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We investigate stau-antistau annihilation into heavy quarks in the phenomenological minimal super-
symmetric Standard Model within the DM@NLO project. We present the calculation of the corresponding
cross section including corrections up toOðαsÞ and QED Sommerfeld enhancement. The numerical impact
of these corrections is discussed for the cross section and the dark matter relic density, where we focus on
top-quark final states and consider either neutralino or gravitino dark matter. Similarly to previous work, we
find that the presented corrections should be included when calculating the relic density or extracting
parameters from cosmological observations. Considering scheme and scale variations, we estimate the
theoretical uncertainty that affects the prediction of the annihilation cross section and thus the prediction of
the relic density.
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I. INTRODUCTION

More than 80 years after its first observation [1], the
existence of dark matter in our Universe is now well
established by various coinciding observations (see review
[2] and references therein). In the absence of a clear
consensus about the exact nature of dark matter, numerous
theoretical models have been developed to explain its
nature. Most of such models are based on the hypothesis
that dark matter consists of weakly interacting massive
particles (WIMPs) which achieve the observed relic abun-
dance through thermal freeze-out [3,4].
In the present work, we focus on the minimal super-

symmetric Standard Model (MSSM), which provides
suitable WIMP candidates [5] such as the lightest neutra-
lino or the gravitino. Assuming that R parity is conserved,
these particles are stable, and they interact only weakly as
required by the WIMP paradigm.

Over the last decades, the relic abundance of cold dark
matter (CDM) within the cosmological ΛCDM model has
been determined to a very good precision:

ΩCDMh2 ¼ 0.1200� 0.0012; ð1:1Þ

where h denotes the present Hubble expansion rate in units
of 100 km s−1 Mpc−1. This interval has been obtained
from the cosmic microwave background measurements by
the Planck satellite [6] combined with polarization data
from the WMAP mission [7]. Within a given particle
physics model, such as the MSSM, the relic density of dark
matter can be theoretically predicted, allowing one to
identify cosmologically favored regions of parameter
space. More precisely, for a dark matter candidate χ with
mass mχ , the predicted relic density Ωχh2 is obtained
through

Ωχ ¼
mχnχ
ρcrit

: ð1:2Þ

Here, ρcrit stands for the critical energy density of the
Universe and nχ for today’s number density of the dark
matter candidate. The value of nχ corresponds to the
solution of the Boltzmann equation [8–10]

dnχ
dt

¼ −3Hnχ − hσannvi½n2χ − ðneqχ Þ2�: ð1:3Þ
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This differential equation describing the time evolution of
the number density contains the thermally averaged cross
section hσannvi of the annihilating neutralinos.
Dark matter annihilation cross sections typically lead to a

relic density exceeding the limits given in Eq. (1.1) causing
the overclosure of the Universe. As a consequence, the
annihilation cross section needs to be enhanced by some
mechanism, such as resonant annihilation or efficient
coannihilations, resulting in lower values of the relic density.
In the present paper, we will focus on the latter case; in
particular, wewill assume that the lightest neutralino and the
lightest stau are almost degenerate in mass.
Accounting for coannihilations, the thermally averaged

annihilation cross section appearing in Eq. (1.3) can be
expressed as

hσannvi ¼
X
i;j

hσijviji
neqi
neqχ

neqj
neqχ

; ð1:4Þ

where the relative velocities are given by vij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi · pjÞ2

q
−m2

i m
2
j=ðEiEjÞ. The ratios of equilibrium

densities appearing in Eq. (1.4) are suppressed via the
so-called Boltzmann factors

neqi
neqχ

∝ exp

�
−
mi −mχ

T

�
: ð1:5Þ

This implies that only coannihilation of dark matter with
particles that are almost degenerate in mass can have a
sizable impact on the relic density. In the present paper, we
assume that the lightest neutralino and the lighter stau are
very close in mass.
The very narrow observational interval given in Eq. (1.1)

clearly calls for very precise theoretical predictions. Within
public codes calculating the dark matter relic density for
new physics models, such as micrOMEGAs [11–15] or
DarkSUSY [16–18], the underlying processes entering
Eq. (1.4) are evaluated usually at tree level, including
effective couplings capturing certain higher-order effects,
e.g., for the Yukawa couplings. It is the goal of the
DM@NLO project to provide a more accurate calculation
of the annihilation cross section and thus of the dark matter
relic density.
Over the last decade, we have demonstrated the impact

of QCD next-to-leading-order (NLO) corrections in the
following cases within the MSSM: gaugino annihilation
into quarks [19–22], neutralino–stop coannihilation into
several final states [23–25], stop–antistop annihilation into
electroweak final states [26], and stop–stop annihilation
into quarks [27]. Moreover, we have been able to evaluate
the theoretical uncertainty of the relic density calculation
[28]. Other authors have shown that electroweak correc-
tions may have an equally sizable impact [29–31], and the

impact of Sommerfeld enhancement has been studied in
various cases [32–38].
The present paper will add to the above list of processes

by presenting the corrections of order αs to stau-antistau
annihilation. This process may be relevant in scenarios with
neutralino or gravitino dark matter. In the following, we
start by discussing the phenomenological impact of stau-
antistau annihilation in Sec. II. In Sec. III, we will first
discuss the technical details of the NLO calculation.
Moreover, we will present the QED Sommerfeld enhance-
ment included in our calculation. In Sec. IV, we will
illustrate the effect of the corrections in typical scenarios
within the phenomenological MSSM for both neutralino
and gravitino dark matter. We will also discuss the
theoretical uncertainty coming from the variations of the
renormalization scale and the renormalization scheme.
Conclusions are given in Sec. V.

II. PHENOMENOLOGY RELATED TO
STAU-ANTISTAU ANNIHILATION

Let us start by discussing the phenomenology of stau-
antistau annihilation in the context of the dark matter relic
density. This process may become relevant in two cases.
First, as mentioned in the introduction, if the stau is very

close in mass to the neutralino, neutralino-stau coannihi-
lation as well as stau pair annihilation will contribute in a
sizable manner to the total annihilation cross section σann.
In this case, the prediction of the neutralino relic density is
obtained directly from solving the Boltzmann equation as
explained in the introduction.
The second situation is the case where the dark matter

candidate is the gravitino, denoted as G̃, which is the
spin-3=2 superpartner of the graviton, if local supergravity
is assumed. In this situation, the next-to-lightest super-
symmetric particle may be either the lightest gaugino or
the lightest sfermion, for example, the lighter stau. The
phenomenology related to the additional gravitino is
governed by a single additional parameter, which is the
gravitino massmG̃. Recent detailed discussions of gravitino
dark matter within the phenomenological minimal super-
symmetric Standard Model (pMSSM) can be found, among
others, in Refs. [39–41].
In this situation, the gravitino relic density receives

contributions from thermal and nonthermal production:

ΩG̃h
2 ¼ Ωth

G̃
h2 þ Ωnonth

G̃
h2: ð2:1Þ

The thermal contribution depends on the reheating temper-
ature TR and the gluino mass mg̃ and can be approximated
as [42]

Ωth
G̃
h2 ≃ 0.27

�
TR

1010 GeV

��
100 GeV

mG̃

��
mg̃

1 TeV

�
2

: ð2:2Þ

The corresponding full expression has been derived in
Refs. [43,44]. In the present work we focus on cases where
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the nonthermal contribution dominates, such that it is
reasonable to rely on the simplified expression given
in Eq. (2.2).
The nonthermal contribution arises from the decay of the

lighter stau. If R parity is conserved, each stau can decay
only into a gravitino, and the corresponding contribution to
the gravitino relic density is obtained by reweighing the
would-be relic density of the stau, obtained from integrat-
ing the Boltzmann equation, according to [45]

Ωnonth
G̃

h2 ¼ mG̃

mτ̃1

Ωth
τ̃1
h2: ð2:3Þ

In this context, the stau lifetime is constrained in order to
preserve the abundances of light elements in the early
Universe, which are well explained by primordial nucleo-
synthesis. In terms of stau and gravitino masses, this
constraint can be approximated as [46,47]

tτ̃1 ≃ ð6100 sÞ
�
1 TeV
mτ̃1

�
5
�

mG̃

100 GeV

�
2 ≲ 6000 s; ð2:4Þ

implying that the gravitino mass is about one order of
magnitude smaller than the stau mass.
In the following, we illustrate the phenomenology, and

later on also the impact of higher-order corrections to the
stau annihilation cross section, for two example scenarios
within the pMSSM, where the 19 independent soft-breaking
parameters are defined at the supersymmetry (SUSY) scale
Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p . In order to identify representative parameter
configurations, we make use of the pMSSM analysis
presented by ATLAS in Ref. [48]. The parameter points
resulting from this study satisfy the imposed constraints from
LHC searches, the observed Higgs mass of mh0 ∼ 125 GeV
[49–51], and rare decays such as, e.g., b → sγ and Bs →
μþμ−. Let us also stress that the corresponding parameter
region is robust against more recent searches performed by
the ATLAS and CMS Collaborations [52].
Inspired from the parameter points given in Ref. [48], we

have chosen a typical scenario for our study related to
neutralino dark matter. All pMSSM parameters related to
this scenario, labeled I, are given in Table I, together with
the corresponding neutralino and stau masses, which are
relevant in our study.
As the ATLAS analysis only covers the case of neu-

tralino dark matter, we have defined a second scenario,
labeled II, for our study of gravitino dark matter. This
second scenario aims at illustrating the situation in a rather
simple way, the soft parameters being chosen such that
only the staus are relatively light with masses just below
2 TeV, while all other states are rather heavy with masses of
about 5 TeV. The corresponding soft-breaking parameters,
together with the relevant masses, are displayed in Table I.
In addition, in order to satisfy the lifetime constraint
mentioned above, the gravitino mass will be chosen to

be around 400 GeV. This implies a reheating temperature of
TR ≈Oð107Þ GeV in order to meet the observed relic
density in Eq. (1.1).
For each parameter point, the physical mass has been

computed from the soft-breaking parameters using
SPheno3.3.3 [53,54]. In both scenarios, the lightest neutralino
is a pure bino, while the lighter stau is strongly mixed,
the mixing angle corresponding to cos2θτ̃ ≈ 0.42 and
sin2θτ̃ ≈ 0.58 for scenario I and cos2θτ̃ ≈ sin2θτ̃ ≈ 0.50
for scenario II.
Coming to the calculation of the relic density, the physical

mass spectrum obtained from SPheno is handed over to
micrOMEGAs2.4.1 [12] using the SUSY Les Houches Accord
2 format [55,56]. micrOMEGAs then performs the numerical
integration of the Boltzmann equation based on the annihi-
lation cross section computed by CalcHEP [57]. We will use
micrOMEGAs to compute the neutralino or stau relic density,
respectively. For scenario II, the gravitino relic density will

TABLE I. Scalar soft mass parameters, gaugino mass param-
eters, trilinear couplings, and parameters related to the Higgs
sector at the input scale Q for two reference scenarios I and II
within the pMSSM. We also indicate the resulting physical
masses of the lightest neutralino and the lighter stau. The values
of the remaining physical masses are not displayed here, as they
are not relevant for our study. The gravitino mass for the study of
scenario II will be specified in Sec. IV C. All dimensionful
quantities are given in GeV.

I II

Mq̃L 1599.9 5000
Mt̃L 3007.0 5000
MũR 3904.4 5000
Mt̃R 3093.0 5000
Md̃R

3096.7 5000
Mb̃R

581.6 5000

Ml̃L
3586.7 5000

Mτ̃L 563.6 1800
Ml̃R

3950.4 5000
Mτ̃R 585.5 1846

Q 3047.8 5000

I II

M1 546.0 5000
M2 −3461.7 5000
M3 3126.7 5000

At 5246.7 −3000
Ab −2530.3 1000
Aτ 1586.4 5000

tan β 18.0 22.0
μ 2643.6 5000
mA0 2962.3 5000

mχ̃0
1

540.6 4915.8
mτ̃1 540.7 1810.8
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then be obtained from Eqs. (2.2) and (2.3) once the gravitino
mass and the reheating temperature have been fixed.
In Table II, we summarize the dominant annihilation and

coannihilation channels contributing to the total annihila-
tion cross section σann entering the Boltzmann equation,
Eq. (1.3). For both parameter configurations, stau-antistau
annihilation into top-antitop pairs is the dominant contri-
bution, followed by channels which, at the one-loop level,
are insensitive to QCD corrections, such as processes
including neutralinos, Higgs and gauge bosons, photons,
leptons, and neutrinos.1

Generally, top quarks are more important than other
quarks in the final state due to the important top-quark
Yukawa coupling, which is additionally tan β enhanced in
exchanges of scalar Higgs bosons h0 and H0. Note that,
since only the lighter stau is relevant in the given context,
the exchange of a pseudoscalar Higgs A0 is absent. We
therefore focus on the annihilation into top quarks; i.e., we
consider the process τ̃1τ̃�1 → tt̄. Providing QCD corrections
to this channel means that we can correct about 32%
and 26% of the total annihilation cross section for scenario I
and II, respectively.
We conclude the phenomenological discussion by illus-

trating the situation in the vicinity of our chosen reference
scenario I. To this end, we show in Fig. 1 the regions
corresponding to a relic density compatible with the range
given in Eq. (1.1) obtained from the variation of the bino
mass parameter M1 and the stau mass parameter Mτ̃L
around the values given in Table I. We also indicate the
mass difference between the neutralino and the stau, and
the relative contribution of the stau-antistau annihilation

into top-antitop pairs which dominates this parameter
region and will therefore be in the focus of our study.
As can be seen in Fig. 1, the parameter region where the

relic density agrees with the limits of Eq. (1.1) closely
follows the line where the neutralino and the stau are equal
in mass. This illustrates the importance of coannihilations
in order to obtain the observed relic density. In our scenario
I, indicated in Fig. 1 by the red dot, the small mass
difference enhances the importance of the stau annihila-
tions through the exponential factor given in Eq. (1.5) and
enables the neutralino relic density to be within the given
limits.
In the remainder of this paper, we will present a higher-

order calculation of the stau-antistau annihilation into
top quarks and show the impact on the phenomenology
discussed here.

III. CALCULATION DETAILS

In the present work, we focus on the annihilation of a
stau-antistau pair into a top-antitop pair. At the tree level,
this process proceeds through the exchange of a CP-even
Higgs boson (h0 or H0), a Z0 boson, or a photon in the s
channel, as shown in Fig. 2. Due to the specific structure of
the associated coupling with sfermions, the exchange of a
pseudoscalar Higgs boson A0 does not contribute in the
present case of two identical stau mass eigenstates in the
initial state.
In the following we will discuss higher-order corrections

to the diagrams shown in Fig. 2. We will review the virtual

FIG. 1. Parameter regions in the M1–Mτ̃L plane that are
compatible with the Planck limits given in Eq. (1.1), where
the relic density has been computed using micrOMEGAs. All other
parameters are fixed to those given in Table I. The red dot
indicates scenarios I defined in Table I. The green contours
correspond to the contribution of the process τ̃1τ̃�1 → tt̄. The black
contour lines indicate the difference mτ̃1 −mχ̃0

1
in GeV between

the physical masses of the lighter stau and the lightest neutralino.

TABLE II. Relative contributions in percent of the dominant
annihilation channels contributing to the annihilation cross
section σann in the two reference scenarios I and II defined in
Table I. Here, l and ν denote arbitrary lepton and neutrino states,
l ¼ e, μ, τ and ν ¼ νe; νμ; ντ, respectively. Further contributions
below 5% are omitted.

Processes I II

τ̃1τ̃
�
1 → tt̄ 31.5 25.9

τ̃1τ̃
�
1 → γγ 12.9 21.4

τ̃1τ̃
�
1 → h0h0 10.0 2.2

τ̃1χ̃
0
1 → lh0 9.2 � � �

τ̃1τ̃
�
1 → ll̄; νν̄ 7.4 8.4

τ̃1χ̃
0
1 → lZ0 7.0 � � �

τ̃1χ̃
0
1 → lγ 6.0 � � �

τ̃1τ̃
�
1 → WþW− 6.5 11.3

1Note that in the constrained MSSM stau-coannihilation leads
to the correct relic density only for neutralinos lighter than
600 GeV [58,59]. This restriction is lifted in the pMSSM, where
other channels can also contribute.
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and the real OðαsÞ corrections, as well as the Sommerfeld
enhancement due to multiple-photon exchanges between
the initial state particles.

A. NLO corrections

Virtual corrections proportional to the strong coupling
constant αs only arise for the final state vertex through the
exchange of a gluon or a gluino between the quarks as
shown in Fig. 3. In order to regulate the arising divergences,
we have evaluated the loop integrals [60] appearing in the
vertex diagrams in D ¼ 4 − 2ϵ dimensions using the
dimensional reduction (DR) scheme, which preserves
supersymmetry. The ultraviolet divergences introduced in
the loop integrals are canceled by a renormalization of the
model parameters and fields.
The OðαsÞ contributions are completed by the gluon

radiation diagrams shown in Fig. 4, which cancel the
infrared divergences introduced by the virtual corrections
that include the exchange of a massless gluon. In order to
combine the virtual and the real corrections, canceling the
infrared divergences, we make use of the dipole subtraction
method [61,62]. This method is based on the construction
of an auxiliary cross section σA, which includes the
information about the infrared divergent behavior of the

original cross section. Moreover, the auxiliary cross section
is constructed such that the one-particle gluon phase space
is factorized from the three-particle phase space and can be
integrated out analytically. Using the auxiliary cross sec-
tion, the NLO cross section can be written as

σNLO ¼ σLO þ
Z
2→3

½dσRϵ¼0 − dσAϵ¼0�

þ
Z
2→2

�
dσV þ

Z
1

dσA
�
ϵ¼0

; ð3:1Þ

where σLO is the leading-order cross section and dσR and
dσV are the differential cross sections stemming from the
real emission and vertex correction diagrams, respectively.
The first integration in Eq. (3.1) is performed over the
three-particle phase space corresponding to the real emis-
sion diagrams, and the second integration is performed over
the two-particle phase space. For this last part, the auxiliary
cross section is integrated analytically over the gluon phase
space. For the explicit construction of the auxiliary cross
section we refer the reader to our previous work [22].
As mentioned above, the ultraviolet divergences are

removed by a proper redefinition of model parameters
which requires a careful definition of these parameters, i.e.,
choosing a renormalization scheme. In our previous works
[22,24,25] we have proposed and used a mixed on-shell
and DR renormalization scheme of the MSSM which is
well suited for dark matter calculations. However, there is a
certain ambiguity in choosing the renormalization scheme,
which we want to demonstrate here by defining an
alternative scheme. The new alternative renormalization
scheme differs from our standard scheme just by having the
top-quark mass defined in the DR scheme. The alternative
renormalization scheme is also particularly suitable to
study variations of the renormalization scale as all relevant
parameters are defined in the DR scheme. The differences
resulting from using the two alternative schemes or from
varying the renormalization scale will be discussed in
Sec. IV B.

FIG. 2. Tree-level Feynman diagrams for stau-antistau annihi-
lation into top-antitop pairs via Higgs (h0 orH0) and vector boson
(γ or Z0) exchange.

FIG. 3. QCD one-loop corrections to the Higgs-top-top and
vector-top-top vertices appearing in the processes of Fig. 2.

FIG. 4. Real gluon emission to the processes of Fig. 2.
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B. QED Sommerfeld corrections

In the limit of low relative velocities, as it is typical
during freeze-out of dark matter, annihilating particles
can exchange light mediators leading to the well-known
Sommerfeld enhancement. In our case this effect is caused
by the exchange of multiple photons between the incoming
stau anti-stau pair; see Fig. 5. For each exchange of a
photon the cross section is corrected by a factor propor-
tional to (α=vrel). With α ≈ vrel during freeze-out, this
contribution becomes nonperturbative and thus has to be
resummed to all orders of perturbation theory.
The Sommerfeld effect in electroweak theories has been

discussed intensively in the literature [32–38] and was
studied previously for QCD in the context of DM@NLO to
which we refer for more details regarding the computation
and implementation [26–28].
As stau annihilation occurs only via an s-channel

exchange, the s-wave contribution dominates the squared
matrix element. Therefore, we can factorize the corrected
cross section in terms of the leading-order contribution

ðσvÞresum ¼ S0ðσvÞtree; ð3:2Þ

with the Sommerfeld factor S0. The latter is evaluated by
solving the Schrödinger equation

�
−

4

mτ̃1

∇2 þ VðrÞ − ðEþ iΓτ̃1Þ
�
Gðr;Eþ iΓτ̃1Þ ¼ δð3ÞðrÞ;

ð3:3Þ

with E ¼ ffiffiffi
s

p
− 2mτ̃1 and the Coulomb potential [63,64]

VðrÞ ¼ −
αðμCÞ
r

×

�
1þ αðμCÞ

4π
½2β0ðlnðμCrÞ þ γEÞ þ a1�

�
: ð3:4Þ

The solution is the Green’s function Gðr;Eþ iΓτ̃1Þ ¼
Gðr; r0 ¼ 0;Eþ iΓτ̃1Þ. γE ¼ 0.5772 indicates the Euler-
Mascheroni constant,

a1 ¼ −
20

9

X
f

Q2
f; ð3:5Þ

and

β0 ¼ −
4

3

X
f

Q2
f; ð3:6Þ

are parameters whereas the latter originates from the one-
loop β function including all fermions f up to the scale of
the typical momentum exchange. The typical scale is taken
to be the Coulomb scale μC,

μC ¼ max fμB; 2mτ̃1vsg; ð3:7Þ

calculated as the maximum value of the momentum
exchange of the unbound particles and the Bohr momen-
tum, μB ¼ 2mτ̃1α. The velocity vs indicates the nonrela-
tivistic velocity of one of the incoming staus (vrel ¼ 2vs).
Finally, the Sommerfeld factor in Eq. (3.2), which multi-
plies the tree-level cross section, can be evaluated as
the ratio of the two Green’s functions at the origin
(r ¼ 0) [65,66]:

S0 ¼
Im½Gð0;Eþ iΓτ̃1Þ�
Im½G0ð0;Eþ iΓτ̃1Þ�

; ð3:8Þ

where the Green’s function G0ð0; Eþ iΓt̃1Þ stands for the
solution of the Schrödinger equation without any Coulomb
potential,

Im½G0ð0;Eþ iΓτ̃Þ� ¼
m2

τ̃1
vs

4π
: ð3:9Þ

Given the negligible scale dependence of αem, its running
can be neglected for the calculation of the Sommerfeld
factor. As the Coulomb potential given in Eq. (3.5) is scale
independent by itself, this implies similarly a negligible
contribution of the β function. With the NLO contribution
being suppressed by an additional factor of α=ð4πÞ, it has
generally only a negligible effect on the correction. Hence,
we performed our final calculation by including the
Coulomb potential at leading order only. For further details
on the numerical evaluation, we refer to our previous
papers [26–28].

IV. NUMERICAL RESULTS

Let us now discuss the numerical impact of the correc-
tions presented in Secs. III A and III B, first on the
annihilation cross section itself and then on the prediction
for the relic density of dark matter. For this numerical study,
we will rely on the two reference scenarios defined in
Table I and discussed in Sec. II.

FIG. 5. Multiple photon exchange in the initial state leading to
the Sommerfeld enhancement.
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In order to compute the relic density including the
corrections discussed above, our full NLO calculation
including Sommerfeld corrections has been implemented
in the DM@NLO package. In practice, the evaluation of the
Boltzmann equation by micrOMEGAs uses cross sections
computed by CalcHEP which are replaced in specific cases
by the values obtained from the DM@NLO calculation. In
this way, the processes included in the DM@NLO are taken
into account in a consistent way throughout the calculation
of the relic density and provide a more precise prediction of
the relic density.

A. Annihilation cross section and
its theoretical uncertainty

In Fig. 6 we show the stau-antistau annihilation cross
section as a function of the center-of-mass momentum pcm
for masses and couplings from scenario I of Table I. Given
that in the Boltzmann equation the total cross section
is thermally averaged, we also show the corresponding
thermal distribution. The velocity distribution indicates the
momentum range which is most relevant for the compu-
tation of the relic density.
The two different plots in Fig. 6 show the next-to-

leading-order annihilation cross section results for both
renormalization schemes mentioned in Sec. III A. Let us
first discuss the results using our standard DM@NLO
renormalization scheme. We compare our results to the
result from micrOMEGAs (black dashed line). We see that our
leading-order (LO) result (orange dotted line) does not
coincide with the micrOMEGAs cross section. One of the

reasons is the different definition of the top-quark mass.
In the DM@NLO renormalization scheme we use the
physical on-shell top-quark mass whereas micrOMEGAs uses
the top-quark mass in the DR scheme. The other reason is
the difference in the Yukawa couplings due to the fact that
micrOMEGAs uses effective couplings to include some higher-
order corrections.
Including the NLO corrections decreases the cross

section by about 9% as compared to the LO result, while
the NLO cross section is about 7.4% larger compared to
the micrOMEGAs result. The relative correction is fairly
constant for a large span of the center-of-mass momentum
pcm. On top of the next-to-leading-order SUSY-QCD
corrections, we include also the electroweak Sommerfeld
enhancement.
The Sommerfeld enhancement dominates the cross

section for small relative velocities. For an attractive force
such as the electromagnetic force between a stau and an
antistau particle, the Sommerfeld enhancement increases
the cross section (blue dash-dotted line in Fig. 6). The
final correction to the leading-order cross section (red line
in Fig. 6) after including both the SUSY-QCD NLO
corrections and the electroweak Sommerfeld enhancement
is relatively small given that both effects compensate each
other.
In addition to the shift of the numerical result, including

higher-order corrections leads to a better estimate of the
theoretical uncertainty associated with the prediction.
The theoretical uncertainty is the estimate of the contribu-
tions of higher orders that are not included in the actual

FIG. 6. Annihilation cross section of the process τ̃1τ̃�1 → tt̄ as a function of the center-of-mass momentum pcm for scenario I of Table I
using the standard DM@NLO renormalization scheme (left) and the alternative scheme (right). The upper panels show tree-level results
and different levels of corrections as discussed in Sec. III. The lower panels show the corresponding relative corrections. The gray areas
indicate the thermal distribution in arbitrary units.

SUSY QCD-CORRECTED AND SOMMERFELD-ENHANCED … PHYS. REV. D 100, 115003 (2019)

115003-7



calculation. There are several methods to estimate this
uncertainty.
One possibility relies on the fact that the dependence on

the renormalization scale introduced through the higher-
order corrections would disappear if all orders in perturba-
tion theory could be included. The dependence on the
renormalization scale is gradually reduced by including
higher-order corrections. That means in turn that the
remaining dependence is an estimator for the scale-
dependent parts of the missing higher-order contributions.
We have investigated the dependence of the cross

section on the variation of the renormalization scale for
both renormalization schemes (for technical details see
Ref. [28]). The results are shown in Fig. 7. In the left panel,
we show the impact of the variation of the renormalization
scale between μ ¼ 0.5 TeV and μ ¼ 2 TeV on the next-to-
leading-order cross section calculated in the DM@NLO
renormalization scheme. The leading-order cross section is
completely insensitive to the scale variation and even the
next-to-leading-order cross section is only mildly sensitive
in this scheme. This is simple to understand as the most
prominent parameter in this case, the top-quark mass, is
defined in the on-shell scheme which by definition removes
the renormalization scale dependence related to the top-
quark mass from both the leading- and next-to-leading-
order cross sections. The dependence of the next-to-
leading-order cross section on the renormalization scale
comes from the scale-dependent strong coupling constant
which was first introduced by the SUSY-QCD one-loop
corrections. But even this dependence is only mild due
to the high scale of μ ¼ 1 TeV which is natural for this
process. At such high scales, the changes in αs due to the
change in scale are very small.
In the case of the NLO calculation in the alternative

renormalization scheme, the top-quark mass was defined
in the DR scheme which leads to larger sensitivity to the
change in the renormalization scale. As one can see in the
right panel of Fig. 7, the scale dependence in the alternative

scheme is about 3% at leading order and is reduced to per
mille level at NLO.
From the investigation of the dependence of the cross

section on the renormalization scale, we might conclude
that the theoretical uncertainty at NLO is smaller than three
per mille. There are some caveats to this conclusion. First,
as we have seen, the sensitivity to scale changes depends on
the renormalization scheme where only pure MS or DR
schemes exhibit the full sensitivity. The other important
caveat is that varying the renormalization scale highlights
only the size of the scale-dependent part of the higher-order
corrections. In order to highlight the shortcomings of
the estimation of the theoretical uncertainty by varying
the renormalization scale, we compare the changes in the
cross sections due to different renormalization schemes. A
renormalization scheme is specified by the definition of the
model parameters and the corresponding definition of the
model parameter counterterms. At leading order the differ-
ent definitions of parameters cause a large difference
between calculations in different renormalization schemes.
This can be seen either by comparing the left and right
panels in Fig. 6 or by constructing the ratio of the leading-
order cross sections as in Fig. 8. In our case the difference
between the leading-order cross sections is larger than 30%.
At next-to-leading order the counterterms compensate for
the difference in parameter definitions. The only difference
between the next-to-leading-order calculations in different
renormalization schemes comes from the use of different
parameters in the one-loop corrections. This difference is of
a higher order and can be used as an estimate of theoretical
uncertainty. In our case the difference between the NLO
predictions in our two schemes is only about 4%–5%. The
theoretical uncertainty defined in this way also reduces
with every order included in the calculation and it takes into
account not only terms sensitive to changes in the renorm-
alization scale but all terms which depend on the model
parameters, e.g., the masses. This definition of theoretical
uncertainties is also not without flaws. To truly assess the

FIG. 7. Ratios of the τ̃1τ̃�1 → tt̄ cross section for renormalization scale μ varied around the central scale (μ ¼ 1 TeV) at leading (dashed
line) and next-to-leading order (solid line) for the DM@NLO renormalization scheme (left) and the alternative scheme (right).
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theoretical uncertainty one would ideally use many differ-
ent renormalization schemes which are not always simple
to define consistently for a given model (here the MSSM).
And even if this was feasible, this approach as well as the
previous one cannot capture the presence of constant terms
which can be determined only by an exact calculation of the
higher-order corrections whose size we are trying to
estimate.
We see that in order to be conservative, in our case

we should choose the variation of the renormalization
scheme to define the theoretical uncertainty. We then
conclude that the leading-order cross section has an
uncertainty of about 30% and the cross section including
the next-to-leading-order corrections has still an uncer-
tainty of 4%–5%. Using the DM@NLO renormalization
scheme produces smaller higher-order corrections indicat-
ing quicker convergence of the perturbative series. This
is one of the reasons why we adopt this scheme again in
the following and we apply it to the relic density
calculation, assuming neutralino or gravitino dark matter
within the pMSSM.

B. Impact on the neutralino relic density

We first consider the case, where the lightest neutralino is
the dark matter candidate and the second-lightest super-
symmetric particle is the lighter stau. This situation
corresponds to the mass spectrum of scenario I defined in
Table I.
In order to study the impact of the higher-order

corrections on the relic density, we vary two key param-
eters, namely the bino mass parameter M1 and the left-
handed stau mass parameter Mτ̃L around the values
specified in scenario I. The parameter region where the
relic density satisfies the experimental constraint given by
Eq. (1.1) is shown in Fig. 9 as a yellow band. The band is
determined using the micrOMEGAs relic density calculation

of the cross section. The width of the band corresponds to
one sigma experimental uncertainty. The blue solid and
dashed lines in Fig. 9 denote the predictions for the correct
relic density from the leading-order calculations in the
DM@NLO and the alternative renormalization scheme,
respectively. The band formed by these two lines denotes
the theoretical uncertainty of the leading-order relic
density calculation. Similarly, the black solid and dashed
lines correspond to the next-to-leading-order relic density
prediction in the two schemes. We see that the NLO
predictions from both renormalization schemes are very
consistent with each other and the theoretical uncertainty
of the relic density determination at NLO is very small in
this scenario.
In Fig. 10 we first compare the final relic density

prediction from micrOMEGAs and from the NLO calculation
in the DM@NLO scheme in the plane of the soft mass
parameters M1 and Mτ̃L and then in the plane of the
corresponding physical neutralino and stau masses. Note
that, also for the right plot of Fig. 10, all other input
parameters are fixed to the values given in Table I.
We observe that the shift between the favored region

based on the micrOMEGAs or CalcHEP calculation and the one
based on our full calculation amounts to a shift of about
3 GeV for the neutralino mass (for fixed stau mass) or about
5 GeV for the stau mass (for fixed neutralino mass). Most
importantly, the shift is much larger than the width of the
respective band corresponding to the experimental uncer-
tainty given in Eq. (1.1). This shows the importance
of including higher-order corrections and, in particular,

FIG. 8. Ratios of the τ̃1τ̃
�
1 → tt̄ cross section calculated in the

DM@NLO and the alternative renormalization schemes at
leading (orange) and at next-to-leading order (green).

FIG. 9. Comparison of experimental and theoretical uncertain-
ties in the M1–Mτ̃L plane around reference scenario I (indicated
by the red dot). The yellow band shows the experimental
uncertainties given in Eq. (1.1) as measured by the Planck
satellite at the 1σ confidence level. The leading (next-to-leading)
order relic density from both our renormalization schemes is
denoted by blue (black) lines. The predictions in the DM@NLO
(alternative) renormalization scheme are shown using the solid
(dashed) lines. As in Fig. 1, the green contours indicate the
relative contribution of the process τ̃1τ̃

�
1 → tt̄ to the total

annihilation cross section, based on the micrOMEGAs calculation.
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the importance of including the Sommerfeld enhancement
in the present situation.

C. Impact on the gravitino relic density

Here, we consider the case of the gravitino being the
lightest supersymmetric particle. The second-lightest par-
ticle is the lighter stau τ̃1 with the mass given in Table I for
scenario II. Let us recall that in this illustrative scenario, all
other superpartners are rather heavy with masses of about
5 TeV to simplify the analysis.
In a similar way as above for neutralino dark matter,

we illustrate in Fig. 11 the impact of our NLO and
Sommerfeld corrections presented in Sec. III A on the
favored region of parameter space. As in the previous case,
the shift between the micrOMEGAs calculation and our full
calculation is more important than the Planck uncertainty
given in Eq. (1.1).
Although the nonthermal contribution accounts for only

about 80% of the gravitino relic density, and the process
affected by the presented corrections accounts for only
about 32% of the total stau annihilation cross section, the
observed shift is more important than the impact found for
scenario I. This is caused by a relatively large impact of the
NLOcorrections in this scenario. Here, contrary to scenario I,
the squarks and gluino are rather heavy, such that the
corresponding gluino loop contribution (see Fig. 3) is sup-
pressed. This contribution has an opposite signwith respect to
the Standard Model top-gluon loop contribution. The com-
pensation between the two is therefore reduced and the
relative NLO contribution is more important amounting to
about 70% in this scenario.
In this illustrative scenario, for a fixed value of the

reheating temperature, the corrections account for a shift of
about 50 GeV in the gravitino mass, which corresponds to a
shift of about 10%. For a fixed gravitino mass of 450 about

GeV, the reheating temperature needs to be multiplied
by about a factor of 2 in order to still satisfy the Planck
constraint.
Let us emphasize that in a situation where the stops and

the gluino are closer in mass to the annihilating stau, the
impact of the presented corrections is therefore expected to
be reduced and similar to what has been observed in the
analysis of our scenario I.

FIG. 10. Parameter regions in the M1–Mτ̃L plane (left) and mχ̃0
1
–mτ̃1 plane (right) that are compatible with the Planck limits given in

Eq. (1.1), where the stau relic density has been computed using micrOMEGAs (orange) and our full NLO and Sommerfeld corrected cross
section (blue). All other parameters are fixed to those given for scenario I in Table I. The red dot correspond to scenario I. The green
contours correspond to the relative contribution of the process τ̃1τ̃�1 → tt̄ to the total annihilation cross section.

FIG. 11. Parameter regions in the mG̃–TR plane which are
compatible with the Planck limits given in Eq. (1.1) for the case
of gravitino dark matter, where the stau relic density has been
computed using micrOMEGAs (yellow) and our full NLO and
Sommerfeld-corrected cross section in the DM@NLO scheme
(orange). All other parameters are fixed to those given for
scenario II in Table I. The blue contours correspond to the
gravitino relic density based on the micrOMEGAs calculation. The
black lines indicate the relative nonthermal contribution in
percent according to Eq. (2.3) to the total gravitino relic density,
again based on the micrOMEGAs calculation.
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V. CONCLUSION

We have discussed the impact of NLO SUSY-QCD
corrections and the QED Sommerfeld enhancement
on the cross section of stau-antistau annihilation into
top quarks as well as their impact on the relic density
in scenarios where this cross section is important. We have
explored a scenario where the lightest neutralino is the
lightest supersymmetric particle and a dark matter candi-
date and the mass difference between the neutralino and
the lighter stau is small which increases the importance of
the stau annihilation. As the stau annihilations are also
important in scenarios with gravitino dark matter, we have
analyzed the impact of NLO corrections on the gravitino
relic density in a typical scenario with gravitino dark
matter.
We have analyzed different ways of defining the

theoretical uncertainty. We have shown that the usual
way of using the variation of the renormalization scale
largely underestimates the theoretical uncertainty in this
case. It is better estimated by looking at different renorm-
alization schemes. We have shown that at leading order,
the uncertainty of the relevant cross section is about 30%
which translates into an uncertainty of about 5% on the
relic density. This uncertainty largely reduces at next-to-
leading order and we have demonstrated that at NLO the

theoretical uncertainty is comparable with the experimen-
tal one.
We have demonstrated that in the studied cases the

next-to-leading-order corrections are important. They shift
the region in the parameter space which corresponds to the
experimentally determined relic density by more than the
experimental uncertainty. Moreover, the theoretical uncer-
tainty of the next-to-leading-order prediction for the relic
density remains below 1% making the NLO prediction for
the relic density very precise.
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Steppeler, Phys. Rev. D 89, 114012 (2014).

[23] A. Freitas, Phys. Lett. B 652, 280 (2007).
[24] J. Harz, B. Herrmann, M. Klasen, K. Kovařík, and Q. L.
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Kovařík, Phys. Rev. D 99, 095015 (2019).
[28] J. Harz, B. Herrmann, M. Klasen, K. Kovařík, and P.
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