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Background-field methods provide an important nonperturbative formalism for the determination of
hadronic properties which are complementary to matrix-element calculations. However, new challenges are
encountered when utilizing a fermion action exposed to additive mass renormalizations. In this case, the
background field can induce an undesired field-dependent additive mass renormalization that acts to
change the quark mass as the background field is changed. For example, in a calculation utilizing Wilson
fermions in a uniform background magnetic field, the Wilson term introduced a field-dependent
renormalization to the quark mass which manifests itself in an unphysical increase of the neutral-pion
mass for large magnetic fields. Herein, the clover-fermion action is studied to determine the extent to which
the removal of OðaÞ discretization errors suppresses the field-dependent changes to the quark mass. We
illustrate how a careful treatment of nonperturbative improvement is necessary to resolve this artifact of the
Wilson term. Using the 323 × 64 dynamical-fermion lattices provided by the PACS-CS Collaboration we
demonstrate how our technique suppresses the unphysical mass renormalization over a broad range of
magnetic-field strengths.

DOI: 10.1103/PhysRevD.100.114518

I. INTRODUCTION

The uniform background-field method [1–3] has a long
history of use in lattice QCD to investigate and calculate
quantities such as hadronic magnetic moments [2,4–6],
polarizabilities [4,6–9], and the spatial distribution of
quarks in a magnetic field [10]. Recently, it has been
demonstrated that the background-field method introduces
unphysical changes in the fermion energy when the Wilson
quark formulation is used [11,12].
Bali et al. highlighted this important problem [11,12]

arising from the Wilson-fermion action with the back-
ground-field method. In particular they determined that in
the free-field limit, the mass of a Wilson quark is shifted by
an amount a

2
jqeBj to

m½w�ðBÞ ¼ mwð0Þ þ
a
2
jqeBj; ð1Þ

where a is the lattice spacing, B is the magnetic-field
strength, qe is the quark charge, and mw is the Wilson
quark mass. Here we have introduced the notation that a
subscript label in square brackets represents a quantity that

is affected by lattice background-field artifacts due to the
fermion action, in this case the Wilson quark massm½w�ðBÞ.
This notation will be used throughout this work in order to
distinguish between energy values with and without the
additive background-field mass renormalization, respec-
tively [e.g., to distinguish the pion mass m½π�ðBÞ and mπ].
It was shown in Refs. [8,11] that the overlap quark

formalism [13,14] does not suffer from this problem of
field-dependent mass renormalization. As the overlap
action is many times more computationally expensive than
the Wilson action, we turn our focus to the Wilson clover-
fermion action to determine its suitability with respect to
the additive mass renormalization arising from the back-
ground field.
The clover-fermion action [15] is designed to remove

OðaÞ lattice artifacts arising from the Wilson term. Thus, it
is interesting to examine the extent to which the Wilson-
fermion artifacts survive in the clover-fermion formulation.
Herein, the clover fermion is studied in both the free-field
limit and full QCD to determine its efficacy in removing the
unphysical energy change caused by the uniform back-
ground magnetic field.
Pion correlation functions are the natural choice with

which to investigate this issue; they are free of complica-
tions associated with the magnetic moment, provide pre-
cision at low computational cost, and offer insight into
interesting physics through the difference between neutral
and charged pions. The neutral pion is of particular interest
as it also has no hadronic-level Landau contribution.
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The free-field limit allows the unphysical additive mass
renormalization to be studied, without the complications of
QCD. This aids in formulating a solution for this problem
using clover fermions. When full QCD interactions are
present, the competing effects of QCD and the background
magnetic field make isolating and understanding the
additive mass renormalization more challenging. More-
over, the use of a nonperturbatively improved clover
coefficient in a full QCD calculations further complicates
the transition from free-field to full QCD interactions.
Here, the clover-fermion action is studied for both the

free-field and full-QCD cases to determine the conditions
for the removal of the field-dependent additive quark-mass
renormalization. In Sec. II a brief overview of the back-
ground-field method is presented while Sec. III details the
calculations performed in the free-field limit. These con-
firm the presence of the additive mass renormalization and
the utility of the clover-fermion action in this limit. Full
QCD is considered in Sec. IV and Sec. V details how the
clover-fermion action can be tuned to remove the field-
dependent additive quark-mass renormalization. The mag-
netic polarizability of the neutral pion is presented in
Sec. V B and conclusions are summarized in Sec. VI.

II. BACKGROUND-FIELD METHOD

In this approach, a constant background magnetic field is
introduced and the eigenstates are examined in the basis of
the full Hamiltonian [3]. We commence in the continuum
where a minimal electromagnetic coupling is added to form
the covariant derivative

Dμ ¼ ∂μ þ iqeAμ: ð2Þ

Here qe is the electric charge of the fermion field and Aμ is
the electromagnetic four potential. On the lattice, the
equivalent modification is to multiply the QCD gauge
links by an exponential phase factor

UμðxÞ → UμðxÞeiaqeAμðxÞ: ð3Þ

To generate a uniform magnetic field along the ẑ axis in the
continuum, one considers

B⃗ ¼ ∇ × A⃗; ð4aÞ

Bz ¼ ∂xAy − ∂yAx: ð4bÞ

This does not uniquely specify the electromagnetic poten-
tial. The choice commonly selected over the interior of the
lattice is Ax ¼ −By which gives a constant magnetic field
of magnitude B in the þẑ direction. Due to the periodic
boundary conditions on the lattice, we set Ay ¼ þBNyx
along the boundary in the ŷ dimension to maintain the
constant magnetic field across the boundary. Now,

considering the entirety of the lattice, a quantization
condition [1] for the magnetic-field strength is required:

qeBa2 ¼ 2πkB
NxNy

; ð5Þ

where a is the lattice spacing, Nx and Ny are the spatial
dimensions of the lattice and kB is an integer specifying the
field strength in terms of the minimum field strength.
In this work the field quanta kB is in terms of the charge

of the down quark, i.e., q ¼ −1=3 such that

eB ¼ −6πk
a2NxNy

: ð6Þ

Hence a field with kB ¼ 1 will be in the −ẑ direction.

III. FREE-FIELD CASE

The free-field simulation is investigated first; here the
quarks couple to the external magnetic field through their
electric charges but do not experience any QCD effects.
The energy of such a charged particle contains a Landau
energy term proportional to the charge of the particle. In the
nonrelativistic approximation with B⃗ ¼ Bẑ, this energy
spectrum is equivalent to that of a harmonic oscillator:

E ¼
�
nþ 1

2

� jqeBj
m

; n ¼ 0; 1;…: ð7Þ

The relativistic generalization of the Landau energy applies
to each fermion responding to the field. For a free quark,
the energy is

E2ðBÞ ¼ m2 þ ð2nþ 1ÞjqeBj þ p2
z þ 2s⃗ · qeB⃗: ð8Þ

Here pz is the quark momentum in the ẑ direction, js⃗j ¼
1=2 and the quark has charge qe.

A. Wilson fermions

Wilson fermions will have an additional energy term
according to Eq. (1), and thus a free-field energy

E2
½w�ðBÞ ¼

�
mw þ a

2
jqeBj

�
2

þ ð2nþ 1ÞjqeBj þ p2
z þ 2s⃗ · qeB⃗; ð9Þ

as the Wilson term is the discretized lattice Laplacian which
also describes the lowest-lying Landau level [9].
As a is the lattice spacing, this additional term is absent

in the continuum limit. The additional term in Eq. (9) is a
lattice artifact identified with field-strength-dependent
additive quark-mass renormalization.
To demonstrate the presence of this additive mass term,

the free-field pion mass is calculated. Here we consider
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both the charged pion energy Eπ� and the neutral connected
pion energy Eπ0u=d

ðBÞ and focus on the lowest-lying states.

Standard pseudoscalar interpolating fields χ ¼ qγ5q are
considered, where the quark flavors are either uu or dd
corresponding to π0u and π0d.
For a neutral pion with quark content uu or dd it is

possible to have the spin-dependent term of Eq. (9),
2s⃗ · qeB⃗, cancel the Landau energy term ð2nþ 1ÞjqeBj
for n ¼ 0. This cancellation of terms occurs for both the
quark and the antiquark. Consider, for example, the uu
pseudoscalar. As a spin-zero state, the two quarks have
opposite spin orientations. Similarly, the quark and anti-
quark have opposite electric charges. If the u quark is spin
down and the u is spin up, the terms cancel. For pz ¼ 0, one
has the lowest-lying state with energy

E½π0�ðBÞ ¼ E½u�ðBÞ þ E½u�ðBÞ
¼ mu þ

a
2
jqueBj þmu þ

a
2
jqueBj

¼ mπ0 þ ajqueBj: ð10Þ

For a charged pion the spin-dependent term cannot
cancel the Landau term for both the quark and antiquark
sectors. The lowest-energy state is realized when the terms
cancel for the quark flavor with the largest magnitude of
electric charge.
Consider, for example, the πþ meson composed of ud.

Here the lowest-energy state is realized when the u quark is
spin down, enabling cancellation of the spin-dependent and
Landau terms. For pz ¼ 0, the charged pion will hence
have energy

E½πþ�ðBÞ ¼ E½u�ðBÞ þ E½d�ðBÞ
¼ mu þ

a
2
jqueBj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
md þ

a
2
jqdeBj

�
2

þ 2jqdeBj
s

: ð11Þ

Note that as QCD interactions are not present, no energy is
required to displace the quarks from each other and thus the
magnetic polarizability vanishes.
In the absence of the Wilson background-field additive

mass renormalization, the charged pion energy becomes

EπþðBÞ ¼ EuðBÞ þ EdðBÞ
¼ mu þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

d
þ 2jqdeBj

q
: ð12Þ

B. Clover correction

Clover fermions are designed to remove OðaÞ artifacts
arising in the Wilson action. Thus, the focus of this
investigation is to determine whether the clover-fermion

action removes the OðaÞ field-strength-dependent additive
mass renormalization due to the Wilson term.
The clover-fermion matrix is given by

Dcl ¼ =∇þ a
2
Δ − acclσ · F þm; ð13Þ

where a is the lattice spacing,m is the bare quark mass,∇ is
the covariant central finite difference operator, Δ is the
lattice Laplacian or Wilson term, and ccl is the coefficient of
the clover term. We define

σ · F ¼
X
μ<ν

σμνFμν ð14Þ

as the clover term (note the sum is restricted to μ < ν to
avoid double counting), where σμν ¼ i

2
½γμ; γν� and Fμν is

the clover discretization of the lattice field strength tensor.
In general, for QCDþ QED calculations we need to
consider the chromomagnetic- and electromagnetic-field
strength contributions separately [12]:

Fμν ¼ Fqcd
μν þ Fem

μν : ð15Þ

In the free-field case, all the QCD links are set to 1 so the
QCD field strength Fqcd

μν ¼ 0. Here we consider only the
electromagnetic-field strength and attempt to determine
the appropriate value for the free parameter ccl, which is
defined to be the coefficient of the electromagnetic clover
term. Setting

CμνðxÞ ¼
1

4
ðPμ;νðxÞ þ Pν;−μðxÞ þ P−ν;μðxÞ þ P−μ;−νðxÞÞ

ð16Þ

to be the average of the four elementary plaquettes, it is
easy to show that the electromagnetic-field strength tensor
is constant in a uniform background field:

Fμν ¼
1

2i
ðCμν − C†

μνÞ

⇒ F12 ¼
1

2i
ðeþia2qB − e−ia

2qBÞ
¼ sin a2qB: ð17Þ

For convenience we define the lattice magnetic-field
strength as

BL ¼ sin a2qB: ð18Þ

For a magnetic field in the z direction then the only nonzero
field strength tensor entry is F12 ¼ BL such that σ · F
becomes diagonal with entries ∓BL=2. The Wilson term is
simply the lattice Laplacian, which effectively describes a
scalar particle. In the free-field case, this causes a shift in
the critical mass given by

PION IN A UNIFORM BACKGROUND MAGNETIC FIELD WITH … PHYS. REV. D 100, 114518 (2019)

114518-3



amcðBÞ ≃ amc − a2jqBj=2; ð19Þ

such that the free-field mass is adjusted by

amðBÞ ≃ amð0Þ þ a2jqBj=2: ð20Þ

Hence, in a uniform magnetic field there is a corresponding
Landau energy ∼a2jqBj=2.
The magnetic part of the clover term for OðaÞ improve-

ment of the Wilson matrix is given by

−ccl
X
μ<ν

σμνFμν ¼ −
ccl
2

0
BBB@

þBL 0 0 0

0 −BL 0 0

0 0 þBL 0

0 0 0 −BL

1
CCCA:

ð21Þ

This operator commutes with the lattice Laplacian, and as
both are Hermitian it is possible to write down a shared
eigenvector basis. The lowest eigenvalue for the clover term
in a uniform background field is

λmin ¼ −ccljBLj=2
¼ −cclj sin a2qBj=2
≃ −ccla2jqBj=2: ð22Þ

It is clear then that for small field strengths, if we set ccl ¼ 1
to the tree-level value, the clover term will cancel the
Landau shift induced by the Wilson term.

C. Tree-level results

Numerical results for the pion energies in a background
magnetic field are shown in Fig. 1 for Wilson fermions and

Fig. 2 for clover fermions. Here we have selected a hopping
parameter value of κ ¼ 0.12400, relative to the bare critical
hopping parameter of κcr ¼ 1=8, in anticipation of explor-
ing full QCD where the PACS-CS Sommer scale provides
a ¼ 0.0951 fm. This kappa value corresponds to a pion
mass of 140 MeV. These calculations are performed on a
lattice with antiperiodic boundary conditions in the time
direction and fits accommodate both the forward and
backward propagating states.
It is clear from Fig. 1 that the neutral-pion energy closely

follows that described by Eq. (10). The additive mass
renormalization due to the Wilson term is hence correctly
described by Eqs. (1) and (10). The charged πþ energy
using Wilson fermions agrees with the analytic energy of
Eq. (11), further validating the additive mass renormaliza-
tion of Eq. (1).
The results shown in Fig. 2 for the clover-fermion action

verify our calculation for the tree-level coefficient correc-
tion. The energies of the two neutral pions π0d and π0u
depicted for clover-improved fermions do not show this
additive mass renormalization; they do not change as a
function of field strength. Similarly, the charged pion
results agree with Eq. (12) for the pion energy in the
absence of the Wilson background-field additive mass
renormalization. Thus the clover term effectively removes
the OðaÞ additive mass renormalization of the Wilson term
in the background magnetic field.

IV. QCD CASE

We have demonstrated that the addition of the tree-level
clover term in the case of the electromagnetic Uð1Þ field
provides a correction that removes the background-field-
dependent additive mass renormalization induced by the
Wilson term. The next question that arises is whether this

FIG. 1. Pion energies from Wilson-fermion correlation func-
tions as a function of background magnetic-field strength. The
colored curves are the expected energies for Wilson fermions
based on Eqs. (10) and (11).

FIG. 2. Pion energies from clover-fermion correlation functions
as a function of background magnetic-field strength. The colored
lines are the expected energies in the absence of the Wilson
background-field additive mass renormalization, constant for the
neutral pions and Eq. (12) for the charged pion.
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correction survives once QCD interactions are turned on,
and what (if any) adjustments are needed to the clover
coefficient.
To study this, we allow for the QCD and electromag-

netic-field strengths to have different clover coefficients:

cclFμν → cswF
qcd
μν þ cemFem

μν : ð23Þ

Here csw is the coefficient of the traditional Sheikholeslami-
Wohlert improvement term arising from the SUð3Þ QCD
gauge field interactions, and cem is the coefficient of the
clover term induced by theUð1Þ electromagnetic gauge field.
We know that the csw coefficient is renormalized by

QCD. In particular, here we will be studying clover
fermions with a nonperturbatively improved (QCD) coef-
ficient. To determine the appropriate value for cem in this
instance, we will first consider the “naive” case and set
cem ¼ csw such that the clover terms from the QCD and
electromagnetic-field strengths are treated in a uniform
way. Having done this, we will look for the presence of
magnetic-field-strength-dependent artifacts in the pion
mass, as was done for the QCD free-field case.
Once QCD interactions are present, the pion possesses

an internal structure and mass which is dependent on the
mass of the quarks in a more subtle way [16,17] than in
Eqs. (10) and (11). There is now a complex interplay
between the background field and QCD effects [9,18].
The energy of a relativistic pion with mass mπ and

charge qe in a magnetic field orientated in the ẑ direction is

E2
π;nðBÞ ¼ m2

π þ ð2nþ 1ÞjqeBj þ p2
z

− 4πmπβπB2 þOðB3Þ; ð24Þ

where βπ is the magnetic polarizability, which is charge-
state dependent. It is necessary to use this fully relativistic
form of the energy for the pion rather than the Taylor ex-
pansion common in the literature [2,4–6,9] as 2m=ðEþmÞ
differs substantially from one for the largest field strength
[9]. At mπ ¼ 296 MeV this difference is as much as 22%
and is significant when working with the increased pre-
cision of pion correlation functions.

A. Simulation details

This work considers the 2þ 1 flavor dynamical gauge
configurations provided by the PACS-CS [19] Col-
laboration via the International Lattice Data Grid (ILDG)
[20]. These configurations are founded on a nonperturba-
tively improved clover-fermion action and Iwasaki gauge
action [21]. Two values of the light quark hopping
parameter κud ¼ 0.13754, 0.13770 are considered corre-
sponding to pion massesmπ ¼ 411 and 296 MeV [19]. The
lattice spacing for each mass is set using the Sommer scale
[19] with r0 ¼ 0.49 fm. The lattice volume is L3 × T ¼
323 × 64 and the ensemble sizes are 449 and 400

configurations, respectively. Unless otherwise mentioned,
we focus on results from the lighter ensemble with κud ¼
0.13770 and mπ ¼ 296 MeV.
Two-point correlation functions at three distinct nonzero

background magnetic-field strengths are calculated. To do
this, propagators at ten nonzero field strengths are created.
With reference to Eq. (6), the field strengths considered
have kB ¼ �1, �2, �3, �4, and �6 in Eq. (6). These give
physical field strengths of eB ¼ �0.087, �0.174, �0.261,
�0.348, and �0.522 GeV2, respectively. Correlation func-
tions are averaged over both positive and negative field
strengths during analysis to provide an improved unbiased
estimator.
We note that these configurations are electroquenched;

the field exists only for the valence quarks of the hadron. To
include the background field at configuration generation
time is possible [22] but requires a separate hybrid
Monte Carlo calculation for each field strength, which is
prohibitively expensive. Fortunately, these effects are not
relevant to the current investigation.
Three-dimensional spatial Gaussian smearing utilizing

stout-smeared links is applied at the source and a point sink
is considered. This ensures that the pion ground state is well
represented. Standard pseudoscalar interpolating fields
χ ¼ qγ5q are used, where the quark flavors are either uu
or dd corresponding to π0u and π0d.

B. Energy shifts for Wilson fermions

To investigate the effect of the nonperturbatively
improved clover coefficient in the full QCD calculations,
the lowest-lying neutral-pion background-field energy is
considered:

E2
π0
ðBÞ ¼ m2

π0
− 4πmπ0βπ0B

2 þOðB3Þ: ð25Þ
To determine how the known additive quark-mass renorm-
alization of Eq. (1) effects the pion mass in full QCD, we
commence with the consideration of the Gell-Mann-Oakes-
Renner relation [16,23]

m2
π0
¼ −

2mu=d

f2π
hΩjuujΩi

≡mu=dEΩ; ð26Þ
where EΩ ¼ −2hΩjuujΩi=f2π , fπ is the pion decay constant
and hΩjuujΩi is the chiral condensate. As m2

π ∝ mq, EΩ
has a relatively weak quark-mass dependence.
Using Eq. (1), we introduce a background-field-

dependent pion mass due to the Wilson additive mass
renormalization:

m2
½π0�ðBÞ ¼ m½u=d�ðBÞEΩðBÞ

¼
�
mu=d þ

aξ
2
jqu=deBj

�
EΩðBÞ: ð27Þ

PION IN A UNIFORM BACKGROUND MAGNETIC FIELD WITH … PHYS. REV. D 100, 114518 (2019)

114518-5



Because QCD effects will modify Eq. (1), we have
introduced a coefficient ξ in Eq. (27) which in principle
can be B-field dependent.
For example, Bali et al. [12] investigated the change in

the quark mass in Wilson-fermion QCD plus background
magnetic-field simulations by examining the change in the
critical hopping parameter as a function of magnetic-field
strength. For small external magnetic-field strengths the
mass shift is an order of magnitude smaller from the free-
field case and for their smallest field strengths, the sign of
the shift differs. The dependence of Eq. (1) begins to
emerge at large magnetic-field strengths as QCD effects
become small. As discussed in the following subsection,
our nonperturbatively improved clover-fermion results also
display this order of magnitude suppression. However our
survey of magnetic-field strengths does not reveal the
Wilson-fermion sign change in the mass shift. Thus it is
sufficient to treat ξ as a constant to be determined.
Studies [24,25] have indicated that EΩ changes slowly in

an external magnetic field and on this basis, we consider the
leading-order approximation

m2
½π0�ðBÞ ≃

�
mu=d þ

aξ
2
jqu=deBj

�
EΩð0Þ

≃m2
π0
þ aξ

2
jqu=deBjEΩð0Þ: ð28Þ

Finally the energy of a neutral pion in an external magnetic
field using Wilson fermions is

E2
½π0�ðBÞ ¼ m2

½π0� − 4πm½π0�βπ0B2 þOðB3Þ;

≃m2
π0
þ aξ

2
EΩð0Þjqu=deBj

− 4πβπ0B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π0
þ aξ

2
EΩð0Þjqu=deBj

r
: ð29Þ

We note that terms linear in B from the magnetic-field
dependence of EΩ in Eq. (27) can combine with the linear
term aξ

2
jqu=deBj to provide a contribution proportional to

B2, thus contaminating theOðB2Þ signal used to extract βπ0 .
Ultimately, it is important to ensure this OðaÞ term is
removed.
To explore the presence of additive quark-mass renorm-

alization, we focus on the quantity

E2
½π0�ðBÞ −m2

π0
≃
aξ
2
EΩð0Þjqu=deBj

− 4πβπ0B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π0
þ aξ

2
EΩð0Þjqu=deBj

r
: ð30Þ

This energy shift can be constructed using the two
correlator combinations

RþðB; tÞ ¼ GðB; tÞGð0; tÞ; ð31Þ

R−ðB; tÞ ¼
GðB; tÞ
Gð0; tÞ ; ð32Þ

where GðB; tÞ is the zero-momentum projected two-point
correlation function. Upon taking the effective energy

EeffðtÞ ¼
1

δt
log

�
GðtÞ

Gðtþ δtÞ
�
; ð33Þ

Eq. (31) yields ðE½π0�ðBÞ þmπ0Þ and Eq. (32) provides
ðE½π0�ðBÞ −mπ0Þ. These effective-energy shifts from Rþ
and R− are then multiplied together to form the E2

½π0�ðBÞ −
m2

π0
energy shift of Eq. (30). We note that Eq. (32) is

particularly helpful in isolating B-dependent terms, as QCD
contributions are correlated in the ratio of correlation
functions and largely cancel.
Noting Eq. (30) has leading linear and quadratic terms in

B we commence by considering the fit function

E2
½π0�ðBÞ −m2

π0
¼ c1kB þ c2k2B: ð34Þ

Here kB is the quantization number from the quantization
condition on magnetic-field strength of Eq. (6). An estimate
for the fit parameter c1 can be obtained from Eq. (30):

c1 ¼
π

a

���� qu=dqd

���� ξEΩð0Þ
NxNy

: ð35Þ

Recalling the Gell-Mann-Oakes-Renner relation at zero
magnetic field provides EΩð0Þ ¼ m2

π0
=mq and drawing on

the Wilson quark-mass relation

mq ¼
1

2a

�
1

κ
−

1

κcr

�
; ð36Þ

where κcr is the critical hopping parameter where the zero-
field pion mass vanishes, Eq. (35) can be written

c1 ¼ 2π

���� qu=dqd

���� ξm2
π0

NxNy

�
1

κ
−

1

κcr

�
−1
: ð37Þ

Similarly, drawing on Eq. (30), c2 is related to the magnetic
polarizability

β ¼ −c2α
q2da

4

m½π0�

�
NxNy

2π

�
2

; ð38Þ

where m½π0� is provided in Eq. (28) and α ¼ 1=137.036 is
the fine structure constant. Of course, if c1 ≠ 0, then the
magnetic-field dependence of EΩ in Eq. (35) will induce
additional OðB2Þ contaminations to Eq. (38). Thus it is
vital to remove this OðaÞ error.
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As the u and d quarks are mass degenerate in our lattice
QCD simulation, the neutral-pion correlation functions
with quark content uu or dd differ only by the strength
of the quark flavor interactions with the external magnetic
field. This allows the neutral-pion correlation function to be
evaluated at a larger range of field strengths than is possible
for the πþ, using the same propagators.

C. Nonperturbatively improved clover fermions

The nonperturbatively improved clover-fermion action
used in the full QCD calculations differs from that used in
the free-field calculations by the value of the clover
coefficient csw multiplying the OðaÞ clover term of the
fermion action in Eq. (13).
The free-field simulations used the tree-level value csw¼ 1

while the full QCD calculations use the nonperturbatively
improved value csw ¼ 1.715 [19,26]. The extent to which
this changes the cancellation of the additive mass renorm-
alization seen to occur in Fig. 2 is investigated using the
energy shift defined above in Eq. (30).
The E½π0�ðBÞ −mπ0 energy shift is illustrated in Fig. 3,

right; it is quite clear that it is easy to construct good plateau
fits for this energy shift. This is in contrast to the E½π0�ðBÞ þ
mπ0 energy shift in Fig. 3, left, as the correlated QCD
fluctuations between field strengths compound rather than
cancel, making it difficult to fit constant plateaus. This
difficulty in fitting constant plateaus reduces the fit param-
eter space considered as common plateau fits are required
for both E½π0�ðBÞ −mπ0 and E½π0�ðBÞ þmπ0 . The fit window
t ¼ ½28; 34� is chosen as this window has good fits with
acceptable χ2dof’s across each field strength and energy-shift
type considered.
The energy shifts are fitted as a function of the field-

strength quanta kB in Fig. 4. Recalling Eq. (30) has leading
linear and quadratic terms in B we consider the fit function

E2
½π0�ðBÞ −m2

π0
¼ c1kB þ c2k2B: ð39Þ

Under the assumption of the removal of additive mass
renormalization, we first consider fixing c1 ¼ 0 and using a
c2k2B quadratic-only fit function. As illustrated in Fig. 4 this
provides a poor description of the results and yields an
unacceptable χ2dof ¼ 6.1.
Allowing for a nontrivial c1 coefficient provides the

linear þ quadratic, c1kB þ c2k2B fit of Eq. (39). This fit
describes the lattice simulation results well with a
χ2dof ¼ 0.5. However, it also indicates the presence of
additive mass renormalization in the nonperturbatively
improved clover-fermion simulation.

FIG. 3. Neutral-pion energy shifts from Eqs. (31) and (32) for E½π0�ðBÞ þmπ0 (left) and E½π0�ðBÞ −mπ0 (right), respectively, using a
nonperturbatively improved clover-fermion action on the mπ ¼ 296 MeV ensemble. The three smallest field strengths are illustrated.
Shaded regions illustrate the fit windows selected through the consideration of the full covariance matrix χ2dof , the extent of the fit
window and the desire to select the same fit window for all effective-energy shifts.

FIG. 4. Fits of the magnetic-field-induced energy shift to the
magnetic-field quanta for the nonperturbatively improved clover-
fermion action. The full covariance-matrix-based χ2dof provides
evidence of a nontrivial value for fit coefficient c1, indicating the
presence of unwanted Wilson-like additive mass renormaliza-
tions in the nonperturbatively improved clover-fermion action.
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To explore the necessity of this OðaÞ term linear in the
magnetic-field strength, a quadraticþ cubic, c2k2B þ c3k3B,
fit is also considered. However, this model does not
describe the simulation results, producing unacceptably
high χ2dof values. Fits over four field strengths are also
considered. This time, the acceptable fit requires linear,
quadratic and cubic terms. Thus, the demand for an OðaÞ
term associated with the presence of additive mass renorm-
alization is robust.

D. Expected mass renormalization

These results indicate that the current treatment of the
clover term is inadequate. In light of the success observed
in the free-field limit, we anticipate that the application of
the nonperturbatively improved value cNPsw ¼ 1.715 to both
the QCD and the background-field contributions to the
clover term has spoiled the removal of additive mass
renormalization associated with the magnetic field.
If the tree-level value of ctreesw ¼ 1 is the value required for

the removal ofOðaÞ errors, then we have overcompensated
by an amount

DNP ¼ ctreesw − cNPsw ¼ 1.0 − 1.715 ¼ −0.715: ð40Þ
This overcompensation is relative to the standard Wilson
action discrepancy of

DW ¼ ctreesw ¼ 1.0: ð41Þ
This overcompensation factor can be incorporated into the
Wilson-fermion discussion of Sec. IV C through

ξ → ξNP ¼ DNP

DW ξ; ð42Þ

enabling a prediction of the nontrivial value for c1.
Including the aforementioned order of magnitude

suppression factor ξ ¼ 1=10, Eqs. (37) and (42) provide
an estimate for the fit parameter c1. For the π0d with
mπ ¼ 296 MeV, κd ¼ 0.13770 and κcr ¼ 0.13791 [19],
c1 ∼ −3 × 10−3 GeV2. From the linear þ quadratic c1kB þ
c2k2B fit, c1 ¼ −2.8ð9Þ × 10−3 GeV2.

V. BACKGROUND-FIELD CORRECTION

Motivated by the analytic calculation in Sec. III B and
encouraged by the above result, in this section we inves-
tigate a new clover-fermion action where the coefficients
for the QCD and background magnetic-field contributions
to the field-strength tensor in Eq. (23) take different values.
The electromagnetic clover coefficient takes the tree-level
value cem ¼ 1, while the QCD clover coefficient retains its
nonperturbative value of cNPsw ¼ 1.715. In the following, we
refer to this modified fermion action as the background-
field-corrected (BFC) form of the clover-fermion action.

A. Additive mass renormalization

The process of calculating correlation functions and
forming energy shifts is repeated as detailed above in
Eqs. (31)–(33). Figure 5 displays the new effective energy
shifts and the associated fits.
In the absence of additive mass renormalizations,

Eq. (30) simplifies to

E2
π0
ðBÞ −m2

π0
¼ −4πmπ0βπ0B

2 þOðB3Þ; ð43Þ

and therefore we consider fit functions of the form

E2
π0
ðBÞ −m2

π0
¼ c1kB þ c2k2B þ c3k3B: ð44Þ

If the modified clover action has removed the Wilson
additive mass renormalization, the linear term of Eq. (44)

FIG. 5. Neutral-pion energy shifts from Eqs. (31) and (32) for Eπ0ðBÞ þmπ0 (left) and Eπ0ðBÞ −mπ0 (right), respectively, using the
BFC clover-fermion action on the mπ ¼ 296 MeV ensemble. The three smallest field strengths are illustrated. Shaded regions illustrate
the fit windows selected through the consideration of the full covariance matrix χ2dof , the extent of the fit window and the desire to select
the same fit window for all effective-energy shifts.
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will have a trivial coefficient. Indeed, fits without the linear
term should describe the energy shifts well.
Fits of Eq. (44) to results from the lowest three magnetic-

field strengths are illustrated in Fig. 6. As acceptable fits are
obtained with the two leading terms, c3 has been con-
strained to zero. The success of our BFC clover-fermion
action is reflected in the excellent description of the results
using only a quadratic term in Eq. (44), in accord with the
expectations of Eq. (43). Allowing for the possibility of
a nontrivial value for c1, we find c1 ¼ ð−5.3� 8.7Þ×
10−4 GeV2, consistent with zero.
Drawing on the full range of five magnetic-field

strengths available to dd and uu pions, Fig. 7 illustrates
fits of Eq. (44) to the BFC clover results. This time the

results demand c3 ≠ 0 and thus a B3 term is manifest.
Again, the success of our BFC clover action in removing
additive mass renormalizations is reflected in the excellent
description of the results using only quadratic and cubic
terms in Eq. (44), in accord with the expectations of
Eq. (43). Allowing for the possibility of a nontrivial value
for c1, we find c1 ¼ ð1.1� 9.0Þ × 10−4 GeV2, consistent
with zero.
We note that similar results are observed for fits to

the first four magnetic-field strengths. The lattice results
are described well by fits with c1 constrained to zero,
and allowing for a nontrivial value provides c1 ¼
ð−6.2� 8.2Þ × 10−4 GeV2, again consistent with zero.
While it is sufficient to set c3 ¼ 0, the onset of nontrivial
OðB3Þ terms lies between the fourth and fifth field strengths
and, therefore, only the three smallest field strengths are
considered in determining the magnetic polarizability.
In summary, the BFC clover-fermion action has success-

fully removed the additive quark-mass renormalization due
to the Wilson term. The key is to employ the tree-level
value cem ¼ 1 for uniform background-field contributions
to the electromagnetic clover term.

B. Magnetic polarizability

Having demonstrated the removal of additive quark-
mass renormalization in the BFC clover action, the mag-
netic polarizability can be determined without concern for
the aforementioned OðaÞ contaminations entering the B2

associated with the magnetic polarizability.
The energy shift and fits performed in Sec. VA are used

and the polarizability extracted from the coefficient c2 of
the quadratic term of Eq. (44). Comparing with Eq. (43)
and drawing on the field quantization condition of
Eq. (5) with q ¼ qd ¼ −1=3, the magnetic polarizability
is given by

β ¼ −c2α
q2da

4

mπ

�
NxNy

2π

�
2

: ð45Þ

Results for the magnetic polarizability of the neutral pion
from the OðaÞ-improved BFC clover action analysis of the
lowest three magnetic-field strengths are reported in
Table I. While the report of our analysis has focused on
the light-quark hopping parameter of κud ¼ 0.13770 cor-
responding to 296 MeV, results for mπ ¼ 411 are also
reported.

FIG. 7. Fits of the magnetic-field-induced energy shift to the
first five magnetic-field quanta for the BFC clover action. Here a
term cubic in the magnetic-field strength is required to describe
the largest field strength.

FIG. 6. Fits of the magnetic-field-induced energy shift to the
magnetic-field quanta for the BFC clover action. The full
covariance-matrix-based χ2dof for the simple c2k2B quadratic fit
provides evidence of the elimination of Wilson-like additive mass
renormalizations in the BFC clover action. Allowing for a
nontrivial value of c1 produces a value consistent with zero.

TABLE I. Magnetic polarizability of the neutral pion from the
OðaÞ-improved BFC clover action analysis of the lowest three
magnetic-field strengths.

κ mπ (MeV) βπ0 (×10−4 fm3)

0.13754 411 0.62(4)
0.13770 296 0.54(7)
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As discussed in the previous section, we consider the first
three field strengths to avoid the possibility of complications
associated with nontrivial OðB3Þ contributions. While the
inclusion of a fourth point takes the magnetic polarizability
from βπ0 ¼ 0.54ð7Þ to 0.52ð5Þ × 10−4 fm3, the small
improvement in statistical uncertainty may be offset by an
increase in systematic uncertainty associated with nontrivial
OðB3Þ contributions.

VI. CONCLUSIONS

In this paper the response of the pion to a uniform
background magnetic field has been investigated. The
existence of a field-strength-dependent additive quark-mass
renormalization associated with Wilson fermions was
confirmed. We performed an analytic calculation showing
that at tree level in the QCD-free case the clover term
corrects for these spurious contributions.
When QCD interactions are included, a careful treatment

of the QCD and electromagnetic clover terms in Eq. (23) is
required. While the interactions of QCD require the non-
perturbatively improved value of csw ¼ 1.715, it is essential
to apply the tree-level value csw ¼ 1 to the background
magnetic-field contributions. With this treatment, it is
possible to simultaneously remove the OðaÞ errors in the
QCD contributions and correct for the OðaÞ errors induced
by the Wilson term in a background magnetic field. We
refer to this modified fermion action as the background-
field-corrected clover-fermion action.
With the suppression of OðaÞ errors associated with

additive mass renormalization in the BFC clover action, the
magnetic polarizability of the neutral pion can now been
determined. For the first time, a fully relativistic approach
to the energy shift is used. Results are summarized in
Table I and we anticipate these results will facilitate
consensus within the field. βπ0 is positive, such that the
energy of a pion in a magnetic field decreases. The extent to

which this trend continues is of interest and our results give
a hint that the OðB3Þ contributions soften this trend.
Future work will approach the physical quark-mass

regime and interface with chiral perturbation theory studies
[27]. It will also be important to directly include sea-quark-
loop interactions with the background magnetic field to
incorporate these contributions to the magnetic polariz-
ability. However, this approach is prohibitively expensive.
It requires a separate Monte Carlo ensemble for each
field strength considered and this will result in a loss of
important QCD correlations between different magnetic-
field strengths.
An alternative approach is to separate the valence and

sea-quark-loop contributions to the magnetic polarizability
in effective field theory [7,9]. This will enable an accurate
extrapolation of current lattice QCD results and an esti-
mation of sea-quark-loop contributions to the magnetic
polarizabilities of the pion.
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