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We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses
allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino
masses in a type-I seesaw. We first present the general idea in a model-independent way. This allows us to
estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then
present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and
lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses
must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.
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I. INTRODUCTION

The simplest possibility to generate the Weinberg
operator [1],

OW ¼ 1

Λ
LLHH; ð1Þ

is certainly the type-I seesaw mechanism [2–4] given by the
diagram in Fig. 1. In the classical type-I seesaw the Yukawa
vertices are point-like (YνL̄HνR) and the smallness of the
neutrino masses is controlled by the large Majorana mass
(Λ ∼MR) of the right-handed neutrinos νR.
After electroweak symmetry breaking with the Higgs

vacuum expectation value (VEV), v≡ hH0i, the Weinberg
operator (1) leads to the light active neutrino Majorana
mass terms. In one-generation notation, the active neutrino
mass is then given by the well-known relation

mν ≈m2
D=MR; with mD ¼ YνhH0i: ð2Þ

Assuming that the Yukawas entering mD take values of
order Oð1Þ, current neutrino data [5] would then point to

MR ∼ 10ð14–15Þ GeV. This setup, apart from being able to
explain neutrino oscillation data, leads to only one exper-
imentally “testable” prediction: neutrinoless double-beta
decay should be observed at some level (for reviews on
0νββ decay see, for example, Refs. [6,7]).
Here, we instead discuss a simple idea that allows for a

much lower scale MR, even for all involved Yukawa
couplings of order Oð1Þ, by effectively generating the
Dirac mass term corresponding to the Yukawa vertices
in Fig. 1. To this end, one can claim that the elementary
Yukawa coupling is forbidden by some symmetry, which
being softly broken allows one to generate these vertices at
a certain loop level directly or via higher-dimensional
effective operators of the form

κ

M2n L̄HνRðH†HÞn; ð3Þ

where M is the scale of new physics underlying these
operators (supposedly somewhere above the electroweak
scale) and κ is a loop-suppression factor. TheDiracmass term
is generated by the operator (3) after the electroweak
symmetry breaking.We assume that only the standardmodel
(SM) Higgs acquires a VEV, though it is straightforward to

FIG. 1. Effective type-I seesaw. The neutrino mass is sup-
pressed by the Majorana mass of νR and by the square of the
Dirac Yukawa term Yν which is generated effectively; see Eq. (4).
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generalize this to non-SMHiggses withVEVs as well. Then,
the resulting effective Yukawa couplings would be sup-
pressed as

Yν ∼
�

1

16π2

�
l
�
v2

M2

�
n

; ð4Þ

where l is the number of loops in the diagram generating the
operator (3).
As Yν is generated effectively, it can be naturally small,

while all couplings arising in the UV-complete theory can
take values of order Oð1Þ.
As shown in the next section, right-handed neutrino

masses of order the electroweak scale are quite possible in
this setup. Such moderately heavy right-handed neutrinos
could be searched for in accelerator-based experiments via
displaced vertices. The topic of “long-lived light particles”
has attracted much attention in the recent literature [8].
A number of recent experimental proposals [9–12] could
search for this signal. Sensitivity estimates for right-
handed neutrinos for these experiments can be found in
Refs. [13,14], and those for the main LHC experiments can
be found in Refs. [15–17].
As we already mentioned, in order to forbid tree-level

Dirac Yukawa couplings, it is necessary to postulate some
additional symmetry beyond the SM gauge group. This
symmetry could be either gauged or discrete. For simplic-
ity, in our model constructions we will concentrate on
discrete symmetries, starting with a Z4 symmetry that gets
softly broken to an exact remnant Z2 symmetry. Thus, the
same symmetry responsible for explaining the smallness
of the neutrino mass is able to stabilize a dark matter
candidate too.
In our setup neutrinos are Majorana particles. However,

our constructions have some overlap with papers on Dirac
neutrinos. The possibility that Dirac neutrino masses are
small because they are radiatively generated has been con-
sidered already in the pioneering works of Refs. [18–22].
Some general considerations on how to obtain small
Dirac neutrino masses have been discussed in Ref. [23].
Systematic studies of one-loop and two-loop Dirac neutrino
masses were given in Refs. [24] and [25], respectively. Also
the generation of d ¼ 6 Dirac neutrino masses has been
considered [26].
Closer to our work are the neutrino mass models

presented in Refs. [27,28]. As in our current paper, in
these models neutrinos are Majorana particles with radi-
atively generated Dirac mass terms. However, both of these
papers presented just one particular one-loop example
model, while we formulate general conditions for the
implementation of the radiative seesaw type-I mechanism
at any loop order. We also describe in more detail two
specific models at the one- and two-loop level. Moreover,
different from the example model in Refs. [27,28], our
models also have a candidate for cold dark matter.

The rest of this paper is organized as follows. In the next
section we discuss the radiative generation of neutrino
Dirac couplings from a model-independent point of view.
This allows us to estimate the typical scales for the
Majorana mass of neutrinos as a function of the loop
level, at which the Dirac couplings are generated. In Sec. III
we discuss two concrete example models at the one-loop
and two-loop level. We estimate the neutrino masses for
these models in more detail, discuss possible constraints
from lepton flavor violation, and then turn briefly to dark
matter. We then close with a short summary and outlook.

II. RADIATIVE TYPE-I SEESAW

In this brief section we discuss the radiative generation
of neutrino Dirac Yukawa couplings from a model-
independent point of view. Here we consider only the
d ¼ 4 Dirac mass operator LHν̄R generated via loops. The
mass of the light active neutrinos arises from the diagram
depicted in Fig. 1 and is given by Eq. (2).
For simplicity, we limit ourselves to discussing the

phenomenologically unrealistic case of one massive neu-
trino with no hierarchy or flavor structure for the Yukawas.
This is sufficient for discussing the parameter dependence,
and extending to three generations of active neutrinos is
straightforward. The Dirac Yukawa Yν can be parametrized
in general in terms of five exponents ðl; α; β; γ; δÞ ∈ Nþ,
whose values will depend on the specific UV-complete
realization of the operator YνLHν̄R as

Yν ∼
�

1

16π2

�
l
�
mτ

v

�
α
�
MF

Λ

�
β
�
μ

Λ

�
γ

ϵδ: ð5Þ

This corresponds to effectively generating the Yukawa via a
diagram with the following features:
(1) l loops.
(2) α insertions of SM Yukawas. Unless the UV model

allows for a top quark in the loop, this corresponds to
a suppression of typically ∼10−2 from YSM

τ (or YSM
b ).

(3) β mass insertions of new (vector-like) fermions that
are not part of the SM, all set to MF for simplicity.

(4) γ dimensionful couplings in the scalar sector, i.e.,
trilinear scalar couplings.

(5) δ dimensionless couplings, such as Yukawas or four-
point scalar couplings.

For a UV-complete model which is genuine, i.e., gives the
dominant contribution to the neutrino mass, the possible
sets of values of these exponents are limited. For example,
for the most simple case of a one-loop Dirac mass term,
there are only two genuine diagrams [24] with one or two
mass insertions and, at least, three couplings. So, for l ¼ 1
it is not possible to generate a genuine diagram with, for
instance, α; β > 2. The possible combinations of ðα; β; γ; δÞ
can be deduced from the systematic studies of radiative
Dirac models given in Refs. [24,25].
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For our numerical estimates, we assume that all cou-
plings are in the perturbative regime, i.e., ϵ≲ 1.1 If μ is a
trilinear coupling between some beyond-the-SM scalar and
the Higgs, it enters in the calculation of the stability of the
Higgs potential, i.e., it will induce a modification of the
quartic Higgs coupling at the one-loop level. Thus, we also
assume that μ≲mS ≡ ϵmS in order to not run into
problems with the SM Higgs sector. With these consid-
erations the light neutrino mass can be written in terms of
the same five exponents, using the seesaw relation (2),

mν∼
�

1

16π2

�
2l v2

MR

�
mτ

v

�
2α
�
MF

Λ

�
2β
�
mS

Λ

�
2γ

ϵ2ðγþδÞ: ð6Þ

As this equation shows, neutrino masses generated from
this class of models will be very suppressed. If, for instance,
the Dirac neutrino mass arises at two-loop order, then mν

will effectively come from a four-loop diagram with an
extra suppression due to the Majorana scale MR. Thus, for
relatively low masses of the order of TeV and couplings of
order one, a reasonable neutrino mass can be easily
obtained.
A rough but conservative limit on the Majorana mass

scale can be obtained setting all masses in the loop to the
same scale Λ ¼ MF ¼ mS. Conservatively taking ϵ ¼ 1,
we find

mν ∼
�

1

16π2

�
2l v2

MR

�
mτ

v

�
2α

: ð7Þ

Note that the scale Λ does not appear in this simple case in
the expression for mν. This is to be expected, given the
d ¼ 4 nature of the neutrino Dirac coupling. Taking
as a reference scale the atmospheric neutrino massffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
p

≈ 0.05 eV, we can set upper limits on MR as a
function of the exponents l and α. The limits are given in
Table I up to three loops and two SM Yukawa insertions.
The numbers given correspond to couplings of order one.
Obviously, MR decreases very fast as α or l increases.

This is due to the fact that for Majorana neutrinos mν

depends quadratically on Yν, rather than linearly. For α ¼ 1

and l ¼ 2 one finds a scale of MR ∼ 102 GeV, and similar
values for α ¼ 2 and l ¼ 1 or α ¼ 0 and l ¼ 3. These are
phenomenologically the most interesting cases.
Apart from the upper limit on the Majorana mass coming

from the neutrino mass scale, lower limits onMR can be set
from big bang nucleosynthesis [29] and the effective
number of neutrinos in the early Universe ΔNeff [30].
These limits depend on the mixing angle between the
right-handed and active neutrinos (as a function of the

mass MR). For our class of models, as for the ordinary
type-I seesaw, one expects MR ≳ ð0.1–1Þ GeV from these
considerations [29,30]. This significantly constrains the
space of possible models to only those with three loops or
less and at most two SM mass insertions (for the one-loop
case). Therefore, in the next section we will discuss two
model examples in more detail: a one-loop model and a
two-loop model.

III. EXAMPLES OF MODELS

In this section we show two simple models where the
Dirac mass is generated at one and two loops, both
containing a stable dark matter candidate that participates
in the loop. We give an estimate of the neutrino mass scale
involved for a simplified benchmark, as well as insight into
the phenomenological constraints coming from charged
lepton-flavor-violating processes.

A. One-loop Dirac mass

The particle spectrum of the model and their assignments
under the SM gauge and Z4 discrete symmetry are shown in
Table II. Notice that we have assumed a Z4 symmetry,
which is softly broken down to the preserved Z2 symmetry,
in order to guarantee that the Dirac neutrino mass matrix is
generated at the one-loop level. The scalar sector of the
model is composed of the SM Higgs doublet H, the inert
SUð2ÞL scalar doublet η, and the electrically charged gauge
singlet scalar S−. In addition, the SM fermion sector
is extended by the inclusion of a right-handed Majorana
neutrino νR

2 and the vector-like charged leptons χL and χR.
The relevant terms for the neutrino mass take the forms

−LY ¼ YeLH†ec þ YLLη† χL þ YR χRSþνR þ H:c:; ð8Þ

LM ¼ MRν
c
RνR þM χ χR χL þ H:c:; ð9Þ

TABLE I. Estimated values for MR needed to fit a neutrino
mass of 0.05 eV with couplings of order one for different
realizations of the Dirac mass operator LHν̄R, considering l
loops and α SM Yukawa insertions. These mass scales constitute
a rough but conservative upper limit for MR for each class of
models parametrized by the exponents l and α in Eq. (7).

MR α ¼ 0 α ¼ 1 α ¼ 2

l ¼ 1 2 × 1010 GeV 2 × 106 GeV 2 × 102 GeV
l ¼ 2 106 GeV 102 GeV 9 × 10−3 GeV
l ¼ 3 4 × 101 GeV 4 × 10−3 GeV 4 × 10−7 GeV

1It is often argued that perturbativity only requires Yukawa
couplings to be Y ≲ ffiffiffiffiffi

4π
p

. However, saturating this limit would
imply that higher-order contributions are (at least) equally
important than the leading order (that we consider), thus render-
ing estimates effectively inconsistent.

2We repeat that here we are only interested in a rough estimate
for the neutrino mass scale. For phenomenological reasons, one
would need at least two right-handed neutrinos that generate the
solar and atmospheric neutrino mass. Since fits of the type-I
seesaw to neutrino data are straightforward and have been done
many times in the literature, we do not repeat these details here.
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where flavor indices and SUð2Þ contractions have been
suppressed for brevity.
The terms above generate the Dirac neutrino mass matrix

at the one-loop level through the diagram shown in Fig. 2
provided the following Z4 trilinear soft-breaking term is
added to the scalar potential:

V ⊃ μSHηS− þ H:c: ð10Þ

The softly broken Z4 guarantees that the Dirac mass term is
forbidden at the tree level but generated by loops, i.e., that
the diagram is genuine (irreducible) [24].
The Dirac mass term can be computed directly from the

diagram in Fig. 2 given the Lagrangians (8) and (9) and the
soft-breaking term. In the mass insertion approximation
and, for simplicity, setting all of the masses of the internal
scalars as well as the soft-breaking parameter μS to mS, one
finds

mD ≈
1

16π2
vmS

M χ
YLYRI1ðm2

S=M
2
χÞ: ð11Þ

The loop integral I1ðxÞ can be written in terms of the
Passarino-Veltman B0 function [31] as

I1ðxÞ ¼
1

1 − x
½B0ð0; 1; xÞ − B0ð0; x; xÞ�: ð12Þ

The mass scale of the lightest active neutrino can be
directly estimated through the seesaw approximation as

mν ∼
�

1

16π2

�
2

Y2
LY

2
R

v2m2
S

M2
χMR

½I1ðm2
S=M

2
χÞ�2: ð13Þ

This mass scale as a function of MR is plotted in Fig. 3.
Two different benchmarks with M χ ¼ MR and mS ¼ M χ

are represented by the solid and dashed lines, respectively.
For both cases, we can observe that the neutrino mass is
strongly suppressed even for small values of MR. In the
mS ¼ M χ scenario, the neutrino mass falls as ∼1=MR

independently of the one-loop internal scalar masses.
Moreover, in the M χ ¼ MR scenario the neutrino mass
is a function of both mass scales mS and MR. It behaves as
MR or 1=M3

R depending on which of these two scales
dominates the loop.
The window of allowed MR values that could fit the

neutrino oscillation scale mν ∼ 0.05 eV becomes narrower
for larger masses mS. Note that in Fig. 3 the neutrino mass
is plotted for order-one couplings. Consequently, the points
with a neutrino mass lying roughly below the atmospheric
scale are phenomenologically nonviable, as they would
require couplings larger than one (nonperturbative) to give
a reasonable mass scale.
Current upper limits on lepton-flavor-violating (LFV)

decays such as μ → eγ can provide constraints on the

FIG. 2. One-loop Dirac neutrino mass. The diagram is realized
when the Z4 is softly broken (denoted by the symbol ⊗). As the
symmetry is broken into two units, the diagram is still invariant
under a remnant Z2 of Z4.

TABLE II. Particle content of the example model that generates
the one-loop diagram of Fig. 2 once the Z4 is softly broken by the
trilinear term HηS−. After the breaking of Z4 a remnant Z2 is
exactly conserved.

Fields SUð3ÞC × SUð2ÞL ×Uð1ÞY Z4 Residual Z2

L (1; 2;−1=2) 1 1
ec (1; 1; 1) 1 1
νR (1; 1; 0) −1 1
H (1; 2; 1=2) 1 1
(χL, χR) (1; 1; 1) (i; i) (−1;−1)
η (1; 2; 1=2) i −1
S− (1; 1;−1) i −1

FIG. 3. One-loop neutrino mass scale. The dashed line corre-
sponds to the case where mS ¼ M χ , while the solid lines depict
the case where M χ ¼ MR for different scalar masses. The
Yukawas YL and YR are set to 1. Big bang nucleosynthesis
(BBN) excludes MR > ð0.1–1Þ GeV, depending on mixing, for
this class of models [29].
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parameters of our model. These depend on specific choices
for the Yukawas YL and YR. As Eq. (13) shows,mν depends
on the product of these couplings, while LFV decays are
mostly sensitive to only YL. There are then two extreme
cases: (i) choose YL ≃ 1 and fit YR tomν as a function of the
other model parameters, or (ii) choose YR ≃ 1 and fit YL.
Case (i) is very similar to the situation in our two-loop
model (see Sec. III B), and thus we will discuss the details
in the next section. For case (ii), on the other hand, we
found that LFV limits do not impose interesting limits on
our one-loop model.
The residual Z2 symmetry ensures that the lightest of the

fields running inside the loop will be stable. In order to not
conflict with cosmology and to provide a good dark matter
candidate, one should force the neutral component of the
doublet η to be the lightest of the loop particles. Similar DM
candidates have been studied in the literature.3 Considering
η as the only source of dark matter, the observed relic
density, together with direct-detection limits and the con-
straints on the invisible width of the Higgs boson, severely
limit its mass to lie either around mh=2 ≃ 62.5 GeV, in a
small region around mη ≃ 72 GeV, or above mη ≳
500 GeV [34].

B. Two-loop Dirac mass

Analogously to the first example, we build a two-loop
radiative seesaw model that softly breaks a Z4 discrete
group to an exact Z2 symmetry. The particle content and
their transformation properties under the SM gauge and the
Z4 discrete symmetry are shown in Table III. We again
include a right-handed Majorana neutrino νR.
The relevant terms of the Lagrangian and the scalar

sector invariant under Z4 are

−LY ¼ YeLH†ec þ YLFLη2ec þ YRνRη2FL þ H:c:; ð14Þ

LM ¼ MRν
c
RνR þMFFRFL þ H:c:; ð15Þ

V ⊃ λη†1Hη†2H þ H:c: ð16Þ

An effective Dirac term is generated once the Z4

symmetry is softly broken in the scalar sector by the term

−Lsoft ¼ μ212η
†
2η1 þ H:c: ð17Þ

A Dirac mass appears at the two-loop level, as depicted in
Fig. 4, which can be expressed in the mass insertion
approximation, assuming no flavor structure in the
Yukawa couplings, as

mD ≈
�

1

16π2

�
2

λYeYLYR
vμ212
M2

F
I2ðm2

S=M
2
FÞ; ð18Þ

where I2ðxÞ is a dimensionless two-loop function. μ12 is
the soft-breaking mass term depicted by ⊗ in Fig. 4. For
simplicity, we set all of the masses of the new internal
scalars to mS. Taking into account that the main contribu-
tion of the SM Yukawa Ye would be mτ=v, the mass scale
of the lightest active neutrino is directly estimated through
the seesaw approximation as

mν ∼
�

1

16π2

�
4

λ2Y2
LY

2
R
m2

τm4
S

M4
FMR

½I2ðm2
S=M

2
FÞ�2; ð19Þ

where, as before, we have set μ12 ¼ mS. I2 can be
written in terms of simple two-loop integrals for which
analytical solutions are known [35]. We do not give its
decomposition here for brevity, though it can be found in
the literature [36].
The neutrino mass scale (19) as a function of MR is

plotted in Fig. 5. We consider two different approximations,
MF ¼ mS and MF ¼ MR, represented by the dashed and
solid lines, respectively. As expected from Table I, the
neutrino mass is more strongly suppressed compared to the
one-loop model described previously. For the case mS ¼
MF the Dirac Yukawa is independent of the scale, and

FIG. 4. Two-loop Dirac neutrino mass. The diagram is realized
when the Z4 is softly broken (denoted by the symbol ⊗). As the
symmetry is broken into two units, the diagram is still invariant
under a remnant Z2.

TABLE III. Particle content of the example model that gen-
erates the two-loop diagram of Fig. 4 once the Z4 is softly broken
by the term η†2η1. After the breaking of Z4 a remnant Z2 is
conserved.

Fields SUð3ÞC × SUð2ÞL ×Uð1ÞY Z4 Residual Z2

L (1; 2;−1=2) 1 1
ec (1; 1; 1) 1 1
νR (1; 1; 0) −1 1
H (1; 2; 1=2) 1 1
(FL, FR) (1; 2;−1=2) (i; i) (−1;−1)
η1 (1; 2; 1=2) −i −1
η2 (1; 2; 1=2) i −1

3See, for instance, the well-known inert doublet model [32] or
the scotogenic model [33].
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consequently the neutrino mass falls simply as ∼1=MR. On
the other hand, in the scenario where MF ¼ MR this same
behavior is reproduced when mS dominates, while for
values of MR > mS the neutrino mass follows the curve
1=M5

R.
Given the suppression factor ðmτ=vÞ2 ∼ 10−4, and if we

take into account the limit coming from cosmology (BBN),
the range of allowed values of MR that can fit the neutrino
oscillation scale matm ∼ 0.05 eV is considerably limited.
For mS > 102 GeV, MR has to be MR ≲ 102 GeV. This
makes the model testable in future heavy neutral lepton
searches.
We mention again that the remnant Z2 symmetry

stabilizes the lightest of the fields that are odd under this
symmetry. Fermionic dark matter coming from a doublet is
ruled out by direct-detection experiments [37], while for the
scalar inert doublet the same limits described in the
previous section apply.
Turning to LFV processes, Fig. 6 shows Brðμ → eγÞ as a

function of MR for two different scenarios already men-
tioned in Sec. III A: (i) choose YL ≃ 1 and fit YR to mν, or
(ii) choose YR ≃ 1 and fit YL. All other possibilities
Yukawas choices lie between these extremes. The dominant
(one-loop) contribution to Brðμ → eγÞ always comes from
YL, which directly connects the new particles with the SM
leptons. For MF ¼ MR and YR ¼ 1 the branching is
dominated by the fit of the neutrino mass (19). The
branching increases as a function of MR as YL gets larger,
counteracting the suppression of 1=M5

R in the neutrino

mass. We stop the calculation when YL grows larger than 1.
In contrast, for YL ¼ 1 there is no dependence from the
neutrino mass fit, but rather a suppression of 1=M4

R when
this mass scale dominates over mS in the μ → eγ loop
function [38]. The regions in between these extremes are
the allowed regions for this neutrino mass model.

IV. CONCLUSIONS

We have constructed a new realization of the type-I
seesaw mechanism based on radiatively generated Dirac
neutrino masses. We showed that this class of models can
naturally generate a small neutrino mass for order-one
couplings and relatively low mass scales. Compared to the
standard type-I seesaw mechanism, for which the Majorana
mass scale should be of the order of the grand unified
theory scale, we found viable models even for MR below
100 GeV. Parametrizing the neutrino mass in terms of five
integers, we derived a conservative limit onMR for each set
of models, requiring only that they should fit the atmos-
pheric neutrino mass scale. The strong suppression of the
light neutrino mass with the number of loops, i.e.,
ð1=16π2Þ2l, along with the seesaw Majorana mass sup-
pression allows remarkably lowMR values. This fact makes

FIG. 5. Two-loop neutrino mass scale assuming that mS ¼ MF
and MF ¼ MR, depicted as dashed and solid lines, respectively.
All dimensionless couplings are set to 1 and the BBN exclusion
region is indicated on the left.

FIG. 6. Estimate of the branching ratio of μ → eγ as a function
ofMR for different values of mS fitting the neutrino mass to matm.
The areas between the colored lines are allowed in this model (see
text). The grey lines represent the values of MR where one of the
Yukawa couplings becomes nonperturbative in order to fit
neutrino oscillation data. The shaded region represents the
experimentally excluded area for Brðμ → eγÞ > 4.2 × 10−13

[39], while the purple line corresponds to the future limit
proposed by the MEG Collaboration [40].

CAROLINA ARBELÁEZ et al. PHYS. REV. D 100, 115021 (2019)

115021-6



models with a large number of loops (or SM mass
insertions) conflict with big bang nucleosynthesis and
ΔNeff , which therefore significantly constrains the space
of possible models.
To illustrate this idea in further detail, we presented two

example models where the Dirac neutrino mass matrix is
generated at the one- and two-loop level. The latter lies at
the edge of the excluded models. An extra Z4 symmetry is
incorporated to forbid a tree-level Dirac mass, but it is
broken softly in order to radiatively generate the Dirac
Yukawa. A remnant exact Z2 symmetry is kept that
stabilizes the lightest of the Z2 charged fields and provides
a good dark matter candidate.
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