we can write the amplitude in
the form

Sfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1ffiffiffiffiffiffiffiffiffiffi
4εfεi

p
Z

dsð2πÞ4δ4ðpi − pf − kþ sk0Þ

× ūf

�
=ϵ�A0 þ

X2
j¼1

½BjA1;j þ CjA2;j�
�
ui: ð32Þ

Now we can use the energy delta function to fix s such that

s0 ¼
εf þ ω − εi

ω0

; ð33Þ

and the delta function can be transformed as
δðεi − εf − ωþ sω0Þ ¼ 1

ω0
δðs − s0Þ:

Sfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1ffiffiffiffiffiffiffiffiffiffi
4εfεi

p ð2πÞ4 1

ω0

δ3ðpi − pf − kþ s0k0Þ

× ūf

�
=ϵ�A0 þ

X2
j¼1

½BjA1;j þ CjA2;j�
�
ui: ð34Þ

At this point we would then take the norm-square to obtain
the transition probability; however, we are then faced with
the problem of how to take the square of the delta-function,
which has the complication that s0 is a function of the
momenta. The correct way to do this is to consider instead
the more realistic case of an initial wave packet ΨiðxÞ ¼R
ψpiðxÞcðpiÞd3pi, where ψpiðxÞ is the Volkov solution

with momentum pi and unindicated fixed spin quantum
number. To preserve normalization we must have thatR jcðpiÞj2d3pi ¼ 1=ð2πÞ3. Then the momentum delta-
function can be transformed as

δ3ðpi − pf − kþ s0ðpiÞk0Þ ¼
1

jJ ij
δ3ðpi − pi;solÞ; ð35Þ

where J i ¼ ∂g=∂pi ¼ I − k0pTi
ω0εi

is the Jacobian matrix, I
denotes the 3 × 3 identity matrix, and gðpiÞ ¼ pi − pf −
kþ s0ðpiÞk0, gðpi;solÞ ¼ 0 (k0pTi indicates the dyadic prod-
uct between the vectors k0 and pi); thus, using Sylvester’s
determinant theorem we obtain

jJ ij ¼ det

�
I −

k0pTi
ω0εi

�
¼ 1 −

k0 · pi
ω0εi

¼ k0pi

ω0εi
: ð36Þ

Therefore, we finally write the transition amplitude in the
form

Sfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1ffiffiffiffiffiffiffiffiffiffi
4εfεi

p ð2πÞ4 εi
k0pi

× cðpf þ k − s0ðpi;sol; pfÞk0Þ ð37Þ

×ūf

�
=ϵ�A0 þ

X2
j¼1

½BjA1;j þ CjA2;j�
�
ui: ð38Þ

Now, in order to find the probability using Eq. (18) we take
the norm-square of the above amplitude and, having in
mind the case of a narrow wave packet [27], replace
jcðpiÞj2 ¼ δ3ðpi − pi;0Þ=ð2πÞ3. Analogously as above, we
now have a delta-function which we can evaluate by
integration over d3pf, and the transformation of the
delta-function yields a factor of ω0εf

k0pf
. Finally, we then

obtain the differential emission probability

dP ¼
����ūf

�
=ϵ�A0 þ

X2
j¼1

½BjA1;j þ CjA2;j�
�
ui

����
2

×
e2

4

1

ðk0piÞðk0pfÞ
ωdωdΩ; ð39Þ

which can now be evaluated numerically. The bispinors in
this expression are chosen as [37]

u ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
ϕ

σ·p
εþmϕ

�
; ð40Þ

where ϕ are spinors to be chosen as an orthonormal basis
of eigenstates of σ · s, with s being the direction of the
otherwise arbitrary spin quantization axis in the rest frame
of the electron.

IV. DISCUSSION OF RESULTS

The above derivations were carried out without intro-
ducing a particular plane-wave pulse. We now consider a
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particular choice of the 4-vector potential and carry out the
corresponding numerical calculation using the semiclass-
ical method and the Volkov-states method. We set
aμ1 ¼ f0; ax; 0; 0g, aμ2¼f0;0;ay;0g, kμ ¼ fω0; 0; 0;−ω0g,
and

f1ðφÞ ¼ dðφÞ cosðφÞ; ð41Þ

f2ðφÞ ¼ dðφÞ sinðφÞ; ð42Þ

dðφÞ ¼


sin4ð φ

2NÞ 0 < φ < 2πN

0 otherwise:
ð43Þ

That is, we choose a pulse with envelope dðφÞ and negative
helicity (right-handed) circular polarization [38]. We define
the polarizations of the outgoing light as

ϵ� ¼ 1ffiffiffi
2

p ðϵ1 � iϵ2Þ; ð44Þ

where

ϵ1 ¼
ŷ × k
jŷ × kj ; ð45Þ

with ŷ being the unit vector in the y direction, and

ϵ2 ¼
k × ϵ1
jk × ϵ1j

: ð46Þ

According to this choice, ϵ1 and ϵ2 are unit vectors
orthogonal to each other and to k such that, if k lies along
the z axis, they indicate the polarization along the x and y
directions, respectively. The ϵ� basis corresponds to
circular polarization with helicity of �1. As the spin basis
we have chosen a quantization axis along the z direction
such that ϕ may be chosen as ð 1 0 ÞT or ð 0 1 ÞT,
denoted by ↑ and ↓, respectively, in the figures. We set
ax ¼ ay ¼ mξ=e, where ξ is the classical nonlinearity
parameter, which we have set as ξ ¼ 1, N ¼ 5, and the
electron energy ε ¼ 30 GeV for Figs. 1–4. Since the
typical emission angles are small, we write kx ¼ ωθx
and ky ¼ ωθy and then dΩ ¼ dθxdθy. In Fig. 1 we have
restricted the angular integration such that jθxj< ðξþ3Þ=γ,
where γ is the initial Lorentz factor of the electron, and
the same for θy such that nearly all emitted radiation is
included. In this figure we compare the semiclassical
approach based on the formulas of Baier, Katkov and
Strakhovenko, with the results obtained using the Volkov
states. The results indicate nearly perfect agreement
between the two approaches, which is expected since the
motion in a plane wave is intrinsically semiclassical [12].
In Fig. 2 we do the same but restrict the emission angles
over a smaller interval (collimation) i.e., jθxj < 0.1=γ and
the same for θy. In this case the emitted radiation with
negative helicity is highly suppressed, and therefore we plot
the results on a logarithmic scale. This is expected due to
angular momentum conservation along the z axis. Since the
electron flipping its spin is unlikely for ultrarelativistic
electrons [37], the outgoing light must have opposite
helicity as that of the laser field to conserve angular
momentum. Finally, the agreement between the semiclass-
ical method and the Volkov-state method in this case
indicates an agreement of the two approaches also at the

FIG. 1. The intensity spectrum ωdP=dω according to the
semiclassical approach is shown as solid lines corresponding
to the different possibilities of initial and final spins and photon
polarizations. The first arrow denotes the initial electron spin, the
second arrow the final electron spin, and the last symbol denotes
the helicity state of the emitted radiation according to Eq. (44).
The black dotted curves on top of the solid curves indicate the
same quantities but calculated using the Volkov-states approach.
We have not plotted the curve corresponding to ↑↓ϵþ and ↓↑ϵ−
as the corresponding yields are much smaller than the others and
the curves would not be visible. Also, we have not plotted ↑↓ϵ−
as it coincides with ↓↑ϵþ. In all these cases, the two approaches
also agree.

FIG. 2. Integrated intensity of radiation as in Fig. 1 but with a
collimation angle of 0.1=γ, as explained in the text.
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level of angularly resolved spectra. In Fig. 3 we show how
the collimation affects the degree of circular polarization,
defined as

P ¼
dPþ
dω − dP−

dω
dPþ
dω þ dP−

dω

: ð47Þ

We compare with the result found in [39], obtained in the
case of the monochromatic wave, and see that in the short
pulse one reaches a slightly smaller value of the degree of
polarization around the first harmonic. By checking the
results for the monochromatic case with a finite number of
cycles, we also find agreement with the result of [39], and in
addition, it is seen that the behavior close to ω ¼ 0 is due to
the finite opening angle of jθxj < ðξþ 3Þ=γ mentioned
above. That is, radiation below the value of ω where the
curve changes drastically is emitted outside the chosen
angular region. Since the analytical results with a finite
opening angle are not presented in [39], we calculate this
numerically using our approach with a finite number of
cycles, with a number great enough to ensure that the result
has converged. In this case, the spectrum of radiation
consists of narrow peaks around the harmonic peaks, the
position of which can also be seen from the curve labeled
“Monochromatic.” The harmonic peaks are located in the
positions where the degree of polarization changes abruptly.
The peaks seen in the degree of polarization in the mono-
chromatic case with collimation coincide with the position
of the harmonic peaks; i.e., most of the emitted radiation
occurs when the degree of polarization is also large.
Therefore, in both the cases of the pulse and the mono-
chromatic wave, an effective degree of polarization close to
unity is achieved. In Fig. 4 we show how the degree of

polarization decreases when the parameter ξ is increased.
Note also that in the monochromatic case, when ξ is small,
one achieves fully polarized light around the first harmonic.
The method presented here is particularly useful as we
require that ξ is of the order of 1 in such a way that the
emission of high harmonics is suppressed. Moreover, at
ξ ∼ 1 the total probability of emission is of the order of
2παN [6] such that the obtained results are valid even for
relatively long pulses as long as multiple photon emission is
negligible. At the same time, this also implies that in the
situations discussed above, one cannot use the often used
local constant field approximation, as this requires at
least that ξ ≫ 1 (see e.g., [40,41]), and the semiclassical
method presented here is a simple method to obtain accurate
values of the degree of polarization which is valid also for
external fields of complex spacetime structure (see also
Refs. [42–44] for an alternative applicable method).

V. POLARIZATION IN A BENT CRYSTAL

Bent crystals can be used to steer an electron or positron
beam along a circular arc as investigated in e.g., [45–48].
Also, the possibility of polarizing an electron/positron
beam as in a storage ring through synchrotron radiation
was discussed in e.g., [49]. The polarization of the beam
is a quantum effect and depends on the parameter
χ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðFμνpνÞ2j

p
=m3, where Fμν is the electromagnetic

field tensor of the background field and pμ the electron four
momentum. The size of this parameter signifies the
importance of quantum effects in the emission process
such as spin effects and photon recoil. When this parameter
is on the order of unity, polarization effects will become
important even after a few emissions. In a conventional
synchrotron this parameter is small, and therefore polari-
zation of the beam happens through many emissions with

FIG. 3. Degree of circular polarization of the Compton scat-
tered radiation for nonlinear Compton scattering in a mono-
chromatic wave with and without angular collimation, and in the
short pulse described in the text with and without angular
collimation.

FIG. 4. Degree of circular polarization of the Compton scat-
tered radiation for nonlinear Compton scattering in a mono-
chromatic wave without collimation, for different values of the ξ
parameter in the pulse.
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subsequent reaccelerations using rf cavities. In [49] it was
assumed that the crystal was bent close to the so-called
Tsyganov critical radius which we will define as

Rc ¼
εdp
2U0

; ð48Þ

where dp is the distance between two symmetry planes in
the crystal and U0 is the corresponding potential energy
depth. This radius corresponds to the radius at which
the strength of the force from the electric field between
the planes, estimated as 2U0=dp, can no longer provide the
necessary centripetal force to sustain the circular motion.
Below we consider the motion of a positron between
two (110) planes in germanium such that dp ¼ 2.0 Å
and U0 ¼ 35.73 eV. According to the above discussion,
the Tsyganov critical radius is roughly the smallest bending
radius at which channeling is still possible in the crystal.
In this case the radiation and polarization characteristics
are that of the constant magnetic field which produces the
same bending radius of the trajectory, and therefore the
largest possible polarization is given by 8=ð5 ffiffiffi

3
p Þ [29],

when χ ≪ 1 [50]. Conversely, when the bending radius
becomes large, one must recover the case of the flat crystal,
which does not produce any beam polarization. With the
presented approach we demonstrate that one can predict the
polarization properties for any bending radius R, and not
only for the extreme case close to the critical radius. In an
experiment the average polarization will depend on the
angular distribution of particles when entering the crystal.
Thus, we will only apply the approach in the case of a
single particle starting with an angle of 0 and a distance of
u0 ¼ 0.083 Å from the plane (this value corresponds to the
thermal vibrational amplitude of the nuclei in the crystal

lattice). The maximum polarization that can be asymptoti-
cally obtained, A, is given by [28,49]

A ¼ W↑↓ −W↓↑

W↑↓ þW↓↑
; ð49Þ

where Wfi denotes the total transition rate from state i to
state f. The quantity Wfi for different initial and final spin
quantum numbers can be found from Eq. (13) by integrat-
ing over angles and photon energies, and by summing over
the photon polarization, using a finite piece of trajectory.
This formula comes about if it is assumed that the positron
has its energy replenished between each radiation emission,
as is the case in a synchrotron. With crystals, this would
require several thin crystals with accelerating structures
in between. We integrated the Lorentz force equation of
motion using the electric field obtained from the continuum
potential [6,51], such that the electric field in the unbent
crystal is along the x direction. We then offset the
plane along a circular arc in the xz plane, which at
the leading order in the small quantity L=R, where L is
the crystal length, means that the bending follows the curve
x ¼ z2=2R. One may use this approximation as the total
deflection angle L=R is small in a realistic scenario. Due to
symmetry, the electric field points along the radius of
bending, and using Gauss’ law one can show that as long as
the distance to the plane is much smaller than the bending
radius R, the electric field component along the radius of
bending is the same as the electric field in the unbent case
evaluated at the same distance from the plane. The nonzero
components of the electric field are then

Exðx; y; zÞ ¼ Econt

�
x −

z2

2R

�
; ð50Þ

Ezðx; y; zÞ ¼ −
z
R
Econt

�
x −

z2

2R

�
: ð51Þ

Here, Econtðx − z2=2RÞ is the electric field obtained from
the continuum potential, in the Doyle-Turner approxima-
tion [52–54], which depends only on the coordinate
transverse to the planes (the x coordinate in the considered
case). We used a piece of trajectory with roughly 10 periods
of oscillation, which was adequate for convergence of the
integrals. Moreover, we have integrated over an angular
region such that v⊥ðtÞ is contained in the region, with an
additional angle of 10=γ in each direction. This turned out
numerically to be sufficient to cover all of the emitted
radiation. In Fig. 5 we show the result for a 50 GeV
positron with the mentioned initial conditions. It should
be mentioned that this maximum polarization is only
achievable under the same circumstances as in a storage
ring, i.e., a short piece of crystal where radiation occurs,
and subsequently a replenishment of the lost energy so that
the particles have the nominal energy before entering a
crystal again. It is seen that for a strong bending of the

FIG. 5. The maximum possible transverse polarization that can
be obtained for a positron with the initial conditions mentioned in
the text, depending on the bending radius R of the crystal in units
of the Tsyganov critical radius Rc.
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crystal, one approaches the value in the constant field of
8=ð5 ffiffiffi

3
p Þ. While we show only the example of a single

trajectory, the method would allow us to study radiation
reaction in a bent crystal where the effects of polarization of
the beam would be essential. We refer the reader to
Refs. [3,4] for recent experimental studies of radiation
reaction in straight crystals.

VI. CONCLUSION

In conclusion we have presented a method to rewrite the
semiclassical formulas of Baier, Katkov and Strakhovenko,
which facilities their numerical implementation for arbi-
trary discrete quantum numbers of the particles. This then
allows for the calculation of radiation emission with
arbitrary initial and final electron spins, and with arbitrary
polarization of the emitted photon when knowing only the
classical trajectory of the electron in the background field.
In this way, one does not have to know the Dirac wave
function in the background field, which is typically an
impossible task for realistic field configurations.
First, we have compared the obtained formulas for a case

where an exact solution of the Dirac equation is known,

namely the plane-wave field, and find nearly perfect
agreement between the two methods, corroborating the
idea that the motion in a plane wave is intrinsically
quasiclassical. As an example, we considered the case of
the transfer of circular polarization of the radiation, when
an electron beam head-on scatters on a short circularly
polarized pulse, with the conclusion that the shortness of
the pulse implies a slightly lower degree of polarization as
compared to the monochromatic-field case. However, much
higher degrees of polarization are observed for the photons
emitted approximately along the initial direction of propa-
gation of the electrons, in agreement with angular momen-
tum conservation. Finally, we considered the case of a bent
crystal and showed how one can calculate the degree of
polarization of the positron beam for an arbitrary bending
radius of the crystal.
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