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We investigate the θ-dependence of two-dimensional CPN−1 models in the large-N limit by lattice
simulations. Thanks to a recent algorithm proposed by M. Hasenbusch to improve the critical slowing
down of topological modes, combined with simulations at imaginary values of θ, we manage to determine
the vacuum energy density up the sixth order in θ and up to N ¼ 51. Our results support analytic
predictions, which are known up to the next-to-leading term in 1=N for the quadratic term in θ (topological
susceptibility), and up to the leading term for the quartic coefficient b2. Moreover, we give a numerical
estimate of further terms in the 1=N expansion for both quantities, pointing out that the 1=N convergence
for the θ-dependence of this class of models is particularly slow.
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I. INTRODUCTION

The existence of field configurations with nontrivial
topology characterize the nonperturbative properties of
QCD and QCD-like models, leading in particular to a
nontrivial dependence on a possible coupling to the topo-
logical charge operator qðxÞ, the so-called θ parameter. A
nonzero θ implies an additional factor expðiθQÞ in the path-
integral of the theory, where Q ¼ R

d4xqðxÞ is the global
topological charge (winding number); since Q is integer-
valued for field configurations decaying fast enough at
infinity, the theory is invariant under θ → θ þ 2π, so
that θ behaves as an angular variable. For small values of
θ, the free energy (vacuum energy) density fðθÞ can be
Taylor expanded around θ ¼ 0, a common parametrization
being [1]

fðθÞ − fð0Þ ¼ 1

2
χθ2

�
1þ

X∞
n¼0

b2nθ2n
�
: ð1Þ

The expansion contains only even terms because θ breaks
CP-symmetry explicitly and the theory is CP-invariant
at θ ¼ 0. The quadratic coefficient χ is the topological
susceptibility and is related to the second cumulant of
the topological charge distribution at θ ¼ 0, while the

coefficients b2n are related to higher-order cumulants of
this distribution.
Since θ-dependence is connected to intrinsically non-

perturbative properties of quantum field theories, a numeri-
cal approach based on lattice Monte Carlo simulations is
the natural first-principle approach to its investigation.
However, various analytical strategies permit to obtain
useful information, at least in certain limits.
Semiclassical approaches to θ-dependence consider

classical configurations with nontrivial topology, like instan-
tons and anti-instantons, and compute the path-integral by
integrating fluctuations around such class of configurations.
One usually considers configurations with just one instanton
or anti-instanton, so that the whole information is contained
in the single-instanton effective action. In this way, one
obtains results valid for an ensemble of independent (non-
interacting) instantons and anti-instantons (dilute instanton
gas approximation or DIGA), leading to a universal depend-
ence of the free energy θ,

fðθÞ − fð0Þ ¼ χð1 − cos θÞ: ð2Þ

This approximation is expected to work well at least in some
regimes, like for SUðNÞ Yang-Mills theories in the decon-
fined, high-temperature phase, where the typical instanton
effective action gets large (because of asymptotic freedom)
and topological charge fluctuations become rare and dilute.
On the other hand, DIGA is known to break down when

instanton interactions cannot be neglected, like in the
confined phase of QCD and similar models. In this regime,
an alternative approach is represented by an expansion
in the inverse of the number of field components, i.e.,
in 1=N for SUðNÞ Yang-Mills theories or for CPN−1

models. Under very general assumptions, like requiring
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the existence of a nontrivial dependence on θ, large-N
expansion leads at least to semiquantitative insights, like
the prediction that the coefficients b2n in Eq. (1) be
suppressed as 1=N2n [2,3], which for SUðNÞ Yang-Mills
theories has been checked by lattice simulations during the
last few years [4–12].
The case of CPN−1 models in two dimensions, which is

the subject of the present investigation, is special, because
the large-N expansion permits to obtain for them, as for other
vectorlike models, also quantitative predictions. Leading
order computations are available for χ [13] and for all b2n
coefficients [11,14], and even next-to-leading corrections are
known for the topological susceptibility [15]. Despite the
fact that numerical simulations for these models are less
demanding than those for SUðNÞYang-Mills theories, lattice
results have failed up to now to provide a clear confirmation
of these quantitative analytical predictions, apart from the
case of the leading 1=N term for χ [16–19]. Numerical
results appeared in some cases to be even inconsistent with
next-to-leading predictions for χ [18,19]. A recent inves-
tigation [20] pointed out that at least the consistency can be
recovered once one takes into account further terms in the
1=N expansion. The purpose of the present investigation is
to go beyond the simple consistency, trying to achieve a
quantitative agreement between lattice computations and
analytical predictions, at least for the next-to-leading cor-
rection to χ and for the leading term in the b2 coefficient: in
Ref. [20] it was suggested that, in order to do so, one should
exploreN ¼ 50 or larger. At the same time, we would like to
achieve a numerical estimate of the further terms in the 1=N
expansion for both quantities.
In order to achieve our goal, we have pushed our

investigation up to N ¼ 51, where however standard
algorithms face severe critical slowing down problems in
the decorrelation of the topological charge [18], which
can only partially be ameliorated by numerical strategies
like simulated (or parallel) tempering in the coupling of
the theory [17,20]. For this reason, we have decided to
adopt an algorithm recently introduced by M. Hasenbusch
in Ref. [19], in which simulations with open and periodic
boundary conditions are smartly combined in a parallel
tempering framework. In addition to that, following the
same strategy adopted in Ref. [20], we will assume
analyticity around θ ¼ 0 and exploit simulations performed
at imaginary values of θ in order to improve the signal-to-
noise ratio, something which turns out to be essential in
order to achieve a precise determination of the higher-order
cumulants of Q.
The paper is organized as follows. In Sec. II we provide a

concise review ofCPN−1 models and of large-N predictions
for their θ-dependence. In Sec. III we give details about the
lattice discretization and the numerical algorithm employed
in our study. Numerical results and their analysis within
the framework of the 1=N expansion are presented in
Sec. IV. Finally, in Sec. V, we give our conclusions.

II. CPN − 1 MODELS AND THEIR θ-DEPENDENCE
IN THE LARGE-N LIMIT

CPN−1 models in two space-time dimensions share many
properties with Yang-Mills theories: apart from
θ-dependence, they are also characterized by confine-

ment of fundamental matter fields; for this reason they
have represented a theoretical test bed for the study of
nonperturbative physics in gauge theories since long
[13,21–23].
The elementary fields belong to the projective space of

N-component complex vectors. The projective conditions
is enforced by normalizing the modulus of the vectors fields
to one and by writing an action which is independent of the
residual arbitrary local phase factor of the fields. In some
formulations, such as the one considered in our study, this
is rephrased by introducing an auxiliary and nonpropagat-
ing Abelian gauge field Aμ, so that the arbitrary local phase
is gauged away with the advantage of having an action
quadratic in the fields. In particular the Euclidean action,
already including the θ-term, reads

SðθÞ ¼
Z �

N
g
D̄μz̄ðxÞDμzðxÞ − iθqðxÞ

�
d2x; ð3Þ

where z is a complex N-component scalar field satisfying
z̄ðxÞzðxÞ ¼ 1, Dμ is the usual Uð1Þ covariant derivative,
g is the ’t Hooft coupling, which is kept fixed as N → ∞,
and

Q ¼
Z

qðxÞd2x ¼ 1

4π
ϵμν

Z
FμνðxÞd2x ð4Þ

is the global topological charge. The free energy (or
vacuum energy) density is defined, using the path-integral
formulation of the theory, as

fðθÞ≡ −
logZðθÞ

V
¼ −

1

V
log

Z
½dA�½dz̄�½dz�e−SðθÞ; ð5Þ

where V is the 2D space-time volume. From this expression
it is clear that the parameters entering the Taylor expansion
of fðθÞ around θ ¼ 0, see Eq. (1), can be related to the
cumulants kn of the path-integral distribution of the
topological charge, PðQÞ, computed at θ ¼ 0,

χ ¼ 1

V
k2jθ¼0 ¼

1

V
hQ2ijθ¼0;

b2 ¼ −
k4
12k2

����
θ¼0

¼ −hQ4i þ 3hQ2i2
12hQ2i

����
θ¼0

;

b4 ¼
k6

360k2

����
θ¼0

¼ hQ6i − 15hQ4ihQ2i þ 30hQ2i3
360hQ2i

����
θ¼0

:

ð6Þ
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Large-N arguments predict1 χ ¼ χ̄N−1 þOðN−2Þ and
b2n ¼ b̄2nN−2n þOðN−2n−1Þ. On a more quantitative level,
one can show that [11,15,27,28]

ξ2χ ¼ 1

2πN
þ e2
N2

þO
�

1

N3

�
; ð7Þ

b2 ¼ −
27

5

1

N2
þO

�
1

N3

�
; ð8Þ

b4 ¼ −
25338

175

1

N4
þO

�
1

N5

�
; ð9Þ

where the length scale ξ appearing in Eq. (7) is the second
moment correlation length, defined as

ξ2 ≡ 1R
GðxÞd2x

Z
GðxÞ jxj

2

4
d2x; ð10Þ

with

GðxÞ≡ hPijðxÞPijð0Þi −
1

N
; PijðxÞ≡ ziðxÞz̄jðxÞ: ð11Þ

The next-to-leading correction to ξ2χ is the result of a
nontrivial analytic computation performed in Ref. [15],
leading to the prediction e2 ≃ −0.0605. Numerical simu-
lations have fully confirmed the leading order behavior of
ξ2χ [16,19,29,30]; however so far they have been elusive in
confirming the prediction for e2: many numerical works
on the CPN−1 theories show a deviation from the leading
term which appears to be of opposite (positive) sign, and
only recently the hypothesis has been made that this could
be due to a poor convergence of the series due to quite large
next-to-next-to-leading-order (N2LO) contributions [20].
Also for the Oðθ4Þ coefficient b2, consistency with the
prediction in Eq. (8) is found only assuming large N2LO
corrections [20].

III. NUMERICAL SETUP

In the following we describe various aspects of the
numerical methods used in this investigation, starting from
the discretization adopted for the path-integral and for the
topological observables, then describing the strategy based
on the introduction of an imaginary θ term and on analytic
continuation, and finally discussing the application of the
Hasenbusch algorithm [19] to our numerical setup.

A. Lattice discretization

The theory has been put on a square lattice of size L and,
even if the updating algorithm considers different kinds of
boundary conditions at the same time in a parallel temper-
ing framework, average values of observables have been
computed only in the case of periodic boundary conditions
(p.b.c.). We have adopted the tree-level Symanzik-
improved lattice discretization for the nontopological part
of the action [29],

SL ¼ −2NβL
X
x;μ

fc1ℜ½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þ c2ℜ½Ūμðxþ μ̂ÞŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g; ð12Þ

where c1 ¼ 4=3, c2 ¼ −1=12, βL ≡ 1=gL is the inverse
bare coupling and UμðxÞ are the Uð1Þ elementary parallel
transporters. The coefficients c1 and c2 are chosen so as to
cancel logarithmic corrections to the leading Oða2Þ
approach to the continuum limit, where a is the lattice
spacing.
The continuum limit is achieved, by asymptotic freedom,

as βL → ∞. In this limit the lattice correlation length ξL
diverges as 1=a; ξL is defined as usual in terms of two-point
correlation functions [31],

ξ2L ¼ 1

4sin2ðk=2Þ
�
G̃Lð0Þ
G̃LðkÞ

− 1

�
; ð13Þ

where G̃LðpÞ is the Fourier transform of GL, which is the
discretized version of the two-point correlator of P defined
in Eq. (11), and k ¼ 2π=L. Corrections to continuum
scaling can be expressed as inverse powers of 1=ξL so
that, for the adopted discretization, the expectation value of
a generic observable will scale towards the continuum as

hOiLðξLÞ ¼ hOicont þ cξ−2L þOðξ−4L Þ: ð14Þ

Regarding the topological charge Q, several lattice
discretizations exist, all agreeing in the continuum limit,
where a well-defined classification of relevant configura-
tions in homotopy sectors is recovered. In general, any
lattice discretization QL of the topological charge operator
will be related to the continuum one by a finite multipli-
cative renormalization [30],

QL ¼ ZðβLÞQ: ð15Þ

The above relation holds when one considers correlation
functions of QL; i.e., it is not valid configuration by
configuration, where one should instead write QL ¼
ZQþ η, where η is noise contribution related to field
fluctuations at the ultraviolet (UV) scale, which is stochas-
tically independent of the global topological backgroundQ

1Notice that such predictions are valid for the vacuum, while at
a finite temperature the θ-dependence could be different; see,
e.g., Refs. [24–26] for a recent discussion.
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but can lead to further additive renormalizations as corre-
lations with higher powers of QL are considered.
Various smoothing algorithms have been commonly

adopted in the literature to dampen UV fluctuations
responsible for such renormalizations, like cooling [32],
the gradient flow [33], or smearing; these procedures have
been shown to be practically equivalent, once they are
appropriately matched to each other [34–36]. In this study
we adopt cooling, because of its relative simplicity, which
consists in the sequential application of local modifications
of the lattice fields in which the action is minimized locally
at each step. For the purpose of smoothing, the minimized
action can be different from the one used to define the path-
integral; our choice has been to set c1 ¼ 1 and c2 ¼ 0 in
Eq. (12) for cooling.
The most straightforward discretization of Q makes use

of the plaquette operator ΠμνðxÞ,

QL ¼ 1

4π

X
x;μ;ν

ϵμνℑ½ΠμνðxÞ� ¼
1

2π

X
x

ℑ½Π12ðxÞ�; ð16Þ

where, as usual,

ΠμνðxÞ≡UμðxÞUνðxþ μ̂ÞŪμðxþ ν̂ÞŪνðxÞ: ð17Þ

This choice leads to an analytic function of the gauge
fields which is noninteger valued and has Z < 1. There are
alternative definitions, known as geometric, which are
always integer valued for p.b.c. (hence they have
Z ¼ 1); one possibility [29] is based on the link variables
UμðxÞ,

QU ¼ 1

2π

X
x

ℑflog ½Π12ðxÞ�g; ð18Þ

the other [37] on the projector P defined in Eq. (11). The
geometric charge QU can be easily interpreted as the sum
of the magnetic fluxes (modulo 2π) going out of each
plaquette, then normalized by 2π, which is integer valued
for any 2D compact manifold.
We have adopted the unsmoothed nongeometric defi-

nition QL to introduce a θ-term in the action, even if this
implies the presence of renormalization effects which will
be discussed below: QL is linear in the fields; hence it
allows to make use of standard efficient algorithms like
over-heatbath. As for measurements, it has been checked
[20] that all definitions yield practically indistinguishable
results after the application of a modest amount of cooling,
in particular Oð10Þ sweeps of local minimization of each
site/link variable over the whole lattice; in any case we
adopted the geometric one (measured after 25 cooling step)
which always yields exactly integer values.

B. Imaginary-θ method

The coefficients b2n appearing in the Taylor expansion of
fðθÞ around θ ¼ 0 are observables plagued by a large
noise-to-signal ratio, especially when one tries to determine
them in terms of the topological charge distribution at
θ ¼ 0, as in Eq. (6), since one has to measure tiny non-
Gaussianities in an almost-Gaussian distribution. A better
strategy is to add a source term to the action, i.e., to
consider the theory at θ ≠ 0, and study the dependence of
lower cumulants on θ, which contains the relevant infor-
mation on the higher order cumulants. This is not possible
in practice, because the theory at nonzero θ has a complex
path-integral measure and is therefore not suitable to
numerical Monte Carlo simulations. However, one can
consider a purely imaginary source: this strategy has been
developed to study QCD at finite baryon density [38–41]
and has been successfully applied also to the study of
θ-dependence [7,9,42–50].
In practice, one sets θ ¼ −iθI and assumes analyticity

around θ ¼ 0. The action is modified as follows:

SðθÞ → SðθIÞ ¼ Sθ¼0 − θIQ; ð19Þ

from which it follows that the cumulants ofQ are related to
the corresponding derivatives of the free energy. Using the
expression for fðθÞ in Eq. (1) we have

k1ðθIÞ
V

¼ χ½θI − 2b2θ3I þ 3b4θ5I þOðθ6I Þ�;
k2ðθIÞ
V

¼ χ½1 − 6b2θ2I þ 15b4θ4I þOðθ5I Þ�;
k3ðθIÞ
V

¼ χ½−12b2θI þ 60b4θ3I þOðθ4I Þ�;
k4ðθIÞ
V

¼ χ½−12b2 þ 180b4θ2I þOðθ3I Þ�: ð20Þ

Such equations provide an improved way of measuring χ
and the b2n coefficients, since one can perform a global best-
fit exploiting the information contained in the θI-dependence
of lowest order cumulants, which is statistically more
accurate [9,51].
In the practical numerical implementation of this pro-

cedure, as in Ref. [20], we have used the geometric definition
QU taken after a few cooling steps, which is free of
renormalizations, to define the cumulants kn. On the other
hand, as explained above, it is convenient, for algorithmic
reasons, to discretize the imaginary θ-term in the action by
means of the nongeometric definition given in Eq. (16),

SLðθLÞ ¼ SL − θLQL; ð21Þ

so that one would like to know how to reexpress Eqs. (20) in
terms of θL.
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As explained above, the relation between QL and Q is,
configuration by configuration, QL ¼ ZQþ η, where η is
an UV noise. That means that, for any n,

d
dθL

hQni ¼ ZðhQnþ1i − hQnihQiÞ þ ðhQnηi − hQnihηiÞ

¼ ZðhQnþ1i − hQnihQiÞ; ð22Þ

where the second term drops out because η is stochastically
independent of Q. Based on that, for any kn one has

dkn
dθL

¼ Z
dkn
dθI

; ð23Þ

so that the Taylor expansion of the cumulants in Eq. (20)
can be rewritten in terms of θL by simply replacing
θI ¼ ZθL; i.e., the renormalization constant Z represents
just an additional fit parameter.

C. The Hasenbusch algorithm

The lattice action in Eq. (21), being analytic in all fields,
can be easily sampled by standard local algorithms.
However, these algorithms become nonergodic approach-
ing the continuum limit, failing to correctly sample the
path-integral. The nonergodicity is due to the fact that, in
the continuum theory, different topological sectors are
disconnected and a smooth deformation of the gauge fields
cannot change the homotopy class of the configuration.
This means that, approaching the continuum limit, the
number of Monte Carlo steps required to change Q
increases exponentially with 1=a ∼ ξL: this is usually
known as critical slowing down (CSD) and represents a
well-known problem in a wide range of theories sharing
the presence of topological excitations [4,18,52–60].
Moreover, the problem worsens exponentially increasing
N [18], so that the study of the large-N limit becomes
rapidly not feasible, even at not-so-large values of ξL.
Being the CSD related to the existence of nontrivial

homotopy classes, a possible solution is to switch from
periodic boundary conditions to open boundary conditions
(o.b.c.) [56]: topological sectors disappear and Q can
smoothly change between different values. That does not
come for free: finite size effects are more severe, constraining
to measure observables only in the bulk of the lattice;Q is no
more integer valued and the information on the nth order
cumulant is typically obtained in terms of integrated n-point
correlation functions of the topological charge density, with a
consequent worsening of the signal-to-noise ratio.
The idea put forward in Ref. [19], in order to bypass

these complications and still take advantage of the improve-
ment of o.b.c., is to consider a collection of similar systems,
differing among them for the value of a global parameter
which gradually interpolates between o.b.c. and p.b.c.:
while each system has an independent Monte Carlo evo-
lution, swap of configurations between different systems

are proposed from time to time in a parallel tempering
framework [61]. In this way, the fast decorrelation of Q
achieved for the open system is progressively transferred
to the periodic one, which is also the system where
observables are actually measured, thus completely avoid-
ing the complications of open boundaries. The analysis of
Ref. [19] shows that it suffices to open boundary conditions
just along a line defect of length comparable to ξL.
Moreover, hierarchical updates around the defect, com-
bined with discrete translations of the periodic system from
time to time, helps optimizing the algorithm. For more
details, we refer to Ref. [19].
The only differences characterizing our implementation

are that the algorithm is adapted to the Symanzik-improved
action, and that it is used also for simulations at nonzero
imaginary θ. Actually, a few preliminary tests showed that
the choice of boundary conditions in the θ-term does not
affect the efficiency of the algorithm: this is expected, since
it is just the usual action term which develops barriers
between different topological sectors. Therefore, in order to
avoid further complications, we decided to keep periodic
boundary conditions in the θ term for all replicas.
The line defect D was put and held fixed on the time

boundary: D ¼ fxjx0 ¼ L − 1 ∧ 0 < x1 < Ldg, where Ld
is the defect length: a geometrical representation is
depicted in Fig. 1. Each link crossing the defect line
gets multiplied by a factor cðrÞ, where r is the replica
index, r ¼ 0;…Nr − 1. The interpolation between p.b.c.
[cðrÞ ¼ 1] and o.b.c. [cðrÞ ¼ 0] can be chosen so as to
optimize the algorithm, however in practice a simple linear
interpolation works already well: cðrÞ ¼ 1 − r

Nr−1
. The

explicit expression of the lattice action is the following:

SðrÞL ¼ −2NβL
X
x;μ

fkðrÞμ ðxÞc1ℜ½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þ kðrÞμ ðxþ μ̂ÞkðrÞμ ðxÞc2ℜ½Ūμðxþ μ̂Þ
× ŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g;

FIG. 1. The dashed line represents the line defect on the time
boundary. Arrows depict links or product of links appearing in the
Symanzik action that cross the defect.
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where

kðrÞμ ðxÞ ¼
�
cðrÞ; x ∈ D ∧ μ ¼ 0;

1; otherwise:
ð24Þ

The replica swap was proposed, after every update sweep,
for each couple of consecutive replicas, and then accepted
according to a Metropolis step with the probability,

p ¼ min f1; e−ΔSLg; ð25Þ

where ΔSL is the global change in the action of the two
involved replicas. The length of the defect Ld was chosen
so that Ld ∼ ξL at the highest βL. Concerning Nr, for each
N we chose it so that, at the highest value of βL, the lowest
acceptance was not lower than 20%.
In Fig. 2 we show how a given configuration evolves

through different values of cðrÞ in a typical run. To get the
algorithm properly working one should check that swaps
happen uniformly, as in the shown example; otherwise the
fast decorrelation achieved for o.b.c. is not transferred
efficiently across the systems. Finally, in Fig. 3 we compare
the MC evolution of Q, with and without using parallel
tempering, for N ¼ 51 and for two different values of βL.
Without parallel tempering the charge is almost frozen,
while many fluctuations are observed during the same
clocktime in the other case, allowing us to perform
measures which would have been practically impossible
with just the local algorithm.

IV. NUMERICAL RESULTS

In Table I we summarize the parameters and statistics
of the simulations performed in the present study, which

regarded N ¼ 21, 31, 41 and 51. In addition, we will also
consider results obtained at lower N in previous studies, in
order to investigate the large-N behavior of the theory.
Results for N ¼ 21 and N ¼ 31 have been already reported
in Ref. [20], but using lower statistics and/or smaller
correlation lengths than in the present work.
Statistics at θL ¼ 0 are generally larger because in this

case, apart from the cumulants of the cooled chargeQU, we
determined the value of the correlation length ξL, which is
needed with the best possible precision since it affects the
final precision on the continuum extrapolation of ξ2χ.
Statistical errors on the cumulants have been estimated
by means of a bootstrap analysis.
In the following we will first discuss the impact of finite

size effects, in order to justify the choices for the lattice
sizes used in our simulations. Then we will illustrate the
procedure and discuss the systematics both for the analytic
continuation from imaginary θ and for the extrapolation to

FIG. 2. Time evolution of the global parameter cðrÞ for a given
configuration during parallel tempering: data refer to N ¼ 51,
βL ¼ 0.6 and Nr ¼ 15. One MC step corresponds to four sweeps
of over-relaxation þ1 sweep of over-heatbath; the showed time
window corresponds to 0.0025% of the total statistics collected
for that run. In this case swap acceptances range from 60% to
20% and are larger for cðrÞ closer to 1.

FIG. 3. Evolution of QU after cooling for N ¼ 51 at βL ¼ 0.5
(above) and βL ¼ 0.6 (below). Results obtained by the Hasenbusch
algorithm are compared to the standard algorithm. The horizontal
scale corresponds to the same CPU time for the two algorithms and
is reported for convenience inMC step units (see caption of Fig. 2).
The reported time windows respectively correspond to around
0.013% and 0.0037% of the total statistics collected for the two
parallel tempering runs.
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the continuum limit of our results; in this respect, we notice
that some of our results for ξ2χ have been produced without
relying on analytic continuation (see Table I), in order to
provide a robust test that the systematics of analytic
continuation and continuum extrapolation are actually
under control.
Finally, we will study the large-N expansion of ξ2χ, b2,

b4 based on our and on previous numerical results,
illustrating the systematics, the comparison with existing
analytic predictions and the estimate of further terms in the
expansion.

A. Finite size effects

In all of our simulations, and for each fixed value of N,
we decided to approach the continuum limit keeping the
ratio L=ξL fixed, so as to ensure that the physical volume
is kept fixed. In general, taking a ratio L=ξL ≫ 1 should
ensure that finite size effects be negligible. However,
as discussed in Ref. [62], this is not the case for the
θ-dependence of 2DCPN−1 models in the large-N limit: the
large-N limit and the thermodynamic limit do not commute
for this class of models, and wrong results might be
obtained if the former limit is taken first, leading in practice
to the more restrictive condition ðL=ξLÞ2 ≫ N. Since this
is strictly related to the particular large-N behavior of the

θ-dependence of the theory, we will try to give an intuitive
explanation of this condition (see also Ref. [24] for a related
discussion).
Basically, the reason can be traced back to the fact that

both ξ2χ and the b2n coefficients vanish in the large-N limit;

TABLE I. Summary of the simulation parameters adopted for all values of N. We also report the total accumulated
statistics, where each measure was taken after every parallel tempering step. The imaginary-θ fit was always
performed in the range [0, 6] with seven points in steps of δθL ¼ 1, except for the βL with θL;max ¼ 6.5 where 11
points were taken (δθL ¼ 1 up to θL ¼ 3 and then δθL ¼ 0.5); θL;max ¼ 0 indicates that no simulation at imaginary θ
has been performed: in this case a single high-statistics run at θ ¼ 0 has been used to determine χ and ξ at the same
time. Nr indicates the number of replicas used for parallel tempering; the number of hierarchical levels was always
three (see [19] for more details on the hierarchical update).

N βL L ξL
L
ξL

L2

ξ2LN
θL;max Nr Ld Statistics θ ¼ 0 Statistics θ ≠ 0

21 0.68 102 4.772(4) 20 20 0 10 6 76M � � �
0.7 114 5.409(4) 21 21 0 11 6 109M � � �

31 0.54 56 2.218(4) 25 20 6 10 4 12M 10.5M
0.56 64 2.516(4) 25 20 6 10 4 12M 10.5M
0.58 72 2.856(5) 25 20 6 10 4 12M 10.5M
0.6 82 3.239(5) 25 20 6 10 4 16M 21.7M
0.62 92 3.672(6) 25 20 6 10 4 15M 27.3M

41 0.51 58 1.952(3) 29 21 6 13 4 19M 11.2M
0.53 64 2.213(4) 29 20 6 13 4 17M 11.9M
0.55 74 2.517(4) 29 21 6 13 4 16M 15.4M
0.57 82 2.840(5) 29 20 6 13 4 20M 21M
0.59 92 3.226(5) 28 20 6 13 4 22M 20.3M
0.61 104 3.655(7) 28 20 6.5 13 4 17M 31.9M
0.65 132 4.698(6) 28 20 0 15 5 39M � � �

51 0.5 62 1.902(3) 33 21 6 15 4 17M 11.2M
0.52 70 2.104(4) 33 22 6 15 4 19M 11.2M
0.54 78 2.445(4) 32 20 6 15 4 19M 11.9M
0.56 88 2.779(5) 32 20 6 15 4 18M 11.9M
0.58 100 3.153(6) 32 20 6.5 15 4 17M 29.7M
0.6 114 3.560(7) 32 20 6.5 15 4 18M 28.6M

FIG. 4. Study of the dependence of ξ2χ and b2 on the lattice size
for N ¼ 41 and βL ¼ 0.57. Lattice sizes range from L ¼ 20 to
L ¼ 82. Results were obtained by parallel tempering and using
the same setup (apart from the lattice size) reported in Table I.
The value employed for ξL is, for all sizes, the one obtained for
the largest L.
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indeed, ξ2χ vanishes as 1=N; thus, indicating by l ¼ La the
size in physical units, one expects for large N,

hQ2i ¼ χl2 ≃
l2

2πξ2N
: ð26Þ

If l=ξ ¼ L=ξL is kept fixed while N → ∞, one ends up
with a system where hQ2i ≪ 1: in these conditions, the

distribution of Q is strongly peaked at Q ¼ 0, with only
rare occurrences of Q ¼ �1 and even rarer occurrences of
higher values of jQj. It is easy to check that such a
distribution leads to b2n coefficients which are very close
to those predicted by DIGA, i.e., for instance, b2 ¼
−hQ4ic=ð12hQ2iÞ ≃ −1=12. Let us stress that this happens
in practice in many other situations, like for instance for 4D
Yang-Mills theories in the high-T phase, where χ vanishes
rapidly above Tc and one cannot afford to take very large
lattice volumes, ending up again with hQ2i ≪ 1; however,
in that case the system is really close to DIGA even in the
thermodynamical limit, so that, luckily enough, this does
not imply significant systematic errors (see Ref. [63] for a
thorough discussion about this point).
For 2D CPN−1 models, instead, the large-N limit is

qualitatively different from DIGA, indeed one expects
b2 ∝ 1=N2, which is quite different from DIGA predic-
tions. Stated in another way, the particularity of 2D CPN−1

models is that while global topological excitations become
rarer and rarer as N → ∞, they never become really dilute,
as one would naively expect. The additional condition
ðL=ξLÞ2 ≫ N ensures that hQ2i is at least ofOð1Þ or larger,
so that the nontrivial interactions between topological
excitations, which characterize the large-N limit, can be
properly taken into account.
In order to illustrate the above considerations in practice,

in Fig. 4 we report the behavior of ξ2χ and b2 as a function
of the lattice size for N ¼ 41. It clearly appears that in the

FIG. 5. Example of the global imaginary-θ fit for N ¼ 51 and
βL ¼ 0.56, exploiting the three lowest order cumulants
and fitting up to Oðθ6LÞ terms. The best fit yields a reduced
χ̃2 ¼ 0.83 with 17 d.o.f.

TABLE II. Summary of results obtained for ξ2χ, b2, b4, Z and ξL for all explored values of βL and N. All results
have been obtained through the imaginary-θ fit of the first three cumulants, except for the two measures at N ¼ 21
and for the measure at the highest βL atN ¼ 41, where no fit was performed. For all fits we also report the number of
degrees of freedom (d.o.f.) and the reduced χ̃2.

N βL ξL Z a2χ · 103 ξ2χ · 103 b2 · 103 b4 · 106 χ̃2 d.o.f.

21 0.68 4.772(4) � � � 0.3404(6) 7.750(18) � � � � � � � � � � � �
0.7 5.409(4) � � � 0.2647(4) 7.746(16) � � � � � � � � � � � �

31 0.54 2.218(4) 0.876(2) 1.0907(19) 5.365(21) −2.90ð9Þ −4.6ð1.5Þ 1.0 17
0.56 2.517(4) 0.892(2) 0.8353(17) 5.290(22) −2.67ð10Þ −1.7ð1.6Þ 0.8 17
0.58 2.856(5) 0.895(2) 0.6471(17) 5.279(24) −2.75ð12Þ −2.8ð1.9Þ 0.7 17
0.6 3.240(5) 0.903(2) 0.4993(13) 5.240(21) −2.82ð11Þ −4.3ð1.7Þ 0.9 17
0.62 3.672(6) 0.913(3) 0.3876(12) 5.227(23) −2.59ð11Þ −2.1ð1.7Þ 1.0 17

41 0.51 1.953(3) 0.896(2) 1.0642(16) 4.057(14) −1.99ð8Þ −3.5ð1.3Þ 0.9 17
0.53 2.213(4) 0.903(2) 0.8222(15) 4.027(15) −1.85ð8Þ −2.1ð1.3Þ 1.3 17
0.55 2.517(4) 0.915(2) 0.6295(14) 3.987(17) −1.84ð9Þ −2.2ð1.4Þ 0.6 17
0.57 2.840(5) 0.924(2) 0.4873(11) 3.930(16) −1.69ð9Þ −1.1ð1.4Þ 1.2 17
0.59 3.226(5) 0.928(3) 0.3775(11) 3.930(17) −1.72ð12Þ −1.0ð1.8Þ 1.3 17
0.61 3.655(7) 0.928(3) 0.2936(10) 3.922(20) −1.76ð10Þ −2.1ð1.3Þ 1.3 29
0.65 4.698(6) � � � 0.1772(7) 3.912(18) � � � � � � � � � � � �

51 0.50 1.902(3) 0.917(2) 0.8970(16) 3.244(13) −1.38ð8Þ −2.2ð1.3Þ 1.2 17
0.52 2.104(4) 0.919(2) 0.7297(16) 3.231(14) −1.55ð10Þ −4.4ð1.5Þ 1.2 17
0.54 2.445(4) 0.929(2) 0.5317(13) 3.178(13) −1.39ð11Þ −3.4ð1.7Þ 0.9 17
0.56 2.779(5) 0.932(3) 0.4125(13) 3.186(16) −1.23ð12Þ −0.4ð2.0Þ 0.8 17
0.58 3.153(6) 0.943(3) 0.3172(10) 3.154(16) −1.27ð9Þ −1.7ð1.1Þ 1.2 29
0.60 3.560(7) 0.938(4) 0.2478(10) 3.140(17) −1.52ð18Þ −4.2ð1.5Þ 1.7 29
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small volume limit the system is described by DIGA
(b2 ≃ −1=12), and that finite size corrections are still
significant for L=ξL ¼ 10. We stress, however, that the
range of L=ξL for which finite size effects are visible at this
particular value of N is still compatible with the range
observed for other generic (nontopological) observables in
the same class of models, i.e., L=ξL ≲ 20 [64]: in order to
really observe discrepancies with respect to the indications
of Ref. [64] one should study a case for which L=ξL ≳ 20

and L2=ðNξ2LÞ≲ 1, however that requires N to be of the
order of a few hundreds.
In any case, in our simulations we kept L2=ðξ2LNÞ ∼ 20

for all explored values of N, meaning that L=ξL depends on
N (see Table I). We stress that the condition L2=ðξ2LNÞ ≫ 1
was also ensured in the numerical simulations reported
in Ref. [20].

B. Analytic continuation from imaginary θ
and continuum extrapolation

In Fig. 5 we show an example of the global imaginary-θ
fit discussed in Sec. III B. The best-fit procedure was
performed according to Eq. (20) and for just the first three
cumulants in all cases, exploiting the whole available
imaginary θ range. In order to assess the impact of
systematic effects related to analytic continuation, we have
tried in each case to change the range fit and the order
(i.e., the truncation) of the fit polynomial, verifying that the
variation of the fit parameters was within statistical errors,
or adding it to the total error otherwise.
A complete summary of the results obtained for Z, ξL,

ξ2χ, b2 and b4 at all explored values of N and βL is reported
in Table II.

Results collected at different values of βL have then been
used to obtain continuum extrapolated quantities. In order
to discuss the procedure that we have adopted in all cases,
we illustrate in details our analysis for the continuum
extrapolation of ξ2χ at N ¼ 21. Results at finite ξL are
reported in Fig. 6 as a function of 1=ξ2L and include both
results from Ref. [20] (obtained via analytic continuation)
and from this work (obtained just from simulations at
θ ¼ 0). In general, for the lattice discretization adopted in
this work, one expects corrections to the continuum limit
for a generic observable O, including only the two lowest
nontrivial terms, to be as follows:

hOiLðξLÞ ¼ hOicont þ
A
ξ2L

þ B
ξ4L

: ð27Þ

In general, for all the quantities considered in this study, a
linear extrapolation in 1=ξ2L, i.e., setting B ¼ 0, has worked
perfectly well, i.e., with reduced χ̃2 of order 1 for the best

FIG. 6. Continuum extrapolation of ξ2χ for N ¼ 21. The solid
line represents a linear fit in 1=ξ2L in the whole range, the dashed
line a linear fit on a restricted range and the dotted one a quadratic
fit in 1=ξ2L in the whole range. Round points represent lattice
measures from this study, triangle points are taken from Ref. [20],
while the square point is the continuum extrapolated value. Best
fit results and the corresponding reduced χ̃2 values are reported in
Table III.

TABLE III. Summary of systematics for the continuum
extrapolation of ξ2χ for N ¼ 21. Our final determination in this
case is ξ2χ ¼ 0.00765ð4Þ.
ξL;min included ξ2χ · 103 χ̃2 d.o.f.

3.07 (quadratic fit) 7.64(6) 1.09 10
3.07 (linear fit) 7.654(21) 0.99 11
3.28 7.636(24) 0.91 9
3.49 7.652(27) 0.88 7
3.72 7.66(3) 1.14 5
3.95 7.66(4) 1.21 3
4.21 7.71(5) 0.10 1

FIG. 7. Continuum extrapolations (filled points) of ξ2χ for
N ¼ 31, 41 and 51. The solid line represents a linear fit in 1=ξ2L
in the whole range, all best fits yield a reduced χ2 of order 1.
Systematics of the continuum extrapolation have been estimated
as for N ¼ 21, the final extrapolated result which is plotted for
1=ξ2L ¼ 0 includes such systematics.
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fit, in the whole explored range of ξL. However, in order to
correctly assess the impact of systematic errors related to
the extrapolation, we have also analyzed the effect of
including the nonlinear term (B ≠ 0), or of considering the
linear fit in a restricted range of ξL, i.e., discarding points
which are farther from the continuum limit. The system-
atics of this procedure are reported in Table III, some of the
best fits are reported in Fig. 6 as well. After considering the
observed systematics, our final determination for ξ2χ at
N ¼ 21 has been ξ2χ ¼ 0.00765ð4Þ, to be compared with

ξ2χ ¼ 0.00759ð5Þ from Ref. [20], ξ2χ ¼ 0.00767ð5Þ from
Ref. [19] (adopting a different discretization) and ξ2χ ¼
0.00800ð20Þ from Ref. [18].
The procedure above has been repeated for all explored

quantities and for all N. In Figs. 7, 8, and 9 we show the
continuum extrapolations for ξ2χ, b2 and b4 for N ¼ 31, 41
and 51, for simplicity of figure reading we report just
the linear best fits over the whole range, even if the final
continuum determinations take into account the whole
systematics, as in the example above.

FIG. 8. Continuum extrapolations (filled points) of b2 for
N ¼ 31, 41 and 51. The solid line represents a linear fit in
1=ξ2L in the whole range, all best fits yield a reduced χ2 of order 1.
Systematics of the continuum extrapolation have been estimated
as for N ¼ 21, the final extrapolated result which is plotted for
1=ξ2L ¼ 0 includes such systematics.

FIG. 9. Continuum extrapolations (filled points) of b4 for
N ¼ 31, 41 and 51. The solid line represents a linear fit in
1=ξ2L in the whole range; all best fits yield a reduced χ2 of order 1.
Systematics of the continuum extrapolation have been estimated
as for N ¼ 21, the final extrapolated result which is plotted for
1=ξ2L ¼ 0 includes such systematics.

TABLE IV. Summary of continuum determinations of ξ2χ, b2
and b4 for several values of N. Results for N ¼ 9, 11, 13, 15 and
26, as well as b2 and b4 for N ¼ 21, are taken from Ref. [20]
while the one for N ¼ 10 from Ref. [19]. The result obtained for
ξ2χ at N ¼ 41 is in good agreement (less than 1σ) with that
obtained using a different discretization in Ref. [19]
[ξ2χ ¼ 0.00391ð2Þ], where however no determination was given
for b2 and b4; for N ¼ 31 instead one should compare with the
results of Ref. [20] [ξ2χ ¼ 0.00503ð6Þ, b2 ¼ −0.00231ð22Þ],
also in this case the agreement is reasonable (1.6σ and 0.9σ
respectively).

N ξ2χ · 103 b2 · 103 b4 · 105

9 20.00(15) −13.90ð13Þ 2.04(18)
10 17.37(8) � � � � � �
11 15.24(12) −10.7ð4Þ 2.3(5)
13 12.62(9) −9.1ð3Þ −0.6ð5Þ
15 10.87(11) −6.7ð3Þ 0.5(6)
21 7.65(4) −5.0ð5Þ −1.7ð1.2Þ
26 6.14(5) −3.0ð4Þ −0.3ð5Þ
31 5.14(3) −2.55ð15Þ −0.2ð3Þ
41 3.88(3) −1.65ð15Þ −0.06ð15Þ
51 3.10(2) −1.27ð16Þ −0.24ð14Þ

FIG. 10. Behavior of Nξ2χ as a function of 1=N compared to
LO (dashed line) and NLO (dot-dashed line) analytic computa-
tions of the 1=N series. The solid line is the result of a best fit to
data with N ≥ 10 where the LO is fixed to the analytic result and
the NLO and N2LO are fitted (see Table V for the complete
systematics).
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Final results are shown in Table IV, where we report the
continuum limit of ξ2χ, b2 and b4 for N ¼ 21, 31, 41 and
51, along with continuum results of these observables for
other values of N taken from Refs. [19,20].

C. Results for ξ2χ and its large-N scaling

The main purpose of this section is to make use of the
results reported in Table IV to investigate the large-N
behavior of the topological susceptibility and compare it
with analytical predictions. In Fig. 10 we plot the quantity
Nξ2χ, which should approach a constant for N → ∞, as a
function of 1=N, together with the LO and NLO analytic
computations, and one of our best fits to be discussed in
the following.
Similarly to what has been done in Ref. [20], we fit our

data with a function of the type,

Nξ2χ ¼ e1 þ
e2
N

þ e3
N2

þ e4
N3

; ð28Þ

which includes up to N3LO corrections in the 1=N
expansion: all best-fit systematics are summarized in
Table V; in all cases, the LO term has been fixed to the
well established analytic prediction e1 ¼ 1=ð2πÞ. The
systematics for the e2 coefficient are also plotted in
Fig. 11 in order to make the discussion clearer.
If one sets e3 ¼ e4 ¼ 0, thus allowing only for the

NLO correction, acceptable or marginally acceptable best
fits are obtained when data for N < 13 are discarded.
Nevertheless, results obtained for e2 are not stable and
show a systematic drift as the fit range is changed,
suggesting that N2LO corrections could be important.
They are positive and in clear disagreement with the
analytic predictions e2 ¼ −0.0605 [15] (as also reported
in previous literature) if the fitted range is large enough,
but decrease systematically and out-of-the-errors as the fit
range is restricted to larger and larger values of N, finally
becoming negative compatible with the analytic prediction,
even if within very large error bars (see Fig. 11).
On the other hand, when the N2LO correction is included

in the fit, e3 ≠ 0, results obtained for e2 are reasonably
stable and compatible with the analytic result. Moreover,
the N2LO term e3 appears quite stable as well, also when
the NLO coefficient e2 is fixed to the theoretically predicted
value, and even when a further term (e4 ≠ 0) is included in
the fit, so that we can provide a quite conservative estimate
e3 ¼ 1.5ð5Þ, which considers all variations observed for
this coefficient in the various fits. The values obtained for
e4 are not sufficiently precise or stable to allow for any
estimate; however we can state it is of Oð10Þ.
Finally, we point out that the values obtained for the

reduced χ̃2 for the fits including N2LO and N3LO

TABLE V. Summary of the fit systematics for the determination
of the large-N behavior of ξ2χ using the fit function
Nξ2χ ¼ e1 þ e2=N þ e3=N2 þ e4=N3. Blank spaces mean that
the corresponding coefficient was set to 0 in the fit procedure,
while numerical values with no error mean that the corresponding
coefficient was fixed to that value.

Nmin e1 e2 e3 e4 χ̃2 d.o.f.

51 1=ð2πÞ −0.054ð52Þ � � � 0
41 1=ð2πÞ −0.028ð37Þ 0.49 1
31 1=ð2πÞ −0.007ð23Þ 0.51 2
26 1=ð2πÞ −0.001ð18Þ 0.42 3
21 1=ð2πÞ 0.016(13) 0.71 4
15 1=ð2πÞ 0.025(12) 1.03 5
13 1=ð2πÞ 0.039(9) 1.6 6
11 1=ð2πÞ 0.054(8) 2.8 7
10 1=ð2πÞ 0.098(6) 11 8
9 1=ð2πÞ 0.115(5) 15 9

31 1=ð2πÞ −0.12ð13Þ 3.9(4.3) 0.21 1
26 1=ð2πÞ −0.09ð9Þ 2.8(2.7) 0.16 2
21 1=ð2πÞ −0.07ð6Þ 2.2(1.4) 0.13 3
15 1=ð2πÞ −0.06ð4Þ 1.8(8) 0.13 4
13 1=ð2πÞ −0.042ð28Þ 1.4(5) 0.16 5
11 1=ð2πÞ −0.046ð24Þ 1.5(4) 0.15 6
10 1=ð2πÞ −0.080ð22Þ 2.2(3) 1.02 7
9 1=ð2πÞ −0.093ð23Þ 2.4(3) 1.35 8

41 1=ð2πÞ −0.0605 1.8(1.8) 0.36 1
31 1=ð2πÞ −0.0605 1.9(8) 0.21 2
26 1=ð2πÞ −0.0605 1.9(6) 0.14 3
21 1=ð2πÞ −0.0605 1.9(3) 0.11 4
15 1=ð2πÞ −0.0605 1.9(3) 0.10 5
13 1=ð2πÞ −0.0605 1.71(15) 0.20 6
11 1=ð2πÞ −0.0605 1.70(11) 0.17 7
10 1=ð2πÞ −0.0605 1.9(7) 1.02 8
9 1=ð2πÞ −0.0605 2.0(6) 1.23 9

11 1=ð2πÞ −0.0605 2.0(6) −4ð7Þ 0.14 6
10 1=ð2πÞ −0.0605 1.3(4) 7(5) 0.9 7
9 1=ð2πÞ −0.0605 1.0(4) 10(4) 0.92 8

FIG. 11. Summary of the fit systematics for the NLO coef-
ficient e2 of the 1=N expansion of ξ2χ. Empty round points depict
determinations of e2 from fits with a reduced χ2 with p-value
smaller than 5% or nonexistent. The empty diamond point
represents our overall estimation: e2 ¼ −0.05ð3Þ.
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corrections are generally low: one possible interpretation is
that we have been too conservative in estimating the errors
on continuum extrapolated quantities, that might also
explain why the fit including just e2 yields acceptable
values of χ̃2 but is not stable.
Present results clarify why previous lattice studies

observed a positive deviations with respect to the LO
prediction, in contradiction with the fact that e2 is negative:
the N2LO term has an opposite sign and, given its estimated
magnitude, it is expected to dominate until N > je3=e2j∼
20–30. Our analysis fully supports the analytic prediction
of e2. On the other hand, if we had to provide an
independent determination of e2, a conservative estimate
based on our systematics would be e2 ¼ −0.05ð3Þ, which
is still quite inaccurate despite the large numerical effort;
the difficulty is clearly related to the fact that e2 turns out to
be quite small in magnitude, both with respect to e1 and e3,
so that it is hardly detectable.

D. Large-N scaling for b2 and b4
We turn now to the analysis of the large-N limit for b2. In

this case, following again the lines of Ref. [20], we employ
a fit function including N3LO corrections,

N2b2 ¼ b̄2 þ
k1
N

þ k2
N2

þ k3
N3

; ð29Þ

that was the minimal polynomial in 1=N capable to fit the
data available in Ref. [20] after fixing the leading order
term to the predicted theoretical value, b̄2 ¼ −27=5. In
Table VI we report systematics for the best-fit procedure,
while in Fig. 12 we plot the best fit obtained fitting data to
Eq. (29) in the whole available range; the systematics for b̄2
are also reported, to improve clarity, in Fig. 13. As it can be
appreciated, the new data collected at large N permit us to
perform a best fit without fixing the value of the LO term.

TABLE VI. Summary of the fit systematics for the determination of the large-N behavior of b2 using the fit
function N2b2 ¼ b̄2 þ k1=N þ k2=N2 þ k3=N3. The convention is the same of Table V.

Nmin b̄2 k1 k2 k3 χ̃2 d.o.f.

41 −5.5ð2.4Þ 111(101) � � � 0
31 −4.2ð8Þ 55(27) 0.32 1
26 −4.3ð7Þ 58(21) 0.17 2
21 −3.5ð4Þ 32(12) 0.90 3
15 −3.44ð21Þ 29(3) 0.70 4
13 −3.09ð18Þ 21(3) 2.88 5

26 −4.4ð2.9Þ 67(200) −156ð3000Þ 0.35 1
21 −5.8ð1.6Þ 167(100) −1901ð1300Þ 0.33 2
15 −4.1ð9Þ 60(40) −320ð400Þ 0.75 3
13 −4.6ð5Þ 87(19) −606ð180Þ 0.69 4
11 −3.8ð3Þ 50(10) −245ð80Þ 1.56 5
9 −3.56ð25Þ 40(6) −161ð40Þ 1.56 6

15 −7.4ð3.0Þ 329(230) −7020ð6000Þ 51526(40000) 0.43 2
13 −4.1ð1.5Þ 50(100) 123(1000) −4434ð11000Þ 0.89 3
11 −5.7ð1.1Þ 159(60) −2133ð1000Þ 10022(6000) 1.21 4
9 −4.6ð6Þ 92(30) −939ð400Þ 3521(1900) 1.25 5

41 −27=5 108(9) 0.001 1
31 −27=5 94(4) 1.22 2
26 −27=5 93(3) 1.07 3
21 −27=5 84(3) 5.26 4

31 −27=5 147(40) −1727ð1100Þ 0.15 1
26 −27=5 134(25) −1256ð800Þ 0.23 2
21 −27=5 144(14) −1598ð400Þ 0.24 3
15 −27=5 121(6) −942ð100Þ 1.11 4
13 −27=5 117(5) −871ð60Þ 1.06 5
11 −27=5 98(3) −591ð40Þ 5.22 6

26 −27=5 180(110) −4000ð7000Þ −50000ð100000Þ 0.27 1
21 −27=5 126(60) −573ð4000Þ −13634ð40000Þ 0.32 2
15 −27=5 173(30) −3254ð1300Þ 23117(13000) 0.44 3
13 −27=5 134(12) −1467ð400Þ 4959(3500) 0.85 4
11 −27=5 145(9) −1892ð260Þ 8768(1700) 0.98 5
9 −27=5 132(7) −1513ð150Þ 6040(800) 1.36 6
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Results obtained for b̄2 are not stable as the fit range is
changed if only NLO corrections are included in the fit
(k2 ¼ k3 ¼ 0), and tend to be more and more compatible
with the analytic prediction b̄2 ¼ −5.4 as the range is
restricted to larger and larger values of N. When k2 and/or
k3 are included, results for b̄2 are more stable and always
compatible with the analytic prediction: an independent
conservative estimate in this case would be b̄2 ¼ −5ð1Þ.
Present precision allows us also to obtain a rough

estimation of the order of magnitude of the corrections
to the large-N scaling of b2: a conservative estimate for the
NLO term, which is sufficiently stable in all performed fits,
is k1 ¼ 120ð60Þ. Our results point out that they seem to
increase by around one order of magnitude at each step in
the expansion, resulting in a very slow convergence
towards the large-N limit, as it has already been observed
for the topological susceptibility.

Concerning b4, so far continuum extrapolated results,
which are reported in Fig. 14 in terms of the quantity N4b4,
are compatible with zero within statistical and systematic
uncertainties, so that we can only set upper bounds.
Nevertheless, such upper bounds are already interesting
enough when compared to LO large-N prediction. Indeed,
with present data one would naively set an upper bound on
the modulus of the LO order coefficient jb̄4j≲ 20, which is
almost one order of magnitude smaller than the theoretical
prediction, jb̄4j ¼ j − 25338=175j ≃ 145. Therefore, we
conclude that large corrections to LO large-N scaling are
expected also in the case of b4.

V. CONCLUSIONS

The main purpose of our study was to clarify the
matching between lattice computations and analytic
large-N predictions regarding the dependence on the
θ-parameter of 2D CPN−1 models. The picture emerging
from previous lattice studies pointed out to an apparent
disagreement for the sign of the deviation of the topological
susceptibility from its LO 1=N prediction, and to values for
the LO 1=N2 behavior of the b2 coefficient missing the
predicted analytic value by around a factor of 2. A possible
way out was proposed in Ref. [20], which showed that
assuming large higher order contributions in the 1=N
expansion, the disagreement could disappear, leading at
least to a partial consistency between lattice data and
analytic computations. In Ref. [20] it was also pointed
out that, assuming the presence of such higher-order
corrections, it was necessary to reach at least N ¼ 50 to
make the situation clearer.
In this work we accomplished this goal, exploiting a recent

algorithm proposed by M. Hasenbusch to defeat critical
slowing down [19], which has been adapted to our
Symanzik improved discretization in the presence of a θ-
term. That allowed us to push our investigation up toN ¼ 51.
In this way we have been able to provide indepen-

dent determinations of the NLO and LO coefficients,

FIG. 12. Behavior of N2b2 as a function of 1=N compared to
the LO (dashed line) analytic computation of the 1=N series. The
solid line is the result of a best fit to data with N ≥ 9 where all
coefficients up to the N3LO are fitted (see Table VI for the
complete systematics).

FIG. 13. Summary of the fit systematics for the LO coefficient
b̄2 of the 1=N expansion of b2. The empty diamond point
represents our overall estimation: b̄2 ¼ −5ð1Þ.

FIG. 14. Behavior of N4b4 as a function of 1=N compared to
the LO (dashed line) analytic computation of the 1=N series.
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respectively for χ and b2, which are in agreement with
analytic predictions. In particular, we have estimated
e2 ¼ −0.05ð3Þ (analytic prediction e2 ≃ −0.0605 [15])
and b̄2 ¼ −5ð1Þ (analytic prediction b̄2 ¼ −5.4). At the
same time, we have provided a first estimate for the N2LO
contribution to χ [e3 ¼ 1.5ð5Þ] and for the NLO contribu-
tion to b2 [k1 ∼ 120ð60Þ] which are presently unknown
analytically.
Instead, no definite results have been obtained for b4,

because of the larger statistical uncertainties involved in the
determination of this observable, apart from upper bounds
which however seem to be in disagreement with the LO
large-N prediction by around one order of magnitude,
pointing to the presence of large NLO corrections also in
this case.

Our results, apart from successfully confirming present
analytic estimates for χ and b2, point out that the con-
vergence of the large-N expansion is particularly slow for
this class of models. As suggested in Ref. [20], this could
be due to the nonanalytic behavior which is expected
for N ¼ 2.
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