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We propose a new framework for the observed flavor hierarchy and mixing based on left-right
supersymmetry. The model contains the most minimal Higgs sector consisting only of gauge doublets
which forbid the standard model Yukawa couplings. New mediator fields then connect the left- and right-
chiral fermion sectors and result in effective tree-level Yukawa couplings for the third-generation charged
fermions. The remaining fermions, including all neutrinos, acquire effective Yukawa couplings sourced by
the supersymmetry-breaking sector at loop level. We predict new TeV range scalars, as well as heavier
fermions and vector bosons, that can be discovered at the LHC and future colliders.
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I. INTRODUCTION

Despite the phenomenological success of the standard
model (SM), the mass and mixing hierarchies in the quark
and lepton sectors lack a proper understanding.
Specifically, the inferred SM Yukawa couplings of fer-
mions to the Higgs field span many orders of magnitude,
and their numerical values do not reflect any underlying
principle. The properties of the discovered Higgs boson [1]
support the existence of these interactions, although current
collider experiments only probe the Yukawa couplings of
the third-generation charged fermions [2,3].
A possible approach toward understanding the flavor

puzzle postulates that SM Yukawa couplings are low-
energy effective interactions induced by new dynamics.
Clearly, the radiative generation of these quantities would
provide a simple understanding for the relative lightness of
the first two SM generations. However, at the same time, all
radiative generation models generally struggle with the top
quark Yukawa coupling, as the observed value of this
parameter seemingly requires generation mechanisms
borderline with perturbative unitarity. The problem of

the top quark is then typically addressed through external
tree-level contributions, which inevitably impair the attrac-
tiveness of the framework. Furthermore, from a model-
building perspective, it is also desirable that the Yukawa
couplings of bottom quark and tau lepton also result from
the same dynamics as the top quark Yukawa coupling.
Motivated by these considerations, we show here that the

mentioned shortcomings of radiative generation models can
be easily avoided once two well-known symmetries are
considered: supersymmetry (SUSY) and left-right (LR)
gauge symmetry. In particular, we show that the corre-
sponding interactions result in effective Yukawa couplings
generated at the tree level for charged fermions of the third
SM generation and at higher orders in perturbation theory
for the remaining particles.
Irrespectively of SUSY, the left-right gauge group is well

motivated as a natural solution to the observed parity
violation [4–8] and to the strong CP problem [9–11].
On top of that, left-right models have also been extensively
used to radiatively generate the mass spectrum of the
lightest SM fermions [12–17]. An open question in this
line of model building concerns the gauge structure of the
Higgs sector, which usually relies on the bidoublet repre-
sentation [4–8,18–20] rather than on doublet [21,22] scalar
representations.
Although the former choice dominates the literature, the

latter possibility has gained renewed interest [17] within
frameworks for the radiative generation of the fermion mass
hierarchy, as it automatically forbids the presence of all
tree-level SM Yukawa couplings. In these schemes, fer-
mion masses are then recovered by considering three
generations, i ¼ 1, 2, 3, of vectorlike fermions Ui, Di,
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and Ei that mediate between the SM fermions of opposite
chirality and the corresponding Higgs bosons, implement-
ing the so-called universal seesaw mechanism [21–31]. An
alternative approach developed in Ref. [17] uses higher-
dimensional operators, generated at the one-loop level by
the dynamics of a dark sector, to reproduce the full fermion
mass hierarchy. The dark sector consists of a set of new
fermions, singlet under the SM gauge group but charged
under a new Uð1ÞF gauge symmetry, and of messenger
fields charged under all interactions. The latter, which carry
the same quantum number as the squarks and sleptons of
supersymmetric models, transmit the flavor structure and
chiral symmetry breaking from the dark sector to the SM
via new scalar-fermion interactions that resemble the
gaugino interactions of supersymmetric models.
Continuing this line of model building, in the present

paper we abandon the universal aspect of the mentioned
seesaw models and propose a different paradigm where,
instead of a dark sector, the interactions that result in the
radiative generation of SM Yukawa couplings arise from
supersymmetry. Concretely, adopting once again the dou-
blet representation of Higgs scalars in a left-right frame-
work to forbid the SM Yukawa interactions, we consider a
minimal scenario where the chiral sectors of the theory are
joined by a single copy of each mediator U, D, and E. As
anticipated, only the charged fermions of one of the SM
generations consequently acquire tree-level interactions that
reduce to the corresponding Yukawa couplings via the
universal seesaw mechanism below the SUð2ÞR-breaking
scale. The mass terms of the remaining fermions, instead,
arise from loop-level interactions that are fully determined
by the supersymmetric structure of the theory. The soft
breaking sector and the Majorana gaugino masses, in
particular, respectively, provide the necessary departure from
flavor universality and chiral symmetry breaking. The
renormalizability of the model ensures that finite, and
therefore predictive, results are obtained for the Yukawa
couplings of the lightest generations.1 In this way, the
proposed interplay between the left-right symmetry and
the supersymmetry delineates a new supersymmetric frame-
work to address the flavor puzzle, which we name the
mediated left-right supersymmetric model (MLRSM).
As a first test for the MLRSM, we tackle the hierarchy

that characterizes the quark sector of the SM and the
observed flavor mixing, parameterized in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. After computing the
tree- and loop-level contributions entering the quark mass
matrices generated by the new interactions, we show
through a dedicated numerical analysis that the MLRSM
is able to match the observed quark mass pattern and

mixing in a natural way. We also sketch the leptonic sector
of the model, where the hierarchy of the charged lepton
masses is explained by the same mechanism behind the
generation of the quark hierarchy. Differently, the omission
of a “neutrino mediator,” which would transform trivially
under the gauge group of the theory, prevents the gen-
eration of neutrino masses both at the tree and one-loop
level. These are then generated only at the two-loop level,
resulting in Dirac neutrinos that are naturally lighter than
the rest of the SM fermions. We argue that the peculiar
origin of neutrino masses sources here the different mixing
pattern observed in the leptonic sector.
The paper is structured as follows: in Sec. II we introduce

the superpotential and particle content defining the
MLRSM and delineate the general properties of the
framework. Our investigation of the SM flavor hierarchy
begins in Sec. III, where we show how third-generation
charged fermions acquire their masses through the inter-
action with the new mediator sector. The mechanisms
behind the generation of the remaining quark and charged
lepton mass terms are detailed in Sec. IV, whereas in
Sec. VI we present a numerical analysis that demonstrates
how the SM quark sector flavor structure is faithfully
reproduced. Finally, our conclusions are presented in
Sec. VII.

II. THE MLRSM

We propose a new supersymmetric scheme based on a
realization of the left-right symmetry that involves only
Higgs doublets. The SM Yukawa operators are then
forbidden by gauge invariance and the chiral sectors of
the theory must be necessarily bridged via a new mediator
sector. The particle content of the theory is then
shared among

(i) left- and right-chiral sectors, which host the quark
and lepton doublets of the corresponding chirality,
including right-handed neutrinos, the relative
SUð2ÞL=R gauge bosons and two Higgs fields each.
The setup of a chiral sector resembles that of left-
handed fermions and Higgs doublets in the minimal
supersymmetric standard model (MSSM).

(ii) a “mediator sector” that bridges the two chiral
sectors of the theory. The mediators transform as
singlets under the SUð2ÞL × SUð2ÞR group but
possess color and hypercharge—or, better, B − L
charge—and interact with the remaining fields via
gauge interactions, as well as via fundamental
Yukawa couplings that involve the fermion and
Higgs doublets of either chirality. In the absence
of mediators and symmetry breaking, which induces
the mixing of neutral gauge bosons, the two chiral
sectors are completely decoupled.

A comprehensive list of the considered superfields with
their charges and gauge multiplicities is presented in
Table I.

1The fact that the SUSY interactions alone produce a finite
contribution to the SMYukawa couplings was first acknowledged
in Refs. [32,33] within the context of the minimal supersym-
metric model.
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As mentioned in the introduction, our setup resembles
that of universal seesaw models where the SM Yukawa
couplings emerge from a double seesaw mechanism
after heavy vector-fermion mediators are integrated out
[21–24,28–31]. In our construction, however, we abandon
universality and consider a minimal setup for the mediator
sector which contains only one generation of each kind of
mediator (super)field. This simplification gives rise to a
series of implication that we briefly sketch below:

(i) All SM Yukawa couplings arise from higher-
dimensional interaction terms generated, after the
spontaneous breaking of SUð2ÞR, by integrating
out the involved mediator fields and superpartners.
The four-dimensional SM Yukawa operators then
cease to exist as local operators above a scale of
validity of the emerging effective theory, with non-
trivial implications on the renormalization group
running of the coupling constants and scenarios of
grand unification.

(ii) The considered mediator sector implements the
universal seesaw mechanism only for one generation
of quarks and charged leptons. These particles,
which we identify with the third generation of the
SM, are the only fermions that consequently acquire
tree-level mass terms.

(iii) The Yukawa interactions resulting in the mass terms
for first- and second-generation charged fermions
are generated only at the one-loop level. These
particles are consequently naturally lighter than
the third-generation ones and the SM flavor hier-
archy is recovered together with the emergence of an
approximate Uð2Þ symmetry involving the lightest

quark generations. The chiral symmetry-breaking
terms that allow for the required loop diagrams are
naturally provided by the gaugino masses.

(iv) No neutrino acquires mass at the tree or one-loop
level. The absence of a neutrino mediator, which
transforms as a singlet under the full gauge group of
the theory, forces Dirac masses to appear only at the
two-loop level, in agreement with the observed
fermion mass hierarchy.

(v) The different structures of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) and CKM matrices
can be potentially related to the different origin of
neutrino masses.

The only mass terms allowed by this setup in the
superpotential, before SUSY and left-right symmetry
breaking, are the mediator masses and two μ terms for
the Higgs supermultiplets. Explicitly, we have

W ¼ Yi
uQiHuŪ − Ȳi

uQ̄iH̄uU − Yi
dQiHdD̄þ Ȳi

dQ̄iH̄dD

− Yi
eLiHdĒþ Ȳi

eL̄iH̄dEþ bLLHu þ b̄LH̄uL̄

þ tLLLĒþ t̄LEL̄L̄þ sDQLD̄þ s̄DDL̄Q̄

þ κQQQDþ κ̄QQ̄Q̄D̄þ κUDĒþ κ̄EŪD̄

þ μUUŪ þ μDDD̄þ μEEĒþ μLHuHd þ μRH̄uH̄d:

ð1Þ

Here, terms in the first and second line proportional to
Yukawa couplings Yi, as well as those in the last line, result
in the interactions that below the SUð2ÞR-breaking and the
mediator scales, as well as the μ terms for the four Higgs

TABLE I. Particle content of the MLRSM specified in terms of left-handed chiral superfields. We define the B − L
charge in a way that Q ¼ I3 þ ðB − LÞ=2.
Chiral superfield Uð1ÞB−L × SUð2ÞL × SUð2ÞR × SUð3Þc Particle content

Left-handed sector:
Qi ¼ ðui; diÞ ð1=3; 2; 1; 3Þ Left-handed (s)quarks
Li ¼ ðνi;liÞ ð−1; 2; 1; 1Þ Left-handed (s)leptons
Hu ¼ ðϕþ

u ;ϕ0
uÞ (1, 2, 1, 1) SUð2ÞL up-type Higgs(ino)

Hd ¼ ðϕ0
d;ϕ

−
d Þ ð−1; 2; 1; 1Þ SUð2ÞL down-type Higgs(ino)

Mediator sector:
U ð4=3; 1; 1; 3Þ Up-type (s)mediator
D ð−2=3; 1; 1; 3Þ Down-type (s)mediator
E ð−2; 1; 1; 1Þ Charged lepton (s)mediator
Ū ð−4=3; 1; 1; 3̄Þ Up-type (s)mediator
D̄ ð2=3; 1; 1; 3̄Þ Down-type (s)mediator
Ē (2, 1, 1, 1) Charged lepton (s)mediator

Right-handed sector:
Q̄i ¼ ðd̄i; ūiÞ ð−1=3; 1; 2; 3̄Þ Right-handed (s)quarks
L̄i ¼ ðl̄i; ν̄iÞ (1, 1, 2, 1) Right-handed (s)leptons
H̄u ¼ ðϕ̄0

u; ϕ̄−
u Þ ð−1; 1; 2; 1Þ SUð2ÞR up-type Higgs(ino)

H̄d ¼ ðϕ̄0
u; ϕ̄−

u Þ (1, 1, 2, 1) SUð2ÞR down-type Higgs(ino)
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doublets and the mediators. Terms in bold are analogous to
the so-called bilinear and trilinear R-parity violating terms
of the MSSM, the phenomenology of which has been
extensively studied in the literature (see for instance
Ref. [34] and references therein). Terms in calligraphic,
instead, are responsible for the proton decay through
diagrams as the one shown in Fig. 1. Forbidding either
of these vertices is sufficient to ensure the proton stability.
Finally, terms in sanserif include interactions among the
mediators which could induce sizable contributions to
proton decay in part of the parameter space once the κQ
vertices are allowed.
Additional terms W ⊃ κDUDDþ κ̄DD̄D̄Ū can be

included in the superpotential within extensions of the
model containing more generations of mediators but
vanish identically in the present case. Notice also that
the Higgs doublets carry the same quantum number as
lepton doublets. It could then be possible to modify the
present framework by including different generations of
Higgs doublets in place of lepton doublets, extending the
superpotential to terms asW ⊃ þκuHuHuEþ κ̄uĒH̄uH̄uþ
κdHdHdĒþ κ̄dEH̄dH̄d which necessarily involve different
generations of Higgs doublets. Leptons would then be
identified with the charginos and neutralinos of the theory,
but in the present analysis we do not pursue this fascinating
possibility.

A. Avoiding proton decay

It is possible to impose discrete symmetries to forbid
superpotential terms that induce diagrams as the one
presented in Fig. 1, resulting in the decay of protons.
For instance, introducing a Z2 symmetry that plays here

the role of the R parity of the MSSM, we find the viable
textures in Table II.

Texture I and II forbid all the terms proportional to
SD; S̄D; kQ; k̄Q; k; k̄ in Eq. (1), whereas III forbids only
terms in the latter. Texture IV, instead, allows for the terms
analogous to the bilinear R-parity violating terms of the
MSSM (the first two rendered in bold) and the mediator
interactions (in sanserif), on top of the terms proportional to
Yukawa couplings Yi and those contained in the last line.
In order to perform a first exploration of the framework,

in this paper we focus on the quark interactions and show
how the MLRSM explains the SM flavor hierarchy. To this
purpose, we will consider only the following subset of
terms present in the superpotential:

WQuarks ¼ þYi
uQiHuŪ − Ȳi

uQ̄iH̄uU − Yi
dQiHdD̄

þ Ȳi
dQ̄iH̄dDþ μUUŪ þ μDDD̄; ð2Þ

which are allowed by every texture identified above. The
corresponding soft-breaking sector then comprises

LSoft ¼ −ðT i
uQ̃iHu

˜̄U − T̄ i
u
˜̄QiH̄uŨ − T i

dQ̃iHd
˜̄D

þ T̄ i
d
˜̄QiH̄dD̃þ bμU Ũ

˜̄UþbμDD̃
˜̄Dþ c:c:Þ

− Q̃†
i m

2
Q
i;iQ̃i − ˜̄Q†

i m2
Q̄
i;i ˜̄Qi −m2

UŨ
�Ũ

−m2
Ū
˜̄U� ˜̄U −m2

DD̃
�D̃ −m2

D̄
˜̄D� ˜̄D −Mg̃g̃ g̃

−MW̃L
W̃LW̃L −MW̃R

W̃RW̃R −MB̃B̃ B̃þ � � � ; ð3Þ

where we left understood the SUð2Þ doublet-doublet
contractions. Analogously, the suspension points stand
for contributions that do not involve color interactions
and therefore do not enter the present analysis. Without loss
of generality, we take diagonal squark mass matrices on the
gauge interaction basis.
In order to reduce the number of free parameters and

increase symmetry, during the following we will often
invoke a mirror Z2 symmetry between the left and right
sectors of the theory. To further simplify the study, we
also parametrize the vacuum expectation values (VEVs)
induced by the spontaneous symmetry breaking as follows:

hϕ0
ui ¼

vuffiffiffi
2

p ¼ vHffiffiffi
2

p sin θ; hϕ0
di ¼

vdffiffiffi
2

p ¼ vHffiffiffi
2

p cos θ;

hϕ̄0
ui ¼

vūffiffiffi
2

p ¼ vH̄ffiffiffi
2

p sin θ̄; hϕ̄0
di ¼

vd̄ffiffiffi
2

p ¼ vH̄ffiffiffi
2

p cos θ̄:

ð4Þ

TABLE II. Examples of Z2 parity textures which prevent the proton decay.

Chiral superfield Q L Hu Hd U D E Ū D̄ Ē Q̄ L̄ H̄u H̄d

Texture I − − þ þ − − − − − − − − þ þ
Texture II þ þ − − − − − − − − þ þ − −
Texture III þ − þ − þ − þ þ − þ þ − þ −
Texture IV − − − þ þ − − þ − − − − − þ

FIG. 1. An example of a proton decay diagram induced by
the new mediators through the introductions rendered in
calligraphic in Eq. (1).
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The full list of Feynman rules corresponding to the terms in
Eqs. (2) and (3) is presented in the Appendix. These will be
used to build the one-loop Green functions entering the
low-energy effective operators that characterize the SM
limit of the theory.

B. Gauge sector

The tree-level masses for the WL vector boson and its
right counterpart WR are straightforwardly given by

vH ¼ 2MWL

g2
; vH̄ ¼ 2MWR

g2
; ð5Þ

where we have highlighted the relation with the Higgs
VEVs and imposed a Z2 mirror symmetry so that g2 ¼
g2L ¼ g2R. The analysis of the neutral sector is more
involved due to the presence of the extra Abelian
Uð1ÞB−L group. The masses of the Z and Z0 states are
derived from the matrix

MB ≡

0
BBB@

g21ðv2H þ v2H̄Þ2 − g1g2L
2

v2H − g1g2R
2

v2H̄

− g1g2L
2

v2H
g2
2L
4
v2H 0

− g1g2R
2

v2H̄ 0
g2
2R
4
v2H̄

1
CCCA: ð6Þ

Forcing again the mirror symmetry, Eq. (5) and the limit
vH ≪ vH̄ imposed by the present Large Hadron Collider
(LHC) searches [35–38], we obtain

g22 ¼ 4g21
2M2

WL
−M2

Z

M2
Z −M2

WL

; M2
Z0 ¼

M2
WL

M2
WR

2M2
WL

−M2
Z
; ð7Þ

leaving two free parameters that we take to beMWR
and g1.

Notice that Eq. (7) and the imposed mirror symmetry set
the ratio of the B − L and SUð2Þ gauge couplings, as well
the Z0=WR mass ratio, to

g2=g1 ≃ 3; MZ0=MWR
≃ 0.8: ð8Þ

III. THE THIRD-GENERATION MASSES

With the Lagrangian given on the basis where the squark
mass matrices are diagonal, we define the following chiral
multiplets:

ξTLu
¼ ðu1; u2; u3; UÞ; ξTR̄u

¼ ðū1; ū2; ū3; ŪÞ;
ξTLd

¼ ðd1; d2; d3; DÞ; ξTR̄d
¼ ðd̄1; d̄2; d̄3; D̄Þ:

The spontaneous symmetry breaking of the two chiral of
SUð2Þ symmetries then induces tree-level left-right bilinear
terms of the form

L2 ¼ −ξTLu
MuξR̄u

− ξTLd
MdξR̄d

; ð9Þ
with an analogous term for the charged leptons.
At the tree level, the MLRSM quark sector is conse-

quently characterized by a 4 × 4 matrix texture of the form

Mu ≡
 

03×3 ðvu=
ffiffiffi
2

p ÞY⃗u

ðvū=
ffiffiffi
2

p Þ ⃗Ȳu μU

!
;

Md ≡
 

03×3 ðvd=
ffiffiffi
2

p ÞY⃗d

ðvd̄=
ffiffiffi
2

p Þ ⃗Ȳd μD

!
: ð10Þ

As these matrices have rank 2 regardless of the values of the
mediator Yukawa couplings, they each admit two vanishing
eigenvalues.
In order to see this explicitly for the case of up-type

quarks, we momentarily rotate Eq. (9) to the corresponding
mass eigenstates basis ξ0Lu

—the cases of down-type
quarks and charged leptons follow in complete analogy.
We then introduce two different unitary matrices, ZLu

and
ZR̄u

, such that

ξ0Lu
¼ ZLu

ξLu
; ξ0R̄u

¼ ZR̄u
ξR̄u

;

ξTLu
MuξR̄u

¼ ξ0TLu
Z�
Lu
MuZ

†
R̄u
ξ0R̄u

¼ ξ0TLu
MD

u ξ
0
R̄u
; ð11Þ

where MD
u is the diagonal matrix containing the mass

eigenvalues given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MuM

†
u

q
.

Going into the details of the procedure, with simple
geometric considerations we determine the intermediate
rotations that extract from the Yi

uQi and Ȳi
uQ̄i terms the

only states that interact with the Higgs bosons of the two
chiral sectors at the tree level,2 and that mixes the
messenger U and Ū. By using the following angular
parameterization:

Y⃗u ¼ Yuðsin θLu
; cosϕLu

cos θLu
; sinϕLu

cos θLu
Þ;

⃗Ȳu ¼ Ȳuðsin θR̄u
; cosϕR̄u

cos θR̄u
; sinϕR̄u

cos θR̄u
Þ; ð12Þ

the intermediate transformations we seek are easily found
by means of twoOð2Þ rotations that align the starting bases
ξLu

and ξRu
to the direction of the corresponding Yukawa

vectors. A possible choice is therefore

OLu
≡

0
BBB@
cosϕLu

−sinϕLu
sinθLu

−cosϕLu
sinθLu

0

0 cosϕLu
−sinϕLu

0

sinθLu
sinϕLu

cosθLu
cosϕLu

cosθLu
0

0 0 0 1

1
CCCA;

ð13Þ

2Notice that the MLRSM introduces in each chiral sector a
Yukawa vector rather than a matrix.
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with OR̄u
given by the same expression through the

substitutions ϕLu
→ ϕR̄u

and θLu
→ θR̄u

.
By acting with these matrices on Eq. (10) we find

OLu
MuOT

R̄u
¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 ðvu=
ffiffiffi
2

p ÞYu

0 0 ðvū=
ffiffiffi
2

p ÞȲu μU

1
CCCA;

ð14Þ

and the four-dimensional spaces spanned by Qi, U and
Q̄i, Ū consequently split each into two separate sectors.
On one hand we have the appearance of two massive
states, which we identify with the third-generation up-
type quark and the relative mediator field. On the other,
the states “rotated out” of the interactions with the Higgs
bosons form a chiral sector characterized at this stage by
a Uð2Þ symmetry, remnant of the original Uð3Þ flavor
symmetry.
The same procedure can also be applied to the down-type

quarks and charged lepton, which consequently present
similar mass spectrums. Having performed the intermediate
rotation in Eq. (13), it is now easy to derive the explicit
form of the matrices entering the biunitary transformation
Z�
Lu
MuZ

†
R̄u

by separately diagonalizing

Z�
Lu
MuM

†
uZT

Lu
¼ ðMD

u Þ2;
ZR̄u

M†
uMuZ

†
R̄u

¼ ðMD
u Þ2: ð15Þ

The resulting two nonzero mass eigenvalues have the form

M2
u4;3 ¼

1

2

�
K2

Lu
þK2

R̄u
þ μ2U

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2

Lu
þK2

R̄u
þ μ2UÞ2 − 4K2

Lu
K2

R̄u

q �
; ð16Þ

where KLu
¼ vu=

ffiffiffi
2

p
Yu and KR̄u

¼ vū=
ffiffiffi
2

p
Ȳu.

Working under the natural assumption that the electro-
weak scale be much below the SUð2ÞR-breaking scale and
the supersymmetric messenger one, μU, the above masses
take a very simple form:

M2
u4 ≃ μ2U þ K̄2

u þO

�
K2

u

μ2U þ K̄2
u

�
;

M2
u3 ≃ K̄2

u
K2

u

μ2U þ K̄2
u
þO

��
K2

u

μ2U þ K̄2
u

�
2
�
; ð17Þ

whereas the mixing matrices in the same limit are

ZLu
¼ diagonal phases ·

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 1 − KuμU
μ2UþK̄2

u

0 0 KuμU
μ2UþK̄2

u
1

1
CCCCCA

·OLu
þO

�
K2

u

μ2U þ K̄2
u

�
ð18Þ

and

ZR̄u
¼ diagonal phases ·

0
BBBBBB@

1 0 0 0

0 1 0 0

0 0 − μUffiffiffiffiffiffiffiffiffiffiffi
μ2UþK̄2

u

p K̄uffiffiffiffiffiffiffiffiffiffiffi
μ2UþK̄2

u

p

0 0 K̄uffiffiffiffiffiffiffiffiffiffiffi
μ2UþK̄2

u

p μUffiffiffiffiffiffiffiffiffiffiffi
μ2UþK̄2

u

p

1
CCCCCCA

·OR̄u
þO

�
K2

u

μ2U þ K̄2
u

�
: ð19Þ

The matrix factorization presented in Eqs. (18) and (19)
highlights the terms responsible for the mixing between
the third-generation SM gauge eigenstates and the extra
messengers.
If the left-right mirror symmetry was also imposed in the

Yukawa sector by requiring Yu ¼ Ȳu, and similarly for Yd,
the expressions in Eq. (16) would reduce to3

Y2
u ¼

2Mu3Mu4

vHvH̄ sin θ sin θ̄
; Y2

d ¼
2Md3Md4

vHvH̄ cos θ cos θ̄

ð20Þ

and define the scale of the messenger

μ2U ¼ M2
u4 þM2

u3 − K̄2
u þK2

u ≃M2
u4 −

Mu3Mu4

sin θ cos θ̄
vH̄
vH

;

μ2D ¼ M2
d4 þM2

d3 − ðK̄2
d þK2

dÞ ≃M2
d4 −

Md3Md4

cos θ sin θ̄

vH̄
vH

:

ð21Þ

To conclude the section, we remark on a peculiarity of
the model rooted in the left-right symmetric structure
possessed by the Yukawa sector even in the absence of
mirror symmetry. The mixing between the left chiral sector
and the messenger, regulated by Eq. (18), can be arbitrarily
suppressed by simply imposing that vH be the lightest
scale, regardless of the hierarchy between vH̄ and μU. On
the contrary, Eq. (19) seems to support a maximally mixed
state between the right-handed component of the third-
generation quark and the messenger field unless vH̄ ≪ μU.

3In this case the messenger Yukawa matrices become Hermi-
tian, as expected for an exact left-right symmetry.
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Such a condition, however, is ruled out in our model by the
perturbativity of Yu.
This can be explicitly shown by expanding the exact

solutions for the mass eigenvalues, Eq. (16), in the limit
μU ≫ vH̄. The resulting expressions maintains the same
functional dependence on the masses of Eq. (20) but in this
case Mu4 ≃ μU ≫ vH̄. Because top quark mass measure-
ments force Mu3 ≃ vH=

ffiffiffi
2

p
we find that Yu > Mu=;4=vH̄,

leading to a nonperturbative value of the coupling under the
assumption μU ≫ vH̄; vH.

IV. THE FIRST TWO GENERATIONS

In the previous section we have shown that the
MLRSM effectively prevents two of the three SM
quark—and charged lepton—generations from interacting
with the Higgs bosons at the tree level. The breaking of
left-right gauge symmetry defines a subspace in the fields
space characterized by a Uð2Þ flavor symmetry, which
must be broken in order to generate the masses of the
involved SM particles. We will now show that the
required dynamics is provided by the soft SUSY-breaking
terms and the same mediator Yukawa interactions, which
fully determine the effective operators emerging at the
loop level in the model.
To illustrate the dominant one-loop contributions, as well

as the role of the soft parameters involved, we focus again
on the up-quark case and explore the radiative origin of
masses for the lightest two-generation quarks. We seek
loop corrections that result in the effective operator

Leff ¼
Yeff

Λeff
ðψ̄LHÞðψRH̄Þ; ð22Þ

which radiatively implements the universal seesaw mecha-
nism for the light SM generations. Considering the inter-
actions derived from the soft Lagrangian in Eq. (2)
and listed in the Appendix, we see that the helicity flip
induced by the Majorana gaugino, on top of the (s)
messenger mediation, provides different ways to construct
the operator.

A. The role of mediators

With the Lagrangian given on the flavor eigenstates
basis where the squark mass matrices are diagonal, and
barring for the moment soft trilinear terms, the Yukawa
interactions of the mediator itself must provide the
required contact with the squarks and quarks of the first
two SM generations.
The structure of the light quark mass matrix is then shaped

by the mediator Yukawa interactions and by the (diagonal)
squark mass matrices m2

Q̃
. The latter, in particular, play an

important role in breaking the mass degeneracy of the light
quarks. In more detail, one-loop corrections to the mass
matrix in Eq. (14) result in

OLu
ðMu þ loop correctionÞOT

R̄u

≃

 
Mu ðvu=

ffiffiffi
2

p ÞYu

ðvū=
ffiffiffi
2

p ÞȲu μU

!
; ð23Þ

and the diagrammatic expression of the 3 × 3 submatrix
Mu containing the masses of light quarks can be
given as

ð24Þ

which results in the matrix element

ðMμ2
u Þij ¼

X2
κ¼1

Z
d4k
ð2πÞ4 ð2CFg23μ

2
UÞMg̃Pg̃

× ðYi
uPQ̃i

ÞðV†
2κPũκVκ1ÞðYj

uP ˜̄Qj
Þ;

where CF is the color factor and the factors Pf̃ ¼
Pf̃ðk;Mf̃Þ ¼ 1=ðk2 −M2

fÞ are due to the fermion propa-
gators. We remark that these matrix elements are computed
for vanishing external momenta.

B. The role of trilinear terms

Alternatively, quarks and squarks of the first two SM
generations can be linked to the Higgs fields via trilinear
terms from the soft SUSY-breaking sector. This results in
independent contributions to the light quark mass matrices
provided that, in flavor space, the trilinear term be not
aligned to the tree-level Yukawa vectors. The relevant
interactions then result in a 3 × 3 submatrix diagrammati-
cally written as

ð25Þ
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and the corresponding contributions, computed for vanish-
ing external momenta, are

ðMT 2

u Þij ¼
X2
κ¼1

Z
d4k
ð2πÞ4 ð2CFg23ÞMg̃Pg̃T i

u

× PQ̃i
ðV†

1κPũκVκ2ÞT j
uP ˜̄Qj

: ð26Þ

C. Mixed case

Finally, the simultaneous presence of trilinear terms and
mediator mass scale provides a further input to effective
Yukawa operator which mixes the previous contributions.
As a consequence, the 3 × 3 submatrix is given by

ð27Þ

plus and additional diagram where the trilinear Yukawa
coupling are interchanged. Notice that, differently from the
previous cases, the above diagram induces a nonvanishing
one-loop contribution to the quark mass matrix even in the
absence of b terms. Explicitly we have

ðMμT
u Þij ¼

X2
κ¼1

Z
d4k
ð2πÞ4 ð2CFg23μUÞMg̃Pg̃Yi

uPQ̃i

× ðV†
2κPũκVκ2ÞT j

uP ˜̄Qj
: ð28Þ

To conclude the section, we remark that the mass
matrices of down-type quarks and charged leptons are
generated through analogous interactions that involve the
corresponding mediators and soft-breaking terms. In par-
ticular, replacing all gluino fields in the above diagrams
with electroweak gauginos yields additional contributions
that are subdominant in the quark case but that provide the
leading contribution to the radiative masses of charged
leptons.

V. REPRODUCING THE OBSERVED MASS
HIERARCHY AND MIXING

A. The quark mass hierarchy

Challenging Eqs. (17) and (22), respectively, with the
measured values of the top and charm mass results in a

series of constraints that shape the high-energy phenom-
enology of the MLRSM.
The top mass sits indeed in the critical range mt∼

vH=
ffiffiffi
2

p
, forcing the limit Yu ∼ 1 and θ ∼ π=2 to recover

M2
u3 ≃K2

u ≃ v2H=2. Adopting these values in Eq. (17) we
find that the mediator scale μU is necessarily subdominant
with respect to the right-handed breaking scale vH̄. In this
case M2

u4 ≃ K̄2
u and the model delivers a sharp prediction

that relates these scales:

Mu4

MWR

≃ g2 sin θ̄: ð29Þ

Conversely, in the down-quark and lepton sectors, the
measured values of the b quark and τ masses allow for
sizable contributions of μD and μE into the corresponding
mediator masses.
Assessing the magnitude of these μ terms at the theory

level is crucial for understanding their effect on the loop
corrections in Eqs. (25) and (28). Focusing again on the up-
type quark case, setting the gluino mass, the squark masses
and trilinear terms to a common scale Msoft yields the
following approximated relations:

Mμ2
u ∼

�
CF

αS
π

vuvū
Msoft

�
μ2U
M2

soft

;

MμT
u ∼

�
CF

αS
π

vuvū
Msoft

�
μU
Msoft

; ð30Þ

together with the only μ independent contribution of
Eq. (26) purely determined by the trilinear terms:

MT 2

u ∼ CF
αS
π

vuvū
Msoft

: ð31Þ

It is clear that considering MWR
≫ Msoft allows one to

enhance all the considered loop contributions. At the same
time, the requirement μU ≪ MWR

forced by the experi-
mental value of the top mass and perturbativity implies that
the charm mass scale will be inevitably driven by the sole
trilinear contributions in MT 2

u .

B. The flavor mixing pattern and breaking
of flavor symmetry

On top of generating a suitable quark mass spectrum, to
explain the observed flavor structure we must address the
challenging problem posed by the CKM mixing matrix.
This is characterized by an almost symmetric structure,
with sizable mixing only in the Cabibbo submatrix acting
on the lightest quark generations.
To investigate this mixing pattern within the MLRSM,

we simplify the matter by considering up and down
Yukawa vectors oriented in flavor space along the
direction corresponding to the third-generation quarks:
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Yi ¼ ð0; 0;YÞ. Then, from the discussion in Sec. IV, it is
clear that any component of the trilinear terms parallel to the
Yukawa direction would only result in radiative corrections
to the tree-level top and bottom masses. To avoid this
unnecessary complication, we consider the ansatz

T i
u ¼ T uðcosαu; sin αu; 0Þ;

T i
d ¼ T dðcosαd; sin αd; 0Þ; ð32Þ

which, supplemented with nondegenerate diagonal soft
squark mass terms, breaks the residual Uð2Þ flavor sym-
metry present at the tree level in the model.
Notice that the conditions at the basis of the large mixing

of the light quarks in the up-type sector are a direct
consequence of the measured value of the top mass, which
bounds the magnitude of μU. Indeed, considering our
ansatz and the properties of the loop functions in
Sec. IV, a limited μU ensures a natural separation between
the third-generation quarks and the light states in the Uð2Þ
flavor subspace, that obtain their masses through the
contributions of trilinear terms.
Motivated by this observation, in the present work we

shape the mixing of the down sector in a similar fashion by
imposing an analogous ansatz on the μD term:

Md4

MWR

≃ g2Yd cos θ̄: ð33Þ

With this choice we effectively ascribe the observed CKM
mixing to a mild mismatch between the matrices that
perform the rotation between mass and flavor eigenstates
in the up- and down-type sectors. We find this approach
promising because both the matrices are already charac-
terized by a large mixing among the first and second
generations, although we do not exclude that solutions of
the model which match the measured CKM entries for
more general down-type mixing matrix could exist.

C. The CKM phase and induced
electric dipole moments

Before proceeding with the numerical analysis, we
briefly discuss the origin of the CKM phase and the impact
of electric dipole moment (EDM) measurements within the
present framework.
The CP-violating phase δ observed in the quark mixing

could arise here from finite contributions due to the
diagrams in Eqs. (24) and (25), that source the Yukawa
couplings of the light quarks. For instance, we identify the
following (not exclusive) possibilities:

(i) The CKM phase could arise from the phase of the
trilinear soft-breaking terms relative to the gaugino
mass Mg̃, that is, δ ¼ arg½Mg̃T i

u�,
(ii) or from the phases of the gaugino mass and of the μ

term in the superpotential, that is, δ ¼ arg½Mg̃μ�.
Because the mentioned quantities are all free parameters

of the model, we find it always possible to match the
measured value of the CKM phase. The generation of a
Yukawa texture suitable to reproduce the observed mass
hierarchy and flavor mixing then constitutes the whole
bundle of the problem, and in the following numerical
analysis we will focus exclusively on this aspect of the
quark phenomenology.
To conclude, it could still be objected that the same

contributions behind the generation of the CKM phase
unavoidably lead, in our framework, to unacceptable large
contributions to the electron and neutron EDMs. We find
this not to be the case, as the parameters involved in these
observables are, in point of fact, independent from the
CKM phase. In the present model, as in the MSSM, the
most dangerous contribution to the electron EDM arises
at one loop via the diagrams generated by the chargino
mediation [39]. The phase entering the electron EDM is
then proportional to Im½ðgχLÞ�gχR�, gχL;R being the chargino
couplings to leptons. The parameters resulting in the EDM
phase are then completely independent from the ones that
determine the CKM phase, and consequently it is possible
to avoid the EDM constraints. The same argument applies
to the neutron EDM, where the dangerous phase is
generated by Im½ðgχLÞ�gχR� with gχL;R being here the cou-
plings of chargino to quarks.

VI. NUMERICAL ANALYSIS

Explaining the observed flavor structure in terms of
dynamics within a natural theory is a highly nontrivial
challenge. The apparent lack of a principle behind the
measured span of masses and mixing angles provides
no guidance for an understanding of the underlying structure.
On top of that, collider experiments have now pushed the
most popular models of new physics well above the TeV
scale, limiting their possible contributions to the flavor
puzzle.
A first concrete obstacle on our path is the difference in

the mass hierarchies measured in the up- and down-type
sector where, respectively, mu=mt ∼ 10−5 and md=mb∼
10−3, and the d quark is heavier than the u quark.
A second problem is posed by the measured CKM

elements

jVCKMj ¼

2
64
0.97485� 0.00075 0.2225� 0.0035 0.00365� 0.00115

0.2225� 0.0035 0.9740� 0.0008 0.041� 0.003

0.0009� 0.005 0.0405� 0.0035 0.99915� 0.00015

3
75; ð34Þ
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which result in an almost symmetric structure spoiled only
by the entries corresponding to top-down and up-bottom
transitions. Furthermore, mixing is sizable only in corre-
spondence of the Cabibbo submatrix.4

Regardless of all these difficulties, wewill now show that
the MLRSM is able to faithfully reproduce the flavor
texture of the SM, matching both the hierarchies of the
quark sectors as well as their mixing pattern. The new
particles that the model predicts are all well above the TeV
scale, even when perturbative values of the couplings are
imposed.

A. Methodology of the scan

Our investigation comprises two different parts: the first
concerns a scan on supersymmetry preserving parameters,
whereas the second assesses the effect of varying soft
terms. As a first step, we use in Eq. (16) values of top and
bottom quark masses taken from the corresponding
68% confidence intervals, implicitly neglecting possible
radiative corrections to these quantities. Although we adopt
such a simplification for this first numerical check of

the model, these contributions can be straightforwardly
included in future analyses.
As a second step, we scan on Mu4, Md4 and MWR

in the
range shown in Eq. (35), motivated by our previous consid-
erations on the relevance of the ratio vH̄=Msoft. In order to
avoid large radiative corrections to the third-generation
masses, as well to accommodate a sizable mixing between
the light generations, we then retain only points with
μD ≤ 5 TeV, with the exception of the analysis presented
in the panels of Fig. 3where the extremecases ofμD ≤ 1 TeV
and large μD are investigated. The condition μD ≤ 5 TeV
then implements the limit in Eq. (33) on top of the one in
Eq. (29) due to the measured value of the top mass:

Mu4∈ ½5;10�TeV; Md4∈ ½5;20�TeV; MWR
∈ ½5;10�TeV:

ð35Þ
At this stage we filter the collected points requiring

perturbative values of the Yukawa couplings and real μU=D

terms. The selected configurations are then used to initiate
the second scan that targets the soft breaking parameters,
which are varied according to the ranges in Eq. (36):

Msoft ∈ ½5; 10� TeV; ΔMsoft ¼ Msoft=4 TeV;

m1;1
Q ¼ m1;1

Q̄ ¼ 1 TeV;

m2;2
Q ¼ m2;2

Q̄ ¼ m3;3
Q ¼ m3;3

Q̄ ∈ ½Msoft;Msoft þ ΔMsoft�;
jT uj ∈ ½Msoft;Msoft þ ΔMsoft�; jT dj ∈ ½Msoft;Msoft þ ΔMsoft�;
mũ1 ∈ ½Msoft;Msoft þ ΔMsoft�; mũ2 −mũ1 ∈ ½−ΔMsoft;ΔMsoft�;
αu ∈ ½0; π=8�; αd ∈ ½π=4; π=2�;
Mg̃ ∈ ½Msoft;Msoft þ ΔMsoft�: ð36Þ

Notice that we indicated here with m2
ũi
the (s)messenger

masses above the left-right symmetry-breaking scales;
cf. Appendix A 5. To conclude, we remark that the
ansatz adopted allows one to recognize the parameters
responsible for the generation of the masses of light
quarks. These are the component (αu and αd) of the
trilinear terms orthogonal in flavor space to Yu=d and the
nondegeneracy between the first-generation and the
remaining two squark soft masses.
We remark that for the considered values of squark and

gluino masses, any new flavor-changing neutral current
(FCNC) contribution to the K-K̄ mixing is expected to
be suppressed regardless of the chosen SUSY framework.
Moreover, since here the soft-breaking terms directly
source the Yukawa couplings of the light SM generations,
the simultaneous diagonalization of the squark mass and

Yukawa matrices can be almost achieved. As a conse-
quence, we expect FCNC contributions in gluino inter-
actions that involve the light SM generations to be
naturally suppressed. We have also estimated that the
down-type quark couplings and corresponding squark
masses respect the bound due to the K-K̄ mixing
proposed in Ref. [40]. In fact, the left-right squark
mixing matrix, induced here by effective operators via
the messenger sector, is proportional to the product of the
couplings of the mediators to the third-generation quarks.
For the case of down-type quarks, probed by the K-K̄
mixing, these couplings can be arbitrarily reduced albeit
the introduction of a mild hierarchy in the mediator
sector.

B. Avoiding instabilities and colour breaking

Before discussing the results obtained with the above
methodology, we need to face a further potential problem

4For the purposes of this analysis we neglect the measured
CP-violating phase.
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rooted in the necessary use of trilinear terms for repro-
ducing the up-type quark mass spectrum.
The presence of sizable trilinear terms, in fact, could

source instabilities in the scalar potential and even trigger
the appearance of color-breaking vacuum states. We there-
fore need to check that at the minimum of the potential,
where spontaneous symmetry breaking of the left-right
symmetry is achieved, the soft squark mass terms and the
trilinear used in the analysis do not lead to tachyonic
instabilities. The problem then reduces to the computation
of the (s)messenger and squark full mass matrix eigenval-
ues on the left-right breaking vacuum.
A further source of instabilities is due to possible high-

energy configurations of the fields, which may induce
electric or color charge-breaking minima. We investigate
this possibility by considering a direction where all the
scalar components of the fields participating in the Yukawa
interactions develop the same vacuum expectation value.
For instance, leaving gauge and generation indices under-
stood, for the case of up-type quarks we have

j ˜̄Uj ¼ jŨj ¼ j ˜̄Qj ¼ jQ̃j ¼ j ˜̄Huj ¼ jH̃uj ¼
ϕffiffiffi
6

p ; ð37Þ

subject to the scalar potential

VðϕÞ ¼ S2

2
ϕ2 þ T

3
ffiffiffi
6

p ϕ3 þ L2

36
ϕ4: ð38Þ

In a supersymmetric model, the d terms and quartic
Yukawa interactions enter the definition of the coefficient
L, while soft trilinear terms and superpotential induced f
terms shape the T coefficient. Quadratic soft terms and
Dirac masses define, finally, the coefficient S. In order to
avoid the breaking of the color and charge symmetries, the
trilinear terms must satisfy the condition

T
S
> −

ffiffiffi
3

p
L; ð39Þ

derived from Eq. (38) under the requirement that nontrivial
minima have energies larger than the trivial one corre-
sponding to ϕ ¼ 0.
Unfortunately, the implementation of the above condi-

tion in our scan would require a detailed study of the Higgs
sector of the model and of the high-energy evolution of
quantum corrections to Eq. (38) at the scale ϕ. For the
purpose of the present analysis, however, it is sufficient to
notice that our fit of the lightest quark and lepton masses
will hardly worsen the condition in Eq. (39) as it generally
involves trilinear terms and soft masses of the same order.
Furthermore, arbitrary large values of m3;3

Q and m3;3
Q̄ can be

used here to stabilize the potential without consequences
for the radiative masses generated.

C. Results

In this section we finally gather the explicit results
obtained by the MLRSM for the mass hierarchy and
mixing of quarks.
Starting with the up-type case presented in Fig. 2, the

left panel shows that the model can easily reproduce the
hierarchy in mass between top and charm quarks. The tree-
level and one-loop generation mechanisms of the effective
Yukawa operators are essentially uncorrelated and, as a
consequence, it is possible to simultaneously reach well
within the experimental 3σ confidence interval of both
quarks indicated by the light blue bands. This behavior is
due to our ansatz for the trilinear terms, which effectively
decouples the tree-level dynamics encoded in the messen-
ger Yukawa from the radiative generation of charm and
up quarks. We therefore expect that new correlations
between Mt and Mc appear in more general analyses
where the trilinear term possesses a component parallel,
in flavor space, to the Yukawa vector that identifies the
third SM generation. In spite of that, the present results

FIG. 2. Predictions of the model for the up-type quark masses. Left panel: Mt and Mc. Right panel: Mc and Mu. The blue bands
indicate the 3σ confidence intervals for the measured values of the masses.
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are indeed sufficient to demonstrate that the MLRSM is
able to achieve the required hierarchy.
As for the masses of the first two generation quarks, in

the right panel we see the presence of a correlation that
favors lower values of Mu once a central value for Mc is
considered. Such a behavior is induced by the trilinear
terms, which control here the radiative generation of both
the masses, and by the contribution of nondegenerate
squark masses that are essential for obtaining a nonvanish-
ing value of the up-quark mass. We stress that in this first
investigation of the model we have neglected effects due to
the renormalization group running of the relevant effective
operators between the matching and the considered mass
scale, which could have a sizable impact on the predictions
for the first-generation quark masses.
Our results for the down sector, shown in Fig. 3, are

qualitatively the same. For our choice of trilinear terms, the

solutions of the model presented in the left panel do not
correlate the bottom quark mass with that of the strange
quark, allowing to reach an excellent agreement with the
current measurements. Differently, barring possible re-
normalization group evolution contributions, we see that
the model tends to prefer smaller values of bothMd andMs,
although good agreement with the data is still achievable.
Finally, regarding the quark mixing, we plot in Fig. 4 the

predictions of the model for the CKM matrix elements
relative to the corresponding experimental best-fit values.
In the left panel we limit the μD term to below a few TeV,
whereas in the right panel we let it vary. In both plots
we indicate with red points the solutions obtained in the
MLRSM for the Cabibbo mixing, regulated by the
fV12; V21g elements of the CKM matrix. Analogously,
the yellow and gray points represent the value obtained for
the fV32; V23g and fV13; V31g elements, respectively. All

FIG. 3. Predictions of the model for the down-type quark masses. Left panel: Mb and Ms. Right panel: Ms and Md. The blue bands
indicate the 3σ confidence intervals for the measured values of the masses.

FIG. 4. Predictions of the model for the elements of the CKM mixing matrix normalized with respect to the corresponding
experimental best-fit values. The red points correspond to the fV12; V21g elements, which regulate the Cabibbo sector, whereas the gray
and yellow point indicate fV13; V31g and fV32; V23g, respectively. In the left panel, μD is set in the same range as μU (μD ∼ μU ≤ 1). In
the right panel, instead, μD ranges on all the values allowed by Eq. (21), explicitly: μD ≤ Mu4.
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quantities have been rescaled by the corresponding best-fit
measurements, matched in correspondence of
the (1,1) point indicated by a star. As we can see, the
model straightforwardly reproduces the observed Cabibbo
mixing regardless of the maximal amplitude of μD.
Interestingly, we find instead that matching the magnitude
of the remaining mixing angles requires larger values of
this parameter, pointing to the presence of a mild hierarchy
in the mediator sector. This is not a concern for the
MLRSM, as a precise determination of the CKM elements
barring the Cabibbo sector would require a careful assess-
ment of the renormalization group evolution contribution
that we neglect in this first analysis.

D. A remark on the leptonic sector

As mentioned before, the same mechanism employed to
generate the quark masses can be readily used to reproduce
also the charge lepton mass hierarchy. In this case, the tree-
level interactions between the mediator E, the Higgs bosons
and the charged lepton result in a mass matrix that has the
same structure as the matrices in Eq. (10). Then, the τ
lepton alone acquires a mass at the tree level, in complete
analogy with the case of down-type quarks. The muon and
electron masses result instead form radiative diagrams that
resemble the ones shown in Eqs. (24) and (25) but that
involve different soft-breaking parameters such as dedi-
cated trilinear terms and slepton masses. Therefore, the
measured values of the charged lepton masses can be
straightforwardly matched in our framework by introduc-
ing, at most, a mild hierarchy in the mediator and soft-
breaking sectors.
As for neutrinos, the situation is radically different.

The absence of a dedicated mediator that couples to
neutrinos and Higgs bosons prevents the implementation
of the mass generation mechanism that we used so far. In
particular, differently form the other SM third-generation
fermions, no neutrino can acquire a mass term via the
tree-level higher-dimensional operator generated by the
mediators and the Higgs bosons in a seesaw fashion.
The absence of a neutrino mediator is precluded here by
the same minimality principle that guided our construc-
tion: the gauge charges of fermions and Higgs bosons in
fact require the neutrino mediator to be pure singlet
under the considered gauge symmetries, likewise RH
neutrinos in the SM. The neutrino masses are then
generated purely via loop interactions which are neces-
sarily of order higher than that of the diagrams involved
in the lepton and quark mass generation, leading natu-
rally to a further suppression of the associated scale. We
identify in Fig. 5 the dominant dimension-nine operator
that results in neutrino masses after the symmetry break-
ing occurred in both chiral sectors. The diagrams relies
on the exchange of the lepton mediator E, as well as on
the WLWR mixing generated at the loop level via the
exchange of both quark mediators.

Notice that the neutrino mass eigenstates necessarily
contain independent components of both chiralities,
leading inevitably to Dirac neutrinos in the minimal
implementation of the present framework. We also remark
that the different origin of neutrino masses strongly impacts
the resulting lepton mixing, possibly explaining the differ-
ence between the CKM and PMNS mixing matrices.

VII. CONCLUSIONS AND OUTLOOK

In this paper we introduced the MLRSM, a new
framework based on the interplay between two well-known
symmetries: the supersymmetry and the left-right gauge
symmetry.
By employing only doublet representations for the

scalar sector, the left-right symmetry forbids the usual
four-dimensional Yukawa operator and consequently lays
the foundation for their effective generation. In the proposed
model we considered a minimal set of three new mediator
(super)fields, which possess color and B − L charge and that
connect the twochiral sectors of the theory.As a consequence,
below the left-right breaking scale, the charged fermions of
the third SM generation acquire tree-level effective Yukawa
interactions that reproduce the SM couplings.
Supersymmetry, instead, provides the missing ingre-

dients for the radiative generation of the remaining
Yukawa couplings. This can be achieved only at the loop
level, thereby explaining the lightness of the first two
SM fermion generations in a natural way. The Majorana
gaugino masses, soft trilinear terms and squark masses,
respectively, operate the breaking of any remnant chiral and
flavor symmetry, ensuring the emergence of mass terms for
these particles. On general grounds, from the perspective of
low-energy SUSY, the appearance of hierarchical fermion
masses and mixing is rather unexpected and, according to
conventional wisdom, SUSY should not shed any light
on the problem. Instead, we demonstrated here that the
well-known minimal flavor violation [41] ansatz, usually

FIG. 5. Example of leading diagram resulting in Dirac neutrino
masses within the present framework.
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imposed on SUSY flavor models by hand, may actually be
a natural consequence of the framework due to the effective
nature of the Yukawa couplings.
As a first test for the MLRSM, in this paper we faced

the problem of generating the SM flavor structures. Our
findings show that the model straightforwardly matches the
SM quark spectrum considering a new sector with medi-
ators and right-handed Higgs boson at a few TeV scale and
internal hierarchies not larger than one order of magnitude.
Remarkably, we also find that the model easily recovers the
observed Cabibbo mixing in the same parameter space.
Matching the remaining CKM elements, instead, seemingly
requires a mild hierarchy in the mediator sector. We
however remark that a careful investigation of these
quantities, as well as of the lightest quark masses, should
properly account for renormalization group evolution
effects which we have neglected in this first analysis.
Beside proposing a new solution to the flavor puzzle that

falls necessarily within the reach of next-generation collider
experiments, the MLRSM phenomenology remains to
date largely unexplored. The presence of four Higgs boson
doublets, for instance, could have implications on the
present B-meson flavor anomalies [42] and allow for novel
collider signatures of the framework. Likewise, the peculiar
neutrino mass generation mechanism, which takes place at
the two-loop level, predicts Dirac neutrinos necessarily
lighter than the remaining fermions and could be at the
basis of the different mixing observed in the quark and
lepton sector. Lastly, because within the MLRSM all
fermion Yukawa couplings cease to be local operators
above the SUð2ÞR-breaking scale, the framework predicts
important modifications to the standard renormalization
group evolution of the remaining quantities which may
substantially impact the dynamics of grand-unified
scenarios.
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APPENDIX: FEYNMAN RULES FOR UP SECTOR

We report below the explicit expressions, vertices and
Feynman rules that enter the computation of the quark mass
matrix in the present framework.
The terms relevant to the performed diagrammatic

computations can be isolated from Eqs. (2) and (3) after
solving for the auxiliary fields

L0 ¼ −ð
ffiffiffi
2

p
g3ÞðQ̃†

i T
aQig̃þ ˜̄Q†

i T̄aQ̄ig̃Þ − YiQiHuŪ

þ ȲiQ̄iH̄uU − μUUŪ − jμUj2Ũ�Ũ − jμUj2 ˜̄U� ˜̄U

− μ�UY
iQ̃iHuŨ� þ μ�UȲ

i ˜̄QiH̄u
˜̄U�

þ bμU Ũ
˜̄Uþ c:c:þ LSoft; ðA1Þ

where T̄a are the generators of SUð3Þ in the antifunda-
mental representation. The remaining neutral gaugino
interactions involving colored states have been
neglected because subdominant with respect to the gluino
exchange.

1. Mixed and diagonal propagation for scalars

2. Vertices

The Feynman diagrams corresponding to the vertices
interactions are reported in Figs. 6–8.

3. Full one-loop gluino contribution

ðMμT
u Þij ¼

X2
k¼1

2αS
3π

Mg̃ðμUYi
uV

†
2;k þ T i

uV
†
1;kÞ

×D0½Mg̃;mQi
;mQ̄j

;muk �ðμ�UYj
uVk;1 þ T j

uVk;2Þ:
ðA2Þ

FIG. 6. Clockwise starting from bottom left: Feynman rules for
diagonal smessenger propagation, smessenger mixing, and left-
and right-handed squark mixing.

FIG. 7. Higgs-quark-messenger interaction, left-handed and
right-handed cases.
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4. Zero momentum four-point loop function

The zero-momentum D0 used in Eq. (A 2) is given by

D0½m1; m2; m3; m4� ¼
Z

d4k
iπ2

1

k2 −m2
1

1

k2 −m2
2

1

k2 −m2
3

1

k2 −m2
4

¼
 
−

m2
1 logðm

2
1

m2
3

Þ
ðm2

1 −m2
2Þðm2

1 −m2
3Þðm2

1 −m2
4Þ

þ
m2

2 logðm
2
2

m2
3

Þ
ðm2

1 −m2
2Þðm2

2 −m2
3Þðm2

2 −m2
4Þ

þ
m2

4 logðm
2
3

m2
4

Þ
ðm2

4 −m2
1Þðm2

4 −m2
2Þðm2

4 −m2
3Þ

!
; ðA3Þ

which is further reducible if at least two of the masses in the loop are equal.

5. B-term and (s)messenger mixing

The complex scalar fields Ũ and ˜̄U mix according to

ðŨ� ˜̄UÞ
�
m2

U þ μ2U b

b m2
Ū þ μ2U

��
Ũ
˜̄U�

�
¼ ðũ�1 ũ�2Þ

�m2
ũ1

0

0 m2
ũ2

��
ũ1
ũ2

�
: ðA4Þ

It is clear from Eqs. (24) and (25) that a nonvanishing b term is essential for the diagram to have a nonzero contribution. If
we consider the case m2

U ¼ m2
Ū, before the left-right symmetry breaking, the two massive combinations

ũ1 ¼ V1;1Ũ þ V1;2
˜̄U� ¼ 1ffiffiffi

2
p ð−Ũ þ ˜̄U�Þ; m2

ũ1
¼ ðm2

U þ μ2U − bÞ;

ũ2 ¼ V2;1Ũ þ V2;2
˜̄U� ¼ 1ffiffiffi

2
p ðŨ þ ˜̄U�Þ; m2

ũ2
¼ ðm2

U þ μ2U þ bÞ; ðA5Þ

propagate in the loops. In turn, Eq. (A5) then sets the magnitude of m2
U and b as

b ¼ m2
ũ2
−m2

ũ1

2
; m2

U ¼ m2
ũ2
þm2

ũ1

2
− μ2U: ðA6Þ

FIG. 8. Squark-Higgs-scalar messenger vertices and gluino vertex.
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