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We show that the relaxion, which addresses the hierarchy problem, can account for the observed dark
matter (DM) relic density. The setup is similar to the case of axion DM models topped with a dynamical
misalignment mechanism. After the reheating, when the temperature is well above the electroweak scale,
the backreaction potential disappears, and the relaxion is displaced from its vacuum. When the “wiggles”
reappear, the relaxion coherently oscillates around its minimum as in the case of vanilla axion DM models.
We identify the parameter space such that the relaxion is retrapped, leading to the standard cosmology.
When the relaxion is lighter than 10−7 eV, Hubble friction during radiation domination is sufficiently
strong for retrapping, and even minimal models are found to be viable. It also leads to a new constraint on
relaxion models, as a certain region of their parameter space could lead to overabundant relaxion DM.
Alternatively, even a larger parameter space exists when additional friction is obtained by particle
production from additional coupling to an additional dark photon field. The phenomenology of this class of
models is quite unique, as it implies that we are surrounded by a time-dependent axionlike field that, due to
relaxion-Higgs mixing, implies a time-dependent Higgs vacuum expectation value that leads to time
variation of all coupling constants of nature.

DOI: 10.1103/PhysRevD.100.115026

I. INTRODUCTION

The relaxion mechanism provides an alternative solution
to the Higgs naturalness problem [1]. Within the relaxion
framework, the electroweak (EW) scale is not a funda-
mental scale of a UV theory, but it emerges as a result of
dynamical evolution of our Universe. The Higgs mass is
not a constant but rather a time-dependent function of an
axionlike field, the relaxion. An example of the potential of
the relaxion and Higgs that realizes the relaxion mechanism
is [2]

VðH;ϕÞ¼ ðΛ2−gΛϕÞjHj2−cgΛ3ϕ−μ2jHj2 cosϕ
f
; ð1Þ

where Λ is the cutoff scale for the Higgs mass, f is the
axion decay constant, c is an order one coefficient,
g ∼ μ2v2=fΛ3, and μ is the scale characterizing the back-
reaction potential, with v being the EW scale. In this
scenario, the electroweak scale is scanned during the
inflationary phase of the Universe. Initially, the Higgs
mass is positive, and thus the vacuum expectation value
(VEV) of the Higgs vanishes. As the relaxion evolves along

its potential, the Higgs mass decreases, and at some point, it
becomes negative, from which nonzero VEV is generated.
Once the Higgs develops a nonvanishing VEV, the back-
reaction potential, the last term in Eq. (1), appears to feed
back the evolution of the relaxion. When the Higgs mass
approaches the electroweak scale, the backreaction poten-
tial balances the relaxion potential and thus stops the
relaxion from further evolution. This close interplay
between the relaxion rolling potential and the Higgs-
dependent backreaction potential allows the relaxion to
be stabilized at the vacuum that provides the electroweak
scale with UV parameters chosen in a technically natural
way (for explicit realizations and further discussions, see
for instance [1,5–10]).
In this paper, we investigate whether the model presented

above can account for the observed dark matter relic
density, in the context of the standard ΛCDM cosmology
with a reheating temperature well above the electroweak
scale. The only non-SM light degree of freedom in a
minimal scenario is the relaxion field itself. It is shown that
via a dynamical misalignment mechanism, the relaxion
follows a viable axionlike DM evolution.

II. BASIC IDEA

The idea is based on the following observation. During
inflation, the relaxion scans the electroweak Higgs mass
and settles down at one of its local minima. If the Universe
is reheated with temperature above the critical temperature
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of the EW phase transition, the EW symmetry is restored,
and the backreaction potential disappears. As a result, the
relaxion field begins to evolve again, until the backreaction
potential appears at some temperature, Tra. Requiring that
the relaxion has been trapped in a close-by minimum, the
relaxion field is displaced from its local minimum with a
certain misalignment angle, Δθ ¼ Δϕ=f. Consequently,
when the Hubble scale drops below its mass, it begins to
oscillate around the minimum. This coherently oscillating
relaxion field eventually constitutes the DM in the present
Universe. To guarantee such a “relaxion miracle” can
occur, we must ensure that the relaxion is trapped again
by the backreaction potential after its second evolution
during the radiation-dominated Universe. We show below
that a light relaxion can be efficiently trapped either via the
Hubble friction during the radiation domination era in a
truly minimal model or via particle production from
relaxion coupling to a dark photon [11].

III. MINIMAL MODEL

A viable DM model would require that the relaxion is
sufficiently misaligned from the local minimum to repro-
duce the observed relic abundance and that the back-
reaction potential should be able to trap the relaxion
while maintaining the Higgs mass close to its original
value set by the dynamics during inflation.
To quantify the required size of the misalignment angle,

we consider the dark matter density at the beginning of the
oscillation for a given misalignment angle, mϕYϕðtosÞ ¼
ρϕðtosÞ=sðtosÞ ≃m2

ϕf
2ðΔθÞ2=2sðtosÞ, where tos is the time

at which the oscillation begins and sðtÞ is the entropy
density. The temperature of the Universe when the relaxion
starts to oscillate is given as Tos ∼min ½Tra;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕMPl

p �,
where Tra is the temperature of the Universe when the
backreaction potential appears again, and the second term
in the square brackets is obtained by 3HðTosÞ ¼ mϕ. The
resulting relic abundance at the present Universe is
Ωϕ ¼ mϕYϕsðt0Þ=ρcrit, which can be written as

Ωϕh2 ≈ 3 × ðΔθÞ2T¼Tos

 ffiffiffiffiffiffiffiffiffi
mϕf

p
1 GeV

!
4�

100 GeV
Tos

�
3

; ð2Þ

where the observed DM abundance is ΩDMh2 ≃ 0.12 [12].
We assume that the relaxion is trapped right after the
reappearance of the backreaction potential, i.e., at T ¼ Tra.
To realize the nonvanishing misalignment angle, we

consider the Universe with a reheating temperature well
above the critical temperature of the EW phase transition.
In this case, as we have already portrayed above, the
relaxion begins to evolve after the reheating since the
Higgs-dependent backreaction potential has disappeared.
The evolution is governed by the relaxion equation of
motion, ϕ̈þ 3H _ϕ − gΛ3 ≃ 0, where the solution is _ϕðtÞ ¼
2
5
gΛ3t½1 − ðtrh=tÞ5=2� with a proper time at the reheating trh.

Because of this evolution, the relaxion can naturally be
misaligned from its local minimum by ΔϕðtÞ=f ¼
m2

0=20H
2ðtÞ modulo 2π, where m2

0 ¼ μ2v2=f2 ≡ Λ4
br=f

2.
Note that this mass scale m2

0 is different from the physical
mass of relaxion m2

ϕ at each local minimum. We discuss
this in more detail below.
Another necessary condition for relaxion DM is that the

backreaction potential should be able to trap the relaxion,
once it appears again at some temperature T ¼ Tra [13].
Finding a relaxion-trapping condition is not possible with-
out describing the detailed shape of the relaxion potential
around its local minimum because it crucially depends on
the potential height and the separation between local
extrema. For this reason, we briefly discuss the detailed
shape of the relaxion potential around its local minima [14].
To determine the relevant part of the relaxion potential,

we trace back to the relaxion evolution during inflation. In
the original relaxion scenario, the relaxion stops its
classical evolution when the slope of the backreaction
potential, V 0

brðϕÞ ¼ −ðμ2v2=fÞ sinðϕ=fÞ, becomes larger
than the slope of the rolling potential, V 0

rollðϕÞ ¼ −gΛ3, for
the first time. The potential height ΔV and the separation
ðΔθÞsep between local extrema at the stopping point are
particularly important for our discussion, as they determine
the maximum misalignment angle and the maximum
energy density of the relaxion field. When the classical
stopping condition, V 0

roll þ V 0
br ¼ 0, is met for the first

time, we find

ΔV ¼ δ3Λ4
br; ðΔθÞsep ¼ 2δ; m2

ϕ ¼ δm2
0; ð3Þ

where δ ¼ μ=Λ, mϕ is the physical relaxion mass, and ΔV
and ðΔθÞsep are the potential height and the distance
between the first local minimum and maximum, respec-
tively. Note that all quantities are suppressed by an addi-
tional small parameter δ compared to what we would
naively expect from Vbr. This is due to the fine scanning of
the electroweak scale; the Higgs VEV changes by
Δv2=v2 ≃ δ2 for each Δϕ ∼ f, and thus, the slope of the
backreaction potential increases only incrementally. Thus,
the first two solutions of V 0 ¼ V 0

roll þ V 0
br ¼ 0 are close to

each other in the field space by δ, and the mass at the first
local minimum is also suppressed by some power of δ
because the distance between the local minimum and the
inflection point, which is a solution of V 00 ¼ 0, vanishes as
δ → 0. A similar argument also applies for nth local
minima by replacing δ → δn ¼

ffiffiffi
n

p
δ. We provide more

detailed arguments on this in Appendix B.
The potential height, the physical relaxion mass, and the

separation between local extrema depend on the minimum
at which the relaxion is stabilized, which is relevant for the
discussion of relaxion dark matter. Thus, it is crucial to
correctly identify the minimum at which the relaxion is
stabilized by the end of inflation, which will be the initial
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condition of relaxion evolution after reheating. If the
Hubble expansion parameter during inflation is smaller
than the potential height at the first minimum, ΔV > H4

I ,
the tunneling rate is exponentially suppressed, so the
relaxion is likely to be stabilized at the first minimum.
In the other case, ΔV < H4

I , the relaxion tunnels to the
point where ΔV ≃H4

I due to quantum tunneling. As we
will see below, for the parameter space where the relaxion
DM can be realized, the potential height at the first
minimum is larger than H4

I , even if we take the largest
inflationary Hubble parameter that is allowed by the
relaxion scenario. For this reason, we assume below that
the relaxion begins to evolve from the first local minimum
after reheating.
Now, we discuss the relaxion-trapping condition. When

the backreaction potential appears again after reheating, the
slope of the total relaxion potential would be ∼δ2Λ4

br=f
from the local minimum to the local maximum, while the
relaxion velocity at this moment is H _ϕ ∼ Λ4

br=f ≫
δ2Λ4

br=f. Thus, for the evolution from the local minimum
to the maximum, we may ignore the potential slope, and,
from the equation of motion, ϕ̈þ 3H _ϕ ≃ 0, the relaxion
velocity quickly redshifts as _ϕ ∝ a−3. The subsequent
evolution of the relaxion is dominantly determined by its
velocity at Tra, and if the total field excursion of the
relaxion is smaller than ðΔθÞsep, the relaxion will be
trapped by the backreaction potential. The total field
excursion is

ðΔθÞmis ≃
Z

∞

trh

dt
_ϕ

f
¼ 1

4

m2
0

H2
ra
: ð4Þ

Thus, we impose the relaxion stopping condition as

ðΔθÞmis < ðΔθÞsep ¼ 2δ: ð5Þ

Note that ðΔθÞmis is the misalignment angle that determines
the relic abundance in Eq. (2). Given ðΔθÞmis < ðΔθÞsep,
the relaxion evolves less than Δϕ ¼ 2πf, and thus the
Higgs mass does not change after reheating in this minimal
scenario.
From the relaxion-trapping condition, Eq. (5), the mass

of the physical relaxion is always smaller than the Hubble
expansion parameter at T ¼ Tra. This indicates that the
coherent oscillation begins after the reappearance of the
backreaction potential, i.e., Tos ∼ ðmϕMPlÞ1=2 < Tra. As a
consequence, the relic abundance depends on relaxion
parameters as Ωϕh2 ∝ m19=6

ϕ f2=3, which has a sharp
dependence on the relaxion mass. We could also find a
relaxion DM window for the minimal scenario as

5 × 10−11Λ
8
11

TeV

�
MPl

f

�20
11 ≲mϕ

eV
≲ 10−8Λ−4

7

TeV

�
Tra

150 GeV

�20
7

;

ð6Þ

where ΛTeV ¼ Λ=TeV. For the upper bound, we take f
such that the misalignment angle saturates to its maximum
value, while for the lower bound, we require f to be sub-
Planckian and choose the smallest Tra such that we still
satisfy the relaxion-trapping condition. When Λ ≃ 1 TeV
and f ¼ MPl, the smallest relaxion DM mass is around
5 × 10−11 eV, and Tra ≃ 10 GeV.
We finish this section by noting that there is a certain

region that potentially leads to a relaxion overabundance,
resulting in a new constraint on minimal models:

mϕ ≲ 10−8 eV

�
Tra

v

�48
19

�
MPl

f

� 4
19

�
10 TeV

Λ

� 8
19

: ð7Þ

IV. DISSIPATION FROM DARK PHOTONS

The main difficulty for the heavier relaxion is that the
field velocity _ϕ is too large to be trapped by the back-
reaction potential. However, the model’s parameter space
can be extended to a heavier relaxion mass once we
introduce couplings to new fields, which are responsible
for an additional dissipation channel for relaxion. In
particular, adding a coupling to dark photons via the
operator ðrX=4fÞϕXμνX̃μν, with the dark photon field
strength Xμν ¼ ∂μXν − ∂νXμ, and its dual X̃, would lead
to a new source of dissipation (see e.g., [15,16]). The new
interaction introduces a source term to the equation of
motion for the relaxion,

ϕ̈þ 3H _ϕþ ∂Vðv;ϕÞ
∂ϕ ¼ −

rX
4fa4

hXμνX̃μνi; ð8Þ

providing an additional channel for the relaxion to dissipate
its kinetic energy. At the same time, nonzero kinetic energy
triggers an exponential production of dark photons. To
illustrate this point, we first expand the dark photon field in
Fourier space,

X⃗ðτ; x⃗Þ ¼
Z

d3k
ð2πÞ3

X
λ¼�

½ϵ⃗λðk̂Þak⃗;λeik⃗·x⃗Xλðτ; k⃗Þ þ H:c:�;

and find the equation of motion for the dark photon as
X00
� þ ðk2 ∓ rXkθ0ÞX� ¼ 0, where the prime denotes a

derivative with respect to the conformal time,
dτ ¼ dt=aðtÞ, and θ≡ ϕ=f. The nonvanishing classical
background, θ0 ≠ 0, leads to the exponential production of
one of the helicity modes. Thus, eventually, the source term
in the equation of motion becomes comparable to the other
terms, effectively alleviating the slope of the relaxion

COHERENT RELAXION DARK MATTER PHYS. REV. D 100, 115026 (2019)

115026-3



potential. As a result, the relaxion field velocity approaches
an asymptotic value [15], j_θXj≡ rξH, where the coefficient
rξ depends on the relaxion parameter only logarithmically;
numerically, it takes a value around ξ≡ rξrX ∼Oð10Þ [17].
The timescale at which this particle production kicks in
is 2tpp ¼ H−1

pp ≃ ð5rξÞ1=2m−1
0 . Once particle production

becomes efficient, the relaxion kinetic energy is a decreas-
ing function in time.
In the presence of a dark photon, we find the total field

excursion from the reheating to the temperature at which
the backreaction potential appears again as

Δϕ
f

≃
m2

0

20H2
pp
þ rξ

2
ln

�
Hpp

Hra

�
≃
rξ
2

�
1

2
þ ln

�
Hpp

Hra

��
: ð9Þ

This indicates that the total field excursion is Δϕ=f ¼
OðrξÞ, and it only logarithmically depends on model
parameters. For the following discussion, we choose dark
photon coupling such that rξ ¼ ξ=rX ¼ OðδÞ, indicating
that the particle production is triggered before the reappear-
ance of the backreaction potential, and this field excursion
can be directly interpreted as the misalignment angle
ðΔθÞmis ∼OðδÞ. This choice of dark photon parameter
corresponds to a hierarchy between the relaxion periodicity
f and its coupling to the dark photon f=rX, which can be
achieved in a technically natural way by a clockwork
mechanism [8,9,18,19].
The relaxion begins to oscillate when the temperature of

the Universe becomes Tos ≃min½ðMPlmϕÞ1=2; Tra�. If
Tos ¼ Tra, i.e., the relaxion begins to oscillate right after
the reappearance of the backreaction potential, the relic
abundance is estimated as

Ωϕ

ΩDM
∼ 0.1Λ−4

3

TeV

�
f

1015 GeV

�10
3

�
mϕ

10−5 eV

�10
3

; ð10Þ

where we have chosen Tra ¼ 50 GeV. If Tos ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlmϕ

p
,

then the relic abundance is estimated as

Ωϕ

ΩDM
∼ 0.1Λ−4

3

TeV

�
f

1015 GeV

�10
3

�
mϕ

10−5 eV

�11
6

: ð11Þ

Note that for this choice of parameters, Tos ≃ 50 GeV and
g⋆ðTosÞ ≃ 97. For both estimations, we have assumed
that ðΔθÞmis ≃ 2δ.
We note that, as we consider the coherently oscillating

relaxion DM, its mass should be less than ∼10 eV in order
to be described by the classical field (see for instance [20]).
For this range of relaxion mass, the possible decay channels
are into two photons and two dark photons, Γ ¼ Γγγ þ ΓXX.
The decay rate to two dark photons is

ΓXX ¼ r2X
64π

m3
ϕ

f2
∼

Λ4=3
TeV

102 Gyr

�
1011 GeV

f

�10
3

�
mϕ

eV

�5
3

; ð12Þ

where we have chosen rX ¼ ξ=δ and assumed ξ ¼ 25. As
the mixing angle between the relaxion and the Higgs can be
at most sin θhϕ ∼ v=f, the partial width to the diphoton is
subdominant relative to its decay into a dark diphoton
[21,22]. Since the decay of dark matter into relativistic
particles affects the spectrum of cosmic microwave back-
ground at low-l multipoles, the lifetime is constrained as
Γ−1 > 160 Gyr [23], only mildly constraining our model’s
parameter space.
We comment on the possibility of parametric reso-

nance during the oscillation phase of relaxion DM. We
have assumed that the relaxion oscillates around its local
minimum after Tos while ignoring particle production
during this period. For rXðΔθÞsep ≳Oð10Þ, it has been
demonstrated that exponential production of dark photons
from parametric resonance would lead to a suppression in
the resulting DM abundance [24,25]. This suppression
factor is at most ∼10−2 for rXðΔθÞsep ∼Oð102Þ so that
the relaxion could still be a viable dark matter candidate
[25]. Nevertheless, we consider rX ∼Oðξ=δÞ so that
rXðΔθÞsep ≃ ξ, and thus, the parametric resonance during
the coherent oscillation phase can be ignored.

V. OTHER CONSTRAINTS

In the minimal relaxion model with sub-eV relaxion
mass, additional constraints on our scenario are from long-
range forces and observational data on the history of
astrophysical bodies, such as red giants, and stars on
horizontal branches, which have been investigated thor-
oughly in [21,26]. Among them, fifth force experiments are
the ones that significantly restrict the parameter space in the
dark photon scenario.
Another restriction on parameter space may arise

from overproduction of dark photons. In the presence
of relaxion-dark photon coupling, the evolution of the
relaxion after reheating continuously produces dark
photons, and their energy density at Hra is estimated
to be ρXðTraÞ ∼ rξΛ4

br [15]. As we have assumed that the
Universe is dominated by radiation, we require this
energy density to be smaller than the radiation energy
density at the time of trapping, ρXðTraÞ≲ 3M2

PlH
2
ra ∼ T4

ra;
otherwise, the relaxion dominates the total energy
density of the Universe. This condition is also required
because the dark photon energy density increases ΔNeff
such that the relaxion DM model becomes incompatible
with successful big bang nucleosynthesis (BBN) and the
observation of cosmic microwave background (CMB).
For a given reappearance temperature, this requirement
can be translated into
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rξ ≲ g⋆ðTraÞΛ−2
3

TeV

�
Tra

10 GeV

�
4
�
GeV2

mϕf

�
4=3

: ð13Þ

We are interested in rξ ¼ ξ=rX ≃OðδÞ. This consideration
does not constrain the region of parameter space where the
relaxion DM can be realized for Tra ≳ 10 GeV.
In Fig. 1, we present the region of parameter space where

the relaxion could be coherent dark matter and also the
relevant constraints on our scenario. The black and red lines
represent Ωϕ ¼ ΩDM for a given choice of relaxion
parameters and Tra. It shows two characteristic behaviors
depending on the mass of the relaxion. For the light
relaxion mass, mϕ ≲ 3δHra, the Hubble friction itself is
enough to trap the relaxion at the reappearance time. This
minimal scenario corresponds to the red lines in both
figures. For relatively heavier relaxion mass, mϕ ≳ 3δHra,
the Hubble friction is not sufficient to trap the relaxion.
However, in the presence of dark photon production, the
evolution of the relaxion could still be controlled in a way
that it evolves less than ðΔθÞsep from the reheating to the
reappearance. After being trapped, the relaxion starts to
oscillate around its minimum at Tos. Some region of
parameter space for the dark photon scenario is already
incompatible with various considerations, for instance, fifth
force experiments (red shaded), Λbr > v (blue shaded), and
relaxion decays into two dark photons (orange shaded in
the right panel). Note also that the blue dashed line in the
left panel corresponds to ΔV ¼ δ3Λ4

r ¼ ðHIÞ4max, from
which we see that, for all available parameter space of
relaxion dark matter, the potential height at the first local
minimum is already larger than the maximum H4

I .

VI. DISCUSSION

We have shown how relaxion models with large reheat-
ing temperatures can reproduce the observed dark matter
relic abundance. The relaxion behaves as a classical field
similar to axion models but does not require any specific
value of misalignment angle as an initial condition. On the
one hand, the relaxion is an axionlike particle with its mass
protected by an approximate shift symmetry, while, on the
other hand, the relaxion mixes with the Higgs boson and
behaves as a classical coherent scalar DM despite the fact
that it has nothing to do with the dilaton or scale-invariance
symmetry. The physical relaxion is not aCP eigenstate, and
this allows the relaxion to have both scalar coupling and
pseudoscalar coupling to SM particles. Due to axionlike
coupling to SM particles, axion DM searches such as
CASPEr, GNOME, etc. can be applied to our relaxion DM
scenario (see e.g., [30] and references therein). These
experiments are trying to probe various spin-dependent
effects induced by axions and/or axionlike particles. More
interestingly, due to the mixing with the Higgs, funda-
mental parameters in the SM, such as the mass of SM
fermions and the fine structure constant, could oscillate
because of coherent oscillation of relaxion DM (an effect
that is far larger than the one resulting from the coupling in
charge of scanning the Higgs mass [1]). A change of
fundamental constants induced by the coherent dark matter
field is actively being investigated with precision measure-
ments, such as atomic clocks [31–33], as the energy level of
atomic system changes according to the dark matter
oscillation. Although it is challenging to probe oscillations
of fundamental constants induced by local DM at these

FIG. 1. A parameter space for coherent relaxion dark matter in the plane of relaxion mass and decay constant (left) and in the plane of
relaxion mass and mixing angle with the Higgs (right). The cutoff is chosen as Λ ¼ 1 TeV for both figures. The red lines describe
regions consistent with the observed DM relic density without the dark photon, while the black lines are with the dark photon. We have
chosen Tra ¼ 150 GeV (dotted), 50 GeV (dashed), and 15 GeV (solid). The red shaded region is excluded by experiments testing long-
range forces [27–29] following the procedure described in [21], and the blue shaded region corresponds toΛbr ≳ v. The blue dashed line
in the left panel corresponds to δ3Λ4

br ¼ ðHIÞ4max ¼ ðΛ4
br=fÞ4=3 above in which the fourth root of the potential barrier at the first local

minimum is already larger than the maximum inflationary Hubble scale, ðHIÞmax. In the orange shaded region (right), the relaxion
decays into two dark photons, leaving observable signatures in the CMB spectrum. Above the orange dashed line in the right panel, the
relaxion decay constant takes a super-Planckian value.
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frequencies, a few recently proposed techniques [34,35]
might be able to probe a certain part of parameter space in
special cases where relaxion DM forms compact objects,
gravitationally bounded by the Solar System [36].
We finally note that Ref. [37], which discusses the

possibility of the relaxion being a particle dark matter with
low reheating temperature, Trh ∼ 30 MeV, which is very
close to the BBN temperature, recently appeared.
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APPENDIX A: EQUATIONS OF MOTION AND
ASYMPTOTIC BEHAVIOR OF RELAXION

The equations of motion for the relaxion and dark photon
are given as

0 ¼ ϕ̈þ 3H _ϕþ ∂Vðv;ϕÞ
∂ϕ þ rX

4fa4
hXμνX̃μνi; ðA1Þ

0 ¼ X00
� þ ðk2 ∓ rXkθ0ÞX�; ðA2Þ

where the prime and overdot denote a derivative with
respect to the conformal time and the physical time,
respectively, and θ≡ ϕ=f. The metric is given as

ds2 ¼ dt2 − a2ðtÞδijdxidxj: ðA3Þ

To investigate how the particle production affects the
relaxion evolution, it is more convenient to write the source
term in the relaxion equation of motion in Fourier space,

1

4a4
hXμνX̃μνi ¼ 1

a4

Z
d3k
ð2πÞ3

k
2

X
λ¼�

λ
d
dτ

jXλj2: ðA4Þ

Since the relaxion velocity is θ0 > 0 in our convention,
only λ ¼ þ helicity is exponentially produced, while the
λ ¼ − helicity state remains almost a vacuum fluctuation.
The relaxion evolution before the particle production is

dominantly governed by the slope of the relaxion potential.
At the very beginning of relaxion evolution, its solution in
the radiation-dominated Universe is approximated as

_ϕðtÞ ¼ 2

5
gΛ3t

�
1 −

�
trh
t

�
5=2
�
; ðA5Þ

jΔϕðtÞj ¼ 1

5
gΛ3t2

�
1 − 5

�
trh
t

�
2

þ 4

�
trh
t

�
5=2
�
; ðA6Þ

where trh is the physical time at the reheating. Using this
approximate solution, we can estimate the timescale at
which the particle production becomes important. For this
purpose, we use WKB approximation to solve the equation
of motion for the dark photon, and we find

Xþðk; τÞ ≈
e
R

τ dτ0Ωkðτ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩkðτÞ

p ≡ egkðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩkðτÞ

p ; ðA7Þ

where the frequency is defined as Ω2
kðτÞ ¼ rXkθ0 − k2, and

gkðτÞ≡ R τ dτ0Ωkðτ0Þ. This approximation is valid only
when jΩ0

k=Ω2
kj ≪ 1, which is translated into

1

4rX

���� θ
002

θ04

���� < k=jθ0j < rX: ðA8Þ

Substituting this solution to the source term, we find

1

4a4
hXμνX̃μνi ≈ 1

4π2a4

Z
dkk3e2gkðτÞ ∼

k4�
4π2a4

e2gk� ðτÞ:

For the last expression, we take a specific wave number for
the estimation, k� ¼ rXjθ0ðτÞj, which becomes stable at τ.
With this wave number, we estimate the source term as

1

4a4
hXμνX̃μνi ∼ r4Xj_θðtÞj4

4π2
exp

�
4rX
5

_θðtÞ
H

�
: ðA9Þ

When this term becomes comparable to the other terms in
the equation of motion, for instance, ∂Vðv;ϕÞ=∂ϕ, the dark
photon begins to affect the relaxion evolution. Equating the
source term with the slope of the relaxion potential, we
estimate the Hubble scale at the particle production as

Hpp ¼ m0

ffiffiffiffiffi
rX
5ξ

r
; ðA10Þ

where ξ is given as a solution of

ξ ¼ 5

2
ln

�
10π

r3=2X ξ

f
m0

�
∼Oð10 − 102Þ: ðA11Þ

The relaxion evolution after this timescale is difficult to
estimate as the equation becomes an integrodifferential
equation. Still, we know that the relaxion field velocity
must decrease with time. To see this, we consider the
constant relaxion kinetic energy. In this case, the dark
photon field with a constant internal wave number,
0 ≤ k ≤ rXjθ0j, experiences tachyonic instability at a con-
stant rate. This indicates that these wave numbers of dark
photons are exponentially produced, leading to an
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exponentially growing source. Therefore, the source term
cannot asymptote to the slope of relaxion potential with a
constant relaxion field velocity.
The relaxion field velocity must be a decreasing function

in time. Since we do not know the form of the asymptotic
solution, we introduce an ansatz for relaxion evolution, and
we ask which ansatz satisfies the equation of motion
asymptotically. We introduce

θ0ðτÞ ¼ θ0ðτppÞ
�
τpp
τ

�
n
; ðA12Þ

where the subscript indicates a value computed at the
timescale of particle production. It is interesting to observe
that n ¼ 1 allows scale-invariant production of the dark
photon. From Eq. (A2), at kτ ¼ constant surface, the dark
photon field is enhanced exactly the same amount relative
to its vacuum fluctuation regardless of wave number.
However, n ¼ 1 cannot be the asymptotic solution because
hXX̃i contributes to the relaxion equation of motion with
a−4 and also because the exponentially produced wave
number redshifts such that the integral over the tachyonic
wave number also scales as a−4. In other words, despite the
fact that the dark photon field,

ffiffiffiffiffi
2k

p
Xðk; τÞ, is enhanced by

exactly the same amount, its contribution to the relaxion
equation of motion redshifts as ∝ 1=a8, while ∂Vðv;ϕÞ=∂ϕ
remains constant. The relaxion evolution that allows the
dark photon source term to asymptote to the slope of the
potential would be the one with n < 1.
To estimate this more carefully, we use the WKB

solution again, in addition to the saddle-point approxima-
tion, and we find

1

4a4
hXμνX̃μνi ≃ e2gk̃ðτÞ

8π3=2

�
k̃
a

�
4
�
−k̃2

∂2gk
∂k2

����
k̃

�−1
2

: ðA13Þ

The saddle point k̃ is obtained as a solution of
∂gkðτÞ=∂kjk¼k̃ ¼ 0, and it is generally a function of
conformal time. To find the asymptotic solution, it is
crucial to know how gk̃ðτÞ scales because the source is
exponentially sensitive to it. By definition, the saddle point
satisfies

Z
τ
dτ0

rXθ0ðτ0Þ − 2k̃

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rXθ0ðτ0Þk̃ − k̃2

q ¼ 0; ðA14Þ

for any conformal time. If we shift τ → λτ with a scaling
parameter λ, the saddle point should scale as

k̃ → k̃λ ¼ λ−nk̃; ðA15Þ
in order to satisfy Eq. (A14). This immediately leads to

gk̃ðτÞ → λ1−ngk̃ðτÞ;
∂2gk
∂k2

����
k̃
→ λnþ1

∂2gk
∂k2

����
k̃
: ðA16Þ

Substituting this scaling behavior into the source term,
Eq. (A13), we notice that the source is a decreasing
polynomial of the scaling parameter for n ≥ 1, while it
exponentially grows for n ≪ 1. Thus, it is 0 < 1 − n ≪ 1
that allows the source term to asymptote to the slope of the
relaxion potential.
In this respect, we write 1 − n≡ ϵ ≪ 1. We find

a−4hXμνX̃μνiðτÞ
a−4pp hXμνX̃μνiðτppÞ

≈
�

τ

τpp

�
−8þ2ϵgk̃ðτppÞ

: ðA17Þ

From this, we find

ϵ ≈
4

gk̃ðτppÞ
∼
5

ξ
< 1; ðA18Þ

in order for a−4hXX̃i to asymptote to the slope of the
relaxion potential. Here, we have estimated the exponent
gk̃ðτppÞ from Eq. (A9). Using this result, we find the
asymptotic relaxion evolution as

θ0 ≃ θ0pp

�
τpp
τ

�
1−ϵ

¼ rξðaHÞ
�

τ

τpp

�
ϵ

; ðA19Þ

_θ ≃ rξH

�
t
tpp

�
ϵ=2

≃ rξH

�
1þ ϵ

2
ln

�
t
tpp

��
; ðA20Þ

where rξ ≡ ξ=rX. The relaxion evolution after the particle
production scales as _θ ∝ H, in addition to small logarithmic
time dependence, which we ignored in the main text.

APPENDIX B: RELAXION POTENTIAL
AROUND LOCAL MINIMA

We investigate the shape of the relaxion potential near
local minima. It is important to correctly describe the
potential near local minima because the distance between
local extrema determines the maximum misalignment
angle, the potential height determines the maximum mass
density that the relaxion potential can store, and finally the
relaxion mass determines the time of oscillation. One of the
technical difficulties in determining the relaxion quantities
near local minima is that the relaxion stops classical
evolution during inflation at the point where the rolling
potential finely balances the backreaction potential. The
overall shape of the potential near local minima is sub-
stantially distorted from Vbr by the rolling potential, and as
a consequence, the relaxion quantities, such as its mass and
potential height, could be several orders of magnitude
different from those naively computed from Vbr.
We discuss how the first local minimum appears in the

relaxion scenario, as well as the relaxion quantities at this
point. Before the relaxion finds the electroweak scale Higgs
mass, the slope of the relaxion potential is always V 0ðϕÞ<0
in our convention. Because of this potential slope, the
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relaxion evolves, while the Higgs mass and the back-
reaction potential gradually grow. Eventually, at some point
in field space, we will be able to find a solution to V 0ðϕÞ¼0
for the first time, and the solution to this equation is the first
local minimum in the relaxion field space where the
relaxion stops its classical evolution.
We compute the relaxion mass, the potential height, and

the distance between local extrema at this point. For a more
quantitative discussion, we denote ϕ=f ¼ 2πmþ θ, where
m is an integer number and θ ∈ ½0; 2π�. We also define m�
to be the smallest integer number for which V 0ðm�; θÞ ¼ 0
has a solution for θ ∈ ½0; 2π�. To compute the relaxion
quantities, we first observe that maxV 0ðθÞjm¼m� ¼ Oðδ2Þ.
This is quite natural because, for each Δm ¼ 1, the Higgs
mass changes by Δv2=v2 ¼ ðμ=ΛÞ2 ¼ δ2 and so does the
backreaction potential, ΔV 0

br=V
0
br ¼ δ2. With this observa-

tion, we expand the first derivative of the relaxion potential
around its maximum,

V 0ðθÞ ≈maxV 0ðθ�Þ þ
V 000ðθ�Þ

2
ðθ − θ�Þ2 þ � � � : ðB1Þ

Thus, the distance between the local maximum and mini-
mum, which will become the maximum misalignment
angle, is

ðΔθÞsep ¼ 2

�
2maxV 0

jV 000j
�

1=2
∼

2δffiffiffiffiffiffiffiffiffiffiffi
sin θ�

p : ðB2Þ

The physical relaxion mass at the local minimum can be
obtained by taking another derivative on Eq. (B1),

m2
ϕ ≃

1

2
ðΔθÞsepV 000ðθ�Þ ∼

δm2
0ffiffiffiffiffiffiffiffiffiffiffi

sin θ�
p ; ðB3Þ

while the potential height between local extrema can be
obtained by integrating Eq. (B1) over jθ − θ�j < ðΔθÞsep=2,

ΔV ≃ ðΔθÞsep maxV 0ðθ�Þ ∼
δ3Λ4

brffiffiffiffiffiffiffiffiffiffiffi
sin θ�

p : ðB4Þ

The field value θ� is the value at which V 00 ¼ 0, or in other
words, the slope of the potential V 0 is maximized within
θ ∈ ½0; 2π�. Since the maximum of V 0 coincides with the
maximum of V0

br, we see that θ� ≃ π=2, and thus, sin θ� ∼ 1

[Here, we assume μ < v such that the Higgs VEV can be
approximated as a constant. If v ≲ μ≲ 4πv, then the Higgs
VEV itself has a non-negligible dependence on the relaxion
field, hjHj2i ¼ ðv2 þ μ2 cos θÞ=2. As a consequence, the
slope of the potential is maximized at θ� ≃ π=4 instead of
π=2]. It is straightforward to generalize these expressions for
the nth local minimum by noting that maxV 0 ¼ Oðnδ2Þ.
Thus, at the nth minimum, we can still use all of the above
expressions by replacing δ → δn ¼

ffiffiffi
n

p
δ.
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