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We study the modulus stabilization in an A4 model whose A4 flavor symmetry is originated from the S4
modular symmetry. We can stabilize the modulus so that the A4 invariant superpotential leads to the realistic
lepton masses and mixing angles. We also discuss the phenomenological aspect of the present model as a
consequence of the modulus stabilization.
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I. INTRODUCTION

The origin of the flavor structure is one of the important
mysteries in particle physics. The recent development of
the neutrino oscillation experiments provides us with
helpful information to investigate the flavor physics. The
neutrino oscillation experiments have presented two large
flavor mixing angles, which contrast with quark mixing
angles. The T2K and NOνA strongly indicate the CP
violation in the neutrino oscillation [1,2]. Thus, we are in
the era to develop the flavor theory with facing the
experimental data.
One of the interesting approaches to understand these

phenomena is to impose non-Abelian discrete symmetries
for flavors [3–11]. In particular, the A4 flavor model was
examined extensively in the neutrino phenomenology
because the A4 is the minimal group including a triplet
irreducible representation, which enables a natural explan-
ation of the existence of three families of leptons [12–18].
However, the origin of A4 symmetry is unclear.
Geometrical symmetries of compact space in extra

dimensional field theories and superstring theory can be
origins of non-Abelian discrete flavor symmetries.1 Torus
compactification and orbifold compactification are simple
compactifications. These compactifications have the modu-
lar symmetry SLð2;ZÞ as the geometrical symmetry. The
shape of the torus is described by the modulus τ, and the

modular group transforms the modulus nontrivially. The
modular group SLð2;ZÞ has infinite order, but it includes
finite subgroups such as Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4, and
Γ5 ≃ A5 [24]. Furthermore, the modular group transforms
zero modes for each other [25–30]. Thus, the modular
symmetry is a sort of flavor symmetry. However, Yukawa
couplings, as well as other couplings, are functions of the
modulus, and those couplings also transform nontrivially
under the modular symmetry.
Inspired by these aspects, recently a new type of flavor

model was proposed based on the A4 modular group [31]
in which the modular forms of the weight 2 have been
constructed for the A4 triplet. The successful phenomeno-
logical results also have been obtained [32,33]. The
modular forms of the weight 2 have been also constructed
for S3 [34], S4 [35], A5 [36], Δð96Þ, and Δð384Þ [37]. The
modular forms of the weight 1 and higher weights are also
given for the T 0 doublet [38]. New types of flavor models
towards the flavor origin were studied extensively by use of
these modular forms[32,33,39–58].
In minimal model building, we do not need to introduce

flavon fields to break flavor symmetries because flavor
symmetries are broken when the value of τ is fixed. We can
realize lepton and quark masses and mixing angles by
choosing a proper value of the modulus τ as well as other
parameters of models. It is important how we fix the value
of τ, i.e., the modulus stabilization. The modulus value
can be fixed as a minimum of scalar potential in the
supergravity theory. The modular invariant supergravity
theory was studied [59].2 Indeed, the modulus stabilization
was studied by assuming the SLð2;ZÞ modular invariance
for the nonperturbative superpotential in supergravity
theory [63,64].3
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1In Refs. [19–23], it was shown that stringy selection rules, in
addition to geometrical symmetries, lead to certain non-Abelian
flavor symmetries.

2See, for their applications, e.g., [60–62].
3See also [65].
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The purpose of this paper is to study the modulus
stabilization and its phenomenological implications in
ΓN flavor models. We consider the modulus stabilization
by using the model in Ref. [52] as an illustrating model.
Non-Abelian discrete symmetries can be anomalous [66].
(See also, for anomalies of the modular symmetry in
concrete models, [67].) For example, S4 can be anomalous
and thus broken down to A4 by anomalies. In the model of
Ref. [52], the S4 modular symmetry is imposed at the tree
level and assumed to be broken to A4 by anomalies. In this
paper, we study an A4 invariant superpotential of the
modulus τ to stabilize it at a supersymmetric minimum
of the supergravity scalar potential. We discuss phenom-
enological aspects in our model.
This paper is organized as follows. In Sec. II, we give a

brief review on the modular symmetry and the S4 anomaly.
In Sec. III, we review on the A4 flavor model in Ref. [52].
In Sec. IV, we study the modulus stabilization in the A4

model. In Sec. V, we study phenomenological aspects
through the modulus stabilization in the A4 model.
Section VI is devoted to our conclusion. Relevant repre-
sentations of S4 and A4 groups are presented in
Appendix A. We list the input data of neutrinos in
Appendix B. In Appendix C, we show a scenario to induce
the modulus potential.

II. MODULAR SYMMETRY
AND S4 ANOMALY

A. Modular symmetry

We give a brief review on the modular symmetry and
modular forms. The torus compactification is the simplest
compactification. The modulus τ of the torus transforms
under the modular transformation as

τ → τ0 ¼ γτ ¼ aτ þ b
cτ þ d

; ð1Þ

where a, b, c, d are integers with satisfying ad − bc ¼ 1.
This is the symmetry PSLð2;ZÞ ¼ SLð2;ZÞ=Z2, which is
denoted by Γ.
The modular symmetry is generated by two elements, S

and T:

S∶ τ → −
1

τ
; T∶ τ → τ þ 1: ð2Þ

They satisfy the following algebraic relations:

S2 ¼ ðSTÞ3 ¼ I: ð3Þ

Furthermore, we define the congruence subgroups of level
N as

ΓðNÞ ¼
��

a b

c d

�
∈ PSLð2;ZÞ;

�
a b

c d

�
¼

�
1 0

0 1

�
ðmod NÞ

�
: ð4Þ

The quotient subgroups ΓN are given as ΓN ≡ Γ=ΓðNÞ, and
these are finite for N ¼ 2, 3, 4, 5, i.e., Γ2 ≃ S3, Γ3 ≃ A4,
Γ4 ≃ S4, Γ5 ≃ A5. The algebraic relation TN ¼ I is satisfied
for ΓðNÞ in addition to Eq. (3).
We study the modular invariant supergravity theory. We

use the unit that MP ¼ 1 where MP denotes the reduced
Planck scale. A typical Kähler potential of the modulus
field τ is written as follows:

K ¼ − ln½iðτ̄ − τÞ�: ð5Þ

The Kähler potential transforms under the modular
symmetry as

− ln½iðτ̄ − τÞ� → − ln½iðτ̄ − τÞ� þ ln jcτ þ dj2: ð6Þ

Supergravity theory can be written by G,

G ¼ K þ ln jWj2; ð7Þ

where W denotes the superpotential in supergravity
theory. We require that G is invariant under the
modular transformation. The superpotential W therefore
transforms as

W →
W

cτ þ d
; ð8Þ

under the modular transformation. That is, the superpo-
tential must be a holomorphic function of the modular
weight −1.
Chiral matter fields ϕðIÞ with the modular weight −kI

transform as

ðϕðIÞÞiðxÞ → ðcτ þ dÞ−kIρðγÞijðϕðIÞÞjðxÞ; ð9Þ

under the modular symmetry, where ρðγÞij is a unitary
matrix in ΓN . Their Kähler potential can be written as

Kmatter ¼ 1

½iðτ̄ − τÞ�kI jϕ
ðIÞj2: ð10Þ

Moreover, the modular forms of weight k are the holo-
morphic functions of τ and transform as

fiðτÞ → ðcτ þ dÞkρðγÞijfjðτÞ: ð11Þ

The modular forms of Γð4Þ have been constructed by the
use of the Dedekind eta function, ηðτÞ, in Ref. [35].
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ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; ð12Þ

where q ¼ e2πiτ. The modular forms of the weight 2 are
written by

Y1ðτÞ ¼ Yð1; 1;ω;ω2;ω;ω2jτÞ;
Y2ðτÞ ¼ Yð1; 1;ω2;ω;ω2;ωjτÞ;
Y3ðτÞ ¼ Yð1;−1;−1;−1; 1; 1jτÞ;
Y4ðτÞ ¼ Yð1;−1;−ω2;−ω;ω2;ωjτÞ;
Y5ðτÞ ¼ Yð1;−1;−ω;−ω2;ω;ω2jτÞ; ð13Þ

where ω ¼ e2πi=3 and

Yða1; a2; a3; a4; a5; a6τÞ

¼ a1
η0ðτ þ 1=2Þ
ηðτ þ 1=2Þ þ 4a2

η0ð4τÞ
ηð4τÞ

þ 1

4

X3
m¼0

amþ3

η0ððτ þmÞ=4Þ
ηððτ þmÞ=4Þ : ð14Þ

These five modular forms correspond to reducible repre-
sentations of Γ4 ≃ S4, and these are decomposed into the 2
and 30 representations under S4,

YS42ðτÞ ¼
�
Y1ðτÞ
Y2ðτÞ

�
; YS430 ðτÞ ¼

0
B@

Y3ðτÞ
Y4ðτÞ
Y5ðτÞ

1
CA: ð15Þ

The generators, S and T, are represented on the above
modular forms,

ρðSÞ ¼
�

0 ω

ω2 0

�
; ρðTÞ ¼

�
0 1

1 0

�
; ð16Þ

for 2, and

ρðSÞ ¼ −
1

3

0
B@

−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

1
CA;

ρðTÞ ¼ −
1

3

0
B@

−1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

1
CA; ð17Þ

for 30. The modular forms of higher weights are obtained
as the products of YS42ðτÞ and YS430 ðτÞ. See for other
representations in Appendix A.

B. Anomaly

A discrete symmetry can be anomalous like a continuous
symmetry [66,68–70]. Each element g in a non-Abelian
discrete group satisfies gN ¼ 1, that is, the Abelian ZN
subgroup. If all the Abelian discrete subgroups in a non-
Abelian discrete group are anomaly-free, the whole non-
Abelian symmetry is anomaly-free [66]. Otherwise, the
non-Abelian symmetry is anomalous, and the anomalous
subgroup is broken. Furthermore, each element g is
represented by a matrix ρðgÞ. If det ρðgÞ ¼ 1, the corre-
sponding ZN is always anomaly-free. On the other hand, if
det ρðgÞ ≠ 1, the corresponding ZN symmetry can be
anomalous [4,5,66].
In Refs. [4,5], it is shown explicitly which subgroups can

be anomalous in non-Abelian discrete symmetries. The S4
group is isomorphic to ðZ2 × Z2Þ⋊S3. The Z2 symmetry of
S3 can be anomalous in S4. In general, the 2 and 3
representations as well as 10 have det ρðgÞ ¼ −1 while
the 1 and 30 representations have det ρðgÞ ¼ 1. Indeed,
ρðSÞ and ρðTÞ for 2 as well as 3 and 10 have
detðρðSÞÞ ¼ detðρðTÞÞ ¼ −1.
If the above Z2 symmetry in S4 is anomalous, S4 is

broken to A4 by anomalies. In this case, S and T themselves
are anomalous, but S̃ ¼ T2 and T̃ ¼ ST are anomaly-free.
These anomaly-free elements satisfy

ðS̃Þ2 ¼ ðS̃ T̃Þ3 ¼ ðT̃Þ3 ¼ I; ð18Þ

if we impose T4 ¼ I, that is, the A4 algebra is realized. The
modular forms of weight 2 for S4 correspond to the A4

representations as follows:

YS42ðτÞ→ ðYA410 ðτÞ; YA4100 ðτÞÞ; YS430 ðτÞ→ YA43ðτÞ:
ð19Þ

We have

YA410 ðτÞ ¼ Y1ðτÞ; YA4100 ðτÞ ¼ Y2ðτÞ;

YA43ðτÞ ¼

0
B@

Y3ðτÞ
Y4ðτÞ
Y5ðτÞ

1
CA: ð20Þ

Note that these are not modular forms of Γð3Þ because S̃ ¼
T2 and T̃ ¼ ST do not generate SLð2;ZÞ. We can also write
S4 singlet modular forms of weights 4 and 6

Yð4ÞðτÞ ¼ Y1ðτÞY2ðτÞ; Yð6ÞðτÞ ¼ ðY1ðτÞÞ3 þ ðY2ðτÞÞ3:
ð21Þ

Both are trivial singlets 1 also under A4. These are useful
for our study.
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III. A4 LEPTON MODEL FROM S4
MODULAR SYMMETRY

We briefly review on the A4 lepton flavor model in
Ref. [52]. Our A4 flavor symmetry is originated from the S4
modular symmetry by assuming that the S4 symmetry is
broken to A4 by anomalies as mentioned in the previous
section.
The model in this paper is described in the supergravity

basis where the superpotential has the modular weight −1.
On the other hand, the model in Ref. [52] is a global
supersymmetric model where the superpotential has the
vanishing weight. Thus, we rearrange modular weights of
chiral superfields. We assign the modular weight −1 to all
of the left-handed and right-handed leptons and Higgs
fields.
For the A4 flavor symmetry, the left-handed lepton

doublets, ðLe; Lμ; LτÞT correspond to the A4 triplet L3,
and the right-handed charged leptons are assigned to the A4

singlets of 1; 100; 10, i.e., ec1; μ
c
100 ; τ

c
10 , while the up- and down-

sector Higgs fields, Hu and Hd, are assigned to the trivial
singlet. The charge assignment of the fields and modular
forms is summarized in Table I.
The superpotential of the neutrino mass term is given by

the Weinberg operator:

Wν ¼
1

Λ
½YA43 þ aYA410 þ bYA4100 �L3L3HuHu; ð22Þ

where Λ is a cutoff scale; and parameters a and b are
complex constants in general. The superpotential of the
mass term of the charged leptons is described as

We ¼ ½αec1 þ βμc100 þ γτc10 �YA43L3Hd; ð23Þ

where α, β, and γ are taken to be real and positive without
loss of generality.
The superpotential w in the global supersymmetry basis

is related to one in the supergravity basis by jwj2 ¼ eKjWj2,
i.e., jwνj2 ¼ jWνj2=jτ − τ̄j and jwej2 ¼ jWej2=jτ − τ̄j.4 For
canonically normalized lepton fields, the Majorana neu-
trino mass matrix is written as follows:

Mν ¼
hHui2
Λ0

2
64
0
B@

2Y3 −Y5 −Y4

−Y5 2Y4 −Y3

−Y4 −Y3 2Y5

1
CAþ aY1

0
B@

0 0 1

0 1 0

1 0 0

1
CA

þ bY2

0
B@

0 1 0

1 0 0

0 0 1

1
CA
3
75; ð24Þ

where

Λ0 ¼ Λjτ − τ̄j3=2; ð25Þ

while the charged lepton matrix is given as

Me ¼ hHdi

0
B@

α0 0 0

0 β0 0

0 0 γ0

1
CA
0
B@

Y3 Y5 Y4

Y4 Y3 Y5

Y5 Y4 Y3

1
CA

RL

; ð26Þ

with

α0 ¼ αjτ − τ̄j1=2; β0 ¼ βjτ − τ̄j1=2; γ0 ¼ γjτ − τ̄j1=2:
ð27Þ

The parameters α0, β0, γ0 are determined by the observed
charged lepton masses and the value of τ.
We take a and b to be real in order to present a simple

viable model. We scan parameters in the following ranges:

τ ¼ ½−2.0; 2.0� þ i½0.1; 2.8�; a ¼ ½−15; 15�;
b ¼ ½−15; 15�; ð28Þ

where the fundamental domain of Γð4Þ is taken into
account. The lower-cut 0.1 of Im½τ� is artificial to keep
the accurate numerical calculation. The upper-cut 2.8 is
large enough to estimate the modular forms. We input the
experimental data within 3σ C.L. [71] of three mixing
angles in the lepton mixing matrix [72] in order to constrain
the magnitudes of parameters. We also put the observed
neutrino mass ratio Δm2

sol=Δm2
atm and the cosmological

bound for the neutrino masses
P

mi < 0.12 ½eV� [73,74].
There are two possible spectra of neutrinos masses mi,
which are the normal hierarchy (NH), m3 > m2 > m1, and
the inverted hierarchy (IH), m2 > m1 > m3. Figure 1
shows allowed regions for NH (cyan) and IH (red),
respectively.

TABLE I. The charge assignment of SUð2Þ, A4, and the modular weight (−kI for fields and k for coupling Y).

L3 ec1; μ
c
100 ; τ

c
10 Hu Hd Y3 Y10 Y100

SUð2Þ 2 1 2 2 1 1 1
A4 3 1; 100; 10 1 1 3 10 100
−kI −1 −1 −1=2 −1 k ¼ 2 k ¼ 2 k ¼ 2

4Here, we treat τ as a vacuum expectation value, but not a
holomorphic field.
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IV. MODULUS STABILIZATION

We study the modulus stabilization in the A4 symmetric
model where the S4 modular symmetry is assumed to be
broken by anomalies. For the modulus stabilization, we
need a modulus-dependent superpotentialWðτÞ which may
be induced by nonperturbative effects. Such superpotential
WðτÞ must have the modular weight −1 for the modular
invariance. However, there is no modular form of odd
weights for Γð4Þ. We need some mechanism to generate the
superpotential term for modulus stabilization.
Here, we assume that the following superpotential:

W ¼ Λð3Þ
d ðYð4ÞðτÞÞ−1; ð29Þ

where we assumed that Λð3Þ
d has the modular weight 3. This

modulus superpotential may be induced from the conden-
sation hQQ̄i ≠ 0 in the hidden sector by strong dynamics

such as supersymmetric QCD, and Λð3Þ
d is the dynamical

scale which is related to the condensation, e.g., Λð3Þ
d ¼

mhQQ̄i (see Appendix C). We assume the above super-
potential from the bottom-up viewpoint.
The scalar potential in supergravity theory is written by

using K in Eq. (5) and W in Eq. (29) as

V ¼ eKððK−1
ττ̄ jDτWj2 − 3jWj2Þ; ð30Þ

where

DτW ¼ KτW þWτ; ð31Þ

with Kτ ¼ ∂K=∂τ and Wτ ¼ ∂W=∂τ. We analyze the
minimum of the above scalar potential V by examining
the stationary condition, ∂V=∂τ ¼ 0. If there is a solution
in the following equation:

DτW ¼ 0; ð32Þ

we have ∂V=∂τ ¼ 0. Such a solution is a candidate for
the potential minimum and corresponds to a supersym-
metric minimum. However, the above scalar potential has
no proper supersymmetric minimum. For the slice of

ReðτÞ ¼ 0, the value of jAðτÞj≡ jDτWj=Λð3Þ
d is shown in

Fig. 2 for larger values of Im½τ�. The value jDτWj vanishes
for Im½τ� → ∞. Similarly, jDτWj vanishes for Im½τ� → 0,
because Im½τ� → 0 and∞ are related to each other by the S
transformation. The minimum corresponds to Im½τ� → 0
and ∞. There is no supersymmetric minimum for a finite
value of τ.
On the other hand, the scalar potential has non-

supersymmetric minima as shown in Fig. 3. The minima
correspond to τ ¼ 1.54iþ n, where n is integer.
Unfortunately, these minima do not lead to realistic lepton

mass matrices. (See Fig. 1.) We have V ∼ −0.5 × ðΛð3Þ
d Þ2,

FIG. 1. Allowed regions on the Re½τ�-Im½τ� plane. The funda-
mental domain of Γð4Þ is shown by olive green. Cyan points and
red points denote the cases of NH and IH, respectively.

FIG. 2. jAðτÞj≡ jDτWj=Λð3Þ
d at the slice Re½τ� ¼ 0.

FIG. 3. A contour map of the scalar potential forW in Eq. (29).
The potential minima correspond to τ ¼ 1.54iþ n, where n is
integer.
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and the modulus mass squared m2
τ ∼ 100 × ðΛð3Þ

d Þ2 at these
minima. We need to uplift the vacuum energy by other
supersymmetry breaking effects in order to realize almost
vanishing vacuum energy V ≈ 0. Such uplifting effects may
not shift significantly the stabilized value τ ¼ 1.54iþ n
because the modulus mass squared is large compared with

the negative vacuum energy V ∼ −0.5 × ðΛð3Þ
d Þ2.

Alternatively, we assume the following superpotential:

W ¼ Λð−5Þ
d Yð4ÞðτÞ; ð33Þ

where we assumed that Λð−5Þ
d has the modular weight −5.

However, the corresponding scalar potential has no proper
supersymmetric minimum. Figure 4 shows the corres-
ponding scalar potential. Its minima correspond to
τ ¼ 1.55iþ n=2, where n is odd. Unfortunately, these
values also do not lead to realistic lepton mass matrices.

(See Fig. 1.) We have V ∼ −2 × ðΛð−5Þ
d Þ2, and the modulus

mass squared m2
τ ∼ 400 × ðΛð−5Þ

d Þ2 at these minima. The
effects from uplifting the vacuum energy to V ≈ 0 on the
stabilized value τ ¼ 1.55iþ n is small because the modu-
lus mass squared is large compared with the negative

vacuum energy V ∼ −2 × ðΛð−5Þ
d Þ2.

We can use the modular form Yð6ÞðτÞ instead of Yð4ÞðτÞ in
Eqs. (29) and (33). When we replace Yð4ÞðτÞ in Eq. (29) by
Yð6ÞðτÞ, the corresponding scalar potential has the mini-
mum at τ ¼ 1.68iþ 1=2. On the other hand, when we
replace Yð4ÞðτÞ in Eq. (33) by Yð6ÞðτÞ, the corresponding
scalar potential has the minimum at τ ¼ 1.69i. Unfor-
tunately, these values of τ are not proper to realize the
lepton masses and mixing angles.
Thus, we can stabilize the modulus, but its values are not

realistic when the superpotential includes a single modular

form. We need more terms to stabilize the modulus at a
proper value. For example, we assume the following
superpotential:

W ¼ Λð3Þ
d ðYð4ÞðτÞÞ−1 þ Λð5Þ

d ðYð6ÞðτÞÞ−1; ð34Þ

where Λð5Þ
d is assumed to have the modular weight 5. Here,

we define ρ ¼ Λð5Þ
d =Λð3Þ

d . This superpotential always has a
supersymmetric minimum for a finite value of ρ. We focus
on such a supersymmetric minimum.
For smaller values of τ, the Kähler potential of Eq. (5)

may have corrections. Thus, we restrict ourselves to the
case with τ ¼ Oð1Þ. That is, we study the A, B, and C
regions in Fig. 1. We can choose a proper value of ρ such
that τ is fixed to be a value in the A, B, and C regions
through Eq. (32). Figures 5, 6, and 7 show the values of ρ
obtained from each value of τ in the A, B, and C regions.
The values of τ in the A region are obtained by smaller jρj.

FIG. 4. A contour map of the scalar potential forW in Eq. (33).
The potential minima correspond to τ ¼ 1.55iþ n=2, where
n is odd.

FIG. 5. Values of ρ corresponding to τ in the A region for W in
Eq. (34).

FIG. 6. Values of ρ corresponding to τ in the B region for W in
Eq. (34).
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That is, the Yð4Þ contribution must be larger than the Yð6Þ
contribution. On the other hand, values of τ in the B region
are obtained by larger jρj. Thus, the situation is opposite to
the above case. Furthermore, the proper values of ρ for the
region C are widely spread. Hence, the A, B, and C regions
are realized by quite different values of ρ. At any rate, both
Yð4ÞðτÞ and Yð6ÞðτÞ are important to fix favorable values of τ
in the potential. The IH mass spectrum can be realized
only in the B region, that is, Re½ρ� ≈ ½−0.75; 0.75� and
Im½ρ� ≈ ½2; 3�.
At these minima, we obtain typical values of jWττj ¼

Oð10Þ × Λð−3Þ
d in the A and B regions, while in the C region

we can obtain larger jWττj ¼ Oð100Þ × Λð−3Þ
d . Thus, the

modulus mass is estimated mτ ¼ Oð10 − 100ÞΛð−3Þ
d in the

unit of MP ¼ 1. These minima correspond to the anti–de
Sitter supersymmetric vacua whose negative vacuum
energy is written by V ¼ −3eKjWj2 ¼ −3jWj2=jτ − τ̄j.
Here, jWj=Λð−3Þ

d ¼ Oð1Þ in all of the A, B, and C regions.

Thus, the gravitino mass m3=2 is estimated by m3=2 ¼
Oð1Þ × Λð−3Þ

d in the unit of MP ¼ 1. We need to uplift the
vacuum energy to realize almost vanishing vacuum energy,
V ≈ 0 by supersymmetry breaking. Uplifting may shift
stabilized values of τ, but such a shift δτ is very small
because we can estimate δτ=τ∼m2

3=2=m
2
τ¼Oð10−4−10−2Þ.

Similarly, we can use the following superpotential:

W ¼ Λð−5Þ
d Yð4ÞðτÞ þ Λð−7ÞYð6ÞðτÞ; ð35Þ

by assuming that nonperturbative effects generate it and

Λð−5Þ
d andΛð−7Þ

d have the modular weights−5 and −7. Here,
we define ρ0 ¼ Λð−7Þ

d =Λð−5Þ
d . Then, similarly we can study

the modulus stabilization by using this superpotential.
Again, we analyze the supersymmetric condition,
Eq. (32). We can find values of the modulus τ, which

satisfy the supersymmetric condition, Eq. (32), by choosing
a proper value of ρ0. Figures 8, 9, and 10 show such values
of ρ0 leading to the values of τ in the A, B, and C regions.

At these minima, we obtain typical values of jWττj ¼
Oð10ÞΛð−5Þ

d in the A and B regions, while in the C region

we obtain jWττj ¼ Oð104ÞΛð−5Þ
d . Therefore, the modulus

mass is estimatedmτ ¼ Oð10ÞΛð−5Þ
d in the A and B regions,

while the modulus mass can be larger in the C region

such as mτ ¼ Oð104ÞΛð−5Þ
d . These minima correspond

to the anti–de Sitter supersymmetric vacua whose negative
vacuum energy is written by V ¼ −3eKjWj2 ¼
−3jWj2=jτ − τ̄j0, where jWj=Λð−5Þ

d ¼ Oð1Þ in the A and

B regions and jWj=Λð−5Þ
d ¼ Oð10Þ in the C region. The

gravitino mass m3=2 is estimated by m3=2 ¼ Oð1ÞΛð−5Þ
d in

the A and B regions, and m3=2 ¼ Oð10ÞΛð−5Þ
d in the C

region. Thus, the shift δτ by uplifting will be small.

FIG. 7. Values of ρ corresponding to τ in the C region W in
Eq. (34).

FIG. 8. Values of ρ0 corresponding to τ in the A region forW in
Eq. (35).

FIG. 9. Values of ρ0 corresponding to τ in the B region forW in
Eq. (35).
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As a result, we can stabilize the modulus τ at realistic
values in three regions A, B, C by using both the super-
potential terms, (34) and (35), with proper values of the
parameters, ρ and ρ0. In the next section, we study
phenomenological aspects of these three regions following
the modulus stabilization by both the superpotential terms,
(34) and (35).

V. PHENOMENOLOGICAL ASPECTS
OF LEPTONS

In this section, we discuss phenomenological results
derived from the mass matrices of charged leptons and
neutrinos for three regions A, B, C of the modulus in Fig. 1,
respectively.

A. Region of A

Let us present numerical results in the region A of the
modulus τ. The parameter ρ to realize the potential
minimum for the superpotential (34) is shown in the
Re½ρ�-Im½ρ� plane of Fig. 5, while Fig. 8 shows ρ0 for
the potential minimum for the superpotential (35). In this
case, NH is only available.
At first, we show the correlation between δCP and

sin2 θ23 in Fig. 11. The predicted range of δCP depends
on the value of sin2 θ23. As sin2 θ23 increases, the absolute
value of δCP also increases. The range of jδCPj > 95° is
excluded. Inputting the observed best fit point of sin2 θ23 ¼
0.582 [71], jδCPj is predicted in 50°–90°.
Let us discuss the neutrino mass dependence of δCP. We

present the predicted δCP versus the sum of neutrino massesP
mi in Fig. 12, where the cosmological bound

P
mi <

120 [meV] is imposed. The predicted δCP distinctly
depends on the sum of neutrino masses, where

P
mi >

82 ½meV�. Near the cosmological bound of
P

mi ≃
120 ½meV�, jδCPj is predicted to be 60°–70°.

On the other hand, there is no distinct neutrino mass
dependence for sin2 θ23 as seen in Fig. 13. Near the lower
bound of

P
mi ¼ 82 [meV], θ23 is predicted in the second

octant.

FIG. 10. Values of ρ0 corresponding to τ in the C region W in
Eq. (35).

FIG. 11. The predicted region on the sin2θ23-δCP plane in A for
NH. Vertical red lines denote 3σ bound of observed data.

FIG. 12. The sum of neutrino masses
P

mi dependence of δCP
in A. A vertical red line denotes the cosmological bound.

FIG. 13. The sum of neutrino masses
P

mi dependence of
sin2 θ23 in A.
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The effective mass of the 0νββ decay hmeei is presented
in Fig. 14. The prediction is in the range of 6–25 [meV]. We
summarize the prediction for hmeei and

P
mi in Table II.

B. Region of B

We discuss numerical results in the region B of the
modulus τ. The parameter ρ to realize the potential
minimum for the superpotential (34) is shown in the
Re½ρ�-Im½ρ� plane of Fig. 6, while Fig. 9 shows ρ0 for
the potential minimum for the superpotential (35). In this
case, both NH and IH of neutrino masses are available.
We show the correlation between δCP and sin2 θ23 in

Fig. 15. The distinct prediction of δCP is given for NH as
δCP ≃�140°. On the other hand, for IH, δCP is predicted to
be in �½35°–55°� and �½110°–180°�.
We show the predicted δCP versus the sum of neutrino

masses in Fig. 16, which should satisfy the cosmological

bound
P

mi < 120 [meV]. The sum of neutrino masses
78–88 [meV] and 97–110 [meV] for NH and IH, respec-
tively. There is no distinct neutrino mass dependence for
sin2 θ23 as seen in Fig. 17 for both NH and IH cases.
The effective mass of the 0νββ decay hmeei is presented

in Fig. 18. The prediction is in 9–12 [meV] and 20–35
[meV] for NH and IH, respectively. We summarize the
prediction for hmeei and

P
mi in Table II.

FIG. 14. The predicted effective neutrino mass hmeei versusP
mi in A.

TABLE II. Predicted hmeei and
P

mi for cases A, B, and C.

A B C

NH IH NH IH NH IH

hmeei [meV] 6–25 × 9–12 20–35 5–25 ×P
mi [meV] ≥ 82 × 78–88 97–110 ≥ 88 ×

TABLE III. The 3σ ranges of neutrino parameters from NuFIT 4.0 for NH and IH [71].

Observable & 3σ Range for NH 3σ Range for IH

Δm2
atm ð2.431 − 2.622Þ × 10−3 eV2 −ð2.413–2.606Þ × 10−3 eV2

Δm2
sol ð6.79 − 8.01Þ × 10−5 eV2 ð6.79 − 8.01Þ × 10−5 eV2

sin2 θ23 0.428–0.624 0.433–0.623
sin2 θ12 0.275–0.350 0.275–0.350
sin2 θ13 0.02044–0.02437 0.02067–0.02461

FIG. 15. The predicted region on the sin2θ23-δCP plane in B for
NH (cyan) and IH (red). Vertical red lines denote 3σ bound of
observed data.

FIG. 16. The sum of neutrino masses
P

mi dependence of δCP
in B for NH (cyan) and IH (red). A vertical red line denotes the
cosmological bound.
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C. Region of C

Finally, we present numerical discussions in the region C
of the modulus τ. The parameter ρ to realize the potential
minimum for the superpotential (34) is shown in the
Re½ρ�-Im½ρ� plane of Fig. 7, while Fig. 10 shows ρ0 for
the potential minimum for the superpotential (35). In this
case, NH is only available.
We show the correlation between δCP and sin2 θ23 in

Fig. 19. The predicted δCP depends on the value of sin2 θ23.
In the second octant of θ23, δCP is in the range of
�½50°; 70°�.
We show the predicted δCP versus the sum of neutrino

masses in Fig. 20. The predicted δCP distinctly depends on
the sum of neutrino masses, where

P
mi > 88 ½meV�.

Near the cosmological bound of
P

mi ≃ 120 ½meV�, jδCPj
is predicted to be around 70°.
There is also distinct neutrino mass dependence for

sin2 θ23 as seen in Fig. 21. Below
P

mi ≃ 102 ½meV�, θ23 is
predicted in the first octant while it is in the second octant
in

P
mi ≥ 110 ½meV�.

The effective mass of the 0νββ decay hmeei is presen-
ted in Fig. 22. The prediction is in the range of 5–25 [meV].
We summarize the prediction for hmeei and

P
mi in

Table II.

FIG. 17. The sum of neutrino masses
P

mi dependence of
sin2 θ23 in B for NH (cyan) and IH (red).

FIG. 18. The predicted effective neutrino mass hmeei versusP
mi in B for NH (cyan) and IH (red).

FIG. 19. The predicted region on the sin2θ23-δCP plane in C for
NH. Vertical red lines denote 3σ bound of observed data.

FIG. 20. The sum of neutrino masses
P

mi dependence of δCP
in C. A vertical red line denotes the cosmological bound.

FIG. 21. The sum of neutrino masses
P

mi dependence of
sin2 θ23 in C.
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VI. CONCLUSION

We have studied the modulus stabilization and its phe-
nomenological aspects in the A4 flavor model, where the A4

flavor symmetry is originated from the S4 modular sym-
metry.We can stabilize themodulus by a superpotential with
a singlemodular form, but its modulus value is not favorable
in leptonmasses andmixing angles in theA4 flavormodel. If
we assume two modular forms in the superpotential, we can
stabilize the modulus at favorable values by using the
parameter ρ as well as ρ0. Proper values of ρ and ρ0 are of
Oð0.1–10Þ. Thus, contributions due to two modular forms
are important in our model. By choosing a proper value of ρ
as well as ρ0 in the superpotential, we can stabilize the value
of τ in our scalar potential such that one can realize the lepton
masses and its mixing angles.
We have presented the neutrino phenomenology in the

three different regions of τ (A, B, C) where modulus
stabilization is realized. The CP violating phase of leptons,
δCP is distinctly predicted in three regions of τ. It is also
emphasized that the IH of neutrino masses is reproduced in
only the B region. The sum of neutrino masses is predicted
in the restricted range for A, B, and C respectively. The
cosmological observation of it will provide a crucial test of
our model. The effective mass of the 0νββ decay hmeei is

also predicted. The future experiments can probe our model
since our prediction includes hmeei ¼ 25 ½meV� [75].
Thus, our model realizes the modulus stabilization where
the successful phenomenological results are obtained.
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APPENDIX A: S4 AND A4 REPRESENTATIONS

The representations S and T of Γ4 ≃ S4 are given for the
representations 2 and 30 in Sec. II. Here, we give other
representations. The generators S and T are represented by

ρðSÞ ¼ 1

3

0
B@

−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

1
CA;

ρðTÞ ¼ 1

3

0
B@

−1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

1
CA; ðA1Þ

on the S4 3 representation, where ω ¼ ei
2
3
π , and

ρðSÞ ¼ ρðTÞ ¼ −1; ðA2Þ
for 10, while ρðSÞ ¼ ρðTÞ ¼ 1 for 1.
On the other hand, we take the generators of the A4 group

as follows:

ρðSÞ ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA;

ρðTÞ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA: ðA3Þ

In this base, the multiplication rule of the A4 triplet is

0
B@

a1
a2
a3

1
CA

3

⊗

0
B@

b1
b2
b3

1
CA

3

¼ ða1b1 þ a2b3 þ a3b2Þ1 ⊕ ða3b3 þ a1b2 þ a2b1Þ10 ⊕ ða2b2 þ a1b3 þ a3b1Þ100

⊕
1

3

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

3

⊕
1

2

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

3

;

1 ⊗ 1 ¼ 1; 10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10; 10 ⊗ 100 ¼ 1: ðA4Þ

More details are shown in the review [4,5].

FIG. 22. The predicted effective neutrino mass hmeei versusP
mi in C.

A4 LEPTON FLAVOR MODEL AND MODULUS … PHYS. REV. D 100, 115045 (2019)

115045-11



APPENDIX B: INPUT DATA

We input charged lepton masses in order to constrain the
model parameters. We take Yukawa couplings of charged
leptons at the grand unified theory scale 2 × 1016 GeV,
where tan β ¼ 2.5 is taken [32,76–78]:

ye ¼ ð1.97� 0.02Þ × 10−6;

yμ ¼ ð4.16� 0.05Þ × 10−4;

yτ ¼ ð7.07� 0.07Þ × 10−3; ðB1Þ

where lepton masses are given by ml ¼ ffiffiffi
2

p
ylvH with

vH ¼ 174 GeV. We also use the following lepton mixing
angles and neutrino mass parameters in Table III given by
NuFIT 4.0 [71]. The renormalization group equation effects
of mixing angles and the mass ratio Δm2

sol=Δm2
atm are

negligibly small in the case of tan β ¼ 2.5 for both NH and
IH as seen in Appendix E of Ref. [32].

APPENDIX C: MODULUS POTENTIAL

We give a scenario on a plausible mechanism to induce
the modulus superpotential. We assume a hidden sector,
e.g., supersymmetric QCD which has the SUðNÞ gauge

symmetry and Nf flavors of chiral matter fields,Qi and Q̄j,
with fundamental and antifundamental representations.
When N ¼ Nf, the mesons M ¼ QiQ̄j and the baryon
B ¼ εi1���iNQi1 � � �QiN as well as the antibaryon condensate
[79]. If the superpotential at the tree level has the mass
term, W ¼ mi

iQiQ̄j, the above condensation leads to the
term W ¼ mhMi. Suppose that the M has the modular
weight −k − 1. The mass parameter must be a modular
form of the weight k since the modular invariance requires
that m has the modular weight k. The following super-
potential may be induced

W ¼ cYðkÞðτÞhMi: ðC1Þ

If there is another hidden sector to condensate, we may
realize the superpotential

W ¼ cYðkÞðτÞhMi þ c0Yðk0ÞðτÞhM0i; ðC2Þ

where we assume that another meson fields M0 has the
modular weight −k0 − 1. Furthermore, the condensation of
the baryon B may induce another term with a different
modular weight.
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