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We study the color correlation between the static quark and antiquark (qq̄) in the confined phase via
reduced density matrices ρ defined in color space. We adopt the standard Wilson gauge action and perform
quenched calculations with the Coulomb gauge condition for reduced density matrices. The spatial
volumes are L3 ¼ 83, 163, 323, and 483, with the gauge couplings β ¼ 5.7, 5.8, and 6.0. Each element of
the reduced density matrix in the subspace of quarks’ color degrees of freedom of the qq̄ pair is calculated
from staples defined by link variables. As a result, we find that ρ is well written by a linear combination of
the strongly correlated qq̄ pair state with the color-singlet component and the uncorrelated qq̄ pair state
with random color configurations. We compute the Renyi entropies SRenyi from ρ to investigate the qq̄
distance dependence of the color correlation of the qq̄ pair and find that the color correlation is quenched as
the distance increases.
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I. INTRODUCTION

Color confinement is one of the nonperturbative features
of QCD, the fundamental theory of the strong interaction.
The static interquark potential (qq̄ potential) in the confine-
ment phase exhibits a linearly rising potential in the large-
separation limit giving the diverging energy, and quarks
cannot be isolated. Such confining features have been
studied and confirmed in several approaches [1].
The color confinement may be illustrated by the flux

tube formation between a quark and antiquark. A color flux
tube which has a constant energy per length is formed
between a (color-singlet) qq̄ pair, and this tube gives the
linearly rising qq̄ potential [2,3]. Note that QCD is non-
Abelian gauge theory, and hence such gluon fluxes have
colors. In other words, the color charge first associated with
a color-singlet qq̄ pair flows into the interquark flux tube as
the qq̄ separation is enlarged, keeping the total system color
singlet [4,5]. If the color charge of the qq̄ part and that of
the gluon part are separately considered, this color transfer
can be regarded as a color charge leak from the qq̄ part to
the gluon part in association with the screening effect. This
color leak should depend on the qq̄ distance and would be
observed as the distance dependence of the color correla-
tion between the quark and antiquark.

Such color correlation of the qq̄ pair may be detected by
entanglement entropy (EE) defined by the reduced density
matrix. EE quantifies an entanglement between degrees of
freedom (d.o.f.) in purely quantum systems and has been
utilized in variety of physical systems [6–17]. If the qq̄
pair’s correlation is strong, the qq̄ part is well decoupled
from the gluon part, and there is no entanglement between
the qq̄ and gluon parts. In other words, the color leak
from the qq̄ part can be measured by EE. In this paper, we
define the reduced density matrix ρ for a static qq̄ pair in
terms of color d.o.f. The density matrix is reduced into
subspace of qq̄ color configurations by integrating out the
gluons’ d.o.f., which is simply done by averaging the
density matrix components over gauge configurations, and
computing entanglement entropy S with the reduced
density matrix. Constructing a simple ansatz for the
reduced density matrix ρ, we investigate the dependence
of S on the interquark distance R.
In Sec. II, we give the formalism to compute the reduced

density matrix ρ of qq̄ system and the entanglement
entropy S of it. The details of numerical calculations and
ansatz for ρ are also shown in Sec. II. Results are presented
in Sec. III. Section IV is devoted to the summary and
concluding remarks.

II. FORMALISM

A. Reduced two-body density matrix and qq̄ correlation

The entanglement between two subsystems A and B can
be quantified with EE. From the density matrix ρAB for a
whole system Aþ B, the reduced density matrix ρA is
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obtained as ρA ¼ TrBðρABÞ. Here, TrB is taken over the
d.o.f. of the subsystem B. The entanglement entropy SEEA of
the subsystem A is then defined as SEEA ¼ −TrAðρA log ρAÞ
in the functional form of the von Neumann entropy. The
density matrix ρA defined for the reduced space (the
subsystem A) can give a nonzero value of EE because a
part of information is lost from the ρAB for the full space by
tracing out d.o.f. of the subsystem B. The EE is zero only in
the case of ρ2A ¼ ρA when the subsystems A and B are
completely decoupled from each other (not entangled).
Since our interest is being focused on the static qq̄ pair’s

color correlations, we divide the whole color-singlet system
into two (possibly colored) subsystems, static (anti)quarks
(Q), and “others” (G) and consider color DOF of the
subsystems (Q ¼ A and G ¼ B). Other DOF contain all
the gluon’s DOF including the vacuum polarization by the
sea quark’s loop.
In the actual calculations, we compute the reduced two-

body density matrix ρ in the subsystem Q by taking into
account the static quark’s color configuration only. The thus
defined density matrix is nothing but the reduced density
matrix ρQ that is obtained by integrating out the otherDOFG
in the full density matrix ρQG; ρQ ¼ TrGðρQGÞ.
The reduced two-body density operator ρ̂ðRÞ in a qq̄

system with the interquark distance R is defined as

ρ̂ðRÞ ¼ jq̄ð0ÞqðRÞihq̄ð0ÞqðRÞj: ð1Þ
Here, jq̄ð0ÞqðRÞi represents a quantum state in which the
antiquark is located at the origin and the other quark lies at
x ¼ R. The reduced density matrix components ρðRÞij;kl,
where i (j) are quark’s (antiquark’s) color indices, are
expressed as

ρðRÞij;kl ¼ hqið0Þq̄jðRÞjρ̂ðRÞjqkð0Þq̄lðRÞi: ð2Þ
ρðRÞ is am ×m square matrix with the dimensionm ¼ N2

c.
Note again that ρ is defined using only the quark’s DOF and
the gluon’s wave function is not considered, and then the
thus-defined ρ can be regarded as a reduced density matrix
in which the gluon’s DOF are integrated out.
The von Neumann (VN) entanglement entropy SVNðRÞ

for a qq̄ pair at a distance of R can be computed with the
reduced density matrix ρðRÞ as

SVNðRÞ≡−TrρðRÞ logρðRÞ¼−
X
ij

½ρðRÞ logρðRÞ�ij; ð3Þ

which can be regarded as an entanglement entropy repre-
senting the correlation between static quark pair (subsystem
Q) and other DOF (subsystem G).
In the actual computation of SVN, one needs to diagonalize

ρ or approximate the logarithmic function. To avoid such a
numerically demanding processes, we adopt Renyi entropy
[18] for EE for detailed analysis.Renyi entanglement entropy
SRenyi−α of order α (α > 0, α ≠ 1) is given as

SRenyi−α ¼ 1

1 − α
log TrðραÞ; ð4Þ

with a reduced density matrix ρ. Note that in the limit when
α → 1, it goes to von Neumann entropy as SRenyi−α → SVN.
Renyi entanglement entropy is a kind of generalized entropies
that quantify uncertainty or randomness and is used to
measure entanglement in quantum information theory.
Since entanglement entropy is invariant under unitary trans-
formations, it enables representation-independent analysis.
We use the second-order Renyi entanglement entropy by
taking α ¼ 2, which is simply given by the squared ρðRÞ as

SRenyi−2 ¼ − logTrðρ2Þ: ð5Þ

We comment here on the relationship between qq̄ corre-
lation and the entanglement entropy. Our main interest is the
qq̄ pair’s color correlation defined in the subsystem Q. The
whole pure state in the Qþ G system can be written as

X
α

jαiQ ⊗ jαiG: ð6Þ

Here,α denotes all the possible color states of theqq̄ pair, and
the total system is kept in a color-singlet state. When the
quark and antiquark’s colors are strongly correlated forming
a color-singlet combination j1iQ with no color charge leak
fromQ toG, the subsystemsQ and G are well decoupled in
the color space, and therefore the whole state can be
expressed in a simple product of Q and G parts as

X
α¼1

jαiQ ⊗ jαiG ¼ j1iQ ⊗ j1iG: ð7Þ

In this strongly correlated case, the entanglement entropySEE

goes to zero, since two subsystemsQ andG decouple and the
entanglement between subsystems Q and G vanishes.
On the other hand, when a qq̄ pair’s color charge leaks

into in between gluons and the color correlation between
them decreases, the whole state cannot be written in a
separable form, and S would take a positive finite value
as S > 0.

B. Ansatz for reduced density matrix ρij;klðRÞ
Let us consider a possible functional form of the reduced

density matrix ρij;klðRÞ based on the simple ansatz that the
contamination mixed to the correlated color-singlet com-
ponent is the random color component without any color
correlation between the quark and antiquark of the qq̄ pair.
We first define the density operator ρ̂s;s for the quark and
antiquark in a color-singlet state jsi ¼ PNc

i jq̄iqii in the
Coulomb gauge as

ρ̂s;s ¼ jsihsj: ð8Þ
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In color SU(Nc) QCD, the density operator ρ̂ai;aiði ¼
1; 2;…; N2

c − 1Þ for qq̄ in an adjoint state jaiiði ¼
1; 2;…; N2

c − 1Þ is expressed as

ρ̂ai;ai ¼ jaiihaijði ¼ 1; 2;…; N2
c − 1Þ: ð9Þ

In the limit R → 0, the quark and antiquark are consid-
ered to form a color-singlet state (jsi) corresponding to the
strong correlation limit, and its density operator will be
written as

ρ̂0 ¼ ρ̂s;s ¼ diagð1; 0;…; 0Þα−rep: ð10Þ
Here, “α − rep.”means that the matrix is expressed in terms
of qq̄’s color representation with the vector set of
fs; a1;…a8g. As R increases, it is expected that adjoint
components mix into the singlet component due to the
QCD interaction. We assume that contamination mixed into
the pure singlet (correlated) state is the uncorrelated state

with random color configurations in which N2
c components

mix with equal weights. The density operator for such the
random state is given as

ρ̂rand ¼ 1

N2
c
ρ̂s;s þ

1

N2
c
ρ̂a1;a1 þ

1

N2
c
ρ̂a2;a2 þ � � �

¼ 1

N2
c
Î ¼ 1

N2
c
diagð1; 1;…; 1Þα–rep: ð11Þ

Letting the fraction of the original (maximally corre-
lated) singlet state be FðRÞ and that of the mixing (random)
components be ð1 − FðRÞÞ, the density operator in this
ansatz is written as

ρ̂ansatzðRÞ ¼ FðRÞρ̂0 þ ð1 − FðRÞÞρ̂rand: ð12Þ

The matrix elements of ρ̂ansatzðRÞ in the α-representation are
explicitly written as

ρ̂ansatzðRÞ ¼ FðRÞρ̂0 þ ð1 − FðRÞÞρ̂rand ð13Þ

¼ diag

�
FðRÞ þ 1

N2
c
ð1 − FðRÞÞ; 1

N2
c
ð1 − FðRÞÞ;…;

1

N2
c
ð1 − FðRÞÞ

�
α−rep:

ð14Þ

¼

0
BBBBBBBBBBBB@

FðRÞ þ 1
N2

c
ð1 − FðRÞÞ 0 � � � 0

0 1
N2

c
ð1 − FðRÞÞ ..

.

..

. . .
. ..

.

..

.
0

0 � � � 0 1
N2

c
ð1 − FðRÞÞ

1
CCCCCCCCCCCCA

α−rep:

ð15Þ

When Nc ¼ 3,

� ρðRÞ81;81 ¼ ρðRÞ82;82 ¼ � � � ¼ ρðRÞ88;88 ≡ ρðRÞ8;8
ρðRÞα;β ¼ 0 ðfor α ≠ βÞ ð16Þ

would be satisfied at any R in this ansatz. The first relation
should be satisfied due to the color SU(3) symmetry. The
second, which means that the off-diagonal components are
all zero, comes from the ansatz of the random state. The
normalization condition Trρ ¼ 1 is trivially satisfied in this
ansatz as

ρðRÞ1;1 þ ðN2
c − 1ÞρðRÞ8;8 ¼ 1: ð17Þ

In the strong correlation limit when the qq̄ pair’s color
forms j1i, FðRÞ ¼ 1. On the other hand, in the random
limit when quarks’ colors are screened, FðRÞ ¼ 0.

C. Lattice QCD formalism

Let the site on the lattice be r ¼ ðx; y; z; tÞ ¼ xex þ
yey þ zez þ tet and μ direction (μ ¼ x, y, z, t) link variables
beUμðrÞ. With a lower staple SLðR; TÞ representing qq̄ pair
creation and propagation and an upper staple SUðR; TÞ for
qq̄ pair annihilation that are defined as

SLijðR; TÞ≡
�Y−T

t¼−1
U†

t ðtetÞ
YR−1
x¼0

Uxðxex − TetÞ

×
Y−1
t¼−T

UtðRex þ tetÞ
�

ij

; ð18Þ

SUijðR; TÞ≡
�YT−1

t¼0

UtðtetÞ
YR−1
x¼0

Uxðxex þ TetÞ

×
Y0

t¼T−1
U†

t ðRex þ tetÞ
�

ij

; ð19Þ
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we define LijðR; TÞ as

Lij;klðR; TÞ≡ SUijðR; TÞSL†kl ðR; TÞ: ð20Þ

When the Euclidean time separation T is large enough and
excited-state contributions can be ignored, hLij;klðR; TÞi is
expressed as

hLij;klðR;TÞi
¼Chqð0Þq̄ðRÞje−ĤT jqið0Þq̄jðRÞi
× hq̄kð0ÞqlðRÞje−ĤT jqð0Þq̄ðRÞi

¼Ce−2E0Thqð0Þq̄ðRÞjqið0Þq̄jðRÞihq̄kð0ÞqlðRÞjqð0Þq̄ðRÞi
¼Ce−2E0TρðRÞij;kl; ð21Þ

where E0 is the ground-state energy. Normalizing hLðR; TÞi
so that TrhLðR; TÞi ¼ P

ijhLij;ijðR; TÞi ¼ 1, we obtain
ρðRÞ, the trace of which is unity (TrρðRÞ ¼ 1).
Once we obtain ρðRÞ, Renyi entropy of order α as a

function of R is obtained as

SRenyi−αðRÞ¼ 1

1−α
logTrðρðRÞαÞ: ð22Þ

D. Lattice QCD parameters

We adopt the standard Wilson gauge action and perform
quenched calculations for reduced density matrices of static
quark and antiquark (qq̄) systems. The gauge configura-
tions are generated on the spatial volumes L3 ¼ 83, 163,
323, and 483, with the gauge couplings β ¼ 5.7, 5.8, and
6.0. All the gauge configurations are gauge fixed with the
Coulomb gauge condition. The parameters adopted in the
present work are summarized in Table I.

III. LATTICE QCD RESULTS

A. Ground-state dominance

To confirm the ground-state dominance, we investigate
the static quark and antiquark potential. In Figs. 1, 2, and 3,
we show the effective energy plots for static qq̄ systems
with several interquark distances R as a function of the
Euclidean time separation T. For all the interquark dis-
tances R, effective energies show plateaus against T at
T ≥ 2, and it is confirmed that ground-state saturation is
ensured at T ≥ 2. Hereafter, we adopt normalized reduced
density matrix ρðR; 2Þ measured with T ¼ 2 for
ρij;klðRÞ; ρij;klðRÞ≡ ρij;klðR; 2Þ=TrρðR; 2Þ.

B. Reduced density matrix elements

In this subsection, we take a detailed look at the reduced
density matrix elements obtained with lattice QCD. To see
the validity of the first condition in Eq. (16), we define the
average

TABLE I. Lattice QCD parameters. Coupling β, lattice spacing
a, and spatial volume L3 in the lattice unit and the physical unit.

β a (fm) L3 L3 (fm3)

5.7 0.18 83 1.443

5.7 0.18 163 2.883

5.7 0.18 323 5.753

5.7 0.18 483 8.643

5.8 0.14 163 2.243

5.8 0.14 323 4.483

5.8 0.14 483 6.723

6.0 0.10 163 1.603

6.0 0.10 323 3.203

6.0 0.10 483 4.803

FIG. 1. Effective energy plot as a function of the Euclidean time
separation at β ¼ 5.7. R denotes the interquark distance in lattice
unit.

FIG. 2. Effective energy plot as a function of the Euclidean time
separation at β ¼ 5.8. R denotes the interquark distance in lattice
units.
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ρðRÞ8;8 ¼
1

N2
c − 1

X
i

ρðRÞ8i;8i ð23Þ

and the deviation

DiðRÞ ¼ ρðRÞ8i;8i − ρðRÞ8;8: ð24Þ
In Fig. 4, DiðRÞ (1 ≤ i ≤ 8) are plotted as a function of the
interquark distance. All the values are consistent with zero,
and it is confirmed that the first condition is satisfied for all the
R and i within statistical errors. Hereafter, the octet compo-
nents of ρðRÞ are represented by the averaged value ρðRÞ8;8.
The second condition in Eq. (16) is the assumption in the

ansatz. To see to what extent this assumption is valid in the
actual reduced density matrices, we define following two
independent components:

ρðRÞ1;81 ¼−
1ffiffiffi
3

p ðρðRÞ11;12þρðRÞ22;12þρðRÞ33;12Þ; ð25Þ

ρðRÞ83;84 ¼ ρðRÞ21;13: ð26Þ

ρðRÞ1;81 and ρðRÞ83;84 are plotted in Fig. 5. We find that they
are consistent with zero, and we conjecture that the off-
diagonal components of the reduced density matrix ρðRÞ
are considerably small. From these analyses, we can
conclude that the reduced density matrix ρðRÞ obtained
with lattice calculations in the static qq̄ system is expressed
by the ansatz with high accuracy. Indeed, even when we
replace the octet components and the off-diagonal compo-
nents of ρðRÞ with the average ρðRÞ8;8 and with zero by
hand, all the results remain almost unchanged.

C. R dependence of FðRÞ
Taking into account the normalization condition

ρðRÞ1;1 þ ðN2
c − 1ÞρðRÞ8;8 ¼ 1; ð27Þ

the independent quantity at a given R is only ρ8;8, and we
can compute the fraction FðRÞ of the remaining correlated
qq̄ component as

FðRÞ ¼ ρðRÞ1;1 − ρðRÞ8;8 ¼ 1 − N2
cρðRÞ8;8: ð28Þ

When the qq̄ system forms a random state with no color
correlation between q and q̄, the calculated ρðRÞ equals
ρ̂rand and gives FðRÞ ¼ 0. In the upper panel in Fig. 6, FðRÞ
is plotted as a function of the interquark distance R. FðRÞ
linearly decreases at small R and exponentially approaches
zero at large R, which can be also seen in the lower panel
[logarithmic plot of FðRÞ].
The exponential decay of the qq̄ correlation indicates the

color screening effects due to in-between gluons.We fitFðRÞ
with an exponential function as

FðRÞ ¼ A expð−BRÞ ð29Þ
and extract the “screening mass” B. In Fig. 7, the fitted
parameters A and B are plotted as functions of the spatial
lattice size L. The plot includes all the data obtained at

FIG. 3. Effective energy plot as a function of the Euclidean time
separation at β ¼ 6.0. R denotes the interquark distance in lattice
units.

FIG. 4. The deviation of each component ρðRÞ8i ;8i from the
averaged value ρðRÞ8;8 ¼ 1

N2
c−1

P
i ρðRÞ8i ;8i is plotted as a func-

tion of the interquark distance. They are evaluated at β ¼ 5.7 and
L ¼ 48. All the values are consistent with zero within the errors.

FIG. 5. To see the magnitudes of the off-diagonal components,
two independent off-diagonal components ρðRÞ1;81 and ρðRÞ83;84
are plotted as a function of the interquark distance. They are
consistent with zero, and we conjecture that the off-diagonal
components of the reduced density matrix ρðRÞ are considerably
small.
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β ¼ 5.7, 5.8, and6.0 so that one can see theβ (lattice spacing)
dependence.While a tiny deviation is found among three β’s,
all the data seem lie in a monotonous line, which means the
systematic errors for A and B mainly arise from the lattice
sizeL. ForL > 5 fm, the fitted values are stable, andA andB
are determined as

A ¼ 1.505ð49Þ ð30Þ
B ¼ 1.347ð35Þ fm−1 ¼ 265ð7Þ MeV ð31Þ

from FðRÞ obtained in the largest volume.
In Fig. 8, the singlet component ρðRÞ1;1 and the averaged

octet component ρðRÞ8;8 are plotted as a function of the
interquark distance R. One finds that both components
approach ρðRÞ1;1 ¼ ρðRÞ8;8 ¼ 1

N2
c
¼ 1

9
at large R, which

ensures that the reduced density matrix at large interquark
separation R is governed by the random component ρ̂rand

and the original correlated state ρ̂0 vanishes.

D. Finite volume effects

Within the present numerical accuracy, the only indepen-
dent quantity in the reduced density matrix ρðRÞ is ρ8;8,

and all the finite volume effects are reflected in FðRÞ ¼
1 − N2

cρðRÞ8;8.
In Fig. 9, FðRÞ for several L (lattice size) and β (lattice

spacing) are plotted as a function of the interquark distance
R. At L > 5.0 fm, FðRÞ shows almost no volume depend-
ence, and ρðRÞ is safe from the finite volume effects at this
L range. When the lattice size L is small, FðRÞ rapidly
decreases with increasing R. On the other hand, β depend-
ence seems smaller than the finite volume effect. The
systematic errors mainly come from the finite size effect.
This finite volume effect would be due to the periodic

boundary condition, with which identical qq̄ systems exist
with the periodL. Quark and antiquark [qð0Þq̄ðRÞ] separated
byR in a system can also form color-singlet pairswith quarks
that are separated with the distance L − R, which addition-
ally enters in ρðRÞ as a random mixture decreasing FðRÞ.

E. Entanglement entropy

In the following, we consider the α ¼ 2 case for the
evaluation of the EE. (Wewill go back toSVN in the latter part
of this section.) The SRenyi−2ðRÞ is correctly calculated from
the trace of the squared reduced density matrix ρðRÞ as

SRenyi−2 ¼ − logTrðρðRÞ2Þ: ð32Þ
Taking into account that TrðρðRÞÞ ¼ 1, the maximum of
SRenyi−2 is obtained when all the N2

c diagonal elements are

FIG. 6. FðRÞ is plotted as a function of the interquark distance
R in the upper panel. FðRÞ monotonously decreases and
approaches zero. The lower panel shows the log plot for
FðRÞ. The fit function, FðRÞ ¼ A expð−BRÞ with A ¼ 1.505
and B ¼ 1.347 fm−1, is shown as a solid line.

FIG. 7. The fitted parameters A and B plotted as functions of the
spatial lattice size L.
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equal to 1=N2
c in the diagonal representation of ρðRÞ. From

the representation invariance of S, themaximum value of S is
proved to be

max ½SRenyi−2ðRÞ� ¼ 2 logNc: ð33Þ

In Fig. 10, SRenyi−2ðRÞ calculated with the ρðRÞ obtained
on the lattice are plotted as SRenyi−2lattice ðRÞ. SRenyi−2lattice ðRÞ
approaches 2 logNc as R increases, which indicates that
ρðRÞ is described by the random component ρ̂rand in the
large R limit.
In the ansatz, the density matrix ρansatzðRÞ is a diagonal

matrix, and TrðρansatzðRÞ2Þ is given by FðRÞ as

TrðρansatzðRÞ2Þ ¼ FðRÞ2 þ 1

N2
c
−
FðRÞ2
N2

c
: ð34Þ

Then, SRenyi−2ansatz ðRÞ, the Renyi entropy evaluated using the
ansatz, is expressed as

SRenyi−2ansatz ðRÞ ¼ − log TrðρansatzðRÞ2Þ

¼ − log

�
FðRÞ2 þ 1

N2
c
−
FðRÞ2
N2

c

�
: ð35Þ

Figure 10 shows SRenyi−2ansatz ðRÞ obtained using the ansatz
plotted as a function of the interquark distanceR. SRenyi−2ansatz ðRÞ
approaches 2 logNc at large R, which again confirms that
FðRÞ goes to zero and ρansatzðRÞ is expressed by the random
elements ρ̂rand in theR → ∞ limit. The remarkable fact is that
SRenyi−2lattice ðRÞ and SRenyi−2ansatz ðRÞ are almost identical for all R,
which indicates that the reduced density matrix ρðRÞ can be
expressed very well by the ansatz.
SRenyi−2ansatz andSRenyi−2lattice for different lattice sizesL are plotted

as a function ofR in Fig. 11. As expected, whenL < 5.0 fm,
the finite volume effects are rather large, and SRenyi−2ansatz and
SRenyi−2lattice are both affected. On the other hand, for all the L,
SRenyi−2ansatz ≃ SRenyi−2lattice is found, and the ansatz is valid with good
accuracy even when the finite volume effects are large.
It is well known that any averaging leads to the growth of

the entropy. The reduced density-matrix components are
averaged in the ansatz, and one may think SRenyi−2ansatz >
SRenyi−2lattice should be observed. Although such a tendency can
be sometimes seen in figures, statistical errors are much
larger, and both data are consistent with each other within
the present statistics.
Finally, we show the von Neumann entropy SVN based

on the ansatz. The direct calculation of SVN from the
reduced density matrix on the lattice is numerically
demanding. Instead of such a straightforward approach,
we take an alternative way to calculate SVN with an
approximation using ρansatz from the ansatz as

SVNansatz ¼ −Trðρansatz log ρansatzÞ: ð36Þ
ρ evaluated on the lattice coincides with ρansatz with high
accuracy as shown above, and SVNansatz is expected to be a
good approximation of SVN. Now, the reduced density

FIG. 8. The singlet component ρðRÞ1;1 and the averaged octet
component ρðRÞ8;8 are plotted as a function of the interquark
distance R. Both are approaching 1=Nc2 ¼ 1=9 at large R.

FIG. 9. FðRÞ for different L (lattice size) are plotted as a
function of the interquark distance R. At L > 5.0 fm, FðRÞ
shows almost no volume dependence, and ρðRÞ is safe from the
finite volume effects at this L range.

FIG. 10. SRenyi−2lattice ðRÞ obtained from the original reduced density
matrix ρðRÞ and SRenyi−2ansatz ðRÞ obtained using the ansatz are plotted
as a function of the interquark distance R.

LATTICE QCD STUDY OF STATIC QUARK AND ANTIQUARK … PHYS. REV. D 100, 114502 (2019)

114502-7



matrix in the α representation has been found to be
diagonal, and then SVNðRÞ is easily computed as

SVNansatzðRÞ ¼ −
�
FðRÞ þ 1

N2
c
ð1 − FðRÞÞ

�

× log

�
FðRÞ þ 1

N2
c
ð1 − FðRÞÞ

�

− ðN2
c − 1Þ

�
1

N2
c
ð1 − FðRÞÞ

�

× log

�
1

N2
c
ð1 − FðRÞÞ

�
: ð37Þ

Figure 12 showsSVNansatzðRÞ as a function ofR, andSRenyi−2lattice ðRÞ
and SRenyi−2ansatz ðRÞ are also plotted for reference. SVNansatzðRÞ
increases toward 2 logNc faster than SRenyi−2ðRÞ as the VN
EE is a more sensitive measure of the entanglement than the
Renyi-2 EE in general. As R increases, the reduced density
matrix ρ̂ is dominated by the random contribution ρ̂rand, and
all the matrix elements are equipartitioned in this limit giving
the maximum value of entropy.

To see the finite volume effects, we plot SVNansatz as a
function of R in Fig. 13. The tendency that S is increased by
the finite size effects remains unchanged.

IV. CONCLUSIONS

We have studied the color correlation of static quark and
antiquark (qq̄) systems in the confined phase from the
viewpoint of the entanglement entropy defined by reduced
density matrices ρ in color space. We have adopted the
standard Wilson gauge action and performed quenched
calculations for density matrices. The gauge couplings are
β ¼ 5.7, 5.8, and 6.0, and the spatial volumes are L3 ¼ 83,
163, 323, and 483. To evaluate each component of ρij;kl, all
the gauge configurations are Coulomb-gauge fixed.We have
also proposed an ansatz for the reduced density matrix ρ, in
which ρ is written by a sum of the color-singlet (correlated)
state j1ih1j and random (uncorrelated) elements j1ih1j,
j8iih8ij (i ¼ 1;…; N2

c − 1) induced by the QCD interaction.
We have quantitatively evaluated the qq̄ correlation by

means of the entanglement entropy constructed from the
reduced density matrix ρ. We have adopted the von
Neumann entropy SVN and the Renyi entropy of the order
α SRenyi−α for the evaluation of EE. Especially when α is an
integer, SRenyi−α can be computed easily from the density
matrix product ρα, and we need no diagonalization of ρ.
Note that color indices in EEs are all contracted, and color-
correlation measurement by means of EEs can be per-
formed in a gauge- (representation-)independent way.
As a result, we have found that the reduced density matrix

ρ can be reproduced well with the ansatz: The reduced
density matrix ρ consists of the color-singlet (correlated)
state j1ih1j when the qq̄ distance is small, and random
(uncorrelated) diagonal elements j1ih1j, j8iih8ij (i ¼ 1;…;
N2

c − 1) are equally mixed as the qq̄ distance is increased.
The qq̄ color correlations have been found to be quantified
well by entanglement entropies, and we conclude that
entanglement entropy can be a gauge-independent measure
for color correlations.

FIG. 11. SRenyi−2ansatz and SRenyi−2lattice , which are obtained from the
original reduced density matrix ρðRÞ and that obtained using the
ansatz, are plotted as a function of R.

FIG. 12. SVNansatz, S
Renyi−2
ansatz , and SRenyi−2lattice , which are obtained from

the original reduced density matrix ρðRÞ and that obtained using
the ansatz, are plotted as a function of R.

FIG. 13. SVNansatz obtained using the ansatz are plotted as a
function of R for different lattice size L.

TORU T. TAKAHASHI and YOSHIKO KANADA-EN’YO PHYS. REV. D 100, 114502 (2019)

114502-8



ACKNOWLEDGMENTS

This work was partly supported by Grants-in-Aid of the
Japan Society for the Promotion of Science (Grants
No. 16K05365, No. JP18K03617, and No. 18H05407).

APPENDIX: α REPRESENTATION
AND ij REPRESENTATION

In SU(3) QCD, the qq̄ state in α representation, j1i and
j8ii (i ¼ 1; 2;…; N2

c − 1), can be expressed by states in ij
representation, jq̄iqji, as follows:

j1i ¼ 1ffiffiffi
3

p
�X

i

jq̄iqii
�
;

j81i ¼ −jq̄1q2i;

j82i ¼ −
1ffiffiffi
2

p ðjq̄1q1i − jq̄2q2iÞ;

j83i ¼ jq̄2q1i;
j84i ¼ jq̄1q3i;
j85i ¼ −jq̄2q3i;
j86i ¼ jq̄3q2i;
j87i ¼ jq̄3q1i;

j88i ¼
1ffiffiffi
6

p ðjq̄1q1i þ jq̄2q2i − 2jq̄3q3iÞ:

Then, the elements of ρ̂ in α represenation can be related
with those in ij representation as

ρ̂1;1 ¼ j1ih1j

¼ 1

3

�X
i

jq̄iqii
��X

i

hq̄iqij
�

¼ 1

3

X
ij

ρ̂ii;jj;

ρ̂81;81 ¼ j81ih81j ¼ jq̄1q2ihq̄1q2j ¼ ρ̂12;12;

ρ̂82;82 ¼ j82ih82j ¼
1

2
ðρ̂11;11 þ ρ̂22;22 − ρ̂11;22 − ρ̂22;11Þ;

ρ̂83;83 ¼ j83ih83j ¼ jq̄2q1ihq̄2q1j ¼ ρ̂21;21;

ρ̂84;84 ¼ j84ih84j ¼ jq̄1q3ihq̄1q3j ¼ ρ̂13;13;

ρ̂85;85 ¼ j85ih85j ¼ jq̄2q3ihq̄2q3j ¼ ρ̂23;23;

ρ̂86;86 ¼ j86ih86j ¼ jq̄3q2ihq̄3q2j ¼ ρ̂32;32;

ρ̂87;87 ¼ j87ih87j ¼ jq̄3q1ihq̄3q1j ¼ ρ̂31;31;

ρ̂88;88 ¼ j88ih88j

¼ 1

6
ðρ̂11;11 þ ρ̂11;22 þ ρ̂22;11 þ ρ̂22;22

− 2ρ̂11;33 − 2ρ̂22;33 − 2ρ̂33;11 − 2ρ̂33;22 þ 4ρ̂33;33Þ:
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