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We study the modulus stabilization in an A, model whose A, flavor symmetry is originated from the Sy
modular symmetry. We can stabilize the modulus so that the A, invariant superpotential leads to the realistic
lepton masses and mixing angles. We also discuss the phenomenological aspect of the present model as a

consequence of the modulus stabilization.
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I. INTRODUCTION

The origin of the flavor structure is one of the important
mysteries in particle physics. The recent development of
the neutrino oscillation experiments provides us with
helpful information to investigate the flavor physics. The
neutrino oscillation experiments have presented two large
flavor mixing angles, which contrast with quark mixing
angles. The T2K and NOvA strongly indicate the CP
violation in the neutrino oscillation [1,2]. Thus, we are in
the era to develop the flavor theory with facing the
experimental data.

One of the interesting approaches to understand these
phenomena is to impose non-Abelian discrete symmetries
for flavors [3—11]. In particular, the A, flavor model was
examined extensively in the neutrino phenomenology
because the A4 is the minimal group including a triplet
irreducible representation, which enables a natural explan-
ation of the existence of three families of leptons [12—18].
However, the origin of A, symmetry is unclear.

Geometrical symmetries of compact space in extra
dimensional field theories and superstring theory can be
origins of non-Abelian discrete flavor symmetries.' Torus
compactification and orbifold compactification are simple
compactifications. These compactifications have the modu-
lar symmetry SL(2,Z) as the geometrical symmetry. The
shape of the torus is described by the modulus z, and the
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'Tn Refs. [19-23], it was shown that stringy selection rules, in
addition to geometrical symmetries, lead to certain non-Abelian
flavor symmetries.
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modular group transforms the modulus nontrivially. The
modular group SL(2, Z) has infinite order, but it includes
finite subgroups such as ', ~S;, I3 ~A,, [y~ §,, and
I's ~ A5 [24]. Furthermore, the modular group transforms
zero modes for each other [25-30]. Thus, the modular
symmetry is a sort of flavor symmetry. However, Yukawa
couplings, as well as other couplings, are functions of the
modulus, and those couplings also transform nontrivially
under the modular symmetry.

Inspired by these aspects, recently a new type of flavor
model was proposed based on the A, modular group [31]
in which the modular forms of the weight 2 have been
constructed for the A, triplet. The successful phenomeno-
logical results also have been obtained [32,33]. The
modular forms of the weight 2 have been also constructed
for S5 [34], S, [35], As [36], A(96), and A(384) [37]. The
modular forms of the weight 1 and higher weights are also
given for the 7’ doublet [38]. New types of flavor models
towards the flavor origin were studied extensively by use of
these modular forms[32,33,39-58].

In minimal model building, we do not need to introduce
flavon fields to break flavor symmetries because flavor
symmetries are broken when the value of 7 is fixed. We can
realize lepton and quark masses and mixing angles by
choosing a proper value of the modulus 7 as well as other
parameters of models. It is important how we fix the value
of 7, i.e., the modulus stabilization. The modulus value
can be fixed as a minimum of scalar potential in the
supergravity theory. The modular invariant supergravity
theory was studied [59].2 Indeed, the modulus stabilization
was studied by assuming the SL(2, Z) modular invariance
for the nonperturbative superpotential in supergravity
theory [63,64].”

2See, for their applications, e.g., [60—62].
3See also [65].
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The purpose of this paper is to study the modulus
stabilization and its phenomenological implications in
I'y flavor models. We consider the modulus stabilization
by using the model in Ref. [52] as an illustrating model.
Non-Abelian discrete symmetries can be anomalous [66].
(See also, for anomalies of the modular symmetry in
concrete models, [67].) For example, S, can be anomalous
and thus broken down to A4 by anomalies. In the model of
Ref. [52], the S; modular symmetry is imposed at the tree
level and assumed to be broken to A4 by anomalies. In this
paper, we study an A, invariant superpotential of the
modulus 7 to stabilize it at a supersymmetric minimum
of the supergravity scalar potential. We discuss phenom-
enological aspects in our model.

This paper is organized as follows. In Sec. II, we give a
brief review on the modular symmetry and the S, anomaly.
In Sec. III, we review on the A, flavor model in Ref. [52].
In Sec. IV, we study the modulus stabilization in the Ay
model. In Sec. V, we study phenomenological aspects
through the modulus stabilization in the A, model.
Section VI is devoted to our conclusion. Relevant repre-
sentations of S; and A, groups are presented in
Appendix A. We list the input data of neutrinos in
Appendix B. In Appendix C, we show a scenario to induce
the modulus potential.

II. MODULAR SYMMETRY
AND S4 ANOMALY

A. Modular symmetry

We give a brief review on the modular symmetry and
modular forms. The torus compactification is the simplest
compactification. The modulus 7z of the torus transforms
under the modular transformation as

atr+ b
ct+d’

to>7=yr=

(1)

where a, b, c, d are integers with satisfying ad — bc = 1.
This is the symmetry PSL(2,Z) = SL(2,Z)/Z,, which is
denoted by I

The modular symmetry is generated by two elements, S
and T:

1
St ——, T:

T+ 1. (2)
T

They satisfy the following algebraic relations:
§? = (ST =1 (3)

Furthermore, we define the congruence subgroups of level
N as

I(N) = {(j Z) € PSL(2,2),

60 w)

The quotient subgroups I'y are given as 'y = I'/T'(N), and
these are finite for N =2, 3, 4, 5, ie., [, >S5, [~ Ay,
I, ~8,, ['s ~As. The algebraic relation 7V = [ is satisfied
for I'(N) in addition to Eq. (3).

We study the modular invariant supergravity theory. We
use the unit that Mp = 1 where Mp denotes the reduced
Planck scale. A typical Kéhler potential of the modulus
field 7 is written as follows:

K = —Infi(z — 7)]. (5)

The Kéhler potential transforms under the modular
symmetry as

—In[i(z—17)] » —In[i(z = 7)] + In|ct +d|*>. (6)
Supergravity theory can be written by G,
G=K-+In|W>, (7)

where W denotes the superpotential in supergravity
theory. We require that G is invariant under the
modular transformation. The superpotential W therefore
transforms as

w
ct+d’

W -

(8)

under the modular transformation. That is, the superpo-
tential must be a holomorphic function of the modular
weight —1.

Chiral matter fields ¢!} with the modular weight —k;
transform as

(@D)i(x) = (et +d)Fp(y)i; (D), (x). (9)

under the modular symmetry, where p(y);; is a unitary
matrix in I'y. Their Kihler potential can be written as

(e R (10)

Moreover, the modular forms of weight k are the holo-
morphic functions of z and transform as

Km atter

fi(@) = (et +d)*p(r);if (7). (11)

The modular forms of I'(4) have been constructed by the
use of the Dedekind eta function, #(7), in Ref. [35].
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a(0) = a2 T[(1 ). (12)

where ¢ = ¢>*. The modular forms of the weight 2 are
written by

Y(7) = Y(1, 1,0, 0%, o, 0*|7),
Y,(7r) = Y(1,1,0%, 0, 0*, ol7),
Y3(T) = Y(l,—l, -1,-1,1, 1\1’),
Yi(z) = Y(1,-1,-a?, -0, ©*, 0|7),
Ys(z) = Y(1,-1, —w, —0?, 0, @*|7), (13)
where @ = ¢%/3 and
Y(al7az,a3,a4,asvd(>7)
n'(t+1/2) n'(47)
+4a,
(1+ 1/2) n(47)
"((r 4+ m)/4)
14
+ Zam+3 T+m) 4) ( )

These five modular forms correspond to reducible repre-
sentations of I'y ~ S, and these are decomposed into the 2
and 3’ representations under S,,

Y, (2) Y3(7)
Voal) = (10 ) sl = | 1) |- 019
Ys(z)

The generators, S and 7, are represented on the above
modular forms,

= (0 o) sm=(] ) e

-1 20 2w

p(S):—% 20 2 -@* |.
20° -0 2
-1 20 207

p(T):—% 20 20> -1 |, (17)
200 -1 2w

for 3. The modular forms of higher weights are obtained
as the products of Yg,(z) and Y,3(7). See for other
representations in Appendix A.

B. Anomaly

A discrete symmetry can be anomalous like a continuous
symmetry [66,68-70]. Each element g in a non-Abelian
discrete group satisfies gV = 1, that is, the Abelian Z,
subgroup. If all the Abelian discrete subgroups in a non-
Abelian discrete group are anomaly-free, the whole non-
Abelian symmetry is anomaly-free [66]. Otherwise, the
non-Abelian symmetry is anomalous, and the anomalous
subgroup is broken. Furthermore, each element ¢ is
represented by a matrix p(g). If detp(g) = 1, the corre-
sponding Zy is always anomaly-free. On the other hand, if
detp(g) # 1, the corresponding Zy symmetry can be
anomalous [4,5,66].

In Refs. [4,5], it is shown explicitly which subgroups can
be anomalous in non-Abelian discrete symmetries. The Sy
group is isomorphic to (Z, x Z,)xS;. The Z, symmetry of
S; can be anomalous in S;. In general, the 2 and 3
representations as well as 1° have detp(g) = —1 while
the 1 and 3’ representations have detp(g) = 1. Indeed,
p(S) and p(T) for 2 as well as 3 and 1 have
det(p(S)) = det(p(T)) = —1.

If the above Z, symmetry in S, is anomalous, S, is
broken to A4 by anomalies. In this case, S and 7" themselves
are anomalous, but S=T2?and T = ST are anomaly-free.
These anomaly-free elements satisfy

(8P =Ty =(T) =L (18)
if we impose T* = I, that is, the A, algebra is realized. The
modular forms of weight 2 for S, correspond to the Ay
representations as follows:

Y5 (1) = (Y Al (1), Ya1r (7)), Y3 (1) —=>Y A3 (7).
(19)
We have
YA41’<T) = Yl(T)v YA41” (T> = Yz(T),
Y3(7)
Yas(r) = | Ya(o) |- (20)
Ys5(7)

Note that these are not modular forms of I'(3) because § =
T? and T = ST do not generate SL(2, Z). We can also write
S, singlet modular forms of weights 4 and 6

YO (2) = (Y(e))’.

(21)

@)(z) = ¥, ()Y, (2), (Yi(2)* +

Both are trivial singlets 1 also under A4. These are useful
for our study.
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TABLE L

The charge assignment of SU(2), A,, and the modular weight (—k; for fields and k for coupling Y).

Lj ey, iin> Ty H,

H, Y; Yy Yy

SU(2) 2 1 2
L1, 1
—k; -1 -1 -1/2

1 1 1
1 3 1 1"
= k=2

III. A, LEPTON MODEL FROM S,
MODULAR SYMMETRY

We briefly review on the A, lepton flavor model in
Ref. [52]. Our A4 flavor symmetry is originated from the Sy
modular symmetry by assuming that the S, symmetry is
broken to A4 by anomalies as mentioned in the previous
section.

The model in this paper is described in the supergravity
basis where the superpotential has the modular weight —1.
On the other hand, the model in Ref. [52] is a global
supersymmetric model where the superpotential has the
vanishing weight. Thus, we rearrange modular weights of
chiral superfields. We assign the modular weight —1 to all
of the left-handed and right-handed leptons and Higgs
fields.

For the A4 flavor symmetry, the left-handed lepton
doublets, (L,,L,,L,)" correspond to the A, triplet Lj,
and the right-handed charged leptons are assigned to the A4
singlets of 1,1”,1', i.e., e, u{,, 7§,, while the up- and down-
sector Higgs fields, H, and H,, are assigned to the trivial
singlet. The charge assignment of the fields and modular
forms is summarized in Table L.

The superpotential of the neutrino mass term is given by
the Weinberg operator:

1
W, = K [YA43 -+ aYA41/ + bYA41//]L3L3HuHM, (22)

where A is a cutoff scale; and parameters a and b are
complex constants in general. The superpotential of the
mass term of the charged leptons is described as

W, = [ae§ + pu§, + y75]Ya,3L3H,, (23)

where a, 3, and y are taken to be real and positive without
loss of generality.

The superpotential w in the global supersymmetry basis
is related to one in the supergravity basis by |w|*> = X |W|?,
ie., |w, > =|W,*/|t —7| and |w,|> = |W,|*/|z — 7|." For
canonically normalized lepton fields, the Majorana neu-
trino mass matrix is written as follows:

4Here, we treat 7 as a vacuum expectation value, but not a
holomorphic field.

+CZY1

X

Il
T

=
s
S = O T
[ S}
~ <
W W
NS
&0
(.
~ X
w B
- O O
S = O
O =

where
N = At —7)3/2, (25)
while the charged lepton matrix is given as

0/ 0 0 Y3 YS Y4

M,=(Hg| 0 p 0 Yy Y5 Ys . (206)
0 7 Ys Y4 Y3/ gL
with
od=al—7 2 f=pr-r =
(27)

The parameters o, ', ¥’ are determined by the observed
charged lepton masses and the value of 7.

We take a and b to be real in order to present a simple
viable model. We scan parameters in the following ranges:

7 =[-2.0,2.0] + [0.1,2.8], a =[-15,15],
b= [-15,15], (28)

where the fundamental domain of I'(4) is taken into
account. The lower-cut 0.1 of Im[z] is artificial to keep
the accurate numerical calculation. The upper-cut 2.8 is
large enough to estimate the modular forms. We input the
experimental data within 3¢ C.L. [71] of three mixing
angles in the lepton mixing matrix [72] in order to constrain
the magnitudes of parameters. We also put the observed
neutrino mass ratio Am2,/Am2,, and the cosmological
bound for the neutrino masses > m; < 0.12 [eV] [73,74].
There are two possible spectra of neutrinos masses m;,
which are the normal hierarchy (NH), my > m, > m, and
the inverted hierarchy (IH), m, > m; > m5. Figure 1
shows allowed regions for NH (cyan) and IH (red),
respectively.
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Re[T]

FIG. 1. Allowed regions on the Re[z]-Im[z] plane. The funda-
mental domain of T'(4) is shown by olive green. Cyan points and
red points denote the cases of NH and IH, respectively.

IV. MODULUS STABILIZATION

We study the modulus stabilization in the A, symmetric
model where the S, modular symmetry is assumed to be
broken by anomalies. For the modulus stabilization, we
need a modulus-dependent superpotential W(z) which may
be induced by nonperturbative effects. Such superpotential
W(z) must have the modular weight —1 for the modular
invariance. However, there is no modular form of odd
weights for I'(4). We need some mechanism to generate the
superpotential term for modulus stabilization.

Here, we assume that the following superpotential:

W= AP (r® (@), (29)

where we assumed that A(d3) has the modular weight 3. This

modulus superpotential may be induced from the conden-
sation (QQ) # 0 in the hidden sector by strong dynamics

3)

such as supersymmetric QCD, and A’ is the dynamical

scale which is related to the condensation, e.g., Aff) =
m{QQ) (see Appendix C). We assume the above super-
potential from the bottom-up viewpoint.

The scalar potential in supergravity theory is written by
using K in Eq. (5) and W in Eq. (29) as

V=X ((KZ DW= 3|W]?), (30)

where
DW=KW+W_, (31)

with K, = 0K/0r and W, = 0W/0z. We analyze the
minimum of the above scalar potential V by examining
the stationary condition, 0V /0t = 0. If there is a solution
in the following equation:

D,W =0, (32)

we have dV /07 = 0. Such a solution is a candidate for
the potential minimum and corresponds to a supersym-
metric minimum. However, the above scalar potential has
no proper supersymmetric minimum. For the slice of
Re(z) = 0, the value of |A(z)| = |DTW|/AEZ3) is shown in
Fig. 2 for larger values of Im[z]. The value |D,W/| vanishes
for Im[z] — oco. Similarly, |D,W/| vanishes for Im[z] — 0,
because Im(z] — 0 and oo are related to each other by the S
transformation. The minimum corresponds to Im[z] — 0
and oco. There is no supersymmetric minimum for a finite
value of 7.

On the other hand, the scalar potential has non-
supersymmetric minima as shown in Fig. 3. The minima
correspond to 7= 1.54i+n, where n 1is integer.
Unfortunately, these minima do not lead to realistic lepton

mass matrices. (See Fig. 1.) We have V ~ —0.5 x (AS))27

0.10
$
3
0.08 1*
1]
i
0.06 1 ‘
* o041}
<
0.02 — L
0.00 -
—0.02 T T T T T
0 50 100 150 200 250 300
Im[t]
FIG. 2. |A(7)|= |DTW|/A$) at the slice Re[z] = 0.
VIN?
0.1
3.0 1
2.5+ 0.0
2.0 1 -0.1
£y
E .5 -0.2
1.0 1 03
0.5 1
-0.4
0.0 1
-2 -1 0 1 2
Re[t]
FIG. 3. A contour map of the scalar potential for W in Eq. (29).

The potential minima correspond to 7 = 1.54i 4+ n, where n is
integer.
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VIN?

-0.25

—0.50

-0.75

-1.00

-1.25

-1.50

-1.75

Re[T]

FIG. 4. A contour map of the scalar potential for W in Eq. (33).
The potential minima correspond to 7 = 1.55i + n/2, where
n is odd.

and the modulus mass squared m? ~ 100 x (AE;))2 at these
minima. We need to uplift the vacuum energy by other
supersymmetry breaking effects in order to realize almost
vanishing vacuum energy V = 0. Such uplifting effects may
not shift significantly the stabilized value 7 = 1.54i +n
because the modulus mass squared is large compared with
the negative vacuum energy V ~ —0.5 x (AE;))Z.

Alternatively, we assume the following superpotential:

W =AYy (q), (33)

where we assumed that Ag—s) has the modular weight —5.

However, the corresponding scalar potential has no proper
supersymmetric minimum. Figure 4 shows the corres-
ponding scalar potential. Its minima correspond to
7= 1.55i+n/2, where n is odd. Unfortunately, these
values also do not lead to realistic lepton mass matrices.

(See Fig. 1.) We have V ~ =2 x (Afi_s))z, and the modulus

mass squared m? ~400 x (A;V)2 at these minima. The
effects from uplifting the vacuum energy to V =~ 0 on the
stabilized value 7 = 1.55i + n is small because the modu-
lus mass squared is large compared with the negative
vacuum energy V ~ —2 x (AE{S))Z.

We can use the modular form Y(©) (7) instead of Y*)(z) in
Egs. (29) and (33). When we replace Y “) (7) in Eq. (29) by
Y(©)(z), the corresponding scalar potential has the mini-
mum at 7 = 1.68/ + 1/2. On the other hand, when we
replace Y (7) in Eq. (33) by Y (z), the corresponding
scalar potential has the minimum at 7 = 1.69i. Unfor-
tunately, these values of 7 are not proper to realize the
lepton masses and mixing angles.

Thus, we can stabilize the modulus, but its values are not
realistic when the superpotential includes a single modular

form. We need more terms to stabilize the modulus at a
proper value. For example, we assume the following
superpotential:

W= AS @) AS @) (34

where Afis) is assumed to have the modular weight 5. Here,

we define p = Afis) / A(;). This superpotential always has a
supersymmetric minimum for a finite value of p. We focus
on such a supersymmetric minimum.

For smaller values of 7, the Kihler potential of Eq. (5)
may have corrections. Thus, we restrict ourselves to the
case with 7 = O(1). That is, we study the A, B, and C
regions in Fig. 1. We can choose a proper value of p such
that 7 is fixed to be a value in the A, B, and C regions
through Eq. (32). Figures 5, 6, and 7 show the values of p
obtained from each value of 7 in the A, B, and C regions.
The values of 7 in the A region are obtained by smaller |p|.

A

1.0

0.8 1

0.6

Im[pl

0.4 1

0.2

0.0 T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Relp]
FIG. 5. Values of p corresponding to 7 in the A region for W in
Eq. (34).
B

5

4
— 3 et Ay e

Q oo g Lkl ’.:‘-‘.tf' °
E e g
- 2 . ‘:fa.flv .-rél.
[ e S R iy AN S SN
ogt® (T A
1

0 | | | | |
-1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Relp]

FIG. 6. Values of p corresponding to 7 in the B region for W in
Eq. (34).
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C
10
Al o
0 A +

_10 4
S
£ -20-

_30 m

-40

-20 10 0 10 20
Re[pl]

FIG. 7. Values of p corresponding to 7 in the C region W in
Eq. (34).

That is, the Y contribution must be larger than the Y(©)
contribution. On the other hand, values of 7 in the B region
are obtained by larger |p|. Thus, the situation is opposite to
the above case. Furthermore, the proper values of p for the
region C are widely spread. Hence, the A, B, and C regions
are realized by quite different values of p. At any rate, both
Y™ (z) and Y(®)(7) are important to fix favorable values of 7
in the potential. The IH mass spectrum can be realized
only in the B region, that is, Re[p] ~ [-0.75,0.75] and
Im[p] ~ [2,3].

At these minima, we obtain typical values of |W_| =
0(10) x AE;3) in the A and B regions, while in the C region
we can obtain larger |W..| = O(100) x A51_3)- Thus, the

modulus mass is estimated m, = O(10 — 1OO)A(d_3) in the
unit of Mp = 1. These minima correspond to the anti—de
Sitter supersymmetric vacua whose negative vacuum
energy is written by V = =3eK|W|> = =3|W|*/|r — 1.
Here, |W|/AE,_3) = O(1) in all of the A, B, and C regions.
Thus, the gravitino mass mj3,, is estimated by mj;,; =
O(1) x AEi_3) in the unit of Mp = 1. We need to uplift the
vacuum energy to realize almost vanishing vacuum energy,
V =0 by supersymmetry breaking. Uplifting may shift
stabilized values of z, but such a shift 67 is very small
because we can estimate 6t/z~mj3 ,/m;=0(107~1072).
Similarly, we can use the following superpotential:

W =AY () 4 ACDYO (1), (35)

by assuming that nonperturbative effects generate it and
AE,_S) and Afﬂ) have the modular weights —5 and —7. Here,

we define p' = AE,_7) / Ai,_s). Then, similarly we can study
the modulus stabilization by using this superpotential.
Again, we analyze the supersymmetric condition,
Eq. (32). We can find values of the modulus z, which

A
0.0
_0'1 4
— —0.21
S
S .
— —0.31
—0.4
-0.5 T T T T T
-0.4 -0.2 0.0 0.2 0.4
Re[p’]
FIG. 8. Values of p’ corresponding to 7 in the A region for W in
Eq. (35).

satisfy the supersymmetric condition, Eq. (32), by choosing
a proper value of p’. Figures 8, 9, and 10 show such values
of p’ leading to the values of 7 in the A, B, and C regions.
At these minima, we obtain typical values of |W, | =
O(IO)AEI_S) in the A and B regions, while in the C region

we obtain |W,,| = (9(104)AE,_5). Therefore, the modulus

mass is estimated m, = O(IO)Ag_S) in the A and B regions,
while the modulus mass can be larger in the C region

such as m, = (9(104)A£1_5>. These minima correspond
to the anti—de Sitter supersymmetric vacua whose negative
vacuum energy is written by V = =3eK|W|? =

—3|WP/|r — 7', where |W|/ATY = O(1) in the A and
B regions and |W|/A£i_5) = O(10) in the C region. The
gravitino mass ms, is estimated by mj3,, = (’)(I)AEI_S) in
the A and B regions, and ms3,, = O(lO)Af{s) in the C
region. Thus, the shift 67 by uplifting will be small.

B
0.41
021
<
S 001
E
“.V"
_0.2 4
_0.4 4
—0.4 0.2 0.0 0.2 0.4
Relp’]

FIG. 9. Values of p’ corresponding to 7 in the B region for W in
Eq. (39).
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. C
6
5
_ 4
27 -
1 .
01 * N,

2100 -75 -5.0 -25 00 25 50 7.5 10.0
Re[p']

FIG. 10. Values of p’ corresponding to 7 in the C region W in
Eq. (35).

As a result, we can stabilize the modulus 7 at realistic
values in three regions A, B, C by using both the super-
potential terms, (34) and (35), with proper values of the
parameters, p and p’. In the next section, we study
phenomenological aspects of these three regions following
the modulus stabilization by both the superpotential terms,
(34) and (35).

V. PHENOMENOLOGICAL ASPECTS
OF LEPTONS

In this section, we discuss phenomenological results
derived from the mass matrices of charged leptons and
neutrinos for three regions A, B, C of the modulus in Fig. 1,
respectively.

A. Region of A

Let us present numerical results in the region A of the
modulus z. The parameter p to realize the potential
minimum for the superpotential (34) is shown in the
Re[p]-Im[p] plane of Fig. 5, while Fig. 8 shows p’ for
the potential minimum for the superpotential (35). In this
case, NH is only available.

At first, we show the correlation between J.p and
sin @y in Fig. 11. The predicted range of d.p depends
on the value of sin” 0,5. As sin’ #,; increases, the absolute
value of §¢cp also increases. The range of |6¢cp| > 95° is
excluded. Inputting the observed best fit point of sin® 6,3 =
0.582 [71], |6¢p| is predicted in 50°-90°.

Let us discuss the neutrino mass dependence of 5-p. We
present the predicted dcp versus the sum of neutrino masses
> m; in Fig. 12, where the cosmological bound > m; <
120 [meV] is imposed. The predicted Ocp distinctly
depends on the sum of neutrino masses, where »_ m; >
82 [meV]. Near the cosmological bound of > m;=~
120 [meV], |6¢p| is predicted to be 60°-70°.

A
180

135+
90
45

Ocpl°]

—45 1
—90 1
—135+

—-180 T T T T
0.40 0.45 0.50 0.55 0.60 0.65

sin2623

FIG. 11. The predicted region on the sin?@,3-5¢p plane in A for
NH. Vertical red lines denote 36 bound of observed data.

A

180
135 1

6epl ° ]
o

—135-

0 . . . . . .
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
mileV]

FIG. 12. The sum of neutrino masses »_ m; dependence of .p
in A. A vertical red line denotes the cosmological bound.

On the other hand, there is no distinct neutrino mass
dependence for sin® 8,5 as seen in Fig. 13. Near the lower
bound of > m; = 82 [meV], 0,3 is predicted in the second
octant.

0.65

0.60 {

sin2023
o o
[ v
o [,]

0.40 T T T T T :
0.05 0.06 0.07 0.08 0.09 0.10 0.11
>mjleV]

0.12 0.13

FIG. 13. The sum of neutrino masses ) m; dependence of
sin” @3 in A.
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A

10°
10~

10-24 /

10—3 4

{Mmee)leV]

1074 2 T
6x10~ 101

mijleV]

FIG. 14. The predicted effective neutrino mass (m,,) versus
Z m; in A.

The effective mass of the O decay (m,,) is presented
in Fig. 14. The prediction is in the range of 6-25 [meV]. We
summarize the prediction for (m,,) and > m; in Table I

B. Region of B

We discuss numerical results in the region B of the
modulus 7. The parameter p to realize the potential
minimum for the superpotential (34) is shown in the
Relp]-Im[p] plane of Fig. 6, while Fig. 9 shows p’ for
the potential minimum for the superpotential (35). In this
case, both NH and IH of neutrino masses are available.

We show the correlation between S.-p and sin®#,; in
Fig. 15. The distinct prediction of dcp is given for NH as
Scp ~ £140°. On the other hand, for IH, . is predicted to
be in £[35°-55°] and £[110°-180°].

We show the predicted dc-p versus the sum of neutrino
masses in Fig. 16, which should satisfy the cosmological

TABLE II.  Predicted (m,,) and Y m; for cases A, B, and C.
A B C
NH IH NH IH NH IH
(mge) [meV] 625 x  9-12  20-35 525 x
> m; [meV] > 82 x  78-88 97-110 >88 X
TABLE IIL

B
180
1351 Eoi%‘"ﬁ‘\ RSy o
L 14 Py vy oy‘t‘. 0.-' . Vﬁf‘-‘.ﬁo‘,
90
. 451 LY e T e SR e T 08
= 0
S .
—45 - S R e A e =
_90 B
o - " Nadeoe V6 mﬁ
—135 A et %3 !@&;}mﬁzﬁryﬂ s pon
"‘i,ii‘ &g::-
-180 - T T T
0.40 0.45 0.50 0.55 0.60 0.65
sin2623
FIG. 15. The predicted region on the sin?6,3-6p plane in B for

NH (cyan) and IH (red). Vertical red lines denote 3¢ bound of
observed data.

180

1351 —

B
&
45 1 w
&
*

0.

Ocpl ° 1

—45
—90

-1351 —

0 r . . : . :
0.05 0.06 0.07 0.08 0.09 0.10 0.11
>mijleV]

0.12 0.13

FIG. 16. The sum of neutrino masses Y m; dependence of §¢p
in B for NH (cyan) and IH (red). A vertical red line denotes the
cosmological bound.

bound Y m; < 120 [meV]. The sum of neutrino masses
78—-88 [meV] and 97-110 [meV] for NH and IH, respec-
tively. There is no distinct neutrino mass dependence for
sin 0,5 as seen in Fig. 17 for both NH and IH cases.

The effective mass of the Ouff decay (m,,) is presented
in Fig. 18. The prediction is in 9-12 [meV] and 20-35
[meV] for NH and IH, respectively. We summarize the
prediction for (m,,) and ) m; in Table IL

The 30 ranges of neutrino parameters from NuFIT 4.0 for NH and IH [71].

Observable & 3¢ Range for NH

30 Range for IH

Am?,, (2431 — 2.622) x 1073 eV? —(2.413-2.606) x 10-3 eV?
Amy (6.79 — 8.01) x 10~ eV? (6.79 — 8.01) x 10-5 eV?
sin’ 0,5 0.428-0.624 0.433°0.623

sin? 6, 0.275-0.350 0.275-0.350

sin? 0, 0.02044-0.02437 0.02067-0.02461
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B
0.65
1
0.60 1 Yo
5
m 0.55 ¥
D 0’
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£ 3.
% 0.50 fa
o>,
a6
.':-:°
0.45 7
° &

0.40 . . . . . ,
0.05 0.06 0.07 0.08 0.09 0.10 0.11
ImijleV]

0.12 0.13

FIG. 17. The sum of neutrino masses »  m; dependence of
sin? @,5 in B for NH (cyan) and IH (red).

C. Region of C

Finally, we present numerical discussions in the region C
of the modulus 7. The parameter p to realize the potential
minimum for the superpotential (34) is shown in the
Re[p]-Im[p] plane of Fig. 7, while Fig. 10 shows p’ for
the potential minimum for the superpotential (35). In this
case, NH is only available.

We show the correlation between dqp and sin’ 6,5 in
Fig. 19. The predicted 5.-p depends on the value of sin® 6,3.
In the second octant of 6,3, §cp is in the range of
+[50°,70°).

We show the predicted 6-p versus the sum of neutrino
masses in Fig. 20. The predicted 6p distinctly depends on
the sum of neutrino masses, where »_ m; > 88 [meV].
Near the cosmological bound of > m; ~ 120 [meV],
is predicted to be around 70°.

There is also distinct neutrino mass dependence for
sin? 0,3 as seen in Fig. 21. Below Y m; ~ 102 [meV], 6,3 is
predicted in the first octant while it is in the second octant
in > m; > 110 [meV].

Scrl

B
10°
10—1 4
3 =
’B 10—2 J ]
Q
g
10—3 4
1074 T
6x 1072 1071
ImijleV]
FIG. 18. The predicted effective neutrino mass (m,,) versus

> m; in B for NH (cyan) and IH (red).

C
180
135 A
90 A
WPTCRRRAEN S 200 Shiree
a5 ;M
5 L 5
—45 "
ke g A FLUTE S0 YRR W PN
_90 4
—135 1
—-180 T T T -
0.40 0.45 0.50 0.55 0.60 0.65
sin2623

FIG. 19. The predicted region on the sin?@,3-6p plane in C for
NH. Vertical red lines denote 36 bound of observed data.

C
180

135 1
90 -

ARy SRITRS
1 i
0 o
1 .
—45 -
A |

_90 4

Ocpl°1]

—1357

0 . . . . . .
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
mileV]

FIG. 20. The sum of neutrino masses » . m; dependence of 5¢p
in C. A vertical red line denotes the cosmological bound.

The effective mass of the Ovpf decay (m,,) is presen-
ted in Fig. 22. The prediction is in the range of 5-25 [meV].
We summarize the prediction for (m,,) and » m; in
Table II

Cc
0.65
\,.-t'.::
0.60 - L
:.'..,:‘,-‘."
AN
© 0.55 kAt
Sy o ..'".“'s.
& &
% 0.50 > b
R R .
0.45 -
0.40

4 : . ; . : :
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
*mileV]

FIG. 21. The sum of neutrino masses ) m; dependence of
sin® @5 in C.
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FIG. 22. The predicted effective neutrino mass (m,,) versus
E:’nfin (L

VI. CONCLUSION

We have studied the modulus stabilization and its phe-
nomenological aspects in the A4 flavor model, where the A4
flavor symmetry is originated from the S, modular sym-
metry. We can stabilize the modulus by a superpotential with
a single modular form, but its modulus value is not favorable
in lepton masses and mixing angles in the A4 flavor model. If
we assume two modular forms in the superpotential, we can
stabilize the modulus at favorable values by using the
parameter p as well as p’. Proper values of p and p’ are of
0(0.1-10). Thus, contributions due to two modular forms
are important in our model. By choosing a proper value of p
as well as p’ in the superpotential, we can stabilize the value
of 7 in our scalar potential such that one can realize the lepton
masses and its mixing angles.

We have presented the neutrino phenomenology in the
three different regions of 7 (A, B, C) where modulus
stabilization is realized. The CP violating phase of leptons,
Ocp is distinctly predicted in three regions of 7. It is also
emphasized that the IH of neutrino masses is reproduced in
only the B region. The sum of neutrino masses is predicted
in the restricted range for A, B, and C respectively. The
cosmological observation of it will provide a crucial test of
our model. The effective mass of the Ovfp decay (m,,) is

also predicted. The future experiments can probe our model
since our prediction includes (m,,) =25 [meV] [75].
Thus, our model realizes the modulus stabilization where
the successful phenomenological results are obtained.
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APPENDIX A: S; AND A; REPRESENTATIONS

The representations S and 7 of I’y ~ S, are given for the
representations 2 and 3’ in Sec. II. Here, we give other
representations. The generators S and 7T are represented by

| -1 20* 2w
p(S) = 3| 20 2 —a? |,
20 —w 2
| -1 20 2w?
p(T) = 3 20 20 -1 |, (A1)
202 -1 2w
on the S, 3 representation, where w = e’%”, and
p(S) = p(T) = -1, (A2)

for 1, while p(S) = p(T) =1 for 1.
On the other hand, we take the generators of the A, group
as follows:

-1 2 2
ps)=5 2 -1 2.
2 2 -1
1 0 O
pT)=10 o O (A3)
0 0 ?

In this base, the multiplication rule of the A, triplet is

a b
ay | ® | by | =(aiby +aybs +azhy)y ® (azbs + aiby + axby)y @ (ayby + a1bs + asby )y
as / 3 by /) 3
2a,by — ayb; — azby a,by — azb,
@% 2a3by — aby — ay b, 69% ayb, —aby | ,
2a3by — ayb3 — a3by / 5 azby —aybs / 5
1®1=1, el =1", 1"®1" =1, 1" =1. (A4)

More details are shown in the review [4,5].
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APPENDIX B: INPUT DATA

We input charged lepton masses in order to constrain the
model parameters. We take Yukawa couplings of charged
leptons at the grand unified theory scale 2 x 10! GeV,
where tan § = 2.5 is taken [32,76-78]:

v, = (1.97 £ 0.02) x 10°,
Yy = (4.16 +0.05) x 107,

v, = (7.07 £0.07) x 1073, (B1)
where lepton masses are given by m, = \/2y,vy with
vy = 174 GeV. We also use the following lepton mixing
angles and neutrino mass parameters in Table III given by
NuFIT 4.0 [71]. The renormalization group equation effects
of mixing angles and the mass ratio Am2,/Am,, are
negligibly small in the case of tan # = 2.5 for both NH and
IH as seen in Appendix E of Ref. [32].

APPENDIX C: MODULUS POTENTIAL

We give a scenario on a plausible mechanism to induce
the modulus superpotential. We assume a hidden sector,
e.g., supersymmetric QCD which has the SU(N) gauge

symmetry and N/ flavors of chiral matter fields, Q; and 0/,
with fundamental and antifundamental representations.
When N = Ny, the mesons M = Q,;0/ and the baryon
B=¢ivQ; ---Q; as well as the antibaryon condensate
[79]. If the superpotential at the tree level has the mass
term, W = miQ;Q/, the above condensation leads to the
term W = m(M). Suppose that the M has the modular
weight —k — 1. The mass parameter must be a modular
form of the weight & since the modular invariance requires
that m has the modular weight k. The following super-
potential may be induced
W = cY®(z)(M). (C1)
If there is another hidden sector to condensate, we may
realize the superpotential
W = cY® () (M) + 'YX (z) (M), (C2)
where we assume that another meson fields M’ has the
modular weight —k" — 1. Furthermore, the condensation of

the baryon B may induce another term with a different
modular weight.
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