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An analytical expression is obtained for the anomalous magnetic moment of an electron in a constant
magnetic field in topologically massive two-dimensional electrodynamics. In the limiting case of a
relatively weak magnetic field, asymptotic formulas are found, which specify the dependence of the
anomalous magnetic moment on the Chern-Simons parameter and dynamic parameter of synchrotron
radiation. The conditions are identified for the applicability of the computations of the anomalous magnetic
moment of an electron, which have previously been made based on the calculation of the vertex function in
two-dimensional electrodynamics with the Chern-Simons term.
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I. INTRODUCTION

A number of fundamental theoretical studies and exper-
imental results have attracted special attention to low-
dimensional models of the quantum field theory. These
investigations involve discovery of the integer [1] and
fractional quantum Hall effect, explained within the two-
dimensional anionic model [2–5]; the appearance of works
in which it is shown that a possibility exists to develop in
(2þ 1)-dimensional space a gauge-invariant theory with a
massive gauge field due to adding the topological Chern-
Simons term to the Lagrangian of the interaction between
gauge fields and fields of matter [6,7]; and the discovery of
quasiplanar structures in high-temperature superconductors
[8,9], production of graphene [10–12], and other low-
dimensional structures [13].
Studies show that the finite mass of the gauge field

initiates screening of both electrical and magnetic fields
[14–17], making possible the attraction of similar charges
[18,19] and a number of other unusual effects [20].
Previous studies [21,22] showed that if in the original

Lagrangian of two-dimensional electrodynamics with mas-
sive fermion there is no Chern-Simons term, it is generated
dynamically by means of the one-loop contribution to the
antisymmetric part of the photon polarization operator, both
at the finite temperature and density and in the external
magnetic field [23–26]. An induced Chern-Simons term in
the polarization operator has the following structure [14,21]:

ΠA
μνðqÞ ¼ iεμναqαΠAðq2Þ;

where εμνα is the absolutely antisymmetric 3rd rank unit
pseudotensor, and the induced Chern-Simons mass is
described by the formula

Θind ¼ lim
q→0

ΠAðq2Þ:

Here, the higher orders of perturbation theory do not
contribute to value Θind [27,28].
The study of radiation effects in two-dimensional field

theories at the finite temperature and nonzero chemical
potential shows that a Chern-Simons term may play a role
as a regulator of infrared divergences [6]. For example,
the one-loop mass operator of QED2þ1 without the Chern-
Simons term on the mass surface comprises infrared
divergence. To eliminate this, a charge screening effect
is taken into consideration [29]. At the same time, the mass
operator in topologically massive two-dimensional electro-
dynamics at the nonzero temperature and density is finite
even in a one-loop approximation.
A one-loop radiative energy shift of an electron in the

charge-symmetric plasma, as well as at a nonzero chemical
potential, in two-dimensional electrodynamics with the
Chern-Simons term has been analyzed in the papers
[30,31]. The ground state electron mass shift in a constant
magnetic field has been calculated within the framework of
topologicallymassive two-dimensional electrodynamics and
in the case of planar charged fermion inQED2þ1 without the
Chern-Simons term in Refs [32,33], respectively.
Alongside the effects of finite temperature and nonzero

chemical potential, of interest is the study of the spin
effects in QED2þ1 associated with the electron anomalous
magnetic moment (AMM). It relates to, specifically, the*peminov@mail.ru
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emergence of experimental data on the measurement
of the interaction energy of the AMM of an electron with
the external magnetic field in graphene [34,35] and
possible applications in physics of planar high-temperature
superconductors for the purposes of explaining the
parity violation in the presence of the external magnetic
field [36–38].
The first calculations of electron AMM in topologically

massive QED2þ1 with the Chern-Simons term were made
based on the vertex function in the fieldfree case, that is,
without taking into account the influence of the external
magnetic field [39–43]. In Ref. [43], calculations of the
finite temperature contribution to the electron AMM were
also carried out.
For the purposes of analyzing the experimental results

given in [34,35], in Ref. [44] presented the calculation of
AMM of an electron in the context of pseudo-QED2þ1 in
the approximation, which is linear throughout the external
field, that is, with no regard the dynamic nature of the
electron AMM [45–50].
It should be noted that in works [36–38] devoted to the

examination of the electron AMM in the P-even two-
dimensional model of quantum electrodynamics, a spectral
representation of the photon propagator was used for
eliminating the infrared divergence of the vertex function
in a constant magnetic field.
In Ref. [51], a complete description of the electron

stationary states in a magnetic field was conducted in two-
dimensional electrodynamics with the doubled fermion
representation. This result is used in [51] to compute the
radiative shift of the electron ground state energy and
electron AMM in the magnetized plasma of topologically
massive two-dimensional electrodynamics in a relatively
weak magnetic field. The AMM of the excited states of the
electron in a constant magnetic field in QED2þ1 without
the Chern-Simons term was investigated in Ref. [52].
In the present work the AMM of the excited states of an

electron is calculated in a constant magnetic field in a
topologically massiveQED2þ1 with 2 × 2matrices [20]. In
Sec. II, a method is suggested for deriving the interaction
energy of the electron AMM with the external magnetic
field from the radiative shift of the electron mass in two-
dimensional electrodynamics, which is odd under P and T
transformation. An exact expression is obtained for the
AMM of the electron moving in a constant magnetic field
in topologically massive two-dimensional electrodynamics.
A model of QED2þ1 with the doubled fermion represen-
tation has also been considered, as in the case in which
algebra of Dirac matrices is described using Pauli matrices
[25,53,54]. In Sec. III, the asymptotic formulas for the
AMM of an electron are obtained as a function of magnetic
field strength, electron energy, and the Chern-Simons
parameter.
The calculation of AMM in the P-odd theory, carried out

in this paper, has led to completely new, not only

quantitative, but also qualitative results on the role of the
magnetic field and the Chern-Simons parameter in the
study of the interaction energy of an electron AMMwith an
external magnetic field in two-dimensional electrodynam-
ics. A discussion of these results is carried out in Sec. IV.

II. AMMOF EXCITED STATES OF AN ELECTRON
IN TWO-DIMENSIONAL ELECTRODYNAMICS

WITH CHERN-SIMONS TERM

The Lagrangian of two-dimensional electrodynamicswith
the Chern-Simons term is described by formula [15,20]

L ¼ −
1

4
FμνFμν þ ψ̄ðp̂þ eÂ −mÞψ

þ 1

4
ΘεμνλFμνAλ −

1

2ς
ð∂μAμÞ2: ð2:1Þ

Here, ψ ¼ ðψ1

ψ2
Þ—is the two-component spinor, Fμν ¼∂μAν − ∂νAμ is the gauge field tensor, ς is the gauge-fixing

parameter, m is the mass of the electron, −e < 0 is the
electron charge, εμνλ is the completely antisymmetric third
rank unit pseudotensor, ε012 ¼ 1, Θ is the Chern-Simons
term, metric tensor gμν ¼ diagð1;−1;−1Þ.
The vector potential of an external magnetic field in the

Landau gauge is given by the formula

Aμ
ext ¼ ð0; 0; xHÞ:

For two-dimensional gamma-matrices, we use the Dirac
representation, in which

γ0 ¼ σ3; γ1 ¼ iσ1; γ2 ¼ iσ2; ð2:2Þ

where σk (k ¼ 1, 2, 3) is the Pauli matrices.
Matrices γμ meet the following relations:

γμγν ¼ gμν − iεμνλγλ; SpðγμγνγρÞ ¼ −2iεμνρ: ð2:3Þ

We note that, as opposed to QED3þ1, it is impossible to
build a dual tensor of the field in (2þ 1)-dimensional
models of the field theory, since there is no 4th rank tensor
εμναβ, and a trace of an odd number of two-dimensional
gamma-matrices is different from zero.
We also provide a brief account following [20,55]. In the

rest frame of an electron without the magnetic field, the
Dirac equation can be transformed into an equation for
the spin operator 1

2
σ3

σ3Ψ ¼ ζΨ; ð2:4Þ

where ζ ¼ 2s ¼ �1. But the spin is a pseudoscalar with
respect to the Lorenz group SOð2; 1Þ in 2þ 1 dimensions,
and so a Lorentz boost leaves it unchanged. Thus, Eq. (2.4)
gives the spin of a particle in an arbitrary frame. It should
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also be emphasized that the magnetic field in QED2þ1 is
not a pseudovector, as in QED3þ1, but a pseudoscalar [20].
In the one-loop approximation, mass operator and the

radiative energy shift of an electron in a constant magnetic
field are described by the formulas [56,57]

Σðx; x0Þ ¼ −ie2γμScðH; x; x0ÞγνDμνðx − x0Þ; ð2:5Þ

ΔEn ¼
Z

d3xd3x0Ψ̄qζðxÞΣðx; x0ÞΨqζðx0Þ; ð2:6Þ

where

ScðH; x; x0Þ ¼ −
1

2πi

Z
∞

−∞
dω exp½iωðt − t0Þ�

×
X

s;ε¼�1

ΨðεÞ
s ðx⃗ÞΨ̄ðεÞ

s ðx⃗0Þ
ωþ εEsð1 − iδÞ ð2:7Þ

is a causal Green function of the electron in a constant
magnetic field [57,58], and the photon propagator in the
Landau gauge is determined by the formula [14]

DμνðpÞ ¼ −
i

p2 − Θ2 þ i0

×

�
gμν þ iθεμνλ

pλ

p2 þ i0
−

pμpν

p2 þ i0

�
: ð2:8Þ

The summation in formula (2.7) made through all quantum
numbers fsg of positive-frequency ðε ¼ þ1Þ and negative-
frequency ðε ¼ −1Þ stationary states of an electron, Ψε

sðx⃗Þ
is the coordinate part of the solution to the Dirac equation in
a constant magnetic field in QED2þ1, Es is the energy of
the electron stationary states.
The solution of the Dirac equation in the gauge Aμ ¼

ð0; 0; xHÞ and in representation (2.2) for gamma-matrices
was obtained, for example, in works [25,53,59]. In
Ref. [25], the method of eigenfunctions in an external
electromagnetic field is used, which was developed in
works [60–62]. The electron energy level in a magnetic
field in (2þ 1)-dimensional QED and the Dirac equation
normalized positive-frequency solutions are described by
formulas [25]:

Ψsðx; y; tÞ ¼
expð−iEntþ iypyÞffiffiffiffiffiffiffiffi

2En
p

�
unðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p

un−1ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
�
;

fsg ¼ ðpy; n; ζÞ; ð2:9Þ

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eHn

p
; n ¼ 0; 1; 2… ð2:10Þ

Here, unðηÞ is the Hermite function [56],

unðηÞ ¼
ðeHÞ14

½2nn!π1
2�12 exp

�
−
η2

2

�
HnðηÞ; ð2:11Þ

and argument of Hermite polynomials

η ¼
ffiffiffiffiffiffiffi
eH

p �
xþ py

eH

�
: ð2:12Þ

If the two-dimensional space is presented as embedded
into the ordinary three-dimensional space, and Aμ ¼
ð0; 0; xHÞ, the projection of the magnetic field is
Hz ¼ −F12 ¼ −H, that is, the direction of the magnetic
field is against that of the OZ axis. On the other hand,
eigenvectors ψ1 ¼ ð1

0
Þ and ψ2 ¼ ð0

1
Þ, which correspond to

eigenvalues ζ ¼ �1 of matrix σ3, describe the states of the
electron, the spin that is oriented along the positive (ψ1) or
negative (ψ2) direction of the OZ axis.
In using the results of work [25] and retaining conven-

tional for the QED3þ1 physical interpretation, we will say
that the projection of spin in the state with unðηÞ in
formula (2.9) to the direction of the magnetic field is
− 1

2
, i.e., spin quantum number ζ ¼ −1, and in the state with

un−1ðηÞ, on the contrary, ζ ¼ þ1. Such an interpretation is
in agreement with the formula for the main quantum
number n, which specifies the spectrum of the electron
in QED2þ1 [25,60]:

n ¼ k −
ζ

2
signðeHÞ − 1

2
; k ¼ 0; 1; 2…

where H > 0.
Indeed, k ¼ 0; e < 0; H > 0 and ζ ¼ −1, correspond to

the ground state of an electron in this formula. Thus, after
expansion of the two component wave function by eigen-
functions of matrix σ3, formula (2.9) may be presented in
the form that is most convenient for further computations:

Ψpy;n;ζðx; y; tÞ ¼
expð−iEntþ iypyÞffiffiffiffiffiffiffiffi

2En
p

�
D−1

�
1

0

�
unðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p
þD1

�
0

1

�
un−1ðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p �

¼ expð−iEntþ iypyÞffiffiffiffiffiffiffiffi
2En

p
�

D−1unðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p

D1un−1ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
�
: ð2:13Þ
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Here, when ζ ¼ þ1, it is necessary to setD1 ¼ 1; D−1 ¼ 0,
when ζ¼−1, on the contrary, D1¼0;D−1¼1, and coef-
ficients D1 and D−1 meet the normalization requirement

D2
−1 þD2

1 ¼ 1:

Using (2.2), (2.7), (2.9), (2.13), and the method of
calculation suggested in works [63,64], electronic Green’s
function (2.7) in QED2þ1 in a constant magnetic field shall
be presented as follows:

ScðH;x;x0Þ ¼ exp

�
−i

eH
2
ðy−y0Þðxþx0Þ

�

×
Z

dk⃗
ð2πÞ2 exp½ik⃗ðx⃗− x⃗0Þ�Sðk⃗Þ;

Sðk⃗Þ¼−i
Z

∞

0

dsexp

�
−is

�
m2−k20þ k⃗2

tany
y

− i0

��

×

�
ðmþ ik0Þþ γ0ðk0þ im tanyÞ− k⃗ γ⃗

cos2y

�
:

ð2:14Þ

This result is the same as the result of works [24,25,53],
in which the method of Schwinger was used [65]. It is
interesting to compare (2.14) with the respective result of
works [51–53,66], where 4-dimensional representation is
applied for gamma-matrices, in which:

γ0 ¼
�
σ3 0

0 −σ3

�
; γ1;2 ¼

�
iσ1;2 0

0 −iσ1;2

�
: ð2:15Þ

In work [51], using the solutions (2.19) and (2.20) of Dirac
equations in a constant magnetic field, in which the spin
properties of an electron are taken into account using
operator (2.17) of spin projection to the direction of the
magnetic field for propagator (2.7) the result has been
obtained described by formula (2.19) from work [52]. It
should be noted that formula (2.19) from work [52]
overlaps with the result (2.14) of the present work, if in
(2.19) gamma-matrices (2.15) are replaced with the two-
dimensional gamma-matrices (2.2).
As is known, the AMM of the lepton in a standard

Weinberg-Salam-Glashow model is defined by that part of
the radiative mass shift in the external magnetic field, which
explicitly depends on the projection of spin to the direction
of the magnetic field and, at the same time, is a true scalar
[56,57,60,65,67,68].QED3þ1 is the theory, which is invari-
ant relative to spatial reflections. Therefore, the energy of
interaction between the AMM and the magnetic field is P-
even and contain only one term with the spin and magnetic
field correlation. This term is proportional to the bilinear
combination ðD−1D−1 −D1D1Þ of spin coefficients, which
is −1 in the case ζ ¼ 1ðD1 ¼ 1; D−1 ¼ 0Þ and equal to þ1
for ζ ¼ −1ðD1 ¼ 0; D−1 ¼ 1Þ and, accordingly, this part of

the interaction energy reverses its sign, depending on the
orientation of the electron spin [56].
In the Lorentz-invariant notation, the AMM of a lepton is

determined by those terms in the radiative mass shift that
are proportional to the value of sμðF̃Þμνpν, where sμ is the
particle polarization 4-vector, ðF̃Þμν ¼ 1

2
εμναβFαβ is the dual

tensor of the external field, and pν is the particle momen-
tum 4-vector [60,68].
Breakdown of spatial parity in weak interactions

results in emergence of the second spin summand in the
radiative mass shift of the Dirac neutrino in a constant
magnetic field. This summand is proportional to the value
sμF̃μαFαβpβ [57], which is a pseudoscalar with no con-
tribution to the neutrino AMM. In (2þ 1)-dimensional
models of the quantum field theory, as mentioned pre-
viously, it is impossible to identify a dual tensor of the field,
and spatial parity is broken.
Consequently, the methods used in the Weinberg-Salam-

Glashow model for determining the AMM of the electron
from the spin terms in the radiation mass shift in a constant
magnetic field should be developed for the case of two-
dimensional electrodynamics. The calculation of the AMM
of an electron in QED2þ1 with the Chern-Simons term,
which is a theory with broken spatial parity, will begin with
the determination of that part of the radiation mass shift,
which obviously depends of the electron spin. A method
shall further be given that allows division of the obtained
expression into scalar and pseudoscalar parts. Of interest
will be a summand that is a true scalar, which defines the
energy of the interaction of the AMM of the electron with
the external magnetic field.
First, we consider the transformational properties of the

classical action of the theory with the Lagrangian (2.1)
under the parity and time-reversal transformations
[20,36,53,59,66]:

P∶ x → x̄ðx0;−x; yÞ;
ðA0; A1; A2ÞðxÞ → ðA0;−A1; A2Þðx̄Þ;

ψðxÞ → γ1ψðx̄Þ; ð2:16Þ

T∶ t → −t; x → ð−t; x⃗Þ;
ψðxÞ → γ2ψð−t; x⃗Þ; A⃗ → −A⃗ð−t; x⃗Þ: ð2:17Þ

Wesee that the classic action in the case of amassless fermion
in QED2þ1 without a Chern-Simons member is invariant
with respect to the inversion operation (2.16), while in the
case of a massive fermion, when m ≠ 0, the fermion mass
term mψ̄ψ in formula (2.1) with two-dimensional gamma-
matrices (2.2) is odd under P- and T- transformation:

P∶ ψ̄ψ → −ψ̄ψ ; T∶ ψ̄ψ → −ψ̄ψ : ð2:18Þ
At the same time, the mass term and Chern-Simons term
in formula (2.1) have the same properties under the
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time-reversal and parity transformations. Consider also the
four-component fermions in (2þ 1)-dimensions, connected
with a four-dimensional reducible representation (2.15) of
Dirac’s matrices. Considering a four-component spinor
ψ ¼ ðψ1

ψ2
Þ, the four-component mass term mψ̄ψ may be

represented in the form

mψ̄ψ ¼ mψþ
1 σ3ψ1 −mψþ

2 σ3ψ2:

In the case of inversion, which is similarly defined for all
spinors, the parity transformation becomes

P∶ ψ1→ σ1ψ1; ψ2 → σ1ψ2; mψ̄ψ →mψ̄ψ : ð2:19Þ

and therefore, the mass term in the theory with a four-
component spinor is aP-evenvalue, while theChern-Simons
term is a P-odd value.
As a result, as opposed to QED3þ1, in both models of

two-dimensional electrodynamics, the spin part of the
radiative mass shift of an electron in a constant magnetic
field is defined as a sum of the scalar and pseudoscalar
summand.
The noninvariance of the Chern-Simons term under

parity transformation is directly manifested in the tensor
structure of the photon propagator in (2.8), where the
second summand in parentheses, as opposed to the first and
the third summands, is antisymmetric toward permutation
μ ↔ ν.
It should also be noted that, as shown in works [43,51],

the last summand in propagator (2.8) does not contribute to
the electron AMM and shall not be considered henceforth.
For calculation of the radiative shift of an electron’s

energy, which is determined by formula (2.6), taking into
consideration (2.5), (2.8), (2.13), and (2.14), we use the
method proposed in [51,52].
Using Schwinger parametrization

1

p2
0 − p⃗2 − Θ2 þ i0

¼ −i
Z

∞

0

ds2 exp½is2ðp2
0 − p⃗2 − Θ2 þ i0Þ�; ð2:20Þ

integration over space and time variables performed by the
formula [52]

Z
d3xd3x0 exp

�
−iðpþ kÞðx − x0Þ − i

eH
2

ðy − y0Þðxþ x0Þ

− iEnðt − t0Þ þ iðpy − p0
yÞ
�
unðηÞumðη0Þ

¼ ð2πÞ2LTδðp0 þ k0 − EnÞ
2

eH

× ð−1Þm exp½iðn −mÞχ�In;m
�
2κ2

eH

�
; ð2:21Þ

where pμ ¼ ðp0; p⃗Þ is 4-momentum of a virtual photon;
κ⃗ ¼ p⃗þ k⃗, T is the interaction time, which is assumed to be
a unity thereafter; L is the length of periodicity in direction
of axis OY; δ-function of Dirac δðp0 þ k0 − EnÞ expresses
the energy conservation, χ ¼ π

2
− ϕ, ϕ ¼ arctan κ2

κ1
; and the

Laguerre function In;mðτÞ is connected to the Laguerre
polynomial Ln−m

n ðτÞ by relation [56]

In;mðτÞ ¼
ffiffiffiffiffiffi
m!

n!

r
exp

�
−
τ

2

�
τ
n−m
2 Ln−m

m ðτÞ;

τ ¼ 2κ⃗2

eH
: ð2:22Þ

We performed integration over variable k0 using the
δ-function, and integrals over variable p0 are Gaussian.
Next, we move from integrating over a variable p⃗ to

integrating over a variable κ⃗ ¼ p⃗þ k⃗:

dk⃗dp⃗ ¼ dk⃗dκ⃗ ¼ kdkdακdκψ → 2πkdkκdκdψ ; ð2:23Þ

where ψ ¼ ϕ − α, ψ ∈ ½0; 2π�, α and ϕ are the polar angles
of vectors k⃗ and κ⃗.
The integration over variable ψ gives the Bessel func-

tions of zero and the first order of the real argument

b ¼ 2s2kκ

and further integration over variable k is performed by
means of the Weber’s formula [69]

Z
∞

0

exp½−px2�xνþ1JνðcxÞdx ¼ cν

ð2pÞνþ1
exp

�
−
c2

4p

�
;

p > 0; c > 0;ℜν > −1: ð2:24Þ

We will carry out a separate study of the contributions to
the magnetic moment of an electron due to summands in
the photon propagator (2.8), which are proportional to the
mass Θ of the gauge field and to the metric tensor gμν,
respectively, and replace the variables s1 and s2 with u and
y according to the formulas

u¼ s1
s1 þ s2

; y¼ uðs1 þ s2Þ;

0 ≤ u ≤ 1; 0 ≤ y <∞; ds1ds2 ¼
y
u2

dudy: ð2:25Þ

Finally, the following representation, which is precise in the
one-loop approximation, shall be obtained for the part of
the radiation shift in the energy of the two-dimensional
electron in QED2þ1 with the Chern-Simons term, which
depends on the spin quantum number:

ΔEζ
n ¼ ΔEζ

nðgμνÞ þ ΔEζ
nðΘÞ; ð2:26Þ
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�
ΔEζ

nðgμνÞ
ΔEζ

nðΘÞ

�
¼ ið−1Þnþ1 exp

�
i
π

4

�
ζe2

ð2πÞ2En

Z
1

0

du
Z

∞

0

ffiffiffiffiffiffi
πu
y

r
dy

y
u2

×
Z

∞

0

κdκ exp½−iE2
nuyþ iy2eHn�ð−iÞ λu

2yð1 − uÞ tan eHy

× exp

�
−i

λ

eH
κ2 − iy

1 − u
u

Θ2

��
F1

F2

�
; ð2:27Þ

where the following notations are adopted:

F1 ¼ −m2

�
In;n

�
ð2 − uÞ eiz

cos z
þ 2u

e−iz

cos z

�
þ In−1;n−1

�
ð2 − uÞ e

−iz

cos z
þ 2u

eiz

cos z

��

−mEn

�
In;n

�
ð2 − uÞ eiz

cos z
þ 2u

e−iz

cos z

�
− In−1;n−1

�
ð2 − uÞ e

−iz

cos z
þ 2u

eiz

cos z

��

þ 2eHnð1 − uÞ½ðIn;n þ In−1;n−1Þ − 3i tan zðIn;n − In−1;n−1Þ�; ð2:28Þ

F2 ¼
2

Θ

�
1 − exp

�
iy
1 − u
u

Θ2

��
R2;

R2 ¼
m

cos z

�
u2E2

n þ i
u
2y

�
½In;ne−iz þ In−1;n−1eiz� þ

E
cos z

�
u2E2

n þ i
u
2y

�
½In;ne−iz − In−1;n−1eiz�

þ 1

cos2z
½EnðIn;n − In−1;n−1Þ þmðIn;n þ In−1;n−1Þ�

�
i

λu
yð1 − uÞ tan zþ

κ2

eH
λ2u

yð1 − uÞ tan z
�

− ð2eHnÞ uEn

cos z
½In;ne−iz − In−1;n−1eiz�; ð2:29Þ

λ ¼ tan z
1þ u

1−u
tan z
z

; z ¼ eHy: ð2:30Þ

Thus, to compute the AMM of an electron, it is necessary to
obtain, using formula (2.27), the electron radiative mass
shift, which is a Lorentz invariant, and present it as a sum of
the scalar and pseudoscalar values:

Δmζ ¼
En

m
ΔEζ

n ¼ ΔmðsÞ
ζ þ ΔmðpsÞ

ζ : ð2:31Þ

Then, the electron AMM shall be defined by valueΔmðsÞ
ζ in

(2.31) according to formula [57,60,68]

Δμ ¼ −
m
En

ℜðΔmðsÞ
ζ Þ

ζH
: ð2:32Þ

After integrating over the variable κ in formulas (2.27)–
(2.29), the problem posed received an unexpected solution.
Integration over the variable κ is carried out using the

formulas:

Jð1Þn;n ¼
Z

∞

0

exp

�
−

1

eH
ð1þ iλÞt

�
Ln

2t
eH

dt

¼ð−1ÞneHexp½−i2narctanλ�exp½−iarctanλ�ffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

p ; ð2:33Þ

Jð2Þn;n ¼
Z

∞

0

exp

�
−

1

eH
ð1þ iλÞt

�
Ln

2t
eH

tdt

¼ ð−1ÞneH exp½−i2n arctan λ�

×
2nþ 1 − iλffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p exp½−i arctan λ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p : ð2:34Þ

When integrating over κ in formula (2.27) with the
integrand, which determines the contribution coming from
the gμν term in the photon propagator (2.8), only integrals

Jð1Þn;n and Jð1Þn−1;n−1 are used.
In this case, expression (2.27) is a linear combination of

different pairs of terms, each of which is determined by one
of the integrals
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�
K1

K2

�
¼

Z
∞

0

κdκ½In;nðtÞ exp½ið�αz − arctan λÞ�

� In−1;n−1ðtÞ exp½ið�αz − arctan λÞ��
¼ ð−1Þn eHffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p exp½−i2n arctan λ�

×

�
i sinð�αz − arctan λÞ
cosð�αz − arctan λÞ

�
; ð2:35Þ

where t ¼ 2κ2

eH ; α ¼ 0, 1.
Of the two types of such summands, proportional to

sinð�αz − arctan λÞ and cosð�αz − arctan λÞ, respectively,
contribution to the AMM is made only by the first type of
summands, which are odd functions of the magnetic field
strength.
For example, in formula (2.28), only the first term,

proportional to m2, gives a contribution to the AMM.
The contribution from the εμνλ term in the propagator in

(2.8) to themagneticmoment isdeterminedby formula (2.27)
with a function F2.
As compared with the first case, a new structure arises

here, connected with integrals (2.34), and only the first
summand and the third term in formula (2.29) with a
multiplier m½In;n þ In−1;n−1� contribute to the electron
AMM.
As a result, the magnitude

Δms
ζ ¼ Δms

ζðgμνÞ þ Δms
ζðΘÞ; ð2:36Þ

which determines in the one-loop approximation the
AMM of an electron in a constant magnetic field in the
two-dimensional quantum electrodynamics with a Chern-
Simons term, is defined by the formula:

�Δms
ζðgμνÞ

Δms
ζðΘÞ

�
¼ −ζ

me2 exp½i π
4
�

16 · 2π
3
2

×
Z

1

0

duffiffiffi
u

p
Z

∞

0

dyffiffiffi
y

p exp½−iϕ�
� Ω1

Ω2;

�

ð2:37Þ

Ω1 ¼
2 − uþ 2u exp½−2iz�
1 − uþ u exp½−iz� sin zz
−
exp½2i arctan λ�½2uþ ð2 − uÞ exp½−2iz��

1 − uþ u exp½−iz� sin zz
; ð2:38Þ

Ω2 ¼ −i
λffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

ð1 − uÞ sin z
4

mΘ

�
1 − exp

�
iyΘ2

1 − u
u

��

×

�
−i
�
m2u2 þ i

u
2y

�
sinðzþ arctan λÞ

þ λ2u
yð1 − uÞ sin z

�
1þ 1 − λ2

ð1þ λÞ32
��

; ð2:39Þ

ϕ¼m2uyþy
1−u
u

Θ2þ2narctanλ−2eHnyð1−uÞ: ð2:40Þ

It should be noted that formulas (2.37)–(2.39) for the
excited states of an electron, as in ordinaryQED3þ1, do not
contain divergences and are finite in the entire range of
changes in the magnetic field.
The results (2.37)–(2.40) is obtained in a completely

different model [20], compared with the works [51] and
[52], which considers only the model of (2þ 1)-QED with
a double fermion representation. We also calculate the
AMM of the electron in a constant magnetic field in
QED2þ1 with the Chern-Simons term in a model with
the doubled fermion representation. Computation was
made by formulas (2.5)–(2.8) and (2.15). Following
[51], we require that the solution of the Dirac equation
be an eigenfunction of the Hamiltonian from Dirac equa-
tion, operator p̂y ¼ −i ∂

∂y of the projection of momentum to

theOY axis, a spin operator Â ¼ iγ0γ1γ2, and is determined
by the formula

Ψε¼þ1 ¼
ðeHÞ14ffiffiffiffiffiffiffiffi
2En

p exp½−iEntþ iypy�

2
6664

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En −m
p

un
0

0

1
CCCAD1

þ

0
BBB@

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En þm
p

un

1
CCCAD−1

3
7775: ð2:41Þ

Where, with ζ ¼ þ1 (spin is oriented along the field
direction), it is necessary to set D1 ¼ 1; D−1 ¼ 0, and
when ζ ¼ −1 (spin is oriented against the field direction),
D1 ¼ 0; D−1 ¼ 1 to the contrary.
The study of the AMM for the excited states of an

electron in this model is similar to that shown above, so the
details of the calculations are omitted here.
As a result, the summand ΔmζðgμνÞ, as opposed

to the considered above case of the QED2þ1 with
gamma-matrices (2.2), does not contain a pseudoscalar
component and is defined by the formulas (2.37)–(2.38)
of the present work and (2.21)–(2.22) of Ref. [52]. For the
second term, ΔmζðΘÞ, before integrating over the κ
variable, we obtained the result, which is described by
formulas (2.27) and (2.29), in which the following replace-
ment should be made
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F2 → F0
2 ¼

2

Θ

�
1 − exp

�
iy
1 − u
u

Θ2

���
½In;n exp½−iz� − In−1;n−1 exp½iz��

E2
nu2 þ i u

2y

cos z

þ In;n − In−1;n−1
cos2z

�
i

λu
yð1 − uÞ tan zþ

κ2

eH
λ2u

yð1 − uÞ tan z
�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2eHn

p κ

eH
λu

yð1 − uÞ In;n−1
�
: ð2:42Þ

The integral over the variable κ is calculated using
formulas (2.33)–(2.35). As a result, the value ℜΔmζðΘÞ
is a pseudoscalar and does not contribute to the electronic
AMM.
Hence, in the Chern-Simons QED2þ1 with a doubled

fermion representation, only the term with gμν in the photon
propagator contributes to the electron AMM.
The expression for the mass shift of the electron ground

state may be obtained from formulas (2.5)–(2.8) and
(2.13)–(2.14), taking into account that

ψ̄0γ
μ

�
mþik0 tanzþγ0ðk0þimtanzÞ− k⃗ γ⃗

cos2z

��
γμ

εμνλγ
νpλ

�
ψ0

¼2mþp0þitanzð2m−3p0Þ

−
2i

cosz
ðp2

0exp½−iz�Þþ
p⃗k⃗
cosz

; ð2:43Þ

where Ψ0 ¼ ð1
0
Þ. As a result, we arrive at the next

representation for the ground state electron mass shift

�ΔE0ðgμνÞ
ΔE0ðΘÞ

�
¼ e2

8π
3
2

Z
1

0

duffiffiffi
u

p
Z

∞

0

dyffiffiffi
y

p

× exp½−m2uy�
�
A1

A2

�
; ð2:44Þ

A1 ¼
exp½−ν�½2 − uþ 2u exp½−2eHy��

F
− u − 2;

ν ¼ yð1 − uÞΘ2

u
; F ¼ 1 − uþ u exp½−eHy� shz

z
;

A2 ¼
exp½−ν� − 1

ν
ð1 − uÞΘ

m

×

�
exp½−2eHy�

�
1þ 2

F
− 2m2uy

�
− ð3 − 2m2uyÞ

�
:

ð2:45Þ

It should be noted that as opposed to the case of the
excited states of an electron, in formulas (2.44)–(2.45), the
mass shift was renormalized through subtraction of a
divergent term ΔE0ðH → 0Þ, and result (2.44)–(2.45) is
the same as the respective results given in Refs. [32,51].

III. THE AMM OF AN ELECTRON IN QED2 + 1
WITH THE CHERN-SIMONS TERM:

CONTRIBUTION FROM THE εμνλ TERM
IN THE PHOTON PROPAGATOR

First, we consider the case of a weak magnetic field and a
nonrelativistic electron, when the following conditions are
satisfied

β ¼ H
H0

≪ 1; n ≪ β−1; ð3:1Þ

where, H0 ¼ m2c3
eℏ ¼ 4.41 × 1013G—is the Schwinger’s

critical field. The electron mass shift Δms
ζðgμνÞ in this case

are described by the asymptotic formulas (4.6) and (3.7) of
the work [52]:

ℜðΔmðsÞ
ζ ðgμνÞÞ

¼

0
B@ −ζ e2β

8π

h
3
2
þ ln

	
β
2


i
;ρ ¼ 0;β ≪ 1; n≪ β−1;

ζ e2β
16π

h
3− 3ρ−

	
2− 3ρ2

2



ln ρþ2

ρ

i
;β ≪ 2ρ

	
1− ρ

2



1
CA:

ð3:2Þ

Here, the corresponding asymptotics will be obtained for
the quantity ΔmðsÞ

ζ ðΘÞ in formulas (2.37) and (2.39), which
describes the contribution of the term with εμνλ in the
photon propagator (2.8) to the AMM of an electron. Taking
into account (3.1) and (2.30), the exponent in formula (2.37)
can be represented in the form

−iϕ ≃ −
t
β
Fðu; ρÞ;

Fðu; ρÞ ¼ uþ
�
1

u
− 1

�
ρ2; t ¼ eHy; ð3:3Þ

where, without restricting the generality, it is assumed that
ρ ¼ Θ

m < 2. We note that function Fðu; ρÞ of variable u ∈
½0; 1� takes the values from 1 at u ¼ 1 until þ∞ at u → þ0

for all ρ ≠ 0, and at the critical point u0 ¼ ρ ¼ Θ
m, which is a

minimum point of the function Fðu; ρÞ on the interval [0,1],
the following inequality is true

Fðu0; ρÞ ¼ 2ρ

�
1 −

ρ

2

�
> 0:

This means that in the limiting case,
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Fðu0; ρÞ
β

≫ 1; ð3:4Þ

i.e., if the field parameter β is small compared with the
Chern-Simons parameter, then in the multiplier Ω2 in
formulas (2.37) and (2.39), the main contribution to the
AMM provides the domain t ¼ eHy ≪ 1.
In this limit, we have

Ω2 ¼
eHu
mΘ

�
6 − 5u − ið4u − 2u2Þ t

β

�

×
�
1 − exp

�
i
tyð1 − uÞρ2

βu

��
: ð3:5Þ

Further integration over variable t is carried out taking into
account the infinitesimal imaginary part of the electron
mass in the causal propagator [69]:

lim
δ→þ0

Z
∞

0

tμ−1 exp½−δt�
�
sin αt

cos αt

�
dt

¼ ΓðμÞ
αμ

�
sin πμ

2
;ℜμ > −1

cos πμ
2
;ℜμ > 0

�
: ð3:6Þ

After integration over variable t, in the leading order in the

small parameter β
ρ the contribution to the mass shift ΔmðsÞ

ζ ,

coming only from the εμνλ in the photon propagator, takes
the form

ℜðΔmðsÞ
ζ ðΘÞÞ ¼ ζe2

4π

eH
4mΘ

Z
1

0

udu

×

�
5u − 6

ðu2 þ ð1 − uÞρ2Þ12 þ
u2ð2 − uÞ

ðu2 þ ð1 − uÞρ2Þ32

−
4ðu − 1Þ

u

�
; β ≪ Fðu0; ρÞ: ð3:7Þ

It follows from (3.7) that the radiative mass shift in the case
(3.1) is defined by the formula

ℜðΔmðsÞ
ζ ðΘÞÞ¼ ζe2

4π

eH
4m2

�
2−ρ ln

ρþ2

ρ

�
; β≪ ρ: ð3:8Þ

Further, let us consider the case of a weak magnetic field
and ultrarelativistic values of energy of the electron, when
the following condition is justified.

β ≪ 1; p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2eHn

p
≫ m: ð3:9Þ

In this area, the movement of electrons obeys the quasi-
classical laws. Maintaining the first two expansion terms in
formula (2.30) in the significant region,

arctan λ ≃ tð1 − uÞ þ t3uð1 − uÞ2
3

we find the following Lorentz-invariant expression for the
part of the electron mass shift defined by the interaction
energy of the AMM with the external magnetic field:

ΔmðsÞ
ζ ðΘÞ ¼ ζe2H exp½i π

4
�

16π2ρH0

×
Z

1

0

du
ffiffiffiffiffi
z0

p fð6 − 5uÞ½FðzÞ − Fðz0Þ�

þ 2ð2 − uÞz0½F0ðzÞ − F0ðz0Þ�g: ð3:10Þ

Here, the function FðzÞ is determined by the integral

FðzÞ ¼
Z

∞

0

dτffiffiffi
τ

p exp

�
−i
�
τzþ τ3

3

��
; ð3:11Þ

F0ðzÞ ¼ dF
dz , where the following notations have been

adopted:

z ¼ z0

�
1þ ρ2

1 − u
u2

�
; z0 ¼

�
u

χð1 − uÞ
�2

3

:

It should be emphasized that the integrand in (3.10)
depends only on the dimensionless Chern-Simons param-
eter and on the invariant dynamic parameter of synchrotron
radiation

χ ¼ e
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
¼ p⊥

m
H
H0

; ð3:12Þ

and also that result (3.10) is obtained supposing that
alongside with (3.9), the condition is met

χ ≪ ρ:

It immediately follows from Lagrangian (2.1) that if the
parameter Θ is assumed to be zero, then we get the case of
massive two-dimensional electrodynamics without the
Chern-Simons term, in which the one-loop contribution
to the AMMwas considered in [52]. Although the radiative
corrections initiate the generation of the Chern-Simons
member, it does not contribute to the AMM of an electron
in the one-loop approximation.
Taking into account the conditions for the validity of the

results of (3.8) and (3.10), it is of interest to study the
asymptotics of the value ℜΔmðsÞ

ζ ðΘÞ in the limiting case
when ρ

χ ≪ 1.
We shall consider here the case in which the non-

relativistic electron moves in a weak magnetic field
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ρ ≪ β ≪ 1; ð3:13Þ

which we think is particularly interesting.
The integration region for variable u in formulas (2.37)

and (2.39) is divided into two parts. In the first area
u ∈ ½0; u0�, in the second u ∈ ½u0; 1�, where the parameter
u0 meets the following condition:

ρ; β ≪ u0 ≪ 1:

Then, in the first region, the integrand in formula (2.37) for

ΔmðsÞ
ζ ðΘÞ shall be expanded, except for the respective

exponential factor, into variable u series, since u ≤ u0 ≪ 1,
and in the second area, where u ≥ u0 ≫ ρ, β, the main
contribution to the integral is given by the region of
integration, with the variable t ≪ 1, and we expand the
integrand in a series in the variable t. Further, similarly to
work [52], the integrals with respect to the variable t are
taken according to the formulas [69]:

Z
∞

0

tμ−1 sin at

�
sin bt
cos bt

�
dt ¼ ΓðμÞ

2

�
cos πμ

2
ðjb − aj−μ − ðbþ aÞ−μÞ; a > b;−2 < ℜμ < 1

sin πμ
2
ððaþ bÞ−μ þ ja − bj−μ sin ða − bÞÞ; jℜμj < 1

�
: ð3:14Þ

After integration over the variable t, we get

ℜðΔmðsÞ
ζ ðΘÞÞ ¼ ζ

me2

16π
3
2

½T1 þ T2�; ð3:15Þ

where

T1¼
ffiffiffi
π

p 2β

mρ

×
Z

1

u0

udu

�
6−5u

ðu2þρ2ð1−uÞÞ12−
u2ð2−uÞ

ðu2þρ2ð1−uÞÞ32
�
þ��� ;

T2¼
2

ffiffiffi
π

p
mρ

Z
u0

0

du
��

u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ2βuþρ2

p þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ2βuþρ2

q �

− l

�
u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2−2βuþρ2
p þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2−2βuþρ2

q ��
þ��� ;

ð3:16Þ

l ¼
�
1; u ∈ ½0; u1� ∪ ½u2; u0�; u1 ¼ β −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − ρ2

p
;

0; u ∈ ½u1; u2�; u2 ¼ β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − ρ2

p
�
;

ð3:17Þ
and the dots in (3.16) correspond to terms of a higher order
of smallness.
As a result, in the limiting case (3.13), the radiative mass

shift and the corresponding AMM of the electron, coming
from the εμνλ term in the photon propagator, are defined by
the formulas

ℜðΔmðsÞ
ζ ðΘÞÞ ¼ −ζ

e2

4π
ρ lnð2βÞ; ρ ≪ β ≪ 1; ð3:18Þ

ΔμðΘÞ
μB

¼ e2

2πm
ρ

β
lnð2βÞ: ð3:19Þ

Following from formulas (3.18)–(3.19), the contribution
to the AMM coming from the εμνλ term in the photon
propagator, tends toward zero when ρ → 0.

IV. CONCLUSION

In the one-loop approximation, an exact expression is
obtained, described by the formulas (2.37)–(2.39), for that
part of the radiative mass shift of the excited states of an
electron in a constant magnetic field in QED2þ1 with the
Chern-Simons term, which determines the interaction
energy of the AMM with the external magnetic field

ΔEnðζÞ ¼ −ζHΔμ:

In deriving formulas (2.37)–(2.39), the Dirac representation
(2.2) has been used for two-dimensional gamma matrices.
It was mentioned above that opposed to standard

QED3þ1, massive QED2þ1 both with and without the
Chern-Simons term is the theory with broken P- and
T-parity.
As a result, the electron radiative mass shift in QED2þ1,

which is the Lorentz invariant, contains two types of terms
with a correlation of electron spin and magnetic field, one
of which is a pseudo-scalar and does not contribute to the
AMM. The second term is a true scalar. It defines the
interaction energy of the AMM with the external mag-
netic field.
It should be noted that such a property is inherent in both

the electron mass shifts ΔmζðgμνÞ due to the term with gμν
in the photon propagator and the value ΔmζðΘÞ associated
with εμνλ in the propagator (2.8).
The AMM of the excited states of an electron in a

constant magnetic field in Chern-Simons QED2þ1 with a
doubled representation of fermions has also been studied.
In this theory, the mass term in (2.1) is P-even with respect
to reflection of one of the spatial coordinates; however, the
presence of the Chern-Simons term in Lagrangian (2.1)
breaks parity in this model as well. It has been shown that
the entire part of the radiation mass shift of an electron,
which depends on the orientation of the electron spin and is
defined by the value ΔmζðgμνÞ, is a scalar value and is the
same as result (2.37)–(2.38). At the same time, the value
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ΔmζðΘÞ is a pseudoscalar and does not contribute to the
electron AMM.
Thus, in the theory with the doubled fermion represen-

tation, the energy of the interaction between the AMM of
the electron and magnetic field in topologically massive
two-dimensional electrodynamics is fully defined by the
value ΔmζðgμνÞ in formula (2.37).
Another line of investigations, intersecting with the

results of this paper, is connected to the problem of infrared
divergences in two-dimensional models of quantum field
theory in the study of radiative and spin effects. In [43], on
the basis of computing the vertex function of the topologi-
cally massive two-dimensional electrodynamics, a conclu-
sion is made that the presence of the Chern-Simons term in
(2.1) results in regularization of infrared divergence of the
AMM, and at the same time, the contribution of the term
with εμνλ in the photon propagator, when ρ → 0 tends
toward some finite value, is different from zero.
However, a detailed analysis of the AMM of an electron

in QED2þ1 with a Chern-Simons term in a constant
magnetic field, carried out in this work, shows that in
the nonrelativistic approximation, the electron AMM,
according to formulas (3.2), (3.8), and (3.19), has the
following asymptotics:

ΔμðgμνÞ
μB

¼ −
e2

8πm

�
−ð3 − 3ρÞ þ

�
2 −

3

2
ρ2
�
ln
ρþ 2

ρ

�
;

β ≪ ρ; β ≪ 1; ð4:1Þ

ΔμðgμνÞ
μB

¼ e2

4πm

�
3

2
þ ln

β

2

�
; ρ ¼ 0; β ≪ 1; ð4:2Þ

ΔμðΘÞ
μB

¼−
e2

8πm

�
2−ρ ln

ρþ2

ρ

�
; β≪ ρ; β≪ 1; ð4:3Þ

ΔμðΘÞ
μB

¼ e2

2πm
ρ

β
ln2β; ρ≪ β≪ 1; ln

1

2β
≫ 1: ð4:4Þ

The comparison shows that formulas (4.1) and (4.3) have the
form coinciding with the corresponding results (16) and (24)
of the paper [43], which are obtained on the basis of the
calculation of the vertex function. However, a fundamental
difference between these results is that the conditions of

applicability of formulas (16) and (24) were not studied in
work [43]. As a result of this, in [43], it is concluded that the
contribution to the AMM of an electron described by the
formula (16) of this work contains an infrared logarithmic
divergence when ρ → 0, which is eliminated by the Chern-
Simons term in the Lagrangian (2.1).
As for formula (24), in [43] it is concluded that the

contribution to the AMM, given by the term with εμνλ in the
photon propagator, tends to a finite nonzero value at ρ → 0.
Our results (4.1) and (4.3) show that limiting transition
ρ → 0 in these formulas is conceptually impossible, and the
behavior of the AMM of the nonrelativistic electron in the
limiting case ρ → 0 is described by formulas (4.2) and
(4.4). Here, as follows from formula (4.2), the external
magnetic field regulates infrared divergence, and at ρ ¼ 0,
the energy of the interaction between the electron AMM
and the external magnetic field is proportional to the value
β ln β. Thus, the external magnetic field plays the role of
the infrared regulator in the calculation of the AMM in
QED2þ1.
Alongside this, according to result (4.4), the one-loop

contribution to the electron AMM, coming from the term
with εμνλ in the photon propagator, tends to zero in
proportion to the parameter ρ

β ≪ 1 and not to the finite
result following from formula (24) of [43].
We conclude our analysis of the AMM of an electron in a

topologically massive two-dimensional electrodynamics
with two observations. First, unlike QED3þ1, in two-
dimensional electrodynamics, there is no free movement
along the field, and the electron energy spectrum in a
magnetic field is completely discrete. Second, as follows
from formula (17) in work [43], the magnetic form factor
in QED2þ1 contains logarithmical infrared divergence at
ρ ¼ 0. Therefore, it should be expected that the simulta-
neous consideration of these factors is necessary for correct
calculation of the AMM based on the vertex function in
QED2þ1, both with and without the Chern-Simons term.
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