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A formulation of classical electrodynamics on an energy-momentum background of constant, nonzero
curvature is given. The procedure consists of taking the formulation of standard electrodynamics in the
energy-momentum representation, and promoting the energy-momentum vector to belong to a constant
(nonzero) curvature space. In particular, special emphasis is given to the definition of the integration
measure and the generalized Dirac’s delta function. Finally, simple physical problems such as plane waves
(solutions outside sources) and point charges are discussed in this context, where the self-energy of a point
charge is shown to be finite.
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I. INTRODUCTION

Field theory on the background of an energy-momen-
tum space with constant curvature has been studied
extensively in the quantum case [1–10]. While quantum
field theory is quite developed, classical field theory has
not been studied specifically. The deviation from the
zero-curvature energy-momentum background is a
generic proposal that should be applicable to both
classical and quantum cases, as well as to fields and
point particles (for the latter, see recent efforts in, e.g.,
Refs. [11,12]). Here it is applied to classical electrody-
namics, leading to a formulation that preserves both
Lorentz and gauge symmetries, since the Lorentz and
gauge groups have standard representations on the back-
ground of constant-curvature energy-momentum space (as
first noted in the case of Lorentz symmetry by Snyder
[13]). As in the quantum case, where it led to finite
amplitudes at every step [10], in the classical case the
nontrivial integration measure proves again to be a
crucial property, leading to a finite self-energy of a point
charge.
Historically, the first emergence of nontrivial geometry

of the energy-momentum space came in the context of
the noncommutativity of space-time, in a paper by
Snyder in 1947 [13]. This was related to the existence
of a minimal uncertainty of the position, i.e., a minimal
length, which was to be the cure for the divergences in
the developing field theory. Due to the success of
renormalization methods, the problem did not attract
much attention until its reemergence in the 1990s with
the development of string theory and quantum gravity
models, which led to the demand for modification of the
structure of space-time at the smallest scales, see, e.g.,

Refs. [14,15]. At the same time, the theory of quantum
groups and quantum (noncommutative) geometry saw
rapid development as mathematical disciplines [16]. In
addition to Snyder’s model of noncommutativity, there
appeared also other models of noncommutativity, most
notably the κ-Minkowski model [17] and the canonical
model [18], as well as theories with modified relativity,
such as the Doubly Special Relativity (DSR) model [19],
which all have in common the nontrivial geometry of the
corresponding energy-momentum spaces. In this paper,
we shall focus on Snyder’s model and the resulting de
Sitter geometry of the momentum space, since de Sitter
space is geometrically the simplest generalization of the
flat space, and unlike in the mentioned κ-Minkowski and
canonical noncommutativity, and the DSR model, the
fundamental Lorentz symmetry is not deformed.
The plan of the paper is as follows: In Sec. II, the main

principles of the formulation of standard classical electro-
dynamics on an energy-momentum background are
reviewed, and the principle of minimal extension to the
energy-momentum space of nonzero curvature is intro-
duced. Section III studies some elements of the geometry of
constant curvature space, and generalizes the concept of
Dirac’s delta function on such spaces. Section III proceeds
directly to the application of curvature on the energy-
momentum space in physical problems of plane waves and
point charges. Section IV summarizes the paper and gives
outlook for future research.

II. CLASSICAL ELECTRODYNAMICS IN
ENERGY-MOMENTUM REPRESENTATION

The usual way to study electrodynamics is on space-
time. But it can also be formulated on the energy-
momentum space. For this purpose the action principle
is used, which is shortly reviewed below.*bivetic@yahoo.com
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A. Pure gauge (source-free)

In the absence of sources, the familiar action on space-
time is1

S0 ¼ −
1

4

Z
F2ðxÞddx; ð1Þ

where FðxÞ is the electromagnetic field tensor, with the
components

FμνðxÞ≡ ∂μAνðxÞ − ∂νAμðxÞ; ð2Þ

and AðxÞ is a vector potential in d dimensions. The form of
the action is dictated by the demands of Lorentz and gauge
invariance, which are independent of the representation.
Therefore, on the energy-momentum space the action is of
the same form [8]:

S0 ¼ π

Z
ðF†ðpÞFðpÞÞddp; ð3Þ

where FðpÞ is the electromagnetic field tensor in the
energy-momentum representation, with the components

FμνðpÞ≡ pμAνðpÞ − pνAμðpÞ; ð4Þ

and AðpÞ is the Fourier transform of the vector potential,

AðpÞ ¼ 1

ð2πÞd=2
Z

AðxÞeipxddx; ð5Þ

with the property A†ðpÞ ¼ Að−pÞ.
The Lagrangian density is a complete square.2 Putting it

into the form

S0 ¼ π

Z
ddp
p2

ðp2A − pðpAÞÞ†ðp2A − pðpAÞÞ; ð6Þ

the minimum of the action immediately returns Maxwell’s
equations:

Smin ¼ 0 ⇒ p2AðpÞ − pðpAðpÞÞ ¼ 0: ð7Þ

Upon the inverse Fourier transformation of Eq. (7), the
usual expressions for space-time description are recovered:

∂2AðxÞ − ∂ð∂AðxÞÞ ¼ 0; ð8Þ

or in terms of the field strength,

∂νFμνðxÞ ¼ 0: ð9Þ

In passing to an energy-momentum background of
constant nonzero curvature, the electromagnetic field tensor
in the energy-momentum representation is taken to remain
as in Eq. (4), with the understanding that all the vectors
belong to a constant-curvature space. The action is the same
as in Eq. (6), with only the integration measure changed, to
be discussed in the next section. By the same reasoning as
above, Eq. (7) is derived for the constant-curvature energy-
momentum space.
These considerations form the basis of what we call the

minimal extension principle: in passing to electrodynamics
on an energy-momentum background of constant (nonzero)
curvature, all the expressions from the flat case are taken,
with energy-momenta promoted to vectors on a surface of
constant curvature. Below is explained how this principle
works for gauge symmetry, and in some simple physical
problems.

B. With sources

In this case, the action can be written as

S0 ¼ π

Z
ddp
p2

ðp2A − pðpAÞ − jÞðp2A − pðpAÞÞ†; ð10Þ

where j ¼ jðpÞ is a d-dimensional current vector in the
momentum representation, and current conservation is
expressed as ðpjÞ ¼ 0.
This leads to

Smin ¼ 0 ⇒ p2AðpÞ − pðpAðpÞÞ ¼ jðpÞ; ð11Þ

and upon Fourier transformation, in coordinate repre-
sentation,

∂2AðxÞ − ∂ð∂AðxÞÞ ¼ jðxÞ; ð12Þ

or

∂νFμν ¼ jμðxÞ: ð13Þ

C. Gauge symmetry

The invariance under gauge transformations is usually
studied on space-time. It manifests itself in the invariance
of Eqs. (8) and (12) for the addition to the vector potential
of a derivative of an arbitrary scalar function, i.e.,

AðxÞ → AðxÞ þ ∂ΛðxÞ: ð14Þ

The action of the gauge group can also be observed on the
energy-momentum space. Here it manifests itself in the
invariance of Eq. (7) under the addition of an arbitrary
vector function to the potential,

1In general, we write vectors and tensors without indices.
The scalar product of vectors is denoted by a parenthesis, ðxpÞ≡
xμpμ, x2 ¼ xμxμ, and similarly for tensors, ðFGÞ ¼ FμνGμν,
F2 ¼ FμνFμν.

2Technically, it is necessary to preform Wick’s rotation first.

BORIS IVETIĆ PHYS. REV. D 100, 115047 (2019)

115047-2



AðpÞ → AðpÞ þ ipΛðpÞ; ð15Þ

where

ΛðpÞ ¼ 1

ð2πÞd=2
Z

ΛðxÞe−ipxddx ð16Þ

and Λ†ðpÞ ¼ Λð−pÞ. It is obvious that the transformation
(15) leaves Eq. (7) invariant regardless of the geometry of
the energy-momentummanifold. This means that the action
of the gauge group on the energy-momentum manifold is
the standard one even if the energy-momentum space has a
nonvanishing constant curvature.

III. ENERGY-MOMENTUM SPACE OF
CONSTANT CURVATURE

Here, some elements of the geometry of energy-
momentum space of constant curvature, that were studied
in Ref. [20], are briefly reviewed, and some results
are improved to all orders in the curvature parameter.
A d-dimensional space of constant curvature is realized as a
surface embedded in a (dþ 1)-dimensional Euclidean
background, specifically a hyperboloid,

η20 − η21 − � � � − η2d−1 − η2d ¼ −β−2; ð17Þ

where β is a constant with the dimension of length.
The physical origin of this constant (its relation with
other fundamental constants) has been considered in
Refs. [11,21], but at this point it can be taken as an
independent constant describing the curvature of the
energy-momentum manifold. Physical degrees of freedom
are conveniently described by projective coordinates. The
most general symmetry-preserving projection is defined by

p ¼ gðβ2η2Þη; ð18Þ

with g being an arbitrary function and η ¼ ðη0; η1;
…; ηd−1Þ. The inverse is given by

η ¼ hðβ2p2Þp; ηd ¼ β−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2p2h2

q
; ð19Þ

with gh ¼ 1.
The line element follows from the equation of the surface

in embedding coordinates,

ds2 ¼ dη2 − dη2d: ð20Þ

From the defining relations it follows that

dη ¼
�∂η
∂pdp

�
¼ hdpþ 2β2h0ðpdpÞp; ð21Þ

where h0 ¼ ∂h=∂ðβ2p2Þ, as well as

dηd ¼
βhðhþ 2β2p2h0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2p2h2
p ðpdpÞ; ð22Þ

which combine into

ds2 ¼ h2dp2 þ β2
4h0ðhþ β2p2h0Þ − h4

1þ β2p2h2
ðpdpÞ2; ð23Þ

where h0 ¼ ∂h=∂ðβ2p2Þ. Hence, the metric tensor is

gðpÞ ¼ h21− þ β2
4h0ðhþ β2p2h0Þ − h4

1þ β2p2h2
p ⊗ p; ð24Þ

with the notation 1− ¼ diagð−1; 1;…; 1Þ, and the symbol
⊗ denoting a tensor or outer product—that is, for the two
vectors p ¼ ðp0; p1;…; pd−1Þ and q ¼ ðq0; q1;…; qd−1Þ,

p ⊗ q ¼

0
BBBBB@

p0q0 p0q1 � � � p0qd−1
p1q0 p1q1 � � � p1qd−1

..

. ..
. ..

.

pd−1q0 pd−1q1 � � � pd−1qd−1

1
CCCCCA
: ð25Þ

An infinitesimal volume element (in d dimensions) is
written as

dΩp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ddp ¼ hd−1

hþ 2h0β2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2p2h2

p ddp: ð26Þ

Besides the metric tensor, the geometry of a certain space
can be described with the distance function. For the two
points η and ν on the hyperboloid, the distance function is
the geodesic distance between them:

dðη;νÞ¼β−1Arcoshðβ2ðη0ν0−η1ν1− � � �−ηdνdÞÞ: ð27Þ

On the projected space, where the points η and ν project to
the points p and q, respectively, the distance function is

dðp; kÞ ¼ β−1Ar cos h
�
hphkpk − β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2h2pp2

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2h2kk

2

q �
; ð28Þ

where hp and hk are hðβ2p2Þ and hðβ2k2Þ.
Infinitesimal generators of the group of isometries of de

Sitter space form two subgroups: rotations, with infinitesi-
mal generators with components

Ĵμν ¼ ημ
∂
∂ην − ην

∂
∂ημ ¼ pμ

∂
∂pν

− pν
∂

∂pμ
; ð29Þ

and displacements, with infinitesimal generators
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x̂ ¼ β

�
η4

∂
∂η − η

∂
∂η4

�
¼ βη4

∂
∂η ð30Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2β2p2

p
h

� ∂
∂p −

2β2h0

hþ 2β2p2h0
p

�
p

∂
∂p

��
ð31Þ

≡f1
∂
∂pþ f2β2p

�
p

∂
∂p

�
; ð32Þ

where in the last line the functions f1ðβ2p2Þ and f2ðβ2p2Þ,
satisfying

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2β2p2

p
h

; h ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 − β2p2

p ; ð33Þ

f2 ¼
−2h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2β2p2

p
hðhþ 2β2p2h0Þ ¼ 2f1f01 − 1

f1 − 2β2p2f01
; ð34Þ

are introduced. The group of isometries Oð1; nÞ defines a
Lie algebra through the deformed Poisson brackets
between displacements. A full Poisson algebra between
components of (global) displacements and momenta is

fx̂μ; pνg ¼ f1ημν þ β2f2pμpν; fx̂μ; x̂νg ¼ β2Ĵμν;

fpμ; pνg ¼ 0; ð35Þ
while the local algebra is undeformed,

fxμ; pνg ¼ ημν; fxμ; xνg ¼ fpμ; pνg ¼ 0; ð36Þ

where we denote by x ¼ xðpÞ ¼ ∂=∂p [see Eq. (44)] the
(local) canonical coordinates, the momenta of the momenta.
Finite displacements (and rotations) are generated by

successive applications of infinitesimal ones. For the
case of homogeneous coordinates, first considered by
Snyder [13],

p ¼ η

βηd
¼ ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2η2
p ; ð37Þ

with inverse relations

η ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p2

p ; ηd ¼
1

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p2

p ; ð38Þ

finite displacements of a point p by a point k are (see Fig. 1)

dSðkÞp ¼ p ⊕S k ¼ 1

1þ β2pk

�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2k2

q

þ k

�
1þ β2pk

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2k2

p
��

; ð39Þ

where the subscript S stands for Snyder. This expression
was first derived in Ref. [2] using the methods of projective

geometry. Its physical meaning is seen as the modification
of the energy-momentum conservation law. A particle of
momentum p absorbing a particle of momentum k obtains
momentum q ¼ dðkÞp ¼ p ⊕ k (see Fig. 2). Namely, it is
the geometry of the energy-momentum background that
defines the law of energy-momentum conservation, and
vice versa (see the discussion in Ref. [11]). Only for the flat
spaces is this law trivial, while for nontrivial geometries it
gets generalized.
Using the fact that for a vector function fðpÞ

dðfðkÞÞp ¼ p ⊕ fðkÞ; ð40Þ

and

dðkÞfðpÞ ¼ fðdðkÞpÞ ¼ fðp ⊕ kÞ; ð41Þ

FIG. 1. Action of displacement by a point A on sphere.
Displacements by some point are rotations of a sphere in a plane
defined by that point, the origin (labeled with 0), and the center of
the sphere, by an amount equal to its polar angle. In particular,
A0¼dðAÞA¼A⊕A, B0 ¼ dðAÞB ¼ B ⊕ A, and C0 ¼ dðAÞC ¼
C ⊕ A. As is clear from the picture, displacements are not
homogeneous, and do not commute. To obtain formulas for the
hyperboloid from the corresponding formulas for the sphere, one
replaces β2p2 → −β2p2 and the Euclidean with the Minkowskian
scalar product.

FIG. 2. Elementary manifestation of the noncommutativity of
the momenta addition. An electron with a momentum p anni-
hilating a photon of a momentum k emerges with a different
energy-momentum than an electron with a momentum k anni-
hilating a photon of a momentum p.

BORIS IVETIĆ PHYS. REV. D 100, 115047 (2019)

115047-4



it is possible to obtain the addition rule for the orthogonal
projection defined by p ¼ η,

dðkÞMp¼p⊕M k¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þβ2k2
q

þ β2ðpkÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2p2

p
�
pþk;

ð42Þ

where the subscript M stands for Maggiore, who first
considered this parametrization [22]. From it then follows
the addition rule for a generic projection or parametrization:

dðkÞp ¼ p ⊕ k ¼ g

�
β2
�
hppþ hkk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2p2h2p

q

þ β2hphkðpkÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2k2h2k

q
��

2
�

×

�
hppþ hkk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2p2h2p

q

þ β2hphkðpkÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2k2h2k

q
��

; ð43Þ

where hp ¼ hðβ2p2Þ, hk ¼ hðβ2k2Þ, and g is a function of a
complicated argument.
Even though one can switch back and forth between

different projections or reparametrizations, they describe
very different physics. For instance, displacements for the
homogeneous projection are an isometry, in the sense of
dðp ⊕ k; q ⊕ kÞ ¼ dðp; qÞ, for any three points p, q, and
k. This is not so for the orthogonal projection. Physically,
this leads to very different consequences. In the first case,
two electrons of the momenta p and q remain at the same
geodesic distance upon absorption of the momentum k
from the electromagnetic field, while in the latter case, they
approach each other or move away in the same situation.
It is only for flat space that the generators of displace-

ments are identical to the points on the cotangent manifold.
On curved spaces this is no longer so, due to the
nonequivalence of cotangent spaces at different points.
This means that the space-time manifold differs from point
to point (it is a function of p) and is not the same as the
space of displacement operators x̃, unless p ¼ 0. In fact,
elements of the space-time manifold can be expressed in
terms of displacement operators via

xðpÞ ¼ ∂
∂p ¼ 1

f1
x̂ −

β2f2
f1ðf1 þ f2β2p2Þpðpx̂Þ; ð44Þ

with xð0Þ ¼ x̂. The space-times belonging to two points p
and q are related via

xðpÞ ¼ τðp; qÞxðqÞ; ð45Þ

where the transport operator is given as

τðp; qÞ ¼ f1q
f1p

1þ β2
f2q

f1pf21q
q ⊗ q

− β2
f2pf1q

f1pðf1p þ f2pβ2p2Þp ⊗ p

− β2
β2ðpqÞf2pf2q

f21qf1pðf1p þ f2pβ2p2Þp ⊗ q; ð46Þ

where fip ¼ fiðβ2p2Þ, fiq ¼ fiðβ2q2Þ, i ¼ 1, 2. This
forms the essence of the relative locality principle [11].
The expression for the infinitesimal

dxðpÞ ¼
�∂τ
∂pdp

�
xðqÞ þ

�∂τ
∂q dx

�
xðqÞ þ τdxðqÞ ð47Þ

shows that locality is not absolute: a certain space-time event
for an observer of momentum p generally does not neces-
sarily map into a single point for an observer of a different
energy-momentum q—that is, dxðpÞ ¼ 0 does not imply
dxðqÞ ¼ 0, unless the energy-momentum is flat (τ ¼ 1).
The fact that global infinitesimal displacement operators

differ from cotangent vectors, and that cotangent vectors at
different points of the energy-momentum manifold cannot
be identified, is the main obstacle to the formulation of
space-time dynamics corresponding to curved energy-
momentum space. One proposal is to simply identify
space-time with infinitesimal displacement operators, as
was originally proposed in Snyder’s seminal work [13]. In
this case, standard dynamics, such as in, e.g., Hamiltonian
formalism, is to be modified by replacing flat momenta p
with curved ones, and coordinates with generalized infini-
tesimal displacements, the approach that was followed in,
e.g., Refs. [23,24]. Another proposal is to formulate
dynamics in terms of local canonical coordinates xðpÞ,
“the momenta of the momenta,” as in the relative locality
framework [11]. Yet another possibility is to Fourier-
transform momentum space equations, with eigenfunctions
of the Laplace-Beltrami operator for flat space, e−ipx—that
is, a representation of the group of isometries (motions) on
flat space, replaced with representations of the same group
on a d-dimensional hyperboloid.3 This approach was
deployed in, e.g., Refs. [4,9]. It leads to a theory defined
on the lattice, with differential operators replaced with
finite difference operators of a step 1=β. As claimed in
Ref. [26], such theory corresponds to a covariant formu-
lation of the Wilson gauge theory on the lattice [27]. Even
though this choice is mathematically consistent with the
idea of the Fourier transform, physically there is a problem
in the interpretation of the Fourier-transformed space.

3For a comprehensive exposition of these representations on
d-dimensional maximally symmetric spaces, see Ref. [25].
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In Refs. [5,26], discrete eigenvalues of the Laplace-
Beltrami operator were interpreted simply as the granular
configuration space (space-time), while in Ref. [10] it
was called ξ representation, and another transform of a
Fourier type was preformed on the physical quantities
(fields) to obtain their space-time dependence. Finally,
there is a choice to consider dynamics in the embedding
Minkowskian space [5–8], for which the Fourier transform
is the standard one, but where each equation of motion is
accompanied with an equation that constrains particle
momenta to lie on the embedded surface.
We shall avoid this conundrum by studying simple

physical systems entirely in the energy-momentum repre-
sentation, and try to extract as much physical content as
possible out of it. This approach is justified by a complete
equivalence of space-time and energy-momentum repre-
sentations for the description of physics in the standard, flat
case. As one can switch back and forth between the two
representations by a simple Fourier transform, neither can
be considered more fundamental; i.e., it should be the same
whether one uses space-time representation or energy-
momentum representation as a starting point for the
modification of the laws of physics. Using the latter avoids
the above mentioned ambiguities that come with the
modification of the dynamics at short length scales.

A. Generalized Dirac delta

The concept of Dirac’s delta function is readily gener-
alized to an arbitrary background, with a natural definition

Z
fðpÞδðp⊖kÞdΩp ¼ fðkÞ: ð48Þ

This was considered in Refs. [3,4,23,28]. From it immedi-
ately follows the relation with the standard (flat-space)
Dirac delta,

δðp⊖kÞ ¼ 1ffiffiffiffiffiffiffiffiffi
det g

p δðp − kÞ: ð49Þ

This can be demonstrated by elementary means, via

δðp⊖kÞ ¼ 1

j det ∂pðp⊖kÞjp¼kj
δðp − kÞ; ð50Þ

using the fact that for multidimensional arguments the delta
function has the property

δðfðxÞÞ ¼
Xn
i¼1

1

j det ∂fjx¼x0i j
δðx − x0iÞ; ð51Þ

where x0i are the n zeroes of the function f, as well as that
for isotropic projections from a maximally symmetric space
the antipode, ⊖p, defined by

ðk ⊕ pÞ ⊕ ð⊖pÞ ¼ k ð52Þ

for every k, is unique and trivial, ⊖p ¼ −p (as follows
from the geometry, see Fig. 1).
Therefore,

∂pðp⊖kÞjp¼k ¼ hk1− þ β2h3k
1þ hk

k ⊗ k; ð53Þ

whose determinant squared equals the determinant of the
corresponding metric,

gðkÞ ¼ ð1 − β2k2Þ1− þ β2k ⊗ k
ð1 − β2k2Þ2 : ð54Þ

The proof that this relation holds in the general case is left
as an exercise in cumbersome algebra.

IV. PHYSICAL EXAMPLES

A. Plane waves

The solutions to the Maxwell equations outside sources
are plane waves.4 These are given as eikx in the coordinate,
and as δðp − kÞ in the momentum representation. Following
the general procedure, it is immediately noticeable that the
solutions in the momentum space of nonzero curvature are
generalized Dirac deltas, i.e.,

AðpÞ ¼ ð2πÞd=2δðp⊖kÞ: ð55Þ

This follows from the defining relation of the delta function
and Eq. (7) upon integration. Thus, in our minimal extension
prescription, the plane waves are the same as in the flat case,
only the ordinary delta function is replaced by a generalized
form in Eq. (49). The result depends on the projection only
through the delta function.

B. Point charge source

Consider a field of a static point charge situated at the
origin, jðxÞ ¼ jðrÞ ¼ ðeδðrÞ; 0; 0; 0Þ, where x ¼ ðt; rÞ and
for definiteness we take 3þ 1 space-time dimensions. In
the momentum representation, this becomes

jðpÞ ¼ ðe; 0; 0; 0Þ: ð56Þ

Following our principle of minimal extension, as defined in
Sec. II, we state that upon passing to an energy-momentum
background of constant curvature, the current vector is a
constant vector, on a curved background. The Maxwell
equation has only the zeroth component, from which the
scalar potential is read out:

4In Sec. IV, the gauge is fixed so that ðpAðpÞÞ ¼ 0.
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ϕðpÞ ¼ e
p2

; ð57Þ

which in turn gives us the electric field strength,

EðpÞ ¼ pϕðpÞ ¼ e
jpj p̂; ð58Þ

where p̂ is a unit vector in the direction of p. From here, the
total energy of the static point charge field configuration is

E ¼ 1

4π

Z
E2ðpÞdΩp ¼ α

Z
dΩp

jpj2 ; ð59Þ

where α is a fine-structure constant.5 The three-momentum
part of the surface is a hypersphere S3, so for the
homogeneous coordinates,

Z
dΩp ¼

Z
∞

0

4πp2dp
ð1þ β2p2Þ2 ; ð60Þ

giving the finite total self-energy

E ¼ π2αβ−1: ð61Þ

We note that this result is not independent of the
projection. For instance, taking the case of an orthogonal
projection,

Z
dΩp ¼

Z
∞

0

4πp2dp

ð1þ β2p2Þ1=2 ; ð62Þ

gives an infinite self-energy of a point charge. This can be
related to the fact that the total volume of space for the
orthogonal projection is infinite, while that of a homo-
geneous projection is finite.6 Thus, it is homogeneous
projection that preserves the finiteness of the total volume
(surface) of the hypershere (in addition to isometries),
while orthogonal projection does not. This clearly demon-
strates that the theory is not reparametrization invariant, as
claimed in some papers [11].
As a final exercise, we may set a bound on the value of

the curvature parameter β. Taking the model of the electron
as a homogeneously charged ball of radius R, the total
value of its electromagnetic energy is

E ¼ 3

5

α

R
; ð63Þ

from which is inferred β ∼ R. The bound on an electron
radius from Ref. [29] sets the bound on the curvature
parameter:

β < 10−20 cm; ð64Þ

while a more stringent bound can be obtained from an
indirect estimate of the electron’s radius, such as through
the electron’s dipole moment strength, via d ∼ eR, where
the most recent measurements [30] yield the constraint

β < 10−29 cm; ð65Þ

which is near (within a couple orders of magnitude)
Planck’s length, lp ∼ 10−33 cm, a scale that is usually
inferred as the threshold of new physics.

V. CONCLUSION AND OUTLOOK

This paper considered the simplest possibility of general-
izing Maxwell’s theory to incorporate curvature of the
energy-momentum space. Such “minimal extension” con-
serves the symmetries of the theory, the Lorentz, and gauge
symmetry. In the process, we demonstrated nonequivalence
of different parametrizations of the momentum manifold.
For an isometry-preserving projection, such as homogeneous
projection defined in Eq. (37), the point-charge self-energy is
shown to be finite. Compared to other extensions that lead
to the same result, such as the Born-Infeld model [31], the
model consideredhere is simpler in that it does not require the
addition of extra terms in the action, therefore providing a
better physical explanation for its input.
The necessity of a modification of a fundamental space-

time structure at the shortest distances to incorporate
quantum gravity is a well-established fact, as is the properly
recognized corresponding generalization of the energy-
momentum geometry; see, e.g., Ref. [11]. Still, it is our
impression that the study of geometry of the energy-
momentum space comes only as a step toward the descrip-
tion in space-time, and that the abundance of physical
content that it holds within itself has not been exploited
enough in the literature. In this sense, the obtained result of
the finiteness of the point charge self-energy serves as the
principal justification for our approach and a strong
motivation for further research in this direction.
While the energy-momentum representation is not well

suited for the study of classical dynamics, which is given in
terms of particle trajectories and field configurations in
space and time, it is still possible to extract certain global
physical information about the system from it, as has been
shown in this paper for the case of a point charge. The next
stepwould be to apply the formalism in the case of a quantum
and quantum field theory. Being involved with calculation

5In the standard, flat case, the volume element is trivial,
dΩp ¼ d3p, and the energy integral is linearly divergent in the
UV. Compared to the linear divergence as r → 0, this point
illustrates nicely the relation between short-scale configuration
and large-scale momentum representations.

6The importance of the finiteness of the total volume of space
was recognized as crucial for the finiteness of the quantum field
theory already in Ref. [2].
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of the spectra of operators, decay rates, and cross sections,
quantum theory is manifestly independent of the repre-
sentation (Born reciprocity) and thus much more suited for
the application of the minimal extension principle. This
was considered a long time ago in Refs. [1,2], but it also has
certain justification even from flat-space QED. Namely,
there is a much better interpretation in terms of a photon
wave (probability) function of AðpÞ than AðxÞ; see, e.g.,
Ref. [32]. Finally, we emphasize that the study of a
particular case of an electron’s self-energy in the classical

context has consequences for the quantum case as well, due
to the correspondence principle between the two, as noted
in Ref. [33].
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