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We study the collider, astrophysical, and cosmological constraints on the dark matter sector of a
conformal model within the framework of the freeze-out as well as the freeze-in mechanism. The model has
a dark sector with strong self-interactions. This sector couples weakly with the Standard Model particles via
a scalar messenger. The lightest dark sector particle is a pionlike fermion antifermion bound state. We find
that the model successfully satisfies the constraints coming from the Higgs decay to the visible as well as
the invisible sector. We have used the results of the dark matter direct detection experiments, such as
XENON1T, in order to impose bounds on the parameters of the model. The model satisfies the indirect
detection constraints of gamma ray from the galactic center and Dwarf spheroidal galaxies. We also
determine the parameter range for which it satisfies the astrophysical constraints on the dark matter self-
coupling.
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I. INTRODUCTION

The presence of nonbaryonic dark matter (DM) in the
Universe is very well established by cosmological and
astrophysical observations. The Planck and Wilkinson
Microwave Anisotropy Probe (WMAP) data suggest that
dark matter density ΩXh2 ¼ 0.1187� 0.0017 [1].
Currently, there are many ground and satellite based
experiments looking for direct evidence of dark matter.
The direct detection experiments of dark matter are based
on elastic scattering of DM with the detector nucleons. No
evidence of DM detection is observed till date and there
exist rather stringent upper limits on the cross section of
dark matter with nucleons from LUX [2,3], PandaX-II
[4,5], XENON1T [6], SuperCDMS [7], and CRESST-II
[8]. Indirect detection of DM comes through its decay or
annihilation at the center of galaxies. Despite several
tentative claims of detection, such as, the 1–3 GeV gamma
ray excess emission from the galactic center by Fermi-LAT
Collaboration [9], so far there does not exist conclusive
evidence for a dark matter candidate [10]. Apart from that

DM may annihilate or decay into monoenergetic γ–rays.
Search for monoenergetic spectral lines in the Fermi-Large
Area Telescope (Fermi-LAT) observations produced null
results for the DM in the range of 200 MeV–500 GeV. The
nonobservation of such a spectral line puts an upper bound
(95% CL) on the annihilation cross section and decay
widths of DM candidates [11]. Joint analysis of MAGIC
Cherenkov telescopes and Fermi-LAT [12] on gamma ray
data from dwarf spheroidal galaxies (dSphs) also imposes
an upper bound on DM annihilation cross section in the
mass range of 10 GeV–100 TeV.
In this paper, we consider a conformal model discussed

earlier [13–17]. This model has self-interacting dark matter
sector which is assumed to have a QCD-like dynamics. The
action has conformal symmetry and the dark sector
communicates with the electroweak sector through a real
scalar field χ. The dynamical symmetry breaking of the
dark matter sector leads to a vacuum expectation value
(VEV) of χ, which in turn induces the electroweak
symmetry breaking. In order to handle the strong inter-
action dynamics, we consider an effective action expressed
in terms of dark sector pions Πi, nucleons, and scalar fields
Σ and χ. The dark pion acts as the dark matter candidate.
The scalar field χ acts as the messenger field through which
the dark pions interact with the Standard Model (SM)
sector and Σ is the bound state scalar. The three scalar
fields, Φ, χ, and Σ mix with one another. Here, Φ is the
Standard Model scalar field which would be equivalent to
the Higgs in the absence of mixing with dark sector scalars.
After diagonalizing their mass matrix, we obtain three
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physical scalars, χ1, χ2, and χ3. We identify χ1 as the SM
Higgs and χ2 is a massive particle with its mass propor-
tional to the symmetry breaking scale of dark sector. The χ3
particle is classically massless but acquires a mass in
quantum theory due to conformal anomaly. We discuss
this in more detail below. The dark sector particles χ2 and
χ3 decay to the SM sector or to the dark pions within the
lifespan of the Universe. For simplicity here, we assume
that there exists only a single generation of dark fermions.
In this case, we only have one dark pion which acts as a
dark matter candidate.
We consider the cosmological implications of this model

assuming both a freeze-out and freeze-in scenarios. As we
shall see, within the freeze-out scenario, there exists
parameter range in which the model satisfies all constraints
including the constraint on σDM=MDM indicated by some
astrophysical observations. Here σDM is the cross section
for DM-DM scattering and MDM the mass of dark matter
particles. We next study the dark matter assuming the
freeze-in scenario. We show that this model can accom-
modate to a very low dark pion mass, as required for a dark
matter candidate in this case. In this case, the astrophysical
constraint on σDM=M imposes some limits on the param-
eters of the model.
The paper is organized as follows: in Sec II, we review

the conformal model and identify the different particle
states predicted by this model. In Sec. III, we determine the
relic density of dark pions in the freeze-out scenario and
also impose the collider, direct and indirect DM detection
constraints on the conformal model. In Sec. IV, we
determine the implications of dark matter assuming the
freeze-in scenario. In Sec. V, we show the final allowed
space taking all the constraints into account both for
freeze-out and freeze-in scenarios. Finally, we conclude in
Sec. VI.

II. REVIEW OF THE CONFORMAL MODEL

The conformal model introduced in [13–15] has a
strongly coupled dark matter sector similar to QCD. The
action for the dark sector can be written as

SD ¼
Z

d4x

�
−
1

4
Ga

μνGaμν þ iξ̄iγμDμξ
i − gχY ξ̄

iχξi
�
; ð1Þ

where Ga
μν is the field strength tensor of the dark sector

strong interaction mediator, ξi represent fermion fields, and
χ is a real scalar field. We refer to this strongly coupled
sector as hypercolor and call the quarks and gluons in this
sector as hyperquarks and hypergluons. In our phenom-
enological study, we consider only one multiplet of
hypercolor fermions but in general there can be several
multiplets. The hyperquarks and hypergluons will form
bound state dark pions and nucleons. The dark pions may
act as dark matter candidates. As we shall see, they are able
to satisfy all astrophysical and cosmological constraints.

The dark sector couples to the SM particles by the
coupling of χ to the Higgs sector. The action for the scalar
sector of the model can be written as

SS ¼
Z

d4x

�
1

2
gμν∂μχ∂νχ þ gμνðDμHÞ†ðDνHÞ

−
λ1
4
ð2H†H − λ2χ

2Þ2 − λ

4
χ4
�
; ð2Þ

where H is the Higgs multiplet and Dμ is the SM
gauge covariant derivative. The Higgs multiplet can be
decomposed as

H ¼ 1ffiffiffi
2

p
�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
: ð3Þ

The action has conformal symmetry and we include all
terms in the scalar potential which are invariant under this
symmetry. In analogy with QCD, the hyperquarks form
condensates hξ̄ξi with effective mass scale ΛS. Once the
condensate is generated, we can substitute it in the dark
sector Yukawa terms in the Lagrangian and minimize
the potential over the scalar fields ϕ3 and χ. This generates
nonzero values for the VEV of these fields and triggers
electroweak symmetry breaking. We denote the VEV
of ϕ3 and χ as vEW and η, respectively. Here vEW is the
electroweak symmetry breaking scale.
The model is interesting since it leads to a self-

interacting dark matter candidate which is preferred
by cosmological observations [18–24]. The astrophysical
implications of this conformal model have been studied
earlier in [25]. Due to scale symmetry, we expect that
classically the mass of one of the scalar particles is zero.
However, we expect this particle to acquire mass in the full
quantum theory due to scale anomaly [26]. We include this
scale breaking by adding a term in the effective action [27].
The dark pions and nucleons are potential dark matter

candidates. We use an effective model which is similar to
the linear sigma model in order to handle these bound state
fields. The resulting dark sector effective Lagrangian can be
written as

LΣ ¼ Ψ̄iγμ∂μΨþ 1

2
∂μΣ∂μΣþ 1

2
∂μΠ∂μΠ

− gΨΨ̄ðΣþ iΠγ5ÞΨ −
λ5
4
ðΣ2 þ Π2 − λ6χ

2Þ2; ð4Þ

where Π, Ψ, and Σ denote the dark sector pions, nucleons,
and the scalar fields, respectively. This model becomes
same as the linear sigma model if we replace the χ field
with its vacuum expectation value. Here we have chosen
this Lagrangian because it satisfies conformal invariance.
So far the model has chiral symmetry, which is not a
symmetry of the hypercolor interactions, due to the
presence of the Yukawa terms. We break this symmetry
by adding the following term:
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LΠ ¼ −
λ7
2
Π2χ2: ð5Þ

With the addition of this term, the dark sector pions
acquire mass.
We next need to minimize the scalar potential given in

Eqs. (2) and (4). So far, we have maintained scale
invariance in the effective action. However, even though
the original action Eq. (1) is classically scale invariant, the
scale invariance is broken due to the anomaly [26]. Hence,
the effective action which represents the low energy
dynamics of the bound states need not have this symmetry.
We also need to break this symmetry in order to obtain a
nontrivial minimum of the potential without fine-tuning
any parameter to zero [16]. We break the scale symmetry by
modifying the potential term for χ such that [27]

λ

4
χ4 →

λ

4
χ4 log

�
χ2

Λ2

�
; ð6Þ

where Λ is a dimensional parameter related to the strong
interaction scale ΛS. With this modification, the potential
acquires a nontrivial minimum with nonzero vacuum
expectation values for the fields Σ and χ. The scale breaking
terms lead to a mass term for the dilaton which would be
massless in the limit of exact scale invariance.
The minimum of the dark sector potential occurs at

Σ2 þ Π2 ¼ λ6η
2; ð7Þ

with

hχi ¼ η ¼ Λ= expð1=4Þ; hϕ3i ¼ vEW;

hΣi ¼ vD; hΠi ¼ 0; ð8Þ

where vD ¼ ffiffiffiffiffi
λ6

p
η. We expand the fields ϕ3, χ, Σ, and Π

around their VEV,

ϕ3 ¼ vEWþ ϕ̂; χ¼ ηþ χ̂; Σ¼ vDþσ; Π¼ π: ð9Þ

From the scalar potential (2), and dark sector potential
(4), we obtain mixing between the fields ϕ̂, σ, and χ̂, having
the following squared mass matrix:

M2 ¼

0
BB@

2λ1λ2 0 −2λ1λ
3=2
2

0 2λ5λ6 −2λ5λ
3=2
6

−2λ1λ
3=2
2 −2λ5λ

3=2
6 2ðλ1λ22 þ λ5λ

2
6Þ þ m2

η2

1
CCAη2;

ð10Þ

where m2 ¼ 2λη2 is the mass term generated by the
contributions due to scale anomaly. The eigenvalues of
this mass matrix gives us three physical scalar particles,
which we denote as χ1, χ2, and χ3. We identify χ1 as the

125 GeV Higgs Boson. The mass matrix can be diagon-
alized by an orthogonal matrix R with three Euler angles
(α1, α2, α3),

Rðα1;α2;α3Þ

¼

0
B@

cα1cα2 −sα1cα2 sα2
−cα1sα2sα3 þ sα1cα3 cα1cα3 þ sα1sα2sα3 cα2sα3
−cα1sα2cα3 − sα1sα3 −cα1sα3 þ sα1sα2cα3 cα2cα3

1
CA

ð11Þ

and the mass eigenstates are obtained such that0
B@

ϕ

σ

χ

1
CA ¼ R

0
B@

χ1

χ2

χ3

1
CA: ð12Þ

The parameters of the model ðλ1; λ2; λ5; λ6; λ7; m2Þ,
written in terms of the physical masses, Euler angles (or
the mixing angles), and the VEVs are

λ1 ¼
ðM2

χ1R
2
11 þM2

χ2R
2
12 þM2

χ3R
2
13Þ3

2η2ðM2
χ1R11R31 þM2

χ2R12R32 þM2
χ3R13R33Þ2

λ2 ¼
ðM2

χ1R11R31 þM2
χ2R12R32 þM2

χ3R13R33Þ2
ðM2

χ1R
2
11 þM2

χ2R
2
12 þM2

χ3R
2
13Þ2

λ5 ¼
ðM2

χ1R
2
21 þM2

χ2R
2
22 þM2

χ3R
2
23Þ3

2η2ðM2
χ1R21R31 þM2

χ2R22R32 þM2
χ3R23R33Þ2

λ6 ¼
ðM2

χ1R21R31 þM2
χ2R22R32 þM2

χ3R23R33Þ2
ðM2

χ1R
2
21 þM2

χ2R
2
22 þM2

χ3R
2
23Þ2

λ7 ¼
M2

π

η2

m2 ¼ M2
χ1R

2
31 þM2

χ2R
2
32 þM2

χ3R
2
33

− ðM2
χ1R

2
11 þM2

χ2R
2
12 þM2

χ3R
2
13Þλ2

− ðM2
χ1R

2
21 þM2

χ2R
2
22 þM2

χ3R
2
23Þλ6: ð13Þ

The VEVs are related by the equations

v2D ¼ λ6η
2 and v2EW ¼ λ2η

2: ð14Þ

The mass of the physical scalars (χ1, χ2, χ3) are related by
the relation

M2
χ1R11R21 þM2

χ2R12R22 þM2
χ3R13R23 ¼ 0: ð15Þ

The independent parameters of the model are α1, α2, α3,
Mχ1 ;Mχ2 ;Mπ , and vEW, and we set Mχ1 and vEW to be 125
and 246 GeV, respectively. We take χ1 to be the lightest
observed Higgs and assume χ2 and χ3 heavier than χ1. Due
to scale anomaly, χ3 acquires a mass which we assume to be
larger than the mass of the Higgs boson. The Feynman rules
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and relevant parameters in the model are implemented with
FeynRules [28].

III. PHENOMENOLOGY: FREEZE-OUT
SCENARIO

In this section, we discuss the phenomenological impli-
cations of our model assuming that the relic density of DM
is obtained in the freeze-out scenario. We investigate the
constraints from the Higgs sector such as the branching
fraction of the Higgs to the visible sector and the upper
bound on the Higgs decay to the invisible sector. We also
explore the spin-independent (SI) scattering cross section
of pions with the nucleons and the γ-ray constraints termed
as direct and indirect detection of DM, respectively.
For simplicity, we considered the mixing angles in the
region ½0; π

2
�. For the dark pion mass, we consider Mπ ∈

½50–400� GeV and, as we shall see, some of the allowed
parameter space lies close to the resonance of χ1, χ2,
and χ3. From the perspective of phenomenology, the dark
sector neutral scalars χ2 and χ3 share the same Higgs-like
properties with mass greater than 125 GeV. Due to the
presence of additional two Higgs-like scalars, the analysis
of our model has some similarities with Higgs portal DM
[29–33].

A. Collider constraints

The deviations from the SM can be implemented by
introducing the coupling modifiers ðκ0sÞ,

gχ1ff̄ ¼ κfgSMhff̄ and gχ1VV ¼ κVgSMhVV; ð16Þ

such that κf ¼ 1 and κV ¼ 1 in SM. Here gSM
hff̄

and gSMhVV
represent the SM Higgs couplings to fermions and vector

bosons, respectively, and gχ1ff̄ and gχ1VV represent the
corresponding couplings in our model. The coupling modi-
fiers are given by κf ¼ κV ¼ cos α1 cos α2. The constraints
on these parameters from the Higgs coupling measurements
are given in [34,35]. Using the latest beta version of Higgs
signals [36], we have imposed the constraints on the mixing
angles as shown in Figs. 1(a) and 1(b). ForMπ ≥ Mχ1=2, the
allowed region in the α1 − α2 plane is a radius of approx-
imately 0.32 radians, leaving α3 unconstrained. The invis-
ible decay of Higgs opens up whenMπ goes belowMχ1=2;
we can express this branching fraction as

Brinv ¼ Γχ1→ππ

Γχ1→ππ þ R2
11ΓSM ; ð17Þ

where ΓSM ¼ 4.07 MeV is the SM Higgs decay width. The
observed upper limit onHiggs invisible branching fraction is
0.24 [37,38]. The decaywidth of χ1 to dark pions is given by

Γχ1→ππ ¼ g2χ1ππ
32Mχ1π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

M2
χ1

s
: ð18Þ

We see that the mixing angles are much constrained when
the Higgs invisible decay to dark pions is open.

B. Relic density calculation

In this section, we calculate the relic density of dark
pions within the framework of freeze-out scenario. As
explained earlier, the dark sector of our model contains dark
pions and scalar particles (χ2 and χ3). The scalar particles
have masses of the order of the dark strong interaction
scale. These decay into dark pions early in the Universe,
leaving pions as the only DM candidate. The total decay

FIG. 1. The 1σ allowed region of mixing angles is shown. (a) shows the allowed region for Mπ ¼ 60 GeV and Mχ2 ¼ 500 GeV.
(b) shows the allowed region for Mπ ≥ Mχ1=2.
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width of χ2 and χ3 as a function of their masses is computed
using HDECAY [39] and CalcHEP [40] and plotted in
Fig. 2. We require that the lifetime of χ2 and χ3 be smaller
than the lifetime of the Universe (H−1

0 ), i.e., Γχ2 and Γχ3 be
greater than H0, which is satisfied in this case, as shown in
Fig. 2. We solve the Boltzmann equation to find the freeze-
out temperature and the comoving number density of dark
pions. The Boltzmann equation [41,42] for comoving
number density of dark pions can be written as

dY
dx

¼ −
�
45G
π

�
−1=2 g1=2⋆ Mπ

x2
hσviðY2 − Y2

eqÞ; ð19Þ

where Y ¼ nπ
s , x ¼ Mπ

T , s is the entropy density, and g⋆ is the
number of degrees of freedom. This is given by

g1=2⋆ ¼ hsðTÞ
gρðTÞ1=2

�
1þ 1

3

T
hsðTÞ

dhsðTÞ
dT

�
; ð20Þ

where gsðTÞ and gρðTÞ are the effective degrees of freedom
related to entropy and energy density, respectively. Thermal
average cross section hσvi is given by

hσvi¼ 1

8M4
πTK2

2ðxÞ
Z

∞

4M2
π

dsσðs−4M2
πÞ

ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
; ð21Þ

where K1 is the Bessel function. Integrating Eq. (19) from
x ¼ 0 to Mπ

T0
, where T0 ¼ 2.72K is the temperature of the

cosmic microwave background radiation, we get the current
value of Y, i.e., Y0, and hence the relic density. The present
relic density is given by

Ωπh2 ¼ 2.755 × 108
�
Mπ

GeV

�
Y0: ð22Þ

We use the MicrOMEGAs package [43] to calculate the
relic density of dark pion. Here π π → χ1;2;3 → SMSM
processes contribute to the total thermally averaged cross
section. The value of this cross section at the decoupling
temperature determines the relic density of the dark pion
and the s-channel processes involved in the cross section
might encounter poles. We find that the process π π →
χ1;2;3 → SMSM also gets resonant contributions when the
massMπ is close to half the mass of the scalars (χ1, χ2, and
χ3). As a result of the resonance, there is a peak in hσvi
characterized by the parameter ϵ ¼ Γres=Mres, whereMres is
the mass of the resonance particles χ1, χ2, and χ3. This
leads to an enhancement in comparison to the nonresonant
cross section.1 Enhancement of annihilation cross section
at resonance has been discussed in great details in
Refs. [44–47]. The enhancement of the cross section at
resonance leads to a sudden drop of relic density.

C. Direct detection and indirect detection constraints

Direct detection experiments impose strong limits on the
interaction of dark matter particles with nucleons. In these
experiments, dark matter particles are scattered elastically

(a) (b)

FIG. 2. The decay width of χ2 and χ3 for α1 ¼ 0.01 radians, α2 ¼ 0.1 radians, α3 ¼ 1.0 radians, and dark pion mass of 200 GeV. The
decay width is sufficiently large compared to H0.

1The most common approach of Taylor expansion of hσvi ¼
aþ bv2 and then the substitution of v2 ¼ 6=x does not hold at
resonance as shown in Ref. [44]. The numerical result of hσvi
differs sharply from the approximate result obtained from Taylor
expansion and the disagreement is sharper for smaller ϵ.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) The dark pion-nucleon scattering cross section is shown for dark pion mass in the range [50–400] GeV for the mixing
angles α1 ¼ 0.01 radians, α2 ¼ 0.1 radians, α3 ¼ 1.0 radians, and Mχ2 ¼ 500 GeV. For the same set of parameters, (b)–(f) show the
cross sections for dark pion annihilation into bb̄, τþτ−, WþW−, γγ, and γZ, respectively. We see from these plots that the γ-ray
constraints from dSphs and galactic center are automatically satisfied and are much weaker than the direct detection constraints. The
peaks appear due to the Breit-Wigner resonance of χ1, χ2, χ3. The troughs in these plots arise since some coupling factors cross zero at
the corresponding values of the pion mass.
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with the nucleons present in the detectors and the recoil
energy is detected. Experiments can be sensitive to both
nuclear SI interactions and spin-dependent interactions, but
current experiments are more sensitive to SI interactions.
The results obtained from LUX [2,3] and PandaX-II [4,5]
put upper bounds on SI scattering cross section. Latest
result obtained from XENON1T [6] experiment being more
restrictive excludes a large parameter space in many DM
models as the upper limit on the SI cross sections gets
pushed to an order of 10−47 cm2 for DM mass of around
50 GeV at 90% confidence limit. These results impose
a very strong constraint, particularly close to the Higgs
resonance (Mπ ∼ 60 GeV).
The expression for SI elastic scattering cross section

between dark pion and nucleon (N) through the exchange
of χ1, χ2, and χ3 is given by

σπ−NSI ¼ μ2πNm
2
Nf

2

πM2
πv2EW

�
R11gχ1ππ
Mχ2

1

þ R12gχ2ππ
Mχ2

2

þ R13gχ3ππ
Mχ2

3

�
2

;

ð23Þ
where f ∼ 0.3 [48] is the usual nucleonic matrix element
and μπN is the reduced mass of dark pion and nucleon.
We compute the DM-nucleon SI cross section using
MicrOMEGAs. The SI cross section of dark pions with
the nucleons is plotted in Fig. 3 for pion ∈ ½50; 400� GeV.
We next turn to the indirect detection of DM where we

primarily look into the gamma ray signals from the dSphs
and monoenergetic spectrum from the galactic center. The
diffused gamma ray search studied by the combined
analysis of Fermi-LAT and MAGIC observations puts
limits on the DM scattering cross section to bb̄, WþW−,
τþτ−, and μþμ−. The cross sections are given by

hσviff̄ ¼
Nc

4π

�
mf

vEW

�
2
���� R11gχ1ππ
s −M2

χ1 þ iMχ1Γχ1

þ R12gχ2ππ
s −M2

χ2 þ iMχ2Γχ2

þ R13gχ3ππ
s −M2

χ3 þ iMχ3Γχ3

����2
�
1 −

4m2
f

s

�
3=2

; ð24Þ

where Nc is the color charge of the fermion f.

hσviWþW− ¼ s
2πv2EW

���� R11gχ1ππ
s −M2

χ1 þ iMχ1Γχ1

þ R12gχ2ππ
s −M2

χ2 þ iMχ2Γχ2

þ R13gχ3ππ
s −M2

χ3 þ iMχ3Γχ3

����2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
W

s

r �
1 −

4M2
W

s
þ 3

4

�
4M2

W

s

�
2
�
: ð25Þ

The dark pion annihilation to γγ and Zγ is important for detection of monochromatic gamma ray signal from the galactic
center. The cross sections for these processes are loop suppressed and are given by [49]

hσviγγ=γZ ¼ 8ffiffiffi
s

p
���� R11gχ1ππ
ðs −M2

χ1Þ þ iMχ1Γχ1

þ R12gχ2ππ
ðs −M2

χ2Þ þ iMχ2Γχ2

þ R13gχ3ππ
ðs −M2

χ3Þ þ iMχ3Γχ3

����2Γγγ=γZðsÞ; ð26Þ

where Γγγ=γZðsÞ is computed by replacing the scalar mass
square in the Higgs decay rate into γγ=γZwith s [50–52]. In
the nonrelativistic limit, we can consider the pions to be
almost at rest (which is a very good approximation) and
in this limit s ∼ 4M2

π. The results are consistent with
MicrOMEGAs and cross sections are shown in Fig. 3.
The DM distribution in the dSphs are parametrized follow-
ing a Navarro-Frenk-White (NFW) profile [53], whereas
for the galactic DM halo we consider the Einasto [54]
profile as it is more restrictive compared to the NFW
profile.

D. Dark matter self-interaction constraints

The observed central densities of dark matter halos of a
wide range of the astrophysical objects from dwarf galaxies
to galaxy clusters have lesser density compared to the
prediction from the collisionless cold dark matter N-body
simulations [55]. This mass deficit anomaly could be

resolved if the cold dark matter particles undergo elastic
scattering among one another. The self-interacting dark
matter leads to exchange of heat energy between inner and
outer halos and leads to a lower density of the inner halos
[56–59]. Hence, the self-interaction of dark matter is able
solve this too-big-to-fail problem [60,61] and also the cusp
vs core problem [55,62–64]. Astrophysical observations
suggest the following value for DM-DM scattering cross
section (σDM) [22]:

σDM
MDM

∼ 1.5 cm2 g−1; ð27Þ

where MDM is the mass of the dark matter. This estimate is
subject to some uncertainties. There also exists an upper
bound [21,22,56,57,65,66],

σDM
MDM

≲ 1 cm2 g−1; ð28Þ
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obtained from different astrophysical observations. These
considerations suggest that the dark pion-dark pion
(ππ → ππ) scattering cross section σπ should satisfy
σDM=MDM ∈ ½4.7–7.0� × 103 GeV−3 [67].

IV. PHENOMENOLOGY: FREEZE-IN SCENARIO

In this section, we examine the implications of the model
assuming the freeze-in scenario [68–70]. In this scenario,
DM particles are never in equilibrium with the cosmic
plasma and at very high temperature their density is zero.
The production of dark pions happens through SMSM →
π π and χ1 → ππ processes. The freeze-in scenario within
the Higgs portal DM models successfully explains the
astrophysical constraints coming from DM self-interaction
[67,71,72]. As we shall see, this is also true in our
conformal model. We will use self-interacting DM scatter-
ing constraints to put limits on the parameter space.
In the case of freeze-in, we find that we can satisfy all the

constraints provided we choose both the parameters λ2 and
λ6 relatively small. We shall assume λ2 ≪ λ6 ≪ 1 which
leads to η ≫ vD ≫ vEW. We also need to choose λ7 ≪ 1
due to the low value of pion mass in this scenario. The low
value of λ7 does not require any fine-tuning since this
parameter corresponds to a symmetry breaking term.
Furthermore, the small values of λ2 and λ6 also do not
require fine-tuning since these do not acquire large con-
tributions at loop orders. In the limit λ2 ≪ λ6 ≪ 1, we can
diagonalize the mass matrix, Eq. (10), perturbatively and
relate the particles ϕ̂, σ, and χ̂ to the physical particles χ1,
χ2, and χ3. At leading order, we obtain

ϕ̂ ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a23
p χ1 þ

c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21 þ c22

p χ3

σ ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b23
p χ2 þ

c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21 þ c22

p χ3

χ̂ ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c21 þ c22
p χ3 þ

a3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a23

p χ1 þ
b3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b23

p χ2; ð29Þ

where c1, c2, a3, and b3 are all small compared to unity and
given by

c1 ¼
Mϕχ

M2
χ −M2

ϕ

;

c2 ¼
Mσχ

M2
χ −M2

σ
;

a3 ¼
Mϕχ

M2
ϕ −M2

χ
;

b3 ¼
Mσχ

M2
σ −M2

χ
ð30Þ

and

M2
ϕ ¼ 2λ1λ2η

2 ≈M2
χ1 ;

M2
σ ¼ 2λ5λ6η

2 ≈M2
χ2 ;

M2
χ ≈m2 ≈M2

χ3 ;

Mϕχ ¼ −2λ1λ
3=2
2 η2;

Mσχ ¼ −2λ5λ
3=2
6 η2: ð31Þ

Here we have assumed that 2ðλ1λ22 þ λ5λ
2
6Þ ≪ m2=η2. The

masses of the three physical scalars χ1, χ2, and χ3 are Mχ1 ,
Mχ2 , and Mχ3 , respectively, and Mπ ¼

ffiffiffiffiffi
λ7

p
η. It is clear

thatMχ2 ≫ Mχ1 . Furthermore, we shall choose m such that
Mχ3 ≫ Mχ2 .
In the freeze-in scenario, the relic density of dark matter,

i.e., dark pions, is given by [71,73]

ΩDMh2

0.12
¼ 5.3 × 1021λ2hπ

Mπ

GeV
; ð32Þ

where λhπvEW is the coupling of the Higgs to two dark
pions and is given by

λhπ ¼
8λ1λ2λ6

λ5λ
2
6 þm2=ð2η2Þ : ð33Þ

In our model, ππ → ππ scattering cross section gets
contribution from the contact interaction Π4 term as well as
due to exchange of the three physical scalars χ1, χ2, and χ3.
The interaction of dark pions with χ1 and χ3 is very small
and hence we only need to include the contributions due to
s, t, and u channel exchange of χ2. At low energies, these
give contributions to the scattering amplitude which are
proportional to that obtained from the self-interaction Π4.
The final result is found to be

σπ
Mπ

¼ 9λ̃25
32π

1

M3
π
; ð34Þ

where λ̃5 ¼ 3λ5=4.

V. RESULTS: FREEZE-OUT SCENARIO

The direct detection of dark matter with nucleons
imposes a very strong constraint on the SI scattering cross
section of pions, as seen in Fig. 3. This constraint is found
to be much stronger in comparison with the indirect
detection constraints. The relevant cross sections for this
case are shown in Figs. 3(b)–3(f). These have peaks at the
Breit-Wigner resonance of χ1, χ2, and χ3, but exactly at the
resonance the pion relic density is significantly small and
hence the indirect detection bounds at the resonance
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become unimportant.2 These bounds are also easily sat-
isfied in the off-resonant region where the relic density is
∼0.118 since the cross sections become very small. Hence,
we find that, once we apply the direct detection constraints
on the DM-nucleon cross sections, the indirect detection

constraints are automatically satisfied. We also see sudden
dips in the cross section in Figs. 3(b)–3(f) for some values
of the dark pion mass. These arise since the coupling
factors, such as gχ2ππ, cross zero at these values of the dark
pion mass.
In Figs. 4(a), 5(a), 6(a), and 7(a), we show the parameter

space which satisfies Ωh2 ≤ 0.118 for the choice of
parameters corresponding to Sets 1, 2, 3, and 4, respec-
tively, as given in Table I. The color bar shows the relic
density. We find that there are three strips along the
resonances arising due to exchange of particles χ1, χ2,
and χ3. In Figs. 5(a) and 7(a), we find that two of these

(a) (b)

FIG. 4. Set 1: in (a), we use the Ωh2 ≤ 0.118 for α1 ¼ 0.01 radians, α2 ¼ 0.1 radians, and α3 ¼ 1.0 radians showing the resonance
effect (color bar shows the relic density). (b) shows the allowed parameter space for α1 ¼ 0.01 radians, α2 ¼ 0.1 radians, and α3 ¼ 1.0
radians which satisfies Ωh2 ∼ 0.118, direct and indirect detection constraints and collider constraints.

(a) (b)

FIG. 5. Set 2: same as Fig. 4 with α1 ¼ 0.02 radians, α2 ¼ 0.1 radians, and α3 ¼ 1.0 radians.

2We should note that the direct detection and indirect detction
constraint can be applied only when the relic density is ∼0.118.
For situations where Ωh2model < 0.118, one has to introduce the
scale factor ξ ¼ Ωh2model=Ωh2CDM for direct detection and ξ2 for
indirect detection [74]. In our case we used the direct and indirect
detection constraint only for ξ close to 1.
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strips merge with one another. For these parameter sets
(Sets 2 and 4), we also find a much larger number of points
which deviate from resonance. The relic density falls
sharply when the dark pion is at the resonance of any of
the scalars, χ1, χ2, and χ3 (i.e., Mπ ∼Mχ1;χ2;χ3=2). The red
points are the parameters for which the relic density is close
to 0.118. In Figs. 4(b), 5(b), 6(b), and 7(b), we show the
allowed parameter space in the Mπ and Mχ2 plane for
parameter Sets 1, 2, 3, and 4 (Table I), respectively, which
satisfies Ωh2 ∼ 0.118 and direct detection constraint of

(a) (b)

FIG. 6. Set 3: same as Fig. 4 with α1 ¼ 0.01 radians, α2 ¼ 0.2 radians, and α3 ¼ 1.0 radians.

(a) (b)

FIG. 7. Set 4: Same as Fig. 4 with α1 ¼ 0.01 radians, α2 ¼ 0.1 radians, and α3 ¼ 0.5.

TABLE I. Different choices of mixing angles α1, α2, and α3.

Mixing angles in radians

Benchmark points α1 α2 α3

Set 1 0.01 0.1 1.0
Set 2 0.02 0.1 1.0
Set 3 0.01 0.2 1.0
Set 4 0.01 0.1 0.5
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XENON1T. We see that a considerable parameter range
gets eliminated due to the direct detection constraints. As
mentioned earlier, constraints due to indirect detection are
weaker and get automatically satisfied. In the final allowed
parameter space [see Figs. 4(b), 5(b), 6(b), and 7(b)], we
find that a large number of points lie close to the resonance
of the three scalar particles. However, in Fig. 4(b), we also
see considerable parameter space for which Mπ deviates
considerably from Mχ2=2.
We next scan the entire parameter space corresponding

to the three mixing angles and the masses Mπ and Mχ2
by randomly selecting parameters over the range α1, α2 ∈
½10−4; 0.35� radians, α3 ∈ ½10−2; 1.55� radians,Mχ2 ∈ ½150;
800� GeV, and Mπ ∈ ½50; 400� GeV. The mixing angles
are taken in this range since they automatically satisfy the
collider constraints, as shown in Fig. 1(b). After imposing
all the remaining constraints, the final allowed values ofMπ

and Mχ2 are shown in Fig. 8. We see that the model has
sufficiently large allowed parameter space which satisfies
all the phenomenological constraints. Some regions in the
Mπ-Mχ2 plane are found to have higher density of points in
comparison to others. However, as we explain below,
almost all of this parameter space is allowed. Some regions
of this plot arise due to contributions from close to resonant
scattering with s-channel exchange of χ1, χ2, and χ3 in
similarity to Figs. 4–7. As expected, we do not get the right
relic density exactly at resonance but slightly away from it.
For small Mχ2 , we see a considerably high density of
points. These arise due to nonresonant contribution. We
point out that the density of points is low near a resonance
since in this case the relic density shows a strong depend-
ence on parameters and in order to satisfy all constraints the

parameters need to be fine-tuned. This does not apply in
nonresonant regions where the cross section shows a
relatively mild dependence on model parameters. The only
forbidden regions are those corresponding to Mπ <
60 GeV and a very narrow strip right along the resonance
corresponding to any one of the three scalars. Other than
that all regions are allowed. This applies even to some of
the gaps seen in Fig. 8 for Mπ > 60 GeV. We have
explicitly verified this by carefully exploring the parameter
space corresponding to these regions.
As mentioned earlier, our phenomenological analysis

bears some resemblance to the Higgs portal DM, and a
substantial analysis of Higgs portal DM is done before. The
simplest yet most popular DM model of scalar singlet
extension of SM is studied in depth for Ωh2 ≤ 0.118 in
[74,75] which rules out a vast region (MDM ≤ 500 GeV) of
parameter space because of strong direct and indirect
detection constraints and Higgs invisible decay constraint.
As mentioned in [74], results from XENON1Tand LZ [76]
might exclude a significantly large parameter space of
the scalar singlet DM model apart from a very narrow
region close to the Higgs resonance (MDM ∼MhSM=2)
[77]. However, our model naturally has a light dark pion
and two more Higgs like scalars. Due to the presence of
these heavier scalars χ2 and χ3, we find that a significant
parameter space opens up both close to and away from the
resonance of these scalars.
We next consider the constraint given in Eq. (27). For

dark matter particles in the mass range considered in this
section implies a very large DM-DM scattering cross
section. For the allowed parameter range, we find that
the largest value is many orders of magnitude smaller than
that given in Eq. (27). This is to be expected in any model
based on the freeze-out scenario and is only possible in a
freeze-in scenario which allows for much smaller masses.

A. Results: Freeze-in scenario

The basic formulas for the case of freeze-in scenario are
given in Sec. IV. In Fig. 9, we show the relationship
between the mass of dark pion and the dark sector particle
χ2 for the allowed parameter range which leads to the
observed dark matter relic density and is also consistent
with the constraint on the dark matter scattering cross
section given in Eq. (28) for different values of the
parameters λ6 and m=η. Here we have set λ ¼ 0.2 and
varied the parameter λ7. Furthermore, we have used
Eqs. (32)–(34) and have set the value of σπ=Mπ equal to
its upper limit given by Eq. (28). Hence, the value of Mχ2
can only take values below the lines shown in Fig. 9 for the
corresponding values of the parameters λ6 and m=η. Larger
values of this mass are ruled out by astrophysical obser-
vations. We point out that Mχ2 is directly proportional to
the self-coupling λ5 and hence the region above the lines
shown in Fig. 9 correspond to values of λ5 ruled out by
observations.

FIG. 8. Allowed parameters in Mπ −Mχ2 plane satisfying
Ωh2 ∼ 0.118, direct and indirect detection constraints, and col-
lider constraints. The mixing angles are chosen randomly over the
range allowed by the collider constraint, as explained in text.
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In the limit λ5λ26 ≪ m2=ð2η2Þ, we find that the relation-
ship betweenMπ and Mχ2 is approximately linear for fixed
values of λ6 and m=η, as seen in Fig. 9. In this figure, we
have restricted the dark pion mass Mπ to be less than
55 MeV. For larger values, the strong sector coupling λ5
becomes very large and our leading order calculation of ππ
scattering becomes unreliable. For a dark pion mass of
30 MeV, we find that λ5 ≈ 1.5, which may be considered
perturbative. We find that the experimental constraint on
the Higgs decay to visible sector particles is easily satisfied
for all the values shown in Fig. 9. For this entire range of
parameters, the mass of dark sector particle χ3 is consid-
erably larger than that of χ2.

VI. CONCLUSION

We have studied the DM constraints within a conformal
extension of the Standard Model of particle physics. The
model has strongly coupled dark sector which triggers the
electroweak symmetry breaking. The model leads to three
neutral scalars χ1, χ2, and χ3 and we identify χ1 as the
observed Higgs boson with mass 125 GeV. The model also
predicts a pseudoscalar particle which we assume is the DM

candidate and refer to it as a dark pion. We perform all our
calculations using an effective Lagrangian for the strongly
coupled dark sector. We first assume the freeze-out scenario
for obtaining the dark matter relic density. We find that the
observed relic density Ωh2 ¼ 0.1187� 0.0017 is obtained
for a considerable range of parameter space, some of which
lies close to the resonance of any one of the neutral scalars.
We find that the model is also able to explain the constraints
due to direct and indirect detection of DM and the collider
constraints. The collider constraints impose limits on the
mixing angles of the neutral scalars. The upper bound on
the SI DM-nucleon cross section obtained from direct
detection experiments, such as XENON1T, imposes a
strong constraint on the model. The bounds arising due
to searches of gamma ray signal from the galactic center
and dSphs are found to be not very stringent and do not
impose any additional constraint on the parameter space.
The dark pions have significant self-interaction. However,
within the freeze-out scenario, the value of σDM=MDM turns
out to be relatively small in comparison to the preferred
astrophysical value. This is due to the large value of mass
MDM required in this framework.
We have also studied the implications of the conformal

model assuming a freeze-in scenario for relic dark matter
density. We argue that the model naturally leads to a very
low mass dark pion while maintaining a relatively large
mass scale of dark sector strong interactions. This is due to
the fact that the dark pion mass is controlled by chiral
symmetry breaking terms in the dark sector. We can choose
this terms very small without fine-tuning. We find that
within the freeze-in scenario the model is able to explain all
astrophysical and collider observations. As expected in this
case, we can also choose σπ=Mπ close to the value preferred
by astrophysical observations.
In our analysis, we have assumed only a single species of

dark fermions which lead to only a single candidate dark
pion. Additional dark fermions and hence dark pions can
also be added in our model. This may open up additional
regions in the parameter space.
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interaction, Phys. Lett. B 751, 201 (2015).

[73] N. Bernal, C. Cosme, and T. Tenkanen, Phenomenology of
self-interacting dark matter in a matter-dominated Universe,
Eur. Phys. J. C 79, 99 (2019).

[74] J. A. Casas, D. G. Cerdeño, J. M. Moreno, and J. Quilis,
Reopening the Higgs portal for single scalar dark matter,
J. High Energy Phys. 05 (2017) 036.

[75] M. Escudero, A. Berlin, D. Hooper, and M.-X. Lin, Toward
(Finally!) ruling out Z and Higgs mediated dark matter
models, J. Cosmol. Astropart. Phys. 12 (2016) 029.

[76] D. S. Akerib et al., Projected WIMP sensitivity of the LUX-
ZEPLIN (LZ) dark matter Experiment, arXiv:1802.06039.

[77] P. Athron, J. M. Cornell, F. Kahlhoefer, J. Mckay, P. Scott,
and S. Wild, Impact of vacuum stability, perturbativity and
XENON1T on global fits of Z2 and Z3 scalar singlet dark
matter, Eur. Phys. J. C 78, 830 (2018).

SANYAL, NAYAK, KASHYAP, and JAIN PHYS. REV. D 100, 115032 (2019)

115032-14

https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1103/PhysRevD.79.095009
https://doi.org/10.1103/PhysRevD.79.095009
https://doi.org/10.1103/PhysRevD.79.055012
https://doi.org/10.1103/PhysRevD.79.055012
https://doi.org/10.1007/JHEP09(2017)159
https://doi.org/10.1007/JHEP09(2017)159
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.92.039906
https://doi.org/10.1007/JHEP03(2015)045
https://doi.org/10.1016/j.physrep.2007.10.004
https://doi.org/10.1016/j.physrep.2007.10.004
https://arXiv.org/abs/1101.0593
https://doi.org/10.1086/177173
https://doi.org/10.1086/187350
https://doi.org/10.1086/187350
https://doi.org/10.1093/mnras/sts535
https://doi.org/10.1093/mnras/sts535
https://doi.org/10.1093/mnras/sts514
https://doi.org/10.1093/mnras/sts514
https://doi.org/10.1093/mnras/stv1470
https://doi.org/10.1086/318417
https://doi.org/10.1093/mnras/stu1477
https://doi.org/10.1093/mnras/stu1477
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://doi.org/10.1086/304888
https://doi.org/10.1086/304888
https://doi.org/10.1088/0004-6256/142/1/24
https://doi.org/10.1088/0004-637X/742/1/20
https://doi.org/10.1086/587859
https://doi.org/10.1086/587859
https://doi.org/10.1086/383178
https://doi.org/10.1086/383178
https://doi.org/10.1103/PhysRevD.92.055031
https://doi.org/10.1103/PhysRevD.92.055031
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1103/PhysRevD.89.115011
https://doi.org/10.1103/PhysRevD.89.115011
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1016/j.physletb.2015.10.031
https://doi.org/10.1140/epjc/s10052-019-6608-8
https://doi.org/10.1007/JHEP05(2017)036
https://doi.org/10.1088/1475-7516/2016/12/029
https://arXiv.org/abs/1802.06039
https://doi.org/10.1140/epjc/s10052-018-6314-y

