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It has recently been shown explicitly that the high-energy scattering amplitude of the longitudinal modes
of massive spin-2 Kaluza-Klein states in compactified five-dimensional gravity, which would naively grow
likeOðs5Þ, grow only likeOðsÞ. Since the individual contributions to these amplitudes do grow likeOðs5Þ,
the required cancellations between these individual contributions result from intricate relationships
between the masses of these states and their couplings. Here we report the explicit form of these sum-rule
relationships which ensure the necessary cancellations for elastic scattering of spin-2 Kaluza-Klein states in
a Randall-Sundrum model. We consider an anti–de Sitter space of arbitrary curvature, including the special
case of a toroidal compactification in which the curvature vanishes. The sum rules demonstrate that the
cancellations at Oðs5Þ and Oðs4Þ are generic for a compact extra dimension and arise from the Sturm-
Liouville structure of the eigenmode system in the internal space. Separately, the sum rules at Oðs3Þ and
Oðs2Þ illustrate the essential role of the radion mode of the extradimensional metric, which is the dynamical
mode related to the size of the internal space.

DOI: 10.1103/PhysRevD.100.115033

I. INTRODUCTION

Scattering amplitudes of massive spin-2 particles have
been investigated in a variety of contexts throughout the last
few decades. The Fierz-Pauli (FP) theory [1] has been
established as the only way to write down Lorentz invariant
spin-2 mass terms without propagating unphysical ghost
degrees of freedom. However, the high-energy behavior of
the scattering amplitudes in FP theory limits its applicability.
The growth of the elastic scattering amplitude of mas-

sive spin-2 states in the FP theory (assuming that inter-
actions arise from the weak-field expansion of the
usual gravitational action) has been computed using a
variety of approaches, including direct calculation [2],
the Stueckelberg formalism [3,4], and via deconstruction
[5,6]. For an amplitude which grows like sλ (where s is the
center-of-mass energy squared), the associated energy
cutoff scale is Λλ ¼ ðmλ−1

g MPlÞ1=λ, where mg is the mass
of the spin-2 state and MPl is the Planck mass (the weak-
field coupling). In FP theory, the scattering amplitudes
of the longitudinal polarization helicity states grow like
s5=ðm8

gM2
PlÞ, and hence the theory is valid up to an energy

scale Λ5 ≪ MPl (we therefore refer to FP as a Λ5 theory).
Adding nonlinear potential terms (polynomial interactions)
can reduce the growth of these amplitudes down to Oðs3Þ
[5–10], yielding a Λ3 theory [11,12]. However, no analog
of the Higgs mechanism to further moderate this high-
energy growth of scattering amplitudes has been found.
Indeed, it has been shown that coupling an arbitrary
number of scalars and vectors to the FP theory does not
reduce the growth of tree-level amplitudes below
Oðs3Þ [13].
In contrast, in a theory where massive spin-2 particles

emerge as part of a tower of Kaluza-Klein (KK) [14,15]
states from compactified extra dimensions, a high-energy
growth of order s5 (or even s3) must be absent. Here the
high-energy behavior will be governed by the underlying
five-dimensional (5D) gravitational theory which must
enforce relationships such that all terms displaying bad
high-energy growth (including those which arise from the
exchange of other massive spin-2 states in the KK tower)
cancel out, leaving the 4D scattering amplitude of the
massive spin-2 KK states to grow only as fast as OðsÞ. We
have recently demonstrated [16] that such cancellations
occur both for compactified toroidal theories and for
anti–de Sitter space (AdS5) in the Randall-Sundrum model
(RS1) [17].
In this paper, we derive the explicit relationships between

the couplings and the masses of the KK states which
guarantee the required cancellations occur in the elastic
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scattering amplitudes. We demonstrate that the relation-
ships needed to ensure the elastic scattering amplitudes
grow no faster than Oðs3Þ arise from the Sturm-Liouville
form of the KK mode expansion in the internal space and
therefore will naturally generalize to KK theories with
internal dimensions with arbitrary internal structure.
Interestingly, these relations are closely related to coupling
relationships which arise in compactified gauge theories
[18].1 Separately, we show that there are additional sum
rules which ensure cancellation atOðs3Þ andOðs2Þ in AdS5
for arbitrary internal curvature (including the toroidal case,
in which the internal curvature vanishes). These final two
sum rules illustrate the essential role of the radion mode of
the extradimensional metric, which is the field related to the
size of the internal space.2

In the rest of this paper, we walk through the derivation
of the relevant coupling relations in a compactified AdS5
space of arbitrary curvature. We lay out the key steps and
intermediate milestones of the calculation, as well as
displaying the final results; the full details of lengthy
expressions in the derivations are reserved to a subsequent
publication. We conclude with a discussion of the proper-
ties of an effective theory in which the tower of KK modes
is truncated and discuss questions for future investigation.

II. METRIC AND STURM-LIOUVILLE PROBLEM

The starting point of this paper is to analyze the
boundary value problem for the gravitational KK modes
in the RS1 model. The geometry of RS1 [17] is that of a
truncated and orbifolded AdS5 space bounded on either end
by UV (Planck) and IR (TeV) branes. Bulk and brane
cosmological constant terms are added to the action to
ensure that the effective 4D background remains flat. The
interactions (here we consider only the gravitational fields
and do not include matter) come from the 5D Einstein-
Hilbert action (plus cosmological constant terms, SCC)

S ¼ 2

κ2

Z
d4xdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGMN

p
Rþ SCC; ð1Þ

where xμ are the coordinates of the four noncompact
dimensions; y ∈ ½−πrc;þπrc� is the coordinate on the
compact internal space, GMN and R are the five-
dimensional metric and Ricci scalar, respectively; and
the dimensionful coupling κ ¼ 2=M−3=2

5 is the weak-field
expansion parameter fixed by the 5D Planck scaleM5. The

size of the internal space, rc, is arbitrary—leading to a
massless radion scalar mode as discussed below.
Imposing the orbifold symmetry (identifying points in

the internal space under y → −y), the 5D RS1 metric in the
Einstein frame can be written as [21,22]

GMN ¼
�
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2
�

û≡ κr̂

2
ffiffiffi
6

p eþkð2jyj−πrcÞ; ð2Þ

where k (which has dimensions of mass) is the curvature of
the internal AdS5 space.

3 Here the 5D fields ĥμνðx; yÞ and
r̂ðx; yÞ are even functions of y, and ημν is the usual (mostly
minus in our convention) Lorentz metric. The limit k → 0
corresponds to a flat internal space and hence to a
compactification on an orbifolded torus. As noted above,
our results will be true for arbitrary k, though physically we
require k < M5 in order for the 5D theory to remain a valid
effective field theory.
As usual, we will decompose the 5D fields ĥμν and r̂ via

a Kaluza-Klein decomposition, where each is replaced by a
sum of harmonic functions (specified below) in the internal
space weighted by 4D KK states. The 5D ĥμν field yields a
tower of spin-2 4D states which can be labeled by a “KK”
number n equal to the number of nodes of its associated
wave function on the interval y ∈ ½0; πrc�. The spin-2 tower
begins includes a massless mode with n ¼ 0, which is
associated with the 4D graviton, as well as an infinite tower
of massive spin-2 states with n > 0—in what follows, “KK
mode” will refer specifically to these massive spin-2 states.
Using a suitable gauge [23], the 5D field r̂ can be made
independent of the internal coordinate y—and hence gives
rise to a single 4D (massless) scalar field, the radion. Using
this form of GMN, and the harmonic expansion defined
below, the quadratic terms in the action are diagonal.
We expand the action in terms of the metric in Eq. (2)

and the 5D field ĥμνðx; yÞ in the mode expansion

ĥμνðx; yÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
X∞
n¼0

hðnÞμν ðxÞψnðyÞ; ð3Þ

where the fields hðnÞμν ðxÞ are the spin-2 massless graviton
(n ¼ 0) and massive KK modes (n > 0). Diagonalizing the
quadratic terms, one finds the internal wave functions
ψnðyÞ must satisfy [17]

−
d
dy

�
e−4kjyj

dψn

dy

�
¼ m2

ne−2kjyjψn; ð4Þ

1Conceivably, this may be due to a relationship between five-
dimensional gauge- and gravity-theories [19].

2As this work was being submitted, we learned that Bonifacio
and Hinterbichler [20] had, in parallel and by different methods,
derived sum rules for KK scattering for a theory with a Ricci-flat
internal space. In contrast, our work focuses on the phenom-
enologically relevant case of an internal space with constant
negative curvature.

3The four-dimensional Planck scale is given by M2
Pl ¼ð1 − e−2krcπÞM3

5=k.
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subject to the boundary conditions ∂yψnðy ¼ 0Þ ¼
∂yψyðy ¼ πrcÞ≡ 0. The solutions are of the form [24]

ψnðyÞ¼
eþ2kjyj

Nn

�
J2

�
mn

k
eþkjyj

�
þbn2Y2

�
mn

k
eþkjyj

��
; ð5Þ

where the mn are determined by roots of the equation

0 ¼
�
2J2jy¼πrc þ

mn

k
eþkrcπJ02jy¼πrc

�

×

�
2Y2jy¼0 þ

mn

k
Y 0
2jy¼0

�

−
�
2Y2jy¼πrc þ

mn

k
eþkrcπY 0

2jy¼πrc

�

×

�
2J2jy¼0 þ

mn

k
J02jy¼0

�
; ð6Þ

where primes denote the derivative of the corresponding
functions. Equation (4) (with the boundary conditions) is of
Sturm-Liouville form with weight function e−2kjyj and has
no degenerate eigenvalues m2

n. Therefore, for appropriate
normalization constants Nn, the solutions are orthonormal
and complete

1

πrc

Z þπre

−πre
dye−2kjyjψmðyÞψnðyÞ ¼ δmn; ð7Þ

1

πrc
e−2kjyj

X
j

ψ jðyÞψ jðy0Þ ¼ δðy − y0Þ: ð8Þ

Finally, the orthogonality relation [Eq. (7)], along with the
equation [Eq. (4)] and the boundary conditions imply that

1

πrc

Z þπre

−πre
dye−4kjyjð∂yψmÞð∂yψnÞ ¼ m2

nδmn; ð9Þ

ensuring that the graviton and KK modes have canonical
kinetic energy terms.
Similarly, for the 5D radion field, which in a suitable

gauge [23] has no y dependence, we have the expansion

r̂ðx; yÞ ¼ 1ffiffiffiffiffiffiffi
πrc

p rðxÞψ0; ð10Þ

where rðxÞ is the 4D scalar radion field, and ψ0 is the
normalized zero-mode internal wave function

ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

krcπ
1 − e−2krcπ

r
: ð11Þ

III. COUPLING DEFINITIONS

Expanding the action to higher order in 5D fields and
subsequently in terms of the 4D modes, we obtain

interactions between the massless graviton, the KK modes,
and the radion. The Lorentz form of interactions is thereby
completely determined, but the resulting expressions are
lengthy and will be given explicitly in a subsequent
publication, as mentioned above. The coupling strengths
of the interactions of the 4D fields are given by overlap
integrals of the internal space wave functions. There are
two classes of these couplings [25], those which depend on
derivatives of the internal wave functions (i.e., involving
∂yψn, which we denote4 as b-type), and those that do not
(which we denote as a-type). In general, the three- and
four-point massive spin-2 KK modes have both a-type and
b-type self-couplings, while couplings of these modes with
radions are purely b-type.
We will be computing the elastic scattering amplitude

nn → nn, where the incoming and outgoing states are both
of KK level n. At tree-level, this process occurs via a
contact interaction, or the exchange of a radion or arbitrary
intermediate KK state j (summed over j in the complete
amplitude). These amplitudes are defined in terms of the
following KK-mode couplings:

annj ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψ jðyÞ; ð12Þ

annnn ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψnðyÞψnðyÞ; ð13Þ

bnnj ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψ jðyÞ; ð14Þ

bnjn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψ jðyÞÞψnðyÞ; ð15Þ

bnnnn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψnðyÞψnðyÞ

ð16Þ

and the coupling of a radion to two KK-modes

bnnr ¼
rc
π
e−πkrc

Z
πrc

−πrc
dye−2kjyjð∂yψnðyÞ∂yψnðyÞÞψ0: ð17Þ

As suggested by the notation and as shown in Fig. 1, the
couplings annj and bnnj mediate tree-level s-, t-, and
u-channel diagrams with intermediate states of level j,
while bnnr does the same for radion intermediate states, and
annnn and bnnnn represent four-point “contact” interactions
between four KK-modes of level n.

4These b-type couplings result, after integrating over the
internal space, in nonderivative polynomial interactions of the
4D KK mode fields.
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From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
�
m2

n −
1

2
m2

j

�
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡X
k≤5

MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼−
κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
�
annnn−

X
j

a2nnj

�
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X
j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2
27648m8

n

·

�
4m2

nannnn − 3
X
j

m2
ja

2
nnj

�
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X
j

m2
ja

2
nnj ¼

X
j

annj

�
−

2

r2c
bnnj þ 2m2

nannj

�
ð26Þ

¼ −
2

r2c
bnnnn þ 2m2

nannnn ð27Þ

¼ 4

3
m2

nannnn: ð28Þ

Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
nannnn ¼

3

4

X
j

m2
ja

2
nnj; ð29Þ

that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find

Mð3Þðcos θÞ ¼ κ2

πrc

sin2 θ
3456m8

n
·

�
−108

b2nnr
r4c

þ 12m4
na2nn0

− 16m4
nannnn þ 15

X
j

m4
ja

2
nnj

�
: ð30Þ

We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule

b2nnr
r4c

¼ 1

9
m4

na2nn0 −
4

27
m4

nannnn þ
5

36

X
j

m4
ja

2
nnj; ð31Þ

FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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which relates the radion coupling to the spin-2 KK-mode
self-couplings and therefore relies on the structure of the
action and the properties of the radion. While we have not
found a general analytic derivation of this expression,
we have numerically verified that this sum rule is satisfied

for many values of krc—including intermediate values
such as krc ≃ 2 which are far from both the decoupling
limit (krc ≫ 1, which corresponds to MPl → ∞) and from
krc ¼ 0 corresponding to an orbifolded torus.
For terms at Oðs2Þ, we find

Mð2Þðcos θÞ ¼ −
κ2

πrc

ð7þ cos 2θÞ
5184m8

n
·

�
−108

b2nnrm2
n

r4c
þ 12m6

na2nn0þ16m6
nannnn − 15m2

n

X
j

m4
ja

2
nnj þ 6

X
j

m6
ja

2
nnj

�
: ð32Þ

The vanishing of this contribution yields a final sum rule

b2nnrm2
n

r4c
¼ 1

9
m6

na2nn0 þ
4

27
m6

nannnn −
5

36
m2

n

X
j

m4
ja

2
nnj þ

1

18

X
j

m6
ja

2
nnj: ð33Þ

Remarkably, the same combination of radion and massless graviton coupling appears in Eqs. (31) and (33), and therefore
inserting the order s3 relationship into the equation above, we also obtain the following relation:

Xþ∞

j¼0

m6
ja

2
nnj ¼ 5m2

n

Xþ∞

j¼0

m4
ja

2
nnj −

16

3
m6

nannnn; ð34Þ

which depends only on the spin-2 modes. In the case of RS1 (with exponential warping), Eq. (34) can be derived
analytically from the form of the wave functions.
Finally, the nonzero amplitude Mð1Þ is given by

Mð1Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2csc2θ
34560m8

n
·

�
−1296

b2nnrm4
n

r4c
þ 144m8

na2nn0 þ 28m8
nannnn þ 15

X
j

m8
ja

2
nnj

�
: ð35Þ

Numerically evaluated, the OðsÞ, term grows like ∼s=Λ2
π

[16], where Λπ ≡MPle−krcπ, and therefore we estimate Λπ

to be the cutoff scale of the theory, as inferred from the
AdS/CFT [26–29] correspondence. In the limit when
k → 0, i.e., for a flat extra dimension, the amplitude grows
as ∼s=M2

Pl.

V. DISCUSSION

The above set of sum rules [Eqs. (23), (29), (31), and (33)]
describe the necessary coupling and mass relations required
to cancel all helicity-0 nn → nn elastic matrix elements at
every order in sk, starting from Oðs5Þ down to OðsÞ.5
Although we have described here only the scattering of
the longitudinal helicity states, we have also verified that
these relations are sufficient to ensure that the elastic
scattering of all helicity states cancels down toOðsÞ aswell.6

TheOðsÞ high-energy behavior [16] of themassive spin-2
scattering amplitudes opens up new parameter space to
explore in phenomenologicallymotivatedmodels of particle
physics anddarkmatter (for example, see [30] and references
therein). The sum rules imply that an accurate calculation of
the relevant cross sections in such theories must appropri-
ately model the contributions from the radion and higher-
mass KK states—“simplified models” including only a
single massive spin-2 state will have only limited validity.
These sum rules derived in the context of an infinite

tower of KK states also allow us to consider the behavior of
elastic scattering amplitudes for a KK theory truncated at
level Nmax. Since Eqs. (23) and (29) rely on the complete-
ness relations, these will not be fully satisfied in the
truncated theory, and therefore there are finite Oðs5Þ
contributions in the amplitudes. For nonzero curvature,
these contributions are suppressed as 1

N2kþ1
max

[16] for a matrix

element MðkÞ. Such corrections are therefore small and
vanish in the limitNmax → ∞. In the limit when k → 0, i.e.,
for a flat (toroidal) compactification, the intermediate
propagators can only be either level 0 (the massless
graviton) or level 2n, and the above sum rules only involve

5We note that our sum rules are equivalent to the “bottom-up”
sum rules proposed in [20], when applied to AdS5.6Details of transverse polarization scattering will be provided
in a subsequent publication.
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two intermediate states due to KK number conservation. In
such a scenario, if the theory is truncated at Nmax < 2n, the
scattering amplitudes grow as Oðs5Þ, i.e., the theory
becomes strongly coupled at Λ5, contrary to the previous
speculation of Λ3 [7].
A number of additional questions remain to be explored.

For example, Eqs. (31) and (33) involve both the radion and
the KK-mode couplings and must follow from the form of
the action and the properties of the radion in a way yet to be
uncovered. Any realistic model of a compactified extra-
dimensional theory requires a mass for the radion and a
stabilization mechanism for the geometry. However, put-
ting in a mass for the radion, assuming no changes in the
radion couplings, would reintroduce amplitudes which
grow like Oðs2Þ [7]. Therefore, a realistic model with a

stabilized geometry (e.g., [31]) must give rise to additional
contributions to the sum rule in Eq. (33). Finally, phe-
nomenologically relevant models also include matter fields
(either localized to a brane, or in the bulk). The contribu-
tions from these fields will contribute at order Oðs3Þ and
Oðs2Þ and will therefore modify the sum rules presented
here. Details of the calculations above and further consid-
eration of these questions will be given in a forthcoming
publication.
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