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We develop a rigorous, semianalytical method for maximizing any b → cτν observable in the full
20-real-dimensional parameter space of the dimension 6 effective Hamiltonian, given some fixed values
of RDð�Þ . We apply our method to find the maximum allowed values of FL

D� and RJ=ψ , two observables
which have both come out higher than their Standard Model predictions in recent measurements by the
Belle and LHCb Collaborations. While the measurements still have large error bars, they add to the existing
RDð�Þ anomaly, and it is worthwhile to consider new physics explanations. It has been shown that none of
the existing, minimal models in the literature can explain the observed values of FL

D� and RJ=ψ . Using our
method, we will generalize beyond the minimal models and show that there is no combination of dimension
6 Wilson operators that can come within 1σ of the observed RJ=ψ value. By contrast, we will show that the

observed value of FL
D� can be achieved, but only with sizable contributions from tensor and mixed-chirality

vector Wilson coefficients.

DOI: 10.1103/PhysRevD.100.115013

I. INTRODUCTION AND SUMMARY

Hints of new physics (NP) violating lepton flavor
universality (LFU) have been observed in semileptonic b
decays, captured in the ratios [1–7]

RDð�Þ ¼ ΓðB̄ → Dð�ÞτνÞ
ΓðB̄ → Dð�ÞlνÞ ; ð1:1Þ

where l stands for either electrons or muons. The global
average of the observed values is [8]

RD ¼ 0.340� 0.030; RD� ¼ 0.295� 0.014; ð1:2Þ
while the Standard Model (SM) prediction for these ratios
is [3,4,8–16]

RSM
D ¼ 0.299� 0.003; RSM

D� ¼ 0.258� 0.005: ð1:3Þ
This corresponds to a ∼3.1σ discrepancy with the Standard
Model prediction [8].
A similar upward fluctuation has been observed in the

following ratio as well:

RJ=ψ ¼ ΓðBc → J=ψτνÞ
ΓðBc → J=ψlνÞ : ð1:4Þ

The value measured by LHCb is [17]

RJ=ψ ¼ 0.71� 0.17ðstatÞ � 0.18ðsysÞ: ð1:5Þ
There is significant uncertainty in the SM predictions for
this ratio [18–22]:

RSM
J=ψ ∈ ð0.2; 0.39Þ: ð1:6Þ

There are also a host of different polarization and
asymmetry observables [10,23–37] that can be measured
in these decays. Recently, Belle has released preliminary
results on the measurement of the D� longitudinal polari-
zation fraction in the B → D�τν decay [38]:

FL
D� ¼ 0.60� 0.08ðstatÞ � 0.035ðsysÞ; ð1:7Þ

where

FL
D� ¼ ΓðB̄ → D�

LτνÞ
ΓðB̄ → D�τνÞ ð1:8Þ

with D�
L referring to a longitudinally polarized D�.

Meanwhile the SM prediction is [31,39,40], e.g., [39]

ðFL
D� ÞSM ¼ 0.457� 0.010: ð1:9Þ

While these seem to be interesting additions to the RDð�Þ

anomaly, they are in tension with not only the SM
prediction, but also various new physics models that have
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been considered in the literature [19,20,22,37,41,42].1

In fact, no model has been found to come even close to
the observed values of FL

D� or RJ=ψ.
So far, only minimal beyond Standard Model (BSM)

models (single mediators) and simple combinations of
Wilson coefficients (WCs) have been considered. In this
work, wewill generalize the study of these observables to the
full space ofWCs for the dimension 6 effective Hamiltonian:

Heff ¼
4GFVcbffiffiffi

2
p

X
X¼S;V;T
M;N¼L;R

CX
MNO

X
MN; ð1:10Þ

where the onlyWC generated in the SM isCV
LL ¼ 1, and the

four-fermion effective operators are defined as

OS
MN ≡ ðc̄PMbÞðτ̄PNνÞ;

OV
MN ≡ ðc̄γμPMbÞðτ̄γμPNνÞ;

OT
MN ≡ ðc̄σμνPMbÞðτ̄σμνPNνÞ; ð1:11Þ

for M;N ¼ R or L. The two tensor operators OT
RL and OT

LR
are identically zero; thus, the Hamiltonian includes five
operators with either type of neutrino. For simplicity, wewill
focus on operators with left-handed (LH) neutrinos in this
work; then the full space of WCs consists of

ðCV
LL; C

V
RL; C

S
LL; C

S
RL; C

T
LLÞ; ð1:12Þ

which is 10 real dimensional. However, at the end of Sec. II,
we will explain how our results can be straightforwardly
generalized to the case of LHþ RH neutrinos, leaving our
conclusions unchanged.
Since the experimental error bars on FL

D� and RJ=ψ are
much larger than those of RD and RD�, it makes sense to
treat the latter as constraints and attempt to maximize the
former subject to those constraints. We will develop a
fully general, rigorous, semianalytical method to maximize
essentially any b → cτν observable for fixed values of RD
and RD�. We will also fix BrðBc → τνÞ consistent with its
upper bounds [44–47], as this was shown to play an
important role in restricting the possible values of RJ=ψ

and FL
D� [19,41,42].

Using this approach, we find that the global maxima of
FL
D� and RJ=ψ , with RD and RD� fixed to their current world

averages, and BrðBc → τνÞ ≤ 30% are

FL
D� ≤ 0.66; RJ=ψ ≤ 0.40: ð1:13Þ

We also explore values of RDð�Þ within their current 1 and
2σ error ellipses and different values of the BrðBc → τνÞ
constraint. Our conclusions are qualitatively unchanged.

We do not include the bounds from various collider
searches in our analysis as they are highly model depen-
dent, whereas the aim in this paper is to make as few
assumptions as possible about the UV completion and
prove rigorous statements about just the Wilson coeffi-
cients. A few relatively model-independent analyses of
collider bounds do exist in the literature; see e.g., [48].
However, even such analyses still require further assump-
tions about NP, such as that the scale of NP is sufficiently
high. To carry out a completely model-independent analy-
sis, we only include the constraint from BrðBc → τνÞ in
our study. Nonetheless, once a specific model is chosen,
stringent bounds from different collider searches [some-
times stronger than the BrðBc → τνÞ constraint] should be
studied as well, and we expect the global maxima shown in
(1.13) to be further restricted.
We find that to reach the global maxima of FL

D� and RJ=ψ ,
NP should give rise to the WCs CV

RL and CT
LL (or their

counterparts with RH neutrinos) and should partially
cancel the SM contribution to CV

LL. (Intriguingly, the global
maxima of FL

D� and RJ=ψ are characterized by very similar
values of the WCs.) We will also show on completely
general grounds that the observables are maximized for
real-valued Wilson coefficients (up to an overall rephasing
invariance).
Clearly, the observed value of RJ=ψ cannot be explained

with any combination of the dimension 6 Wilson operators.
If the current value of RJ=ψ persists in future measurements
(with reduced error bars), it will signify a major contra-
diction with the current framework. Either the numerical
formula needs substantial revision (e.g., the hadronic form
factors), or NP contributes in a way beyond the dimension 6
effective Hamiltonian (e.g., with very light mediators).
Meanwhile, we see that the current measured value of

FL
D� can be attained. To understand the ingredients neces-

sary to reach the current measured value, we further
maximize FL

D� with each WC held fixed. We will confirm
using this approach that sizable CV

RL and CT
LL are required

to come within 1σ of the current measured value of FL
D� ,

together with a modest amount of cancellation in CV
LL.

The need for CV
RL (or its RH neutrino counterpart) to

account for FL
D� is especially intriguing. It is well known

that these mixed-chirality vector operators are especially
difficult to generate from any UV model; see [49] for a
recent discussion and original references. Because they
violate SUð2ÞL × Uð1ÞY , they are higher effective dimen-
sion (requiring additional Higgs insertions) and so are
generally absent or suppressed in any UV completion.
Searching for amodel that generatesCV

RL orC
V
LR is especially

well motivated now given our results.
Another reason previous studies may have failed to reach

the measured value of FL
D� is that we find multiple Wilson

coefficients are necessary. This may point at nonminimal
models, e.g., involving multiple leptoquarks.

1Reference [43] considers the possibility of right-handed (RH)
neutrinos as well and reports pairs of WCs that are claimed to
explain the observed RJ=ψ . We were unable to reproduce their
results in our calculations.
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As we have already noted, the experimental uncertainties
on FL

D� and RJ=ψ (and the theoretical uncertainties on RJ=ψ )
are still quite large, so the discrepancies in these observ-
ables may just be due to random fluctuations, and any
attempt to read too much into them may be premature.
Nevertheless we feel a closer examination of these two
observables is a useful exercise to attempt now, in that it
may inspire interesting new directions in model building.
The general method we develop for maximizing observ-
ables given the constraints, taming the huge parameter
space of Wilson coefficients, may be of use to others
interested in other observables, e.g., RΛb

. Finally, the study
done here is something to keep in mind for the near future,
where much more precise measurements of these observ-
ables with much more data from LHCb and Belle II are
expected.
The outline of the paper is as follows. In Sec. II we

explain our general approach for studying the space of all
WCs. In Sec. III, we will describe our results for the global

maxima of FL
D� and RJ=ψ subject to the constraints. In

Sec. IV we maximize the observables while fixing some of
the WCs.

II. GENERAL SETUP

The observables of interest in this work are O ¼ RJ=ψ ,
FL
D� , RD, RD� , BrðBc → τνÞ. The first four observables

show discrepancies with the SM predictions, while the
bounds on BrðBc → τνÞ can be used to severely constrain
various BSM explanations of these anomalies [44–47].
Measurements of the total width of the Bc meson and
Bu → τν decay have been used in Refs. [44–46] and [47] to
put bounds of BrðBc → τνÞ ≲ 30% and BrðBc → τνÞ
≲10%, respectively. Meanwhile the SM prediction is
BrðBc → τνÞ ¼ 2.3%. We will use these three reference
values for BrðBc → τνÞ throughout this work.
In our study of these observables, we use the numerical

formulas in [41],

RD ¼ 0.299ðjCV
þLj2 þ 1.02jCS

þLj2 þ 0.9jCT
LLj2 þ Re½ðCV

þLÞð1.49ðCS
þLÞ� þ 1.14ðCT

LLÞ�Þ�Þ;
RD� ¼ 0.257ð0.95jCV

−Lj2 þ 0.05jCV
þLj2 þ 0.04jCS

−Lj2 þ 16.07jCT
LLj2

þ Re½CV
−Lð0.11ðCS

−LÞ� − 5.89ðCT
LLÞ�Þ� þ 0.77Re½CV

þLðCT
LLÞ��Þ;

RD�FL
D� ¼ 0.116ðjCV

−Lj2 þ 0.08jCS
−Lj2 þ 7.02jCT

LLj2 þ Re½ðCV
−LÞð0.24ðCS

−LÞ� − 4.37ðCT
LLÞ�Þ�Þ;

BrðBc → τνÞ ¼ 0.023ðjCV
−L þ 4.33CS

−Lj2Þ; ð2:1Þ

where we are defining CS
�L ≡ CS

RL � CS
LL and CV

�L ≡
CV
LL � CV

RL. In deriving these formulas, the authors of
[41] use the next-to-leading-order results of the heavy
quark effective theory from [50] for the hadronic matrix
elements. Similar numerical formulas can be found in the
literature, e.g., [36,42,51,52].
As for RJ=ψ , there are different calculations for the

relevant form factors. In this work we follow the calculation
in [19] which, in turn, is based on the form factors
calculated in [53] using the perturbative QCD factorization.
Using these form factors we can calculate the numerical
contribution of different WCs to RJ=ψ :

RJ=ψ ¼0.289ð0.98jCV
−Lj2þ0.02jCV

þLj2þ0.05jCS
−Lj2

þ10.67jCT
LLj2þRe½CV

−Lð0.14ðCS
−LÞ�−5.15ðCT

LLÞ�Þ�
þ0.24Re½CV

þLðCT
LLÞ��Þ; ð2:2Þ

which also indicates that we find RJ=ψ
SM ¼ 0.289,

compatible with various other calculations in the literature
[18–22]. Using other calculations for the form factors would
result in different numerical formulas andmayaffect our final
conclusions regarding the maximum attainable value of
RJ=ψ . This merits further study. However, it is worth noting

that our method for maximizing it remains completely
general and unchanged and can be adapted to any future
version of the numerical formula.
We will be interested in calculating the following

quantities:

maxFL
D� jRD;RD� ;BrðBc→τνÞ; maxRJ=ψ jRD;RD� ;BrðBc→τνÞ;

ð2:3Þ

where the global maximum is taken over the full space of
WCs with LH neutrinos. (Again, see the end of this section
for a generalization to LHþ RHneutrinos.) This is a 10-real-
dimensional space, making the maximization of FL

D� and
RJ=ψ seem like a daunting, if not impossible, task. Yetwewill
accomplish this task by leveraging several properties of the
above numerical formulas:

(i) All these observables can be written as

O ¼ z†5MOz5 ¼ xT5MOx5 þ yT5MOy5; ð2:4Þ

where

z5 ¼ x5 þ iy5 ¼ ðCV
−L; C

V
þL; C

S
−L; C

S
þL; C

T
LLÞ; ð2:5Þ
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and the MO matrices are real and positive semi-
definite.

(ii) There is one overall rephasing freedom in defining
the WCs; i.e., by multiplying all the WCs by a
common phase the prediction for these observables
does not change.

Using these properties (in particular the first one), we can
prove that the maxima (2.3) actually exist. We observe that
the MRD

and MRD� matrices in (2.4) have orthogonal null
vectors corresponding to CS

−L, C
V
−L and CS

þL, respectively.
Hence, fixing RD and RD� results in a compact space in the
full WC space. Any function on a compact space must have
a maximum somewhere in that space.
We can also prove that the global maximum occurs at

real values of the WCs (modulo the overall rephasing
invariance). The proof uses the method of Lagrange
multipliers. Let us define (for O ¼ FL

D� and RJ=ψ )

Õ¼O−λ1ðRD−Rð0Þ
D Þ−λ2ðRD� −Rð0Þ

D� Þ−λ3ðBrðBc → τνÞ
−BrðBc → τνÞð0ÞÞ

¼ xT5 ðMO−λ1MD−λ2MD� −λ3MBc
Þx5

þyT5 ðMO−λ1MD−λ2MD� −λ3MBc
Þy5

þλ1R
ð0Þ
D þ λ2R

ð0Þ
D� þλ3BrðBc → τνÞð0Þ: ð2:6Þ

Setting the derivatives of Õwith respect to x5 and y5 to zero
yields

ðMO − λ1MD − λ2MD� − λ3MBc
Þx5

¼ ðMO − λ1MD − λ2MD� − λ3MBc
Þy5 ¼ 0: ð2:7Þ

The matrix MÕ ≡MO − λ1MD − λ2MD� − λ3MBc
must be

degenerate for this equation to have nontrivial solutions.
Yet we cannot tune the λ’s to get more than one zero
eigenvalue.2 As a result, the null space is one dimensional,
which means x5 and y5 are parallel to each other. Using the
rephasing invariance we can set y5 ¼ 0; i.e., the WCs at the
global maximum can all be taken real.3

The proof trivially extends to the case of fixing a WC to a
particular value. For instance, later we will be interested in
fixing jCV

RLj to some value and maximizing the observables
with respect to all the otherWCs. In that case, we can simply
add another quadratic constraint jCV

RLj2 ¼ ðjCV
RLj2Þð0Þ to the

mix and the above argument proceeds exactly as before.

So for the rest of the paper we will restrict to real WCs
without loss of generality. This reduces the parameter space
from 10 → 5 real dimensional. With the three constraints
RD ¼ R0

D, RD� ¼ R0
D� and BrðBc → τνÞ ¼ B0

c it amounts to
maximizing in two real dimensions, or with an additional
WC held fixed, in just one real dimension.
Finally, we comment on the generalization to LHþ RH

neutrinos. Since there is no interference between LH and
RH neutrinos, all the numerical formulas in the presence
of both types of neutrinos are of the form z†5Mz5 þ z̃†5Mz̃5,
where z̃5 refers to the RH neutrino Wilson coefficients
[36]. So the Lagrange multiplier argument proceeds as
before, and z̃5 functions as “additional imaginary parts”;
i.e., there is an enhanced SOð4Þ symmetry at the global
maximum that allows us to rotate x5, y5, x̃5 and ỹ5
into one another. Thus the global maximum cannot be
changed by including RH neutrinos and all of our
conclusions derived below which assume only LH neu-
trinos will be robust.

III. MAXIMIZING THE OBSERVABLES:
GLOBAL MAXIMA

After we have shown that the maximization problem can
be restricted to the real parts of the (LH neutrino) Wilson
coefficients without loss of generality, the parameter space
is already greatly reduced, and the remaining steps are
straightforward if tedious. We perform a series of trans-
formations to the WCs (rotations, shifts and rescalings) so
that we can solve the constraints RD ¼ R0

D, RD� ¼ R0
D� and

BrðBc → τνÞ ¼ B0
c analytically and simply. This allows the

rest of the maximization (over just two real dimensions) to
be handled numerically. We provide further details on these
steps in the Appendix. Here we simply present the results.
The results for FL

D� and RJ=ψ are shown in Tables I and II
with RD and RD� fixed to their world averages and different
values of BrðBc → τνÞ. We note how similar the numbers
are for FL

D� and RJ=ψ . It would be interesting to dig deeper
into the reasons for this. It is tantalizing and hints at a
common NP origin for the two discrepancies.
Regarding the values of the WCs at the global maxima,

there are a few interesting features. In particular, we find a
large value of CV

RL and CT
LL,

4 and a substantial cancellation
of the SM contribution to CV

LL. These are in fact generic
features we find in the combination of the WCs that
maximize FL

D� and RJ=ψ for other values of RDð�Þ and
BrðBc → τνÞ as well. This suggests that any NP origin of
FL
D� and RJ=ψ may be nonminimal, in order to give rise to

all of these WCs.

2A proof for generic matrices: in order for MÕ to be rank less
than 4, all of its first minors must be zero. There are 25 such
minors, generically independent. So it is impossible to set them
all to zero using just three parameters λ1;2;3. We explicitly check
that this argument is true for the matrix combination in (2.7).

3As a side note, we can check that the number of unknowns
and number of equations match. There are three remaining
constraints to satisfy and three unknowns: λ2, λ3 and the modulus
of the null vector x5.

4Notice that all the existing models in the literature generate a
tensor WC with association with a scalar WC of CS

LL ∼ 8CT
LL in

the IR; hence, having CT
LL ∼ 0.3 in the IR implies scalar WCs of

around 2.4.
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In Fig. 1, we find the maximum of FL
D� or RJ=ψ over all

the WCs for different values of BrðBc → τνÞ and RDð�Þ .
The figures indeed show the observed RJ=ψ is not
obtainable anywhere in the parameter space of the most
general dimension 6 effective Hamiltonian with LH
and RH neutrinos. If the future measurement of RJ=ψ

remains at its present value, then it will be a very sharp

contradiction with the present framework. It could point
at either a significant revision to the hadronic form factors
for RJ=ψ or to NP that is somehow not captured by the
dimension 6 effective Hamiltonian (for instance, very
light mediators).
Meanwhile, we see that the observed value of FL

D� is
attainable everywhere in the 1 or 2σ ellipse of the

TABLE I. The combination of WCs that maximize FL
D� for the global average of RDð�Þ and with various values of

BrðBc → τνÞ. All these combinations exhibit a large value of CV
RL and CT

LL; the SM contribution of CV
LL ¼ 1 is also

largely canceled.

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD� FL

D� RJ=ψ BrðBc → τνÞ
−0.608 −0.804 0.043 1.891 −0.292 0.340 0.295 0.620 0.395 0.023
−0.736 −0.674 0.058 1.873 −0.290 0.340 0.295 0.636 0.397 0.1
−0.917 −0.490 0.081 1.845 −0.286 0.340 0.295 0.661 0.399 0.3

TABLE II. The combination of WCs that maximize RJ=ψ for the global average of RDð�Þ and with various values of
BrðBc → τνÞ. Intriguingly, the WCs at the global maximum of RJ=ψ exhibit very similar features to those at the
global maximum of FL

D�.

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD� FL

D� RJ=ψ BrðBc → τνÞ
−0.604 −0.792 0.049 1.862 −0.273 0.340 0.295 0.618 0.396 0.023
−0.732 −0.662 0.064 1.844 −0.270 0.340 0.295 0.635 0.397 0.1
−0.912 −0.477 0.087 1.814 −0.265 0.340 0.295 0.660 0.400 0.3

FIG. 1. The maximum attainable FL
D� (left) and the maximum attainable RJ=ψ (right) for different values of BrðBc → τνÞ and RDð�Þ .

The green and red contours correspond to BrðBc → τνÞ ¼ 10% and BrðBc → τνÞ ¼ 30%, respectively. The blue (black) triangle
indicates the SM predictions (the world-averaged measured values) of RDð�Þ, while the dashed gray ellipses are contours of 1 and 2σ
around the world-average measured values. These figures indicate that indeed there exists a combination of the WCs that can explain the
observed value of FL

D� from (1.7); yet, there are no combinations of these WCs that can reach the 1σ range of the observed
RJ=ψ value in (1.5).
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measured world average RD, RD�. However, no known
models currently can give rise to such a large value of
FL
D� [41,42]. This could be due to the fact that we seem

to need a combination of all the WCs to have a large
enhancement toFL

D�, as suggested by Table I, which cannot
be achieved with any of the existing minimal models.
It could also be due to the fact that enhanced FL

D� seems
to require a large value of CV

RL, which is well known to
be challenging. We will discuss CV

RL further in the next
section.

IV. MAXIMIZING THE OBSERVABLES:
HOLDING WCs FIXED

We can also treat any of the WCs as a constant and go
through a similar series of transformations as above, in
order to maximize FL

D� and RJ=ψ when holding that WC

fixed. This allows us to study that WC’s contribution to FL
D�

and RJ=ψ in further detail.
Going through the procedure above for all different

WCs we find interesting results for the contributions of
CT
LL, CV

LL, and CV
RL to FL

D�. In Fig. 2 we show the
maximum attainable value of FL

D� as a function of these
three WCs, and in Table III we report a few benchmark
points maximizing FL

D� for a fixed CV
RL. These clearly

suggest that in order to explain the observed FL
D� in (1.7),

we need nonzero values for all of these WCs from NP.
In Fig. 2, if we go to larger values of the fixed WC in
each plot, it becomes impossible to satisfy the constraints
on RDð�Þ.
Most notably, Fig. 2 demonstrates that in order to

explain the observed FL
D� from (1.7), NP should give rise

to sizable CV
RL. There are currently no models in the

literature generating this WC. In fact, there are strong

FIG. 2. The maximum attainable FL
D� as a function of WCs CT

LL, C
V
RL, or C

V
LL; in each plot we marginalize over other WCs, given the

constraints RD ¼ 0.340 and RD� ¼ 0.295. The green and red curves correspond to BrðBc → τνÞ ¼ 10% and BrðBc → τνÞ ¼ 30%,
respectively. The purple (orange) band shows the 1σ error bar around the central observed value (SM prediction) of FL

D�. These figures
highlight the necessity of NP with all of these WCs in order to explain the observed FL

D�.
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general arguments against its existence. It violates SUð2ÞL
andUð1ÞY so it must be higher effective dimension (at least
dimension 8).5

As we saw in Fig. 1, there is no point in the parameter
space of the dimension 6 effective Hamiltonian consistent
with the measured values of RD and RD� that can explain
the observed value of RJ=ψ . For completeness, we elaborate
on this by studying the effect of each individual operator on
RJ=ψ . The maximum RJ=ψ attainable with fixed values of
certain WCs is depicted in Fig. 3. We further include the
prediction for RJ=ψ with the WCs in Table III that maximize

FIG. 3. The maximum attainable RJ=ψ as a function of WCs CT
LL, C

V
RL, or C

V
LL; in each plot we marginalize over other WCs, given the

constraints RD ¼ 0.340 and RD� ¼ 0.295. The colors and bands are as in Fig. 2. We see that we cannot even reach the 1σ range of the
observed RJ=ψ for any values of the WCs.

TABLE III. Benchmark points that can reach themaximumFL
D� with a particularCV

RL and fixedRDð�Þ andBrðBc → τνÞ. TheRJ=ψ with the
same set of WCs is calculated as well; these values of RJ=ψ are very close to the maximum attainable RJ=ψ with the same CV

RL—see Fig. 3.

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD� FL

D� RJ=ψ BrðBc → τνÞ
0.337 0.156 1.002 −0.3 0.091 0.340 0.295 0.510 0.348 0.1
0.487 0.324 0.880 −0.5 0.117 0.340 0.295 0.532 0.356 0.1
0.620 0.474 0.753 −0.7 0.143 0.340 0.295 0.553 0.364 0.1
0.790 0.668 0.557 −1 0.180 0.340 0.295 0.581 0.375 0.1

5As discussed in [54,55], one can generate this operator at
dimension 6 in standard model effective field theory but only by
integrating out an off-shellW; since the couplings of theW to the
leptonic side are flavor universal, this cannot explain our
anomalies, which require some LFU violation.
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FL
D� for any given CV

RL; these benchmark points can almost
reach the maximum attainable RJ=ψ as well.
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Note added.—During the final stages of this work, Ref. [56]
appeared on arXiv with partially overlapping results con-
cerning FL

D� and RJ=ψ . The authors of [56] carried out an
extensive global fit of various observables with the effective
operators involving LH neutrinos and arrived at a similar
conclusion as in this work regarding the importance of CV

RL
in explaining FL

D� .

APPENDIX: DETAILS ON MAXIMIZING
THE OBSERVABLES

We now provide some details to our procedure. We hope
these details will prove useful to others who may be
interested in maximizing other observables in the future
(or replicating our analysis).
The first step is to solve the equation of BrðBc → τνÞ

for CS
−L:

CS
−L ¼ 1

4.33
ðeiξRBc

− CV
−LÞ; ðA1Þ

where ξ is an arbitrary phase and we have defined

RBc
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrðBc → τνÞ

BrðBc → τνÞSM
s

: ðA2Þ

We can use the phase invariance mentioned earlier to fix
the value of ξ to any number in order to simplify the
calculation; in our analysis, we use ξ ¼ π. With this choice
of ξ we explicitly break the symmetry between the
contribution of real and imaginary parts of the WCs to
various observables and exhaust the freedom in rephasing
the WCs.
Next, we perform the following transformation (which is

a combination of rotations, shifts and rescalings) on the
WCs:0
BBB@

CS
þL

CV
þL

CV
−L

CT
LL

1
CCCA ¼

0
BBB@

1.8108 3.7863 −2.1150 0

0 −5.1839 2.8958 0

0 13.3846 −0.4787 −1
0 4.2232 −0.1510 0

1
CCCA

×

0
BBB@

C̃S
þL

C̃V
þL

C̃V
−L þ 0.0114RBc

C̃T
LL

1
CCCA; ðA3Þ

in order to simultaneously diagonalize the quadratic terms
in RD and RD� :

RD ¼ ðC̃S
þLÞ2 þ x̃T3MDx̃3;

RD� ¼ x̃T3 M̃D� x̃3 þ vTD� x̃3 þ AD� : ðA4Þ

Here x̃3 ≡ ðC̃V
þL; C̃

V
−L; C̃

T
LLÞT and

M̃D ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA;

M̃D� ¼

0
B@

26.7838 0 0

0 0.0553 0

0 0 0.2388

1
CA;

vD� ¼

0
B@

−0.0727RBc

0.0026RBc

0

1
CA; AD� ¼ 0.0005R2

Bc
: ðA5Þ

Under this transformation, the observables become

RD�FL
D� ¼ x̃T3 M̃Fx̃3 þ vTFx̃3 þ AF;

RJ=ψ ¼ x̃T3 M̃J=ψ x̃3 þ vTJ=ψ x̃3 þ AJ=ψ ; ðA6Þ

where

M̃F ¼

0
B@

5.6079 −0.2005 −0.4042
−0.2005 0.0072 0.0145

−0.4042 0.0145 0.1105

1
CA;

vF ¼

0
B@

−0.0639RBc

0.0023RBc

0.0029RBc

1
CA;

AF ¼ 0.0004R2
Bc
;

M̃J=ψ ¼

0
B@

18.8505 −0.3420 −0.5463
−0.3420 0.0368 0.0195

−0.5463 0.0195 0.2756

1
CA;

vJ=ψ ¼

0
B@

−0.0945RBc

0.0034RBc

0.0017RBc

1
CA;

AJ=ψ ¼ 0.0007R2
Bc
: ðA7Þ

We can go to spherical coordinates in ðC̃S
þL; C̃

V
þL; C̃

V
−LÞ and

solve the RD constraint for the radial coordinate. Then we
can solve the RD� constraint for C̃T

LL which only appears as
ðC̃T

LLÞ2. This leaves behind two angles which we can then
easily numerically maximize over and verify explicitly with
a plot.
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