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We propose a one-loop induced radiative seesawmodel applying a modular S3 flavor symmetry, which is
known as the minimal non-Abelian discrete group. In this scenario, dark matter (DM) candidate is
correlated with neutrinos and lepton flavor violations (LFVs). We show several predictions of mixings and
phases satisfying LFVs, observed relic density, and neutrino oscillation data.
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I. INTRODUCTION

Radiative seesaw models are one of the attractive
scenarios to describe tiny neutrino masses and dark matter
(DM) candidate at the same time [1]. Subsequently, several
phenomenologies such as lepton flavor violations (LFVs),
muon anomalous magnetic moment, and collider physics
can be taken in account, depending on models. In addition,
modular flavor symmetries have been recently proposed
[2,3] to provide more predictions to the quark and lepton
sector due to Yukawa couplings with a representation of a
group. Their typical groups are found in basis of the A4

modular group [3–18], S3 [19–21], S4 [15,17,22–28], A5

[27,29,30], larger groups [31], multiple modular sym-
metries [32], and double covering of A4 [33] in which
masses, mixings, and CP phases for quark and lepton are
predicted.1 Furthermore, thanks to the modular weight that
is another degree of freedom originated from modular
symmetry, this modular weight can be identified as a
symmetry to stabilize DM candidate if DM is included
in a model. Thus, radiative seesaw models with modular
flavor symmetries are well motivated in view of neutrino
predictions and DM origin.
In this paper, we apply a S3 modular symmetry to the

lepton sector in a framework of Ma model [1], where S3 is
known as the minimal symmetry in non-Abelian discrete
flavor symmetry. Here, we introduce two right-handed

neutrinos that correspond to two singlets under S3 and an
isospin doublet inert boson in standard model (SM), both of
which have nonzero charge of modular weight. In order to
get a radiative seesaw model, we introduce additional Z2

symmetry since the modular invariance is not sufficient to
retain the radiative seesaw model. Therefore, Z2 plays an
role in assuring stability of DM. However, we realize a
neutrino predictive model under one of the active neutrino
masses is vanishing due to the two right-handed Majorana
fermions, where the two kinds of fields originate from the
fact that there are only two singlets under S3.

2 This is the
first achievement in several series of modular flavor
symmetry projects.
In our analysis, we show several predictions to the lepton

sector, satisfying constraints of LFVs as well as neutrino
oscillation data. Also, bosonic DM is favored compared to
the fermionic one, since the interacting coupling between
DM and the SM particles are too tiny to explain the
observed relic density.3

This paper is organized as follows. In Sec. II, we give our
model set up under modular S3 symmetry. Then, we discuss
right-handed neutrino mass spectrum, lepton flavor viola-
tion (LFV), relic density of DM and generation of the active
neutrino mass at one loop level. Finally we conclude and
discuss in Sec. IV.

II. MODEL

The modular group Γ̄ is the group of linear fractional
transformation γ acting on the modulus τ, belonging to the
upper-half complex plane as:
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1Several reviews are helpful to understand whole the ideas
[34–42] for traditional applications and [43,44] for modular
symmetries.

2If we assign the right-handed Majorana fields as doublet
under S3, we cannot reproduce the observed neutrino oscillation
data because of few free parameters.

3Another stabilization mechanism of DM candidate has been
discussed in non-Abelian discrete symmetries in Refs. [45–47].
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τ → γτ ¼ aτ þ b
cτ þ d

; where a; b; c; d ∈ Z

and ad − bc ¼ 1; Im½τ� > 0; ð2:1Þ

which is isomorphic to PSLð2;ZÞ ¼ SLð2;ZÞ=fI;−Ig
transformation. This modular transformation is generated
by S and T,

S∶ τ → −
1

τ
; T∶ τ → τ þ 1; ð2:2Þ

which satisfy the following algebraic relations,

S2 ¼ I; ðSTÞ3 ¼ I: ð2:3Þ

We introduce the series of groups ΓðNÞðN ¼ 1; 2; 3;…Þ
defined by

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ;

×

�
a b

c d

�
¼

�
1 0

0 1

�
ðmod NÞ

�
: ð2:4Þ

For N ¼ 2, we define Γ̄ð2Þ≡ Γð2Þ=fI;−Ig. Since the
element −I does not belong to ΓðNÞ for N > 2, we have
Γ̄ðNÞ ¼ ΓðNÞ, which are infinite normal subgroup of Γ̄,
called principal congruence subgroups. The quotient
groups defined as ΓN ≡ Γ̄=Γ̄ðNÞ are finite modular groups.
In this finite groups ΓN , TN ¼ I is imposed. The groups ΓN
with N ¼ 2, 3, 4, 5 are isomorphic to S3, A4, S4, and A5,
respectively [2].

Modular forms of level N are holomorphic functions
fðτÞ transforming under the action of ΓðNÞ as:

fðγτÞ ¼ ðcτ þ dÞkfðτÞ; γ ∈ ΓðNÞ; ð2:5Þ

where k is the so-called as the modular weight.
We discuss the modular symmetric theory without

supersymmetry. In this paper, we fix the S3 (N ¼ 2)
modular group. Under the modular transformation of
Eq. (2.1), fields ϕðIÞ transform as

ϕðIÞ → ðcτ þ dÞ−kIρðIÞðγÞϕðIÞ; ð2:6Þ

where −kI is the modular weight and ρðIÞðγÞ denotes an
unitary representation matrix of γ ∈ Γð2Þ.
The kinetic terms of their scalar fields are written by

X
I

j∂μϕ
ðIÞj2

ð−iτ þ iτ̄ÞkI ; ð2:7Þ

which is invariant under the modular transformation. Also,
the Lagrangian should be invariant under the modular
symmetry.
Here, we describe our scenario based on the Ma model,

where field contents are exactly the same as the Ma model
[1]. The S3 representation and modular weight are given by
Table I, while the ones of Yukawa couplings are given by
Table II. Under these symmetries, one writes renormaliz-
able Lagrangian as follows:

−LLepton ¼ αlðYð2Þ
2 ⊗ L̄L2

⊗ eR2
Þ1H þ βlðYð4Þ

2 ⊗ L̄L2
⊗ eRe

Þ1H
þ γlðYð2Þ

2 ⊗ L̄Le
⊗ eR2

Þ1H þ σlðYð4Þ
1 ⊗ L̄Le

⊗ eRe
Þ1H

þ ανðYð6Þ
2 ⊗ L̄L2

⊗ NR2
Þ1η̃þ βνðYð6Þ

10 ⊗ L̄Le
⊗ NR2

Þ1η̃
þ ρνðYð6Þ

1 ⊗ L̄Le
⊗ NR1

Þ1η̃þ σνðYð6Þ
2 ⊗ L̄L2

⊗ NR1
Þ1η̃

þM0ðYð4Þ
1 ⊗ N̄C

R1
⊗ NR1

Þ1 þM1ðYð4Þ
1 ⊗ N̄C

R2
⊗ NR2

Þ1 þ H:c:; ð2:8Þ

TABLE I. Field contents of fermions and bosons and their charge assignments under SUð2ÞL ×Uð1ÞY × S3 × Z2 in
the lepton and boson sector, where −k is the number of modular weight and the quark sector is the same as the SM.

Fermions Bosons

L̄Le
L̄L2

≡ ðL̄Lμ
; L̄Lτ

ÞT eRe
eR2

≡ ðeRμ
; eRτ

ÞT NR1
NR2

H η�

SUð2ÞL 2 2 1 1 1 1 2 2
Uð1ÞY 1

2
1
2

−1 −1 0 0 1
2

− 1
2

S3 1 2 1 2 1 10 1 1
−k −2 −2 −2 0 −2 −2 0 −2
Z2 þ þ þ þ − − þ −

HIROSHI OKADA and YUTA ORIKASA PHYS. REV. D 100, 115037 (2019)

115037-2



where η̃≡ iσ2η�, σ2 being second Pauli matrix.
The modular forms with the lowest weight 2; Yð2Þ

2 ≡
ðy1; y2Þ, transforming as a doublet of S3 is written in terms
of Dedekind eta-function ηðτÞ and its derivative [48]:

y1ðτÞ ¼
i
4π

�
η0ðτ=2Þ
ηðτ=2Þ þ

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ −

8η0ð2τÞ
ηð2τÞ

�
;

y2ðτÞ ¼
ffiffiffi
3

p
i

4π

�
η0ðτ=2Þ
ηðτ=2Þ −

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ

�
: ð2:9Þ

Then, any couplings of higher weight are constructed by
multiplication rules of S3, and one finds the following
couplings:

Yð4Þ
1 ¼ y21þ y22; Yð6Þ

1 ¼ 3y21y2− y32; Yð6Þ
10 ¼ y31 − 3y1y22;

Yð4Þ
2 ¼

�
2y1y2
y21− y22

�
; Yð6Þ

2 ¼
�
y31þ y1y22
y32þ y21y2

�
: ð2:10Þ

Higgs potential is given by

V ¼ −μ2HjHj2 þ μ2ηjYð4Þ
1 jjηj2 þ 1

4
λHjHj4

þ 1

4
ληjYð8Þ

1 jjηj4 þ λHηjYð4Þ
1 jjHj2jηj2

þ λ0HηjYð4Þ
1 jjH†ηj2 þ 1

4
λ00Hη½Yð4Þ

1 ðH†ηÞ2 þH:c:�; ð2:11Þ

which can be the same as the original potential of Ma model
without loss of generality, because of additional free
parameters. The point is that one does not have a term
H†η due to absence of S3 singlet with modular weight 2 that
arises from the feature of modular symmetry.
The structure of Yukawa couplings are determined by the

modular symmetry. Therefore, our model is more predic-
tive than the standard Ma model. After the electroweak
spontaneous symmetry breaking, the charged-lepton mass
matrix is given by

ml ¼ vHffiffiffi
2

p

2
664

σlY
ð4Þ
1 γly1 γly2

βlð2y1y2Þ αly2 αly1
βlðy21 − y22Þ αly1 −αly2

3
775; ð2:12Þ

where hHi≡ ½0; vH=
ffiffiffi
2

p �T . Then the charged-lepton mass
eigenstate can be found by jDlj2 ≡ VeLmlm

†
lV

†
eL. In our

numerical analysis below, one can numerically fix the free
parameters αl, βl, γl to fit the three charged-lepton masses
after giving all the numerical values. Therefore, σl is an
input parameter that is free.
The right-handed neutrino mass matrix is given by

MN ¼
"
M0Y

ð4Þ
1 0

0 M1Y
ð4Þ
1

#
: ð2:13Þ

It suggests that right-handed neutrinos are diagonal with
two degenerate masses for the second and third fields, and
we define MN1 ≡M0Y

ð4Þ
1 , MN2 ≡M1Y

ð4Þ
1 .

The Dirac Yukawa matrix is given by

yD ¼

2
6664
ρνY

ð6Þ
1 βνY

ð6Þ
10

σνY
ð6Þ
2;1 −ανY

ð6Þ
2;2

σνY
ð6Þ
2;2 ανY

ð6Þ
2;1

3
7775; ð2:14Þ

where Yð6Þ
2 ≡ ½Yð6Þ

2;1; Y
ð6Þ
2;2�T .

Lepton flavor violations also arises from yD as [49,50]

BRðli →ljγÞ≈
48π3αemCij

G2
Fð4πÞ4

				Xα¼1−3yDjα
y†Dαi

FðMα;mη�Þ
				2;

ð2:15Þ

Fðma;mbÞ≈
2m6

aþ3m4
am2

b−6m2
am4

bþm6
bþ12m4

am2
b lnðmb

ma
Þ

12ðm2
a−m2

bÞ4
;

ð2:16Þ

where C21 ¼ 1, C31 ¼ 0.1784, C32 ¼ 0.1736, αemðmZÞ ¼
1=128.9, and GF ¼ 1.166 × 10−5 GeV−2. The experimen-
tal upper bounds are given by [51–53]

BRðμ → eγÞ≲ 4.2 × 10−13;

BRðτ → eγÞ≲ 3.3 × 10−8;

BRðτ → μγÞ≲ 4.4 × 10−8; ð2:17Þ

which will be imposed in our numerical calculation.
Neutrino mass matrix is given at one-loop level by

mνij ≈
X
α¼1;2

yDiα
MNαyTDαj

ð4πÞ2
�

m2
R

m2
R −M2

Nα

ln

�
m2

R

M2
Nα

�

−
m2

I

m2
I −M2

Nα

ln

�
m2

I

M2
Nα

��
; ð2:18Þ

where mRðIÞ is a mass of the real (imaginary) component of
η0. Then the neutrino mass matrix is diagonalized by an
unitary matrix Uν as UνmνUT

ν ¼ diagðmν1 ; mν2 ; mν3Þ≡
Dν, where Tr½Dν�≲ 0.12 eV is given by the recent

TABLE II. Modular weight assignments for Yukawa
interaction.

Couplings

Yð4Þ
1 Yð6Þ

1 Yð6Þ
10 Yð2Þ

2 Yð4Þ
2 Yð6Þ

2

S3 1 1 1 2 2 2
−k 4 6 6 2 4 6
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cosmological data [54]. Then, one finds UPMNS ¼ V†
eLUν.

Each of mixing is given in terms of the component ofUMNS
as follows:

sin2θ13¼ jðUPMNSÞ13j2; sin2θ23¼
jðUPMNSÞ23j2

1− jðUPMNSÞ13j2
;

sin2θ12¼
jðUPMNSÞ12j2

1− jðUPMNSÞ13j2
: ð2:19Þ

We provide the experimentally allowed ranges for neutrino
mixings and mass difference squares at 3σ range [55] as
follows:

Δm2
atm ¼ ½2.431 − 2.622� × 10−3 eV2;

Δm2
sol ¼ ½6.79 − 8.01� × 10−5 eV2;

sin2θ13 ¼ ½0.02044 − 0.02437�;
sin2θ23 ¼ ½0.428 − 0.624�;
sin2θ12 ¼ ½0.275 − 0.350�: ð2:20Þ

Also, the effective mass for the neutrinoless double beta
decay is given by

mee ¼ jDν1cos
2θ12cos2θ13 þDν2sin

2θ12cos2θ13eiα21

þDν3sin
2θ13eiðα31−2δCPÞj; ð2:21Þ

where its observed value could be measured by
KamLAND-Zen in future [56].
To achieve numerical analysis, we derive several rela-

tions of the normalized neutrino mass matrix as follows:

m̃νij ≡
mνij

k3
≈

1

ð4πÞ2
X
α¼1−3

yDiα
k̃αyTDαj

; k̃α ≡ kα
k3

;

kα ≡MNα

�
m2

R

m2
R −M2

Nα

ln

�
m2

R

M2
Nα

�
−

m2
I

m2
I −M2

Nα

ln

�
m2

I

M2
Nα

��

≈MNαΔm2

�M2
Nα −m2

R þM2
Nα lnð m2

R
M2

Nα
Þ

ðM2
Nα −m2

RÞ2
�
; ð2:22Þ

where the last line is the first order approximation of the
small mass difference between m2

R and m2
I ; m

2
R −m2

I ¼
Δm2.4 Then the normalized neutrino mass eigenvalues
are given in terms of neutrino mass eigenvalues; diagðm̃2

ν1 ;
m̃2

ν2 ; m̃
2
ν3Þ ¼ diagðm2

ν1 ; m
2
ν2 ; m

2
ν3Þ=k23. It is found that k23 is

given by

k23 ¼
Δm2

atm

m̃2
ν3 − m̃2

ν1

; ð2:23Þ

where normal hierarchy is assumed and Δm2
atm is the

atmospheric neutrino mass difference square. Comparing
Eq. (2.22) and Eq. (2.25), we find Δm2 is rewritten by the
other parameters as follows:

Δm2 ≈ k3

�MN2½M2
N2 −m2

R þM2
N2 lnð m2

R
M2

N2

Þ�
ðM2

N2 −m2
RÞ2

�−1

: ð2:24Þ

The solar neutrino mass difference square is also found as

Δm2
sol ¼ Δm2

atm
m̃2

ν2 − m̃2
ν1

m̃2
ν3 − m̃2

ν1

; ð2:25Þ

In numerical analysis, this value should be within the
experimental result, while Δm2

atm is expected to be input
parameter.
DM is expected to be an imaginary component of

inert scalar η; ηI . In order to avoid the oblique param-
eters, we assume to be mη� ≈mI for simplicity. In this
case, the mass of DM is uniquely fixed by the observed
relic density which suggests it is within 534� 8.5 GeV
[57], if the Yukawa coupling is not so large. In fact,
tiny Yukawa couplings are requested by satisfying the
data. Thus, we just work on the mass of η at this narrow
range.

III. NUMERICAL ANALYSIS

Here, we show numerical analysis to satisfy all of the
constraints that we discussed above, where we work on a
basis that the neutrino mass ordering is normal hierarchy.5

The range of absolute value of the five complex dimen-
sionless parameters αν, βν, ρν, σν, σl are taken to be
[0.01 − 1], while the mass parameters M0, M1 are of the
order [50,500] TeV. We have only two right handed
neutrino, therefore m1 ¼ 0 eV and α21 ¼ 0 [deg].
Figure 1 shows the sum of neutrino massesP
mð≡Tr½Dν�Þ versus sin2 θ12 (red color), sin2 θ23 (blue

color) in the left figure, and sin2 θ13 in the right figure.
Here, the horizontal black solid lines are the best fit values,
the green dotted lines show 3σ range, and the vertical black
line shows upper bound on the cosmological data as shown
in the neutrino section. It suggests that all the three mixings
run over whole the range of experimental results at 3σ
interval, even though larger value of sin2 θ23 is somewhat
favored. While the sum of neutrino masses is restricted to
be

P
m ≈ 0.06 eV that always satisfies the upper bound on

the cosmological result.
Figure 2 shows phase of δlCP in terms of α31. This figure

implies that Dirac CP is linearly proportional to α31 phase

4Advantage of this approximation is that k̃α does not depend
on Δm.

5We have checked that the inverted hierarchy is not favored in
our model.
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that runs over whole the ranges. Once the Dirac CP phase
could be fixed to be ∼270 [deg] in future experiments, α31
is predicted to be ∼200 [deg].
Figure 3 demonstrates the sum of neutrino masses versus

the effective mass for the neutrinoless double beta decay. It
suggests that 0.0035 eV≲ hmeei≲ 0.045 eV. Another
remarks are in order:
(1) The typical region of modulus τ is found in narrow

space as −0.1≲ Re½τ�≲ 0.1 and 1.2≲ Im½τ�≲ 1.3.

(2) Typical scale of LFVs are very small in our analyses,
therefore following upper bounds are realized:

BRðμ→ eγÞ≲3.0×10−19;

BRðτ→ eγÞ≲2.5×10−19;

BRðτ→ μγÞ≲1.5×10−20:

(3) The lightest Majorana mass eigenstate is given by
[2–9] TeV.

IV. CONCLUSION AND DISCUSSION

We have constructed a predictive lepton model with
modular S3 symmetry in framework of one-loop induced
radiative seesawmodel.TheDMstability isnaturallyassured
by Z2 symmetry, and DM is correlated with neutrinos in a
specific manner, where their interactions are determined by
the S3 symmetry that is known as the minimal group in non-
Abelian discrete flavor symmetries. In our numerical analy-
ses, we have highlighted several remarks as follows:
(1) The Dirac phase and the Majorana phase are

strongly correlated.
(2) The typical region of modulus τ is found in narrow

space as −0.1≲ Re½τ�≲ 0.1 and 1.2≲ Im½τ�≲ 1.3.
(3) Typical scale of LFVs are very small in our analyses,

therefore following upper bounds are realized:

BRðμ → eγÞ≲ 3.0 × 10−19;

BRðτ → eγÞ≲ 2.5 × 10−19;

BRðτ → μγÞ≲ 1.5 × 10−20:

(4) The lightest Majorana mass eigenstate is given by
[2–9] TeV.
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