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The tempered Lefschetz thimble method is a parallel-tempering algorithm toward solving the numerical
sign problem. It uses the flow time of the gradient flow as a tempering parameter and is expected to tame
both the sign and multimodal problems simultaneously. In this paper, we further develop the algorithm so
that the expectation values can be estimated precisely with a criterion ensuring global equilibrium and the
sufficiency of the sample size. To demonstrate that this algorithm works well, we apply it to the quantum
Monte Carlo simulation of the Hubbard model away from half filling on a two-dimensional lattice of small
size and show that the numerical results agree nicely with exact values.
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I. INTRODUCTION

The sign problem is one of the major obstacles when
performing numerical calculations in various fields of
physics. Typical examples include finite density QCD
[1], quantum Monte Carlo (QMC) calculations of quantum
statistical systems [2–4], and the numerical simulations of
real-time quantum field theories.
Among a variety of approaches, two algorithms have

taken attention as potential candidates to generically solve
the sign problem for systems with complex action: one is
the complex Langevin method [5], and the other is a class
of algorithms utilizing the Lefschetz thimbles [6–15].
Although both the algorithms make use of the complex-
ification of variables and analytic continuation of inte-
grands, their methodologies are fairly different; the former
algorithm attempts to replace the complex Boltzmann
weight by a real positive weight defined in the whole
complex space, while the latter deforms the integration
region in the complex space so as to reduce the phase
oscillation. At this stage, each algorithm has its own
advantage and disadvantage. The former is advantageous
in that it is relatively fast with computational cost OðNÞ (N
being the degrees of freedom), but it suffers from the so-
called wrong convergence problem [16–19]. The latter is
generally free from the wrong convergence problem if only
a single thimble is relevant in evaluating the expectation
values of physical observables of interest. The disadvantage
is its expensive numerical cost, which is OðN3Þ because of

the need to calculate the Jacobian determinant. When
multiple thimbles are relevant, one needs to take care of
the multimodality of the distribution. The tempered
Lefschetz thimble method (TLTM) was thus proposed in
Ref. [14] to tame both the sign and multimodal problems
simultaneously, where the system is tempered by the flow
time of the antiholomorphic gradient flow (see also
Ref. [15] for a similar idea).
In this paper, we further develop the TLTM, proposing

an algorithm which allows the precise estimation of
expectation values with a criterion ensuring global equi-
librium and the sufficiency of the sample size. The key is
the use of the fact that the expectation values should be the
same for all flow times. To demonstrate that this algorithm
works well, we apply it to the QMC simulation of the
Hubbard model away from half filling.
The application of Lefschetz thimble methods to the

Hubbard model has already been considered by several
groups [20–22] (see also Refs. [23,24] for recent study),
and the relevance of the contributions from multiple
thimbles has been reported. In this paper, we consider a
two-dimensional periodic square lattice of size Ns ¼ 2 × 2
with the inverse temperature decomposed to Nτ ¼ 5 pieces
and numerically evaluate the expectation values of observ-
ables as functions of the chemical potential with other
parameters fixed to some values. We show that the TLTM
(the implementation of tempering combined with the above
algorithm for precise estimation) gives results that agree
nicely with exact values, simultaneously resolving the sign
and multimodal problems.
We comment that the extent of seriousness of the sign

problem in the QMC simulation of the Hubbard model
depends heavily on the choice of the Hubbard-Stratonovich
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variables. In this paper, in order to apply the Lefschetz
thimble method, we exclusively consider a Gaussian
Hubbard-Stratonovich variable that leads to a complex
action. There, the sign problem is actually severe as we will
see below, and one needs to seriously consider a dilemma
between the sign and multimodal problems, which can be
solved by the TLTM as stated above. However, the
temporal size considered here is still small (Nτ ¼ 5), and
for such a high temperature regime, one can resort to
methods other than the Lefschetz thimble methods with a
different type of Hubbard-Stratonovich variables (see dis-
cussions in Sec. III).
This paper is organized as follows. In Sec. II, after briefly

reviewing the TLTM [14], we give a new algorithm which
allows the precise estimation of expectation values with a
criterion ensuring global equilibrium and the sufficiency of
the sample size. This algorithm is applied to the Hubbard
model in Sec. III, and we discuss the obtained numerical
results. We also make a comment there on the sign averages
obtained by other methods. Section IV is devoted to the
conclusion and outlook. Five Appendixes are given for
more detailed discussions on various topics.

II. TEMPERED LEFSCHETZ
THIMBLE METHOD

Let x ¼ ðxiÞ ∈ RN be a real N-dimensional dynamical
variable with action SðxÞ which may take complex values.
Our main concern is to estimate the expectation values

hOðxÞiS ≡
R
RN dxe−SðxÞOðxÞR

RN dxe−SðxÞ
: ð1Þ

We assume that e−SðzÞ and e−SðzÞOðzÞ are entire functions
over CN when x is complexified to z ¼ ðziÞ ∈ CN . Then,
due to Cauchy’s theorem for higher dimensions, the right-
hand side does not change under continuous deformations
of the integration region as long as the boundary at infinity
is kept fixed so that the integrals converge. The sign
problem will get reduced if ImSðzÞ is almost constant on
the new integration region.
In Refs. [11,11–15], such a deformation x → ztðxÞ

(t ≥ 0) is made according to the antiholomorphic gradient
flow:

_zit ¼ ½∂iSðztÞ��; zit¼0 ¼ xi: ð2Þ

Equation (1) can then be rewritten as

hOðxÞiS ¼
R
Σt
dze−SðzÞOðzÞR
Σt
dze−SðzÞ

ðΣt ≡ ztðRNÞÞ; ð3Þ

which can be further rewritten as a ratio of reweighted
integrals over RN by using the Jacobian matrix JtðxÞ≡
ð∂zitðxÞ=∂xjÞ [11]:

hOðxÞiS ¼
R
RN dx det JtðxÞe−SðztðxÞÞOðztðxÞÞR

RN dx det JtðxÞe−SðztðxÞÞ

¼ heiθtðxÞOðztðxÞÞiSefft

heiθtðxÞiSefft

: ð4Þ

Here, Sefft ðxÞ and θtðxÞ are defined by

e−S
eff
t ðxÞ ≡ e−ReSðztðxÞÞj det JtðxÞj; ð5Þ

eiθtðxÞ ≡ e−iImSðztðxÞÞei arg det JtðxÞ; ð6Þ

and JtðxÞ obeys the differential equation [11] (see also
Footnote 2 of Ref. [14])

_Jt ¼ ½HðztðxÞÞ · Jt��; Jt¼0 ¼ 1 ð7Þ

with HðzÞ≡ ð∂i∂jSðzÞÞ. Under the flow (2), the action
changes as ðd=dtÞSðztðxÞÞ ¼ j∂iSðztðxÞÞj2 ≥ 0, and thus
ReSðztðxÞÞ increases except at the critical points z�
(∂iSðz�Þ ¼ 0), while ImSðztðxÞÞ is kept constant. In
particular, in the limit t → ∞, the deformed region will
approach a union of N-dimensional submanifolds
(Lefschetz thimbles) on each of which ImSðzÞ is constant,
and thus the sign problem is expected to disappear there
(except for a possible residual sign problem arising from
the phase of the complex measure dz and a possible global
sign problem caused by phase cancellations among differ-
ent thimbles). However, in the Monte Carlo calculation,
one cannot take the t → ∞ limit naively because the
potential barriers between different thimbles become infi-
nitely high so that the whole configuration space cannot be
explored sufficiently. This multimodality of distribution
makes the Monte Carlo calculation impractical, especially
when contributions from more than one thimble are
relevant to estimating expectation values. A key proposal
in Ref. [12] is to use a finite value of flow time that is large
enough to avoid the sign problem but simultaneously is not
too large so that the exploration in the configuration space
is still possible. However, it is a difficult task to find such
value of flow time in a systematic way, as we will discuss at
the end of Sec. III and in Appendix E.
The TLTM [14] is a tempering algorithm that uses the

flow time as a tempering parameter. There, the global
relaxation of the multimodal distribution is prompted by
enabling configurations around different modes to easily
communicate through transitions in ensembles at smaller
flow times. Among other possible tempering algorithms,
the parallel tempering algorithm [25,26] [also known as the
replica exchange Markov chain Monte Carlo (MCMC)
method; see Ref. [27] for a review] is adopted in the
TLTM [14] because it does not need to introduce the
probability weight factors of ensembles at various flow
times and because most of relevant steps can be done in
parallel processes.
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In the TLTM (see Appendix A for the summary of the
algorithm), we first fix the maximum flow time T which
should be sufficiently large such that the sign problem is
reduced there. A possible criterion is that the sign average
jheiθT ðxÞiSeffT

j is Oð1Þ in the absence of tempering. This
process can be carried out by a test run with small statistics.
We then enlarge the configuration space from RN ¼ fxg to
the set of Aþ 1 replicas, ðRNÞAþ1 ¼ fðx0; x1;…; xAÞg. We
assign to replicas a (a ¼ 0; 1;…; A) the flow times ta with
t0 ¼ 0 < t1 < � � � < tA ¼ T. The action at replica a,
Seffta ðxaÞ, is obtained by solving (2) and (7) with its own
initial conditions zit¼0 ¼ xia, Jt¼0 ¼ 1. We set up an
irreducible, aperiodic Markov chain for the enlarged
configuration space such that the probability distribution
for fðx0; x1;…; xAÞg eventually approaches the equilibrium
distribution proportional to

Y
a

exp½−Seffta ðxaÞ�: ð8Þ

This can be realized by combining a) the Metropolis
algorithm (or the Hybrid Monte Carlo algorithm) in the
x direction at each fixed flow time and b) the swap of
configurations at two adjacent replicas. Each of the steps a
and b can be done in parallel processes. After the system is
relaxed well to global equilibrium, we estimate the expect-
ation value at flow time ta [see (4)] by using the subsample

at replica a, fxðkÞa gk¼1;2;…;Nconf
, that is retrieved from the

total sample fðxðkÞ0 ; xðkÞ1 ;…; xðkÞA Þgk¼1;2;…;Nconf
:

heiθta ðxÞOðztaðxÞÞiSeffta

heiθta ðxÞiSeffta

≈
PNconf

k¼1 exp½iθtaðxðkÞa Þ�OðztaðxðkÞa ÞÞPNconf
k¼1 exp½iθtaðxðkÞa Þ�

≡ Ōa: ð9Þ

The original proposal in Ref. [14] is to use (9) at the
maximum flow time, Ōa¼A, as an estimate of hOiS.
Recall here that the left-hand side of (9) is independent of

a due to Cauchy’s theorem, and thus the ratio Ōa should
yield the same value within the statistical error margin if the
system is well in global equilibrium. In practice, this is not
true for small a’s due to the sign problem,where the estimate

of the sign average, jeiθta j≡ jð1=NconfÞ
P

k e
iθta ðxðkÞa Þj, can be

smaller than its statistical error (≃1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p
, which is the

value for the uniform distribution of phases). In this case, the
statistical error of the ratio Ōa cannot be trusted, which
means that such Ōa should not be used as an estimate
of hOiS.
Based on the observation above, we now propose an

algorithm which allows a precise estimation of hOiS with a
criterion ensuring global equilibrium and the sufficiency

of the sample size. First, we continue the sampling until
we find some range of a [to be denoted by a ¼
amin;…; amaxð¼AÞ] in which jeiθta j are well above
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p
and Ōa take the same value within the statistical

error margin. We will require that the 1σ intervals around

jeiθta j be above 3=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p
. Then, we estimate hOiS by

using the χ2 fit for fŌaga¼amin;…;amax
with a constant

function of a. Global equilibrium and the sufficiency of
the sample size are checked by looking at the optimized
value of χ2=DOF ¼ χ2=ðamax − aminÞ. Note that the param-
eters determined by this procedure (such as Nconf , amin,
amax ¼ A) can vary depending on the choice of observ-
able O.
We close this section with a few comments. First, in the

TLTM, a sufficient overlap of the distributions at adjacent
replicas is expected even for large flow times as long as the
spacings are not too large. This is because the distributions
at large a’s (∝ exp½−Seffta ðxÞ�) have peaks at the same points
in RN that flow to critical points in CN . This is in sharp
contrast with the situation in other tempered systems, in
which the distribution often changes rapidly as a function
of the tempering parameter so that enough of an overlap
cannot be achieved for realistically meaningful small
spacings. Second, the optimal form of ta is a linear function
of a when flowed configurations are close to a critical
point. This is because the optimal choice for the overall
coefficients in tempering algorithms is exponential (see,
e.g., Refs. [28,29]) and because the real part of the action
grows exponentially in flow time near critical points.
Finally, the computational cost in the TLTM is expected
to be OðN3−4Þ due to the increase caused by the tempering
algorithm [which will be OðN0−1Þ]. Note that this growth
of computational cost can be compensated by increasing
the number of parallel processes.

III. APPLICATION TO THE HUBBARD MODEL
AWAY FROM HALF FILLING

Let Λ ¼ fxg be a d-dimensional lattice with Ns lattice
points. The Hubbard model describes nonrelativistic lattice
fermions of spin 1=2 and is defined by the Hamiltonian
(including the chemical potential)

H ¼ −κ
X
x;y

X
σ

Kxyc
†
x;σcy;σ − μ

X
x

ðnx;↑ þ nx;↓ − 1Þ

þ U
X
x

ðnx;↑ − 1=2Þðnx;↓ − 1=2Þ: ð10Þ

Here, cx;σ and c†x;σ are the annihilation and creation
operators on site x ∈ Λ with spin σð¼ ↑;↓Þ obeying
the anticommutation relations fcx;σ; c†y;τg ¼ δxyδστ and
fcx;σ; cy;τg ¼ fc†x;σ; c†y;τg ¼ 0, and nx;σ ≡ c†x;σcx;σ. Kxy is
the adjacency matrix that takes a nonvanishing value (≡1)
only for nearest neighbors, and we assume the lattice to be
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bipartite. κð> 0Þ is the hopping parameter, μ is the chemical
potential, and Uð>0Þ represents the strength of the
on-site repulsive potential. We have shifted nx;σ as nx;σ →
nx;σ − 1=2 so that μ ¼ 0 corresponds to the half-filling
state,

P
σhnx;σ − 1=2i ¼ 0.

We approximate the grand partition function tre−βH by
using the Trotter decomposition with equal spacing ϵ
(β ¼ Nτϵ), and rewrite it as a path integral over a
Gaussian Hubbard-Stratonovich variable ϕ ¼ ðϕl;xÞ.
Then, the expectation value of the number density
n≡ ð1=NsÞ

P
xðnx;↑ þ nx;↓ − 1Þ is expressed as (see

Appendix B for the derivation)

hniS ≡
R ½dϕ�e−S½ϕ�n½ϕ�R ½dϕ�e−S½ϕ�

�
½dϕ�≡Y

l;x

dϕl;x

�
; ð11Þ

e−S½ϕ� ≡ e−ð1=2Þ
P

l;x
ϕ2
l;x detMa½ϕ� detMb½ϕ�; ð12Þ

Ma=b½ϕ�≡ 1þ e�βμ
Y
l

eϵκKe�i
ffiffiffiffiffi
ϵU

p
ϕl ; ð13Þ

n½ϕ�≡ ði
ffiffiffiffiffiffi
ϵU

p
NsÞ−1

X
x

ϕl¼0;x; ð14Þ

where ϕl ≡ ðϕl;xδxyÞ and
Q

l is a product in descending
order. Note that n½ϕ� in (14) can be replaced by
ði ffiffiffiffiffiffi

ϵU
p

NτNsÞ−1
P

l;x ϕl;x, which is more preferable in
Monte Carlo calculations because statistical errors will
be reduced due to the averaging over l. The charge-charge
correlation, hnxnyiS (nx ≡ nx;↑ þ nx;↓ − 1), can also be
evaluated as a path integral by simply replacing nx by
ði ffiffiffiffiffiffi

ϵU
p Þ−1ϕl¼0;x when x ≠ y. As for the observables that

are not directly constructed from nx, the expectation values
can be evaluated by using the formula (B14).
We now apply the TLTM to the Hubbard model on a

two-dimensional periodic square lattice of size 2 × 2 (thus
Ns ¼ 4) with Nτ ¼ 5. We first estimate hniS numerically
by using the expressions (11)–(14) for various values of βμ
with other parameters fixed to be βκ ¼ 3, βU ¼ 13. Note
that the physical quantities depend only on the dimension-
less parameters βμ, βκ, βU for fixed Nτ.
The complex action (12) gives rise to a serious sign

problem, as can be seen in the left panel of Fig. 1. However,
we should note that the extent of the seriousness of the sign
problem heavily depends on the choice of the Hubbard-
Stratonovich variables, and, actually, the sign problem can
be avoided for the above parameters within the
Blankenbecler-Scalapino-Sugar QMC method [30]. In fact,
the right panel of Fig. 1 shows the sign averages calculated
by using a public code called Algorithms for Lattice
Fermions (ALF) [31] that is based on the discrete variables

introduced in Refs. [32,33]. We see that the sign averages
are above 0.98 for all the range of βμ studied here.1

Following the general prescription and writing x ¼
ðxiÞ ¼ ðϕl;xÞ ði ¼ 1;…; NÞ with N ¼ NτNs, we intro-
duce the enlarged configuration space ðRNÞAþ1 ¼
fðx0; x1;…; xAÞg. Here, we brief the setup of the param-
eters relevant to the TLTM (see Appendix D for more
details). We set ta to be piecewise linear in a with a single
breakpoint of which the position will be tuned such that the
acceptance rates of the swapping process at adjacent
replicas are almost the same for all pairs (being roughly
above 40%).2 For each value of βμ, we make a test run with
small statistics to adjust parameters. This gives the values
T=ðβμÞ ¼ 1=12–1=10, A ¼ 8–12, Nconf ¼ 5; 000–25; 000,
varying on the value of βμ. We make a sampling after
discarding 5000 configurations, and from the obtained data
fn̄aga¼amin;…;amax

, we estimate hniS by using the χ2 fit.
As an example, let us see Fig. 2, which shows jeiθta j and

n̄a at various replicas for βμ ¼ 5. The left panel shows that

the 1σ intervals around jeiθta j are above 3= ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p
for a ¼

5;…; 11 (and thus we set amin ¼ 5 and amax ¼ 11). The
right panel shows that the data fn̄ag in this range give the
same value within the statistical error margin. The χ2 fit
gives the estimate hniS ≈ 0.221� 0.012 (the exact value is
0.212) with χ2=DOF ¼ 0.45.
Figure 3 shows the thus-obtained numerical estimates of

hniS as a function of βμ. We also display the estimates
obtained without tempering (at the same maximum flow
times T) and those from the original reweighting method
(i.e., T ¼ 0), together with the values obtained by the
explicit evaluation of the trace under the Trotter decom-
position withNτ ¼ 5 and for the continuum imaginary time
(i.e., Nτ ¼ ∞) (see Appendix C). We see that the exact
values are correctly reproduced when the tempering is
implemented, while there are significant deviations when
not implemented. As in the (0þ 1)-dimensional massive

FIG. 1. (Left) The sign averages obtained by the reweighting
method (flow time T ¼ 0) for the complex action (12) with the
Gaussian Hubbard-Stratonovich variable. (Right) The sign aver-
ages obtained by using ALF with the Mz parametrization.

1We thank a referee for suggesting that we investigate this
point.

2This functional form of ta is best suited to the case in which
the deformed region reaches the vicinity of all the relevant
Lefschetz thimbles at almost the same flow time and such a linear
form is effective also for the transient period.
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Thirring model [14], the deviation reflects the fact that the
relevant thimbles are not sampled sufficiently. In fact, from
Fig. 4, which shows the distribution of averaged flowed
configurations ẑ≡ ð1=NÞPi z

i
T at T ¼ 0.5 for βμ ¼ 5, we

see that, although the flowed configurations are widely
distributed over many thimbles when the tempering is
implemented, they are restricted to only a small number of
thimbles when not implemented.
Three comments are in order. First, a larger value of the

sign average does not necessarily mean a better resolution

of the sign problem, as can be seen from Fig. 5. In fact,
when only a very few thimbles are sampled, the sign
average can become larger than the value in the correct
sampling due to the absence of phase mixtures among
different thimbles.
Second, whether the multimodality can affect the esti-

mates of expectation values depends on the choice of
observables. In fact, from the discrepancies of the sign
averages in Fig. 5, we see that the multimodality must be
severe in the region βμ ≤ 9. However, the estimates of hniS
almost agree between the two methods with and without
tempering in the range 7 ≤ βμ ≤ 9. This means that the
operator n is not sensitive to the multimodality in this
range. To find an observable that is sensitive to the
multimodality, we estimated the nearest-neighbor charge-
charge correlation hnxnyiS with the same sample.3 The
results are shown in Fig. 6, in which we see a significant
discrepancy at βμ ¼ 9 between the two methods.
Such discrepancies become more manifest if we look at

the observables that are not directly constructed from the
number density operator nx. As an example, we show in
Fig. 7 the expectation values of the kinetic energy operator
(without the factor “−κ”) K ≡P

x;y

P
σ Kxyc

†
x;σcy;σ , which

are estimated for the same sample as above by using the
formula (B14). We notice two things there. One is that the
discrepancies between the two methods now become
significant for all the range 7 ≤ βμ ≤ 9. The other is that
the precision of the TLTM becomes worse compared to the
case for the observables that are constructed solely from nx.
In fact, those observables that are not directly constructed
from nx (such as K) contain matrix elements of Ma=b½ϕ�−1
and may have divergently large values in the vicinity of
zeros of the fermion determinants detMa=b½ϕ�. In this case,
precise estimation will require a larger sample size and
more accuracy in integrating flow equations compared with

FIG. 3. The expectation values of the number density operator,
hniS ðNτ ¼ 5Þ. The results obtained with tempering correctly
reproduce the exact values. The exact values for Nτ ¼ ∞ are also
displayed for comparison.

FIG. 4. The distribution of ẑ. (Left) With tempering. (Right)
Without tempering.

FIG. 5. The sign averages at T, jheiθT ðxÞiSeffT
j.

FIG. 2. With tempering (βμ ¼ 5). (Left) The sign averages at
various replicas. The horizontal dashed line represents
3=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p ¼ 0.017. (Right) The data n̄a. The solid red line
with a shaded band represents the estimate of hniS with a 1σ
interval. The gray dashed line represents the exact value.

3We thank the referee for suggesting that we investigate the
expectation values of observables other than the number density
operator.
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operators constructed solely from nx. We expect that a
similar attention must be paid when one applies the TLTM
to finite density QCD. We leave a further investigation of
this point to a future investigation.
Finally, from Fig. 8, we see that it should be a difficult

task to find an intermediate flow time (without tempering)

that avoids both the sign problem (severe at smaller flow
times) and the multimodal problem (severe at larger flow
times) (see Appendix E for more detailed discussions).
Generically, flowed configurations get trapped to a fewer
number of Lefschetz thimbles several times, so there is a
large ambiguity in distinguishing the larger and smaller
flow times in the first place.

IV. CONCLUSION

In this paper, we proposed an algorithm for the TLTM
which allows a precise estimation of expectation values.
We confirm the effectiveness by applying it to the two-
dimensional Hubbard model away from half filling.
We should stress that our study in this paper is still at an

exploratory level. In fact, the lattice must be enlarged much
more in both the spatial and imaginary time directions to
claim the validity of our method for the sign problem in the
Hubbard model, revealing the phase structure of the model.
In doing this, it should be important to check whether the
computational scaling is actually OðN3−4Þ as expected.
More generally, we should keep developing the algo-

rithm further so that it can be more easily applied to the
three major problems listed in the Introduction. There
should also be other interesting branches of fields in which
the TLTM may shed new light on the theoretical under-
standing through a numerical analysis, such as the Chern-
Simons theory [34] and matrix models that generate
random volumes [35].
Recently, there appeared an interesting paper [23] (see

also its detailed version [24]), in which the sign and
ergodicity problems are also studied for the Lefschetz
thimble method applied to the Hubbard model away from
half filling. In our method (TLTM), the two problems are
solved simultaneously by tempering the system with the
flow time, in which one does not need to know a detailed
structure of thimbles. In contrast, in Refs. [23,24], the
authors redundantly introduce two continuous Gaussian
Hubbard-Stratonovich variables with a parameter repre-
senting the mixture of the two variables (see also Ref. [22]).
With knowledge of thimble structures, they tune the
parameter in such a way that only a few number of
thimbles become relevant to the evaluation and obtain
results for a 2 × 2 hexagonal lattice ðNs ¼ 8Þ with Nτ ¼
384 and β ¼ 30. It would be interesting to introduce such
redundant integration variables also in the TLTM so as to
reduce the global sign problem (possible cancellation of
phases among different thimbles), which we observe also
depends heavily on the choice of integration variables.
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APPENDIX A: SUMMARY OF THE ALGORITHM

We summarize the algorithm of the TLTM (we partially
repeat the presentation of Ref. [14]):
Step 0.—We fix the maximum flow time T, which should
be sufficiently large such that the sign problem is reduced
there. A possible criterion is that the sign average
jheiθT ðxÞiSeffT

j is Oð1Þ in the absence of tempering. This
can be carried out by a test run with small statistics. We
then pick up flow times ftag from the interval [0; T] with
t0 ¼ 0 < t1 < � � � < tA ¼ T. The values of A and ta are
determined manually or adaptively to optimize the accep-
tance rate in step 3 below. Practically, once A is determined,
ta can be chosen to be a piecewise linear function of a [see
the argument for (D1)].
Step 1.—For each replica a, we choose an initial value
xa ∈ RN and numerically solve the differential equa-
tions (2) and (7) to obtain the triplet ðxa; za ≡ ztaðxaÞ;
Ja ≡ JtaðxaÞÞ.
Step 2.—For each replicaa, we use theMetropolis algorithm
to update the value of xa. To be explicit, we take a value x0a
from xa using a symmetric proposal distribution and
recalculate the triplet ðx0a; z0a; J0aÞ using the x0a as the initial
value. We then update xa to x0a with the probability
minð1; e−ΔSaÞ, where

ΔSa ≡ Seffta ðx0aÞ − Seffta ðxaÞ
¼ ðReSðz0aÞ − ln j det J0ajÞ
− ðReSðzaÞ − ln j det JajÞ: ðA1Þ

We repeat the process sufficientlymany times such that local
equilibrium is realized for each a. Steps 1 and 2 can be
performed in parallel processes.
Step 3.—We swap the configurations at two adjacent
replicas a and aþ 1 by updating ðxa; xaþ1Þ ¼ ðx; yÞ to
ðx0a; x0aþ1Þ ¼ ðy; xÞ with the probability

waðx; yÞ ¼ minð1; e−Seffta
ðyÞ−Sefftaþ1

ðxÞþSeffta
ðxÞþSefftaþ1

ðyÞÞ: ðA2Þ

One can easily see that this satisfies the detailed balance
condition with respect to the global equilibrium distribution
(8) because

waðx; yÞe−S
eff
ta ðxÞ−Sefftaþ1

ðyÞ ¼ waðy; xÞe−S
eff
ta ðyÞ−Sefftaþ1

ðxÞ: ðA3Þ

We repeat the process several times so as to reduce
autocorrelations. This procedure can also be performed
in parallel processes by choosing a set of independent pairs.
Step 4.—By repeating steps 2 and 3, we obtain a sequence
of triplets,

fðxðkÞa ; zðkÞa ; JðkÞa Þgk¼1;2;…;Nconf
; ðA4Þ

for each a, with which we estimate the expectation value at
flow time ta:

heiθta ðxÞOðztaðxÞÞiSeffta

heiθta ðxÞiSeffta

≈
PNconf

k¼1 eiθ
ðkÞ
a OðzðkÞa ÞPNconf

k¼1 eiθ
ðkÞ
a

≡ Ōa

½θðkÞa ≡ θtaðxðkÞa Þ�: ðA5Þ

Here, Nconf is chosen to be large enough so that
we find some range of a (to be denoted by a ¼
amin;…; amax with amax ¼ A) in which the 1σ

intervals around jeiθta j ¼ jð1=NconfÞ
P

k e
iθta ðx

ðkÞ
a Þj are above

3=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nconf

p
and Ōa take the same value within the statistical

error margin.
Step 5.—The expectation value of hOiS is estimated by the
χ2 fit from the data fŌaga¼amin;…;amax

with a constant
function of a. Global equilibrium and the sufficiency of
the sample size Nconf is checked by looking at the
optimized value of χ2=DOF ¼ χ2=ðamax − aminÞ.
In the above algorithm, we have implicitly assumed that

the action at t0 ¼ 0 does not exhibit multimodality. If this is
not the case, we further introduce other parameters (such as
the overall coefficient of the action) as extra tempering
parameters or prepare flow times ftag with t0 < 0 [14].

APPENDIX B: DERIVATION OF EQS. (11)–(14)

For a bipartite lattice, we specify which sublattice x
belongs to by the sign ð−1Þx ¼ �1. We first make the
so-called particle-hole transformation, cx;↑ ¼ ax and

cx;↓ ¼ ð−1Þxb†x. Then the one-body part H1 and the
two-body part H2 of the Hamiltonian (10) are rewritten,
respectively, as

H1¼−
X
x;y

ðκKþμ1Þxya†xay −
X
x;y

ðκK−μ1Þxyb†xby ; ðB1Þ

H2 ¼ −U
X
x

ðnax − 1=2Þðnbx − 1=2Þ

¼ ðU=2Þ
X
x

ðnax − nbxÞ2 − NsU=4: ðB2Þ

In the last equation, we have used the identity
naxð≡a†xaxÞ ¼ ðnaxÞ2 and nbxð≡b†xbxÞ ¼ ðnbxÞ2. Note that
the number density operator is written as
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n≡ ð1=NsÞ
X
x

ðnx;↑ þ nx;↓ − 1Þ

¼ ð1=NsÞ
X
x

ðnax − nbxÞ: ðB3Þ

To perform a Monte Carlo simulation, we appro-
ximate e−βH in the grand partition function by using
the Trotter decomposition with equal spacing ϵ
(β ¼ Nτϵ),

e−βH ¼ ðe−ϵðH1þH2ÞÞNτ ≃ ðe−ϵH1e−ϵH2ÞNτ ; ðB4Þ

and rewrite e−ϵH2 at the lth position from the right to
the exponential of a fermion bilinear by using a
Gaussian Hubbard-Stratonovich variable ϕl;x:

e−ϵH2 ¼ eNsϵU=4e−ðϵU=2Þ
P

x
ðnax−nbxÞ2

¼ eNsϵU=4
Y
x

Z
dϕl;xffiffiffiffiffiffi
2π

p e−ð1=2Þϕ
2
l;xþi

ffiffiffiffiffi
ϵU

p
ϕl;xðnax−nbxÞ:

ðB5Þ

Then, the approximated grand partition function takes
the following path integral form:

ZQMC ≡ tr½ðe−ϵH1e−ϵH2ÞNτ �

¼ ðeϵU=4=
ffiffiffiffiffiffi
2π

p
ÞNτNs

Z
½dϕ�e−S½ϕ�: ðB6Þ

Here, ½dϕ�≡Q
l;x dϕl;x, and the action S½ϕ� is given by

e−S½ϕ� ¼ e−
P

l;x
ð1=2Þϕ2

l;x tra
Y
l

eϵ
P

x;y
ðκKþμ1Þxya†xaye

P
x
ði ffiffiffiffiffi

ϵU
p

ϕl;xÞa†xax

× trb
Y
l

eϵ
P

x;y
ðκK−μ1Þxyb†xbye

P
x
ð−i ffiffiffiffiffi

ϵU
p

ϕl;xÞb†xbx ; ðB7Þ

where
Q

l is an ordered product (
Q

l fl ≡ fNτ−1 � � � f1f0)
and tra (or trb) represents the trace over the Fock space
created by a†x (or by b†x). The fermion trace in (B7) can be
evaluated explicitly by using the following formulas that
hold for the operator Â≡P

x;y Axya
†
xay constructed from

an Ns × Ns matrix A ¼ ðAxyÞ:

eAeB ¼ eC ⇒ eÂeB̂ ¼ eĈ; ðB8Þ

treÂ ¼ detð1þ eAÞ: ðB9Þ

(The first equation can be readily proved by the fact that
A ↦ Â is a Lie algebra homomorphism. The second
equation can be easily understood by moving to a diagonal-
izing basis for A.) We thus find that the action becomes

e−S½ϕ� ¼ e−ð1=2Þ
P

l;x
ϕ2
l;x detMa½ϕ� detMb½ϕ�; ðB10Þ

Ma=b½ϕ� ¼ 1þ e�βμ
Y
l

eϵκKe�i
ffiffiffiffiffi
ϵU

p
ϕl ; ðB11Þ

where ϕl is a diagonal matrix of the form ϕl ¼ ðϕl;xδxyÞ.
Note that, while the action is real valued for the half-filling
case (μ ¼ 0) due to the identityMb½ϕ�jμ¼0 ¼ ðMa½ϕ�jμ¼0Þ�,
it is generically complex valued when μ ≠ 0.

The expectation values of such observables that are made
solely from the number density operators nx ≡ nx;↑ þ
nx;↓ − 1 ¼ nax − nbx can be evaluated as a path integral
over ϕ by simply replacing nx by ði ffiffiffiffiffiffi

ϵU
p Þ−1ϕl¼0;x, as

easily proved by using the operator identity

Z
dϕe−ð1=2Þϕ2þi

ffiffiffiffiffi
ϵU

p
ϕðnax−nbxÞðnax − nbxÞ

¼
Z

dϕe−ð1=2Þϕ2þi
ffiffiffiffiffi
ϵU

p
ϕðnax−nbxÞϕ=ði

ffiffiffiffiffiffi
ϵU

p
Þ: ðB12Þ

For example, the expectation value of the number density
operator, hniS, can be rewritten to a path integral form as
in (11).
As for observables of general form, one can resort to the

Wick–Bloch–de Dominicis theorem,

tr½eÂaxm � � �ax1a†x0
1
� � �a†x0

m0
�

¼ δmm0 detð1þ eAÞ

���������

ð1þ eAÞ−1x1x01 � � � ð1þ eAÞ−1x1x0m
..
. . .

. ..
.

ð1þ eAÞ−1xmx01
� � � ð1þ eAÞ−1xmx0m

���������
;

ðB13Þ

to obtain the expression
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tr½ðe−ϵH1e−ϵH2ÞNτaxm � � � ax1
a†x0

1
� � � a†x0

m0
byn � � �by1b†y0

1
� � �b†y0

n0
�

tr½ðe−ϵH1e−ϵH2ÞNτ �

¼ δmm0δnn0

Z

Z
½dϕ�e−S½ϕ�

���������

Δa
x1x01

� � � Δa
x1x0m

..

. . .
. ..

.

Δa
xmx01

� � � Δa
xmx0

m

���������
·

���������

Δb
y1y01

� � � Δb
y1y0n

..

. . .
. ..

.

Δb
yny01

� � � Δb
yny0n

���������

�
Z ¼

Z
½dϕ�e−S½ϕ�

�
; ðB14Þ

where Δa=b½ϕ� ¼ Ma=b½ϕ�−1.

APPENDIX C: EVALUATION OF THE TRACE
UNDER THE TROTTER DECOMPOSITION

The Hilbert space V of the Hubbard model after the
particle-hole transformation is the tensor product of two
Fock spaces, V ¼ Va ⊗ Vb, each constructed by acting a†x
or b†x on the Fock vacuum j0i. In this Appendix, we give
the explicit forms of the matrix elements that appear in the
trace under the Trotter decomposition:

hniS ¼
tr½ðe−ϵH1e−ϵH2ÞNτn�
tr½ðe−ϵH1e−ϵH2ÞNτ � ¼ tr½ðT1T2ÞNτn�

tr½ðT1T2ÞNτ � : ðC1Þ

Here, the one-body partH1 and the two-body partH2 of the
Hamiltonian are given by [see (B1) and (B2)]

H1 ¼ Ha
1 ⊗ 1þ 1 ⊗ Hb

1; ðC2Þ

Ha
1 ¼

X
x;y

haxya
†
xay ≡ −

X
x;y

ðκK þ μ1Þxya†xay; ðC3Þ

Hb
1 ¼

X
x;y

hbxyb
†
xby ≡ −

X
x;y

ðκK − μ1Þxyb†xby; ðC4Þ

H2 ¼ −U
X
x

ðnax − 1=2Þ ⊗ ðnbx − 1=2Þ: ðC5Þ

The number density operator is given by

n ¼ 1

Ns

X
x

ðnax ⊗ 1 − 1 ⊗ nbxÞ; ðC6Þ

and we have introduced the transfer matrices corresponding
to H1 and H2:

T1 ≡ e−ϵH1 ¼ e−ϵH
a
1 ⊗ e−ϵH

b
1 ≡ Ta

1 ⊗ Tb
1;

T2 ≡ e−ϵH2 : ðC7Þ

We first introduce a one-dimensional ordering to the set
of all spatial coordinates, Λ ¼ fxg, and take a basis of V
to be

fjXi ⊗ jYig; ðC8Þ

where the states

jXi≡ a†x1a
†
x2 � � � a†xm j0i ∈ Va; ðC9Þ

jYi≡ b†y1b
†
y2 � � � b†yn j0i ∈ Vb ðC10Þ

are labeled by the subsets of ordered coordinates, X ¼
fx1;x2;…;xmg ⊂ Λ (with x1 < x2 < � � � < xm), Y ¼
fy1; y2;…; yng ⊂ Λ (with y1 < y2 < � � � < yn). We will
denote their sizes by jXj ¼ m, jYj ¼ n.
The matrix elements of Ta

1 ¼ e−ϵH
a
1 are then given by the

determinants

ðTa
1ÞXX0 ¼

���������

ðe−ϵhaÞx1x1 0 � � � ðe−ϵhaÞx1x0m
..
. . .

. ..
.

ðe−ϵhaÞxmx1 0 � � � ðe−ϵhaÞxmx0m

���������
δjXj;jX0j

¼ eϵμjXj

���������

ðeϵκKÞx1x1 0 � � � ðeϵκKÞx1x0m
..
. . .

. ..
.

ðeϵκKÞxmx1 0 � � � ðeϵκKÞxmx0m

���������
δjXj;jX0j

ðm≡ jXj ¼ jX0jÞ; ðC11Þ

as can be easily proven by investigating the action of Ta
1 on

the state jX0i

Ta
1jX0i ¼ e−ϵ

P
xy
haxya

†
xaya†x1 0 � � � a

†
x0m
j0i

≡X
X

jXiðTa
1ÞXX0 ; ðC12Þ

where the coefficients do not vanish only when jXj ¼
jX0jð¼mÞ. The matrix elements of Tb

1 ¼ e−ϵH
b
1 can also be

given in the forms of the determinant,
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ðTb
1ÞYY 0 ¼ e−ϵμjYj

���������

ðeϵκKÞy1y1 0 � � � ðeϵκKÞy1y0n
..
. . .

. ..
.

ðeϵκKÞyny1 0 � � � ðeϵκKÞyny0n

���������
δjYj;jY 0j

ðn≡ jYj ¼ jY 0jÞ: ðC13Þ

We thus obtain the explicit forms of the matrix elements
ðT1ÞXY;X0Y 0 ¼ ðTa

1ÞXX0 ðTb
1ÞYY 0 .

As for T2 ¼ e−ϵH2, we note that H2 acts on jXi ⊗ jYi
diagonally:

H2jXi ⊗ jYi ¼ −U
X
z

�
a†zaz −

1

2

�
jXi ⊗

�
b†zbz −

1

2

�
jYi

≡ ðh2ÞXY jXi ⊗ jYi: ðC14Þ

The coefficients ðh2ÞXY can be calculated easily to be

ðh2ÞXY ¼ −
U
4

X
z

½θðz ∈ XÞθðz ∈ YÞ − θðz ∈ XÞθðz ∉ YÞ

− θðz ∉ XÞθðz ∈ YÞ þ θðz ∉ XÞθðz ∉ YÞ�

¼ −
U
4
ð2jX ∩ Yj þ 2jX̄ ∩ Ȳj − NsÞ; ðC15Þ

where θðÞ is the logical step function and X̄ stands
for the complement of the set X, X̄ ¼ ΛnX. The
matrix elements of T2 are then given by ðT2ÞXY;X0Y 0 ¼
e−ϵðh2ÞXYδXX0δYY 0 .
Finally, the matrix elements of n are given by

nXY;X0Y 0 ¼ 1

Ns
ðjXj − jYjÞδXX0δYY 0 : ðC16Þ

With the matrix elements given above, hniS can be
expressed as

hniS ¼
1

Ns

P
X;Y⊂Λ½ðT1T2ÞNτ �XY;XYðjXj − jYjÞP

X;Y⊂Λ½ðT1T2ÞNτ �XY;XY
: ðC17Þ

APPENDIX D: SUMMARY OF THE
PARAMETERS IN THE COMPUTATION

We summarize the parameters relevant to the TLTM in
the estimation of hniS. We order the termination times ta
for replicas a as t0 ¼ 0 < t1 < � � � < tA ¼ T (T is the
largest flow time) and set ta to be a piecewise linear
function of a with a single break point at a ¼ ac, by
assuming that the deformed region reaches the vicinity of
all the relevant Lefschetz thimbles at almost the same flow

time and that the linear form is effective also for the
transient period:

ta ¼
�
tca=ac ð0 ≤ a ≤ acÞ
tc þ ðT − tcÞða − acÞ=ðA − acÞ ðac < a ≤ AÞ :

ðD1Þ

Each Monte Carlo step consists of 50 Metropolis tests in
the x direction and Nswap swaps of configurations at
adjacent replicas, and the flow equations (2) and (7) are
integrated numerically by using the adaptive Runge-Kutta
of 7th–8th order. For each value of βμ, we make a test run
with small statistics and adjust the parameters A, tc, ac in
such a way that the acceptance rates of the swapping
process at adjacent replicas are almost the same for all pairs
(being roughly above 40%). After this, we make another
test run of 1000 data points to adjust the width of the
Gaussian proposal in the Metropolis test in the x direction
so that the acceptance rate is in the range 50%–80%.
This width varies depending on replicas a and the values of
βμ. Using the adjusted parameters, we get a sample of
size Nconf after discarding 5000 configurations and analyze
the data by using the Jackknife method, with bins of
which the sizes are adjusted by taking account of auto-
correlations. Finally, from the obtained data fn̄ag ða ¼
amin;…; amaxð¼AÞÞ [see (9)], we estimate the expectation
value hniS by using the χ2 fit with a constant function of a.
We confirm that the system is in global equilibrium and the
sample size is sufficient by looking at the optimized value
of χ2=DOF with DOF ¼ amax − amin. The obtained results
are summarized in Table I.

TABLE I. TLTM parameters and the results.

βμ 1 2 3 4 5 6 7 8

T=ðβμÞ 1=10 1=10 1=10 1=10 1=10 1=11 1=11 1=12
A 8 9 10 11 11 11 11 11
tc=T 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5
ac 5 5 6 6 6 5 5 5
Nswap 10 10 12 12 12 12 12 12
Nconf 5k 5k 10k 10k 15k 25k 15k 15k
amin 0 0 2 3 5 5 6 7
χ2=DOF 0.53 0.43 0.47 0.12 0.45 0.39 1.07 0.72

βμ 9 10 11 12 13 14 15 16

T=ðβμÞ 1=12 1=12 1=12 1=11 1=11 1=11 1=11 1=11
A 11 11 12 12 12 12 12 12
tc=T 0.5 0.55 0.55 0.6 0.6 0.6 0.6 0.6
ac 5 5 6 6 6 7 7 7
Nswap 12 12 14 14 14 14 14 14
Nconf 10k 10k 10k 10k 5k 5k 5k 5k
amin 8 8 10 8 9 10 9 9
χ2=DOF 0.09 0.92 0.21 1.74 0.40 0.17 0.75 0.20
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APPENDIX E: MORE ON THE FINE-TUNING
OF FLOW TIME WITHOUT TEMPERING

To understand the difficulty of finding such an inter-
mediate value of flow time that avoids both the sign and
multimodal problems (without tempering), let us see the
right panel of Fig. 8, which is the counterpart of Fig. 2 (with
tempering) for the same βμ ¼ 5. We see that the estimated
values have large statistical errors at smaller flow times
(due to the sign problem), while they have small statistical
errors around incorrect values at larger flow times (due to
the trapping of configurations at a small number of
thimbles). The best flow time must be at the boundary
between the two regions, but it should be a difficult task to
find such a value out of the set of flow times with finite
spacings. In fact, if one takes a flow time from the smaller
region, then, although the obtained estimate may happen to
be close to the correct value, it must have a large statistical
error. On the other hand, if a flow time is taken from the
larger region, it will give an incorrect value (but with a
small statistical error because only a small number of
thimbles are sampled).
To understand Figs. 2 and 8 as reflecting the extent

of the sign and multimodal problems, let us see Fig. 9,
which depicts the normalized histograms of phases θtaðxÞ
for βμ ¼ 5 with tempering (top) and without tempering
(bottom). We see that at smaller flow times the histograms
are almost flat for both cases (giving rise to the sign
problem), but at larger flow times, those without temper-
ing become almost unimodal (reflecting the trapping
at a small number of thimbles), while those with temper-
ing correctly come to have various peaks (which may not
be so obvious from the figure because there are many
peaks and each peak is broadened by the Jacobian
determinant).
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