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Simulations of gauge theories on quantum computers require the digitization of continuous field
variables. Digitization schemes that use the minimum amount of qubits are desirable. We present a practical
scheme for digitizing SUð3Þ gauge theories via its discrete subgroup Sð1080Þ. The Sð1080Þ standard
Wilson action cannot be used since a phase transition occurs as the coupling is decreased, well before the
scaling regime. We propose a modified action that allows simulations in the scaling window and carry
out classical Monte Carlo calculations down to lattice spacings of order a ≈ 0.08 fm. We compute a set
of observables with subpercent precision at multiple lattice spacings and show that the continuum
extrapolated value agrees with the full SUð3Þ results. This suggests that this digitization scheme provides
sufficient precision for noisy intermediate-scale quantum era QCD simulations.
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I. INTRODUCTION

Quantum computers can attack problems in physics
which appear intractable on classical computers [1].
Large-scale quantum computers would allow simulations
of nonperturbative calculations of real time evolution
and finite-density equations of state. For the foreseeable
future, though, quantum computers will be limited to tens
or hundreds of non-error-corrected qubits with circuit
depths less than a thousand gates—the so-called noisy
intermediate-scale quantum (NISQ) era. QCD simulations
on quantum computers—especially in the NISQ era—
depend upon formulating QCD in an efficient way.
Fermionic fields like quarks can be easily digitized as

qubit registers by encoding their presence or absence in a
given state [2–5]. This is evident from the few existing
calculations performed on digital quantum computers
[6–9]. The continuous nature of gauge fields precludes

such exact digitization without modification, although for
analog quantum computers this is less of an issue [10,11].
Proposed solutions involve eliminating the bosonic fields
using some model-dependent properties, truncating in
occupation number, discrete spins, or extending to higher
dimensions [12–28].
The situation is reminiscent of the pioneering days of

lattice field theory when computer memory was limited and
the cost of storing SUð3Þ elements was prohibitive. Several
attempts were made to replace the continuous gauge fields
by a discrete set of values [27,29–36]. Quantum compu-
tation is presently in a similar situation where every qubit
comes at a high cost. While more efficient parametrizations
are possible they trade memory for computational diffi-
culty; modern lattice QCD calculations represent each
gauge link by nine complex numbers represented using
a double-precision format that would require 1152 qubits.
In contrast, the largest “crystal-like” discrete subgroup of
SUð3Þ, Sð1080Þ contains 1080 elements and would require
only 11 qubits to store each link value.
Digitization typically reduces the symmetry of the model

although schemes exist which preserve the exact gauge
symmetry [21,25–28,37] although finite truncations of
these schemes to low-lying energy eigenstates can sacrifice
unitarity at high energies [37]. With this reduction, it is
not a given that the original model is recovered in the
continuum limit as the universality class of the lattice
model may change [38–43]. For any discrete group, there
is always a finite difference in the action, ΔS, between
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the field configurations with the two smallest actions, as
opposed to continuous groups where no such gap exists.
This may lead to “freezing” at some critical βf; that is, all
field values except the identity (and gauge equivalents) are
exponentially suppressed. For values of β beyond βf the
theory with the discrete group differs drastically from the
continuous group and is no longer a reasonable approxi-
mation. This is a particular problem for asymptotically free
theories like QCD, although there are some discrete system
counterexamples [28]. The spacetime continuum limit
where the lattice spacing a approaches zero is obtained
by making β large but that is where the continuous and
discrete group theories differ. This is not necessarily fatal:
Realistic lattice calculations are performed on classical
computers with a finite a and extrapolated in a controlled
manner to a → 0. In these calculations, what is required is
that a is smaller than typical hadronic scales (e.g., the size
of hadrons). Typically values used in state-of-the-art
calculations are Oð0.1 fmÞ. This corresponds to β ≳ 6
when using the Wilson action in the so-called scaling
region. While we do not anticipate our Sð1080Þ action to be
equivalent to SUð3Þ in the continuum limit, as we shall see,
they are similar at finite lattice spacing. Therefore our goal
will be to set up a framework where discrete groups can
be used to reproduce SUð3Þ results in the scaling region,
such that practical quantum computations of SUð3Þ with
a ≈ 0.08 fm could be performed with reduced resources.
This is a first and necessary step toward a proposal for QCD
on a quantum computer by showing that the simulations
using Sð1080Þ have merit for rough SUð3Þ calculations in
the NISQ era. With this success, the next step in studying
the feasibility of this procedure is to construct the quantum
registers and primitive gates à la [44] where smaller
discrete groups were investigated.
There were a number of early studies of the viability of

crystal-like discrete subgroups of Uð1Þ [45,46] and SUðNÞ
[29,31,33] gauge theories including with fermions [47,48].
While the discrete subgroups all have freezing transitions
for the Wilson action, βf increases with the size of the
subgroup. For Uð1Þ, the ZN theories have a βf in the
scaling regime (in this case β ≳ 1) for N > 4. SUð2Þ has
only three crystal-like subgroups: the binary tetrahedral,
BT , the binary octahedral, BO, and the binary icosahedral,
BI. Using the Metropolis algorithm with 100 measurements
separated by 1000 updates, we refined the results of [29],
finding that while BT has βf ¼ 2.24ð8Þ, BO and BI have
βf ¼ 3.26ð8Þ and βf ¼ 5.82ð8Þ respectively, both deep in
the scaling regime β ≳ 2.2. Hence, these two last groups
can be used in lieu of SUð2Þ for practical calculations.
The story changes for SUð3Þ. There are five crystal-like

subgroups: Sð60Þ, Sð108Þ, Sð216Þ, Sð648Þ, and Sð1080Þ
designated by their number of elements. For all these, βf < 6,
with the largest, Sð1080Þ, being reported to have βf ¼
3.58ð2Þ obtained on a 24 lattice [31]. Our own calculations
on a 24 volume with larger statistics for Sð1080Þ show a

slightly larger value βf ¼ 3.935ð5Þ. In any case, it is evident
that the Sð1080Þ theory with the Wilson action is inad-
equate to reach the scaling regime. Subsequent work [34]
showed that extending the elements to include the mid-
points between elements of Sð1080Þ was sufficient to
push βf ≈ 7. However this requiresmore bits and sacrifices
the group structure.
To overcome these limitations, attempts were made to

approximate the SUð3Þ Wilson action by a modified
action based on a subgroup [33,35,36,46,49–52], although
only in [33] were Monte Carlo calculations undertaken.
Intuitively, the addition of further terms in the action of the
discrete group that are proportional in the continuum to
Tr FμνFμν, but take different values, changes the values that
S can take. This lowers thegap δS between the lowest actions
and corresponds to a closer approach to the continuum.
In [33], simulations using Sð648Þ with a Wilson action

modified by a jTrUpj2 term (equivalent to the trace in the
adjoint representation) were performed. Even with this
modified action Sð648Þ was inadequate to reach the scaling
regime. Further, it was conjectured, based on small-scale
simulations and mean-field estimates, that Sð1080Þ would
also fail to reach the scaling regime with that modified
action. Calculations with modified actions of SUð3Þ were
also performed to study thermodynamics and reduce lattice
spacing errors [53–57].

II. RESULTS

With this history in mind, we study the viability of
Sð1080Þ with a different action

S ¼ −
X

p

�
β0
3
ReTrUp þ β1ReTrU2

p

�
; ð1Þ

where Up ∈ Sð1080Þ indicates a plaquette, and the first
term has been normalized such that, for β1 ¼ 0, the
action matches the SUð3Þ Wilson action (with β ¼ β0).
Simulations can be performed efficiently by employing
precomputed multiplication and trace tables.
One could argue heuristically that the action in Eq. (1)

will lead to the same continuum limit as, for instance, the

Wilson action of SUð3Þ (SSUð3Þ ¼ − βSUð3Þ
3

P
p ReTrUp) by

noting that the continuum limit in asymptotically free
theories is obtained by setting the coupling to be small
(β large) and that in this limit only small field fluctuations
are important. For small values of the field S and SSUð3Þ
agree as long as βSUð3Þ is a certain linear combination of β0,
β1. The flaw with this argument is that as βSUð3Þ is increased
toward the continuum limit, so do β0, β1 and, at some
point, the fluctuations become smaller than the separation
between the identity and the nearest element to it in
Sð1080Þ and fields freeze. Beyond this point it makes no
sense to consider small fluctuations in the Sð1080Þ theory.
This is seen dramatically in Fig. 1 where the average
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plaquette of the Wilson action SUð3Þ theory (black) and the
Sð1080Þ action S at β1 ¼ 0 (red) are shown to agree very
well until they abruptly diverge when freezing occurs. This
agreement is expected since the strong coupling expansion
predicts the difference in the average plaquette for SUð3Þ
and Sð1080Þwith β1 ¼ 0 to be of orderOð10−6β5Þ [31]. By
setting β1 < 0 the gap between the two lowest action values
is reduced and freezing occurs only at large β0 (see blue
curve in Fig. 1). Our proposal is to find a trajectory in the
(β0, β1) plane that avoids freezing. The idea is that as we
move on this trajectory toward larger values of β0 we
produce configurations with larger correlation lengths,
ideally increasing all the way to infinity. While we do
not anticipate reaching infinite correlation length, within
the scaling regime the correlation length grows rapidly
which naively would reduce the discrepancies between
Sð1080Þ and SUð3Þ if the action generates the same physics.
We must check, though, that this action generates the same
physics as SUð3Þ.
Because we have complete freedom in choosing our

trajectory other than it must avoid the freezing transition,
we need only to roughly map out the phase diagram of the
Sð1080Þ theory in the (β0, β1) plane to determine where the
theory is frozen and not useful to approximate SUð3Þ. Since
these phases are not the emphasis of this work, and we only
need to know the approximate location to define a trajectory,
we obtained the rough phase diagram for a small 24 lattice.
Further, the exact identification of this boundary is compli-
cated because each phase exists as a metastable state through-
out the phase diagram and therefore critical slowing down
occurs.While the exact location of the freezing transitionmay
differ due to finite-size effects on such a small lattice, we
mitigate this concern by choosing a trajectory conservatively
far away from the transition line, and monitoring that no
freeze-out occurs in our larger lattice ensembles.
To deal with this metastability and the associated long

autocorrelation times, we used a parallel tempering algo-
rithm similar to [58,59]. We perform simulations with a set

of fβ0;ig for a fixed β1. For every fifth local update, the
configuration with β0;i is randomly selected and swapped
with the ensemble with β0;j where j ¼ i� 1, i� 2 with
probability:

Pijðϕi;ϕjÞ ¼ min ð1; eðβ0;i−β0;jÞðS̃½ϕi�−S̃½ϕj�ÞÞ: ð2Þ

With this algorithm, we were able to map out the full
ðβ0; β1Þ space by searching for peaks in the susceptibilities

χ0 ¼ ∂2hSi
∂β2

0

and/or χ1 ¼ ∂2hSi
∂β2

1

(see Fig. 2). Besides the

freezing transition (shown in red), there are additional
transitions shown in the upper left corner of the phase
diagram delineating regions where the dynamics is partially
frozen down to a subset of the group elements. This rich
structure is qualitatively similar to the one found in the
SUð3Þ theory but it is of little concern to us. We focus
instead on the lower (β1 < 0) region of the phase diagram.
At β1 ¼ 0 we measure βc ¼ 3.935ð5Þ, a larger value than
the βc ¼ 3.58ð2Þ found with smaller statistics in [31].
With the freezing transition mapped out, we can propose

a way to approach the continuum limit by performing
simulations along a trajectory that avoids the frozen phase.
We choose the trajectory

β1 ¼ −0.1267β0 þ 0.253 ð3Þ

shown as a dotted line in Fig. 2 which is parallel to the
freezing transition at large β0, β1.
From perturbative lattice SUð3Þ arguments, a line of

constant continuum coupling 1=g2 should have a certain
slope in the β0, β1 plane analogous to that derived in [31]
for a different modified action. If these arguments are valid
for our Sð1080Þ action, there is a similar slope in our
coupling plane. Furthermore, the border of the freezing
region is a line at large values of β0. We chose our

FIG. 1. Average energy per plaquette, hE0i ¼ 1 − RehTrUpi=3,
vs β0 on 24 lattice for (filled black square) SUð3Þ and Sð1080Þ
with (filled red circle) β1 ¼ 0 and with (filled blue up-pointing
triangle) β1 ¼ −0.6. (Inset) χ0 vs β0 for β1 ¼ 0.

FIG. 2. Phase diagram in the ðβ0; β1Þ plane for a 24 lattice
where hE1i ¼ 1 − RehTrU2

pi=3 is an additional order parameter.
(filled blue square) and (filled red circle) correspond to peaks in
χ0 and (filled green down-pointing triangle) to peaks in χ1. Also
shown as a dashed line is the trajectory used for exploring larger
lattices.
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parameter line to asymptote parallel to the freezing line.
We find indeed that along this line the lattice spacing
approaches a constant, suggesting that the freezing line is
parallel to the constant g line for our action. Adding other
terms to the action e.g., including fermions or Symanzik
improvement would require recomputing the freezing
transition and thus a new trajectory would have to be
determined.
A pure gauge theory (without matter) can predict only

ratios of observables. So, one observable should be used
to set the scale, that is, to determine the dimensionful
quantity a at a fixed β0, β1. After this, the theory can make
predictions for all other observables. In order to quantify
the approach to the continuum and compare it with the
expected continuum result we then need a minimum of two
observables: one to set the scale and another to be
predicted. We choose the pseudocritical temperature Tc
for deconfinement and the scale t0 defined by the Wilson
flow [60].
We determine Tc by looking at the distribution of values

of the Polyakov loop P. In the confined phase they
concentrate around zero, while at higher temperatures they
cluster around the vertices of a triangle. We denote by wc,
w3 the number of configurations in which P lies near zero
or near one of the vertices of the triangle. Following the
procedure outlined in [61], we label as “center” configu-
rations the ones that lie inside an equilateral triangle
centered at the origin and rotated such that one side is
perpendicular to the positive real axis. The separatrix is
adjusted to the minimum of the histogram of the ReTrP.
This position is determined from simulations close to the
transition point. There is some ambiguity in this definition
but we include this variability into our error budget. We
then look at the quantity sðβ0; β1Þ ¼ 3wc−w3

3wcþw3
: It isþ1 deep in

the confined phase and reaches -1 deep in the deconfined
phase. When s ¼ 0, the theory is tuned to Tc. This
definition of Tc has been shown to have finite-volume
effects that scale exponentially in the spatial volume for
SUð3Þ, unlike the peak of χ0 which exhibits power law
volume corrections [61]. We found that for Nt ¼ 4, the
difference in ðβc0; βc1Þ for Ns ¼ 12, 16 was negligible,
confirming the same behavior in Sð1080Þ. Therefore, we
assumed Ns ¼ 3Nt has negligible finite-volume effects at
larger Nt and use this volume to compute Tc. For each set
of parameters we collected Oð106Þ measurements sepa-
rated by ten sweeps. To perform a sweep, we visit each link
and update it using a multihit Metropolis step.
For Nt ¼ 4, 6, 8 we scan (β0, β1) along the trajectory

Eq. (3) to find (βc0; β
c
1) for which s ¼ 0. The values obtained

are listed in Table I. For each of these the inverse physical
temperature 1=T ¼ Ntaðβc0; βc1Þ ¼ 1=Tc is the same.
We compute the scale t0 defined by the Wilson flow

for these sets of ðβc0; βc1Þ parameters. We first generate
configurations on lattices of size ð3NtÞ4 where Nt is the
temporal size used to determine Tc. For each ensemble we

generate 200 configurations, separated by 1000 sweeps.
The configurations generated are represented as SUð3Þ
matrices and used as initial conditions for performing the
Wilson flow [60]:

_Vtðx; μÞ ¼ −
1

β0
ð∂x;μSW ½Vt�ÞVtðx; μÞ;

Vtðx; μÞjt¼0 ¼ Uðx; μÞ ð4Þ

where SW ½Vt� is the Wilson action of SUð3Þ fields Vt at
some Wilson-flow time t. Using the flow, we define two
observables tX¼0.2 and tX¼0.3 implicitly by the expression

ðt2hEiÞt¼tX ¼ X ð5Þ

where X ¼ 0.2, 0.3, and E is the lattice clover definition
of the energy density. Following the convention, tX¼0.3 is
called t0. Both of these observables have been measured
precisely for SUð3Þ pure gauge theory, allowing for
comparison. By also measuring t0.2, we probe higher
energy scales where larger discrepancies between
Sð1080Þ and SUð3Þ should be found. Our results are found
in Table I.
In the absence of discretization effects, the value of t0

in physical units should be the same on all our lattices.
We demonstrate that the variation of t0 as we approach
the continuum is mild and the extrapolated value agrees
with the full SUð3Þ result. With our data, it is possible to
construct a dimensionless quantity, Tc

ffiffiffiffiffi
tX

p
which can be

compared to those of SUð3Þ at both finite lattice spacing a
and by extrapolating to the continuum. Using a linear
extrapolation, we compute a continuum value of Tc

ffiffiffiffi
t0

p ¼
0.2489ð11Þ which is in agreement with Tc

ffiffiffiffi
t0

p ¼
0.2489ð14Þ [61] and Tc

ffiffiffiffi
t0

p ¼ 0.2473ð7Þ [62] computed

in full SUð3Þ. Similarly, our extrapolated value of
ffiffiffi
t0

p
ffiffiffiffiffi
t0.2

p ¼
0.1269ð6Þ is in good agreement with the value of 0.1264(4)
computed for SUð3Þ [63]. Our results for Tc

ffiffiffiffi
t0

p
are

compared to [61] in Fig. 3. It is interesting to note that
theOða2Þ corrections appear milder for the modified action
used here compared to the Wilson action of the SUð3Þ. This
feature of modified actions has been observed previously
in SUð3Þ [53–57], which suggest further benefits of using
this action for quantum simulations.

TABLE I. Wilson-flow parameters
ffiffiffiffi
t0

p
=a and

ffiffiffiffiffiffiffi
t0.2

p
=a found

on lattices of size ð3NtÞ4 along our trajectory where Nt is
temporal size used to determine Tc. In the last two columns, the
first error is statistical, and the second is from the separatrix.

Nt Ns βc0 βc1
ffiffiffiffi
t0

p
=a

ffiffiffiffiffiffiffi
t0.2

p
=a

4 12 9.154(2) −0.9061ð3Þ 1.016(3)(3) 0.8316(12)(20)
6 18 12.795(9) −1.3673ð11Þ 1.508(3)(5) 1.2068(18)(42)
8 24 19.61(4) −2.231ð5Þ 2.000(4)(8) 1.595(3)(6)
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Although the Sð1080Þ action may be inequivalent to
SUð3Þ in the continuum limit, it is similar at finite a and by
making a connection to SUð3Þ, we will derive physical
values for t0 and a lattice spacing a for each of our
ensembles. Using the SUð3Þ relations of [62,63] between
w0.4, Tc, ΛSUð3Þ, and r0 ¼ 0.49ð4Þ fm, we obtain

ffiffiffiffi
t0

p
≈

0.16ð2Þ fm where our error is dominated by r0, agreeing
with

ffiffiffiffi
t0

p ¼ 0.1638ð10Þ fm determined in SUð3Þ [64].
With this, our 244 lattice has a ≈ 0.08 fm or 2.5 GeV−1.
This suggests it would be possible to extract and compare
glueball states [65,66] or quenched calculations of hadron
masses [67] to SUð3Þ values with subpercent precision.

III. DISCUSSION AND CONCLUSIONS

In this work, we have presented results for the discrete
gauge group Sð1080Þ using a modifiedWilson action. After
mapping the entire phase diagram of the new action, we
have found a parameter trajectory that avoids the freezing

transition, allowing for calculations with lattice spacing
a ≈ 0.08 fm. We have shown that this action is capable of
reproducing the physics of SUð3Þ below 2.5 GeV−1 by

measuring Tc
ffiffiffiffi
t0

p ¼ 0.2489ð11Þ and
ffiffiffi
t0

p
ffiffiffiffiffi
t0.2

p ¼ 0.1269ð6Þ,
which agree to remarkable precision with the full group.
The qubit savings from using Sð1080Þ instead of SUð3Þ

are dramatic. In the NISQ era, where small lattice sizes and
noisy gates will likely dominate the error, the parameters
used in this paper should be a sufficient approximation
of SUð3Þ. However, if gluon actions are required at
a < 0.08 fm, the action in Eq. (1) on the trajectory
specified by Eq. (3) may be insufficient since a on this
trajectory seems to have a minimum. Another trajectory
nearer to the freezing transition may provide a smaller
lattice spacing. Future work is required to determine
whether we can generate arbitrarily small a on a different
trajectory with our action or if additional terms are required.
Guidance for which terms could be included could be taken
from the cumulant expansion of SUð3Þ in the Sð1080Þ
terms previously studied [35,36]. Furthermore, questions of
how well other observables like hadronic spectra are
reproduced is left for future studies. Previous work with
SUð2Þ has demonstrated that coupling fermions to discrete
subgroups can be done in the same way as continuous
groups [47,48]. Given that circuit depth is of concern in
the NISQ era, a broad search in modified action space
should be undertaken with an eye toward terms that
require few quantum gates while still efficiently reaching
the scaling regime of SUð3Þ. Quantitative comparisons of
these actions will require constructing the primitive
quantum gates for Sð1080Þ along the lines of [44] where
smaller discrete groups were investigated. This is an
ongoing work. At that point, it will be possible to compare
the feasibility of this method with different actions as well
as to quantum link model methods being studied on
quantum simulators [68–71]. It should be noted that
inclusion of the ReTrU2

p will require additional circuit
depth, and no new primitive quantum gates are required.
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FIG. 3. (Top) Tc
ffiffiffiffi
t0

p
vs a2=t0. Our results (blue square)

compared to SUð3Þ results from [61] using Wilson (black up-
pointing triangle) and Wilson-improved (red circle) energies are
reproduced for comparison. Our extrapolated value (filled blue
square) is compared to SUð3Þ results of [61] (filled red circle) and
[62] (filled green down-pointing triangle). (Bottom) Tc

ffiffiffiffiffiffiffi
t0.2

p
vs

a2=t0.2 and the extrapolation compared with the results of [63]
with same symbols.

GLUON FIELD DIGITIZATION FOR QUANTUM COMPUTERS PHYS. REV. D 100, 114501 (2019)

114501-5



[1] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[2] P. Jordan and E. P. Wigner, Z. Phys. 47, 631 (1928).
[3] F. Verstraete and J. I. Cirac, J. Stat. Mech. (2005) P09012.
[4] E. Zohar and J. I. Cirac, Phys. Rev. B 98, 075119

(2018).
[5] J. D. Whitfield, V. Havlíček, and M. Troyer, Phys. Rev. A

94, 030301 (2016).
[6] E. A. Martinez et al., Nature (London) 534, 516 (2016).
[7] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris,

R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
Savage, Phys. Rev. A 98, 032331 (2018).

[8] H. Lamm and S. Lawrence, Phys. Rev. Lett. 121, 170501
(2018).

[9] O. Shehab, K. A. Landsman, Y. Nam, D. Zhu, N. M. Linke,
M. J. Keesan, R. C. Pooser, and C. R. Monroe, arXiv:1904
.04338.

[10] K. Kasamatsu, I. Ichinose, and T. Matsui, Phys. Rev. Lett.
111, 115303 (2013).

[11] E. Zohar, J. I. Cirac, and B. Reznik, Rep. Prog. Phys. 79,
014401 (2016).

[12] D. C. Hackett, K. Howe, C. Hughes, W. Jay, E. T. Neil, and
J. N. Simone, Phys. Rev. A 99, 062341 (2019).

[13] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik,
Phys. Rev. Lett. 121, 110504 (2018).

[14] K. Yeter-Aydeniz, E. F. Dumitrescu, A. J. McCaskey, R. S.
Bennink, R. C. Pooser, and G. Siopsis, Phys. Rev. A 99,
032306 (2019).

[15] N. Klco and M. J. Savage, Phys. Rev. A 99, 052335
(2019).

[16] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, and
J. Zhang, Phys. Rev. D 92, 076003 (2015).

[17] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov,
S. W. Tsai, and Y. Meurice, Phys. Rev. Lett. 121, 223201
(2018).

[18] J. F. Unmuth-Yockey, Phys. Rev. D 99, 074502 (2019).
[19] J. Unmuth-Yockey, J. Zhang, A. Bazavov, Y. Meurice, and

S.-W. Tsai, Phys. Rev. D 98, 094511 (2018).
[20] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K.

Oberthaler, J. Berges, and P. Hauke, Sci. Technol. 3,
034010 (2018).

[21] I. Raychowdhury and J. R. Stryker, arXiv:1812.07554.
[22] D. B. Kaplan and J. R. Stryker, arXiv:1806.08797.
[23] J. R. Stryker, Phys. Rev. A 99, 042301 (2019).
[24] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence

(NuQS Collaboration), Phys. Rev. Lett. 123, 090501 (2019).
[25] S. Chandrasekharan and U. J. Wiese, Nucl. Phys. B492, 455

(1997).
[26] B. Schlittgen and U. J. Wiese, Phys. Rev. D 63, 085007

(2001).
[27] R. Brower, S. Chandrasekharan, and U. J. Wiese, Phys. Rev.

D 60, 094502 (1999).
[28] B. B. Beard, M. Pepe, S. Riederer, and U. J. Wiese, Phys.

Rev. Lett. 94, 010603 (2005).
[29] D. Petcher and D. H. Weingarten, Phys. Rev. D 22, 2465

(1980).
[30] L. Jacobs and C. Rebbi, J. Comput. Phys. 41, 203

(1981).
[31] G. Bhanot and C. Rebbi, Phys. Rev. D 24, 3319 (1981).
[32] H. Grosse and H. Kuhnelt, Phys. Lett. 101B, 77 (1981).
[33] G. Bhanot, Phys. Lett. 108B, 337 (1982).

[34] P. Lisboa and C. Michael, Phys. Lett. 113B, 303 (1982).
[35] H. Flyvbjerg, Nucl. Phys. B243, 350 (1984).
[36] H. Flyvbjerg, Nucl. Phys. B240, 481 (1984).
[37] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88,

023617 (2013).
[38] P. Hasenfratz and F. Niedermayer, Proc. Sci., HEP2001

(2001) 229 [arXiv:hep-lat/0112003].
[39] S. Caracciolo, A. Montanari, and A. Pelissetto, Phys. Lett. B

513, 223 (2001).
[40] P. Hasenfratz and F. Niedermayer, Nucl. Phys. B, Proc.

Suppl. 94, 575 (2001).
[41] A. Patrascioiu and E. Seiler, Phys. Rev. E 57, 111 (1998).
[42] R. Krcmar, A. Gendiar, and T. Nishino, Phys. Rev. E 94,

022134 (2016).
[43] S. Caracciolo, A. Montanari, and A. Pelissetto, Phys. Lett. B

513, 223 (2001).
[44] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collabo-

ration), Phys. Rev. D 100, 034518 (2019).
[45] M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915

(1979).
[46] M. Creutz and M. Okawa, Nucl. Phys. B220, 149

(1983).
[47] D. H. Weingarten and D. N. Petcher, Phys. Lett. 99B, 333

(1981).
[48] D. Weingarten, Phys. Lett. 109B, 57 (1982).
[49] R. C. Edgar, Nucl. Phys. B200, 345 (1982).
[50] M. Fukugita, T. Kaneko, and M. Kobayashi, Nucl. Phys.

B215, 289 (1983).
[51] D. Horn, M. Karliner, E. Katznelson, and S. Yankielowicz,

Phys. Lett. 113B, 258 (1982).
[52] C. Ayala and M. Baig, Ann. Phys. (N.Y.) 198, 1 (1990).
[53] T. Blum, C. E. DeTar, U. M. Heller, L. Karkkainen, K.

Rummukainen, and D. Toussaint, Nucl. Phys. B442, 301
(1995).

[54] U. M. Heller, Phys. Lett. B 362, 123 (1995).
[55] U. M. Heller, Nucl. Phys. B, Proc. Suppl. 47, 262

(1996).
[56] M. Hasenbusch and S. Necco, Nucl. Phys. B, Proc. Suppl.

140, 743 (2005).
[57] M. Hasenbusch and S. Necco, J. High Energy Phys. 08

(2004) 005.
[58] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607

(1986).
[59] D. J. Earl and M.W. Deem, Phys. Chem. Chem. Phys. 7,

3910 (2005).
[60] M. Luscher, J. High Energy Phys. 08 (2010) 071; 03 (2014)

092(E).
[61] A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, and H.

Ohno, Phys. Rev. D 91, 096002 (2015).
[62] M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, and H.

Suzuki, Phys. Rev. D 94, 114512 (2016).
[63] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa,

and H. Suzuki, arXiv:1503.06516.
[64] R. Sommer, Proc. Sci., LATTICE2013 (2014) 015 [arXiv:

1401.3270].
[65] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60,

034509 (1999).
[66] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[67] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 67,

034503 (2003).

ANDREI ALEXANDRU et al. PHYS. REV. D 100, 114501 (2019)

114501-6

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF01331938
https://doi.org/10.1088/1742-5468/2005/09/P09012
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1103/PhysRevB.98.075119
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1103/PhysRevA.94.030301
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://arXiv.org/abs/1904.04338
https://arXiv.org/abs/1904.04338
https://doi.org/10.1103/PhysRevLett.111.115303
https://doi.org/10.1103/PhysRevLett.111.115303
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1103/PhysRevA.99.062341
https://doi.org/10.1103/PhysRevLett.121.110504
https://doi.org/10.1103/PhysRevA.99.032306
https://doi.org/10.1103/PhysRevA.99.032306
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevLett.121.223201
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.98.094511
https://doi.org/10.1088/2058-9565/aac33b
https://doi.org/10.1088/2058-9565/aac33b
https://arXiv.org/abs/1812.07554
https://arXiv.org/abs/1806.08797
https://doi.org/10.1103/PhysRevA.99.042301
https://doi.org/10.1103/PhysRevLett.123.090501
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1103/PhysRevD.63.085007
https://doi.org/10.1103/PhysRevD.63.085007
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1103/PhysRevLett.94.010603
https://doi.org/10.1103/PhysRevLett.94.010603
https://doi.org/10.1103/PhysRevD.22.2465
https://doi.org/10.1103/PhysRevD.22.2465
https://doi.org/10.1016/0021-9991(81)90089-9
https://doi.org/10.1016/0021-9991(81)90089-9
https://doi.org/10.1103/PhysRevD.24.3319
https://doi.org/10.1016/0370-2693(81)90494-9
https://doi.org/10.1016/0370-2693(82)91207-2
https://doi.org/10.1016/0370-2693(82)90044-2
https://doi.org/10.1016/0550-3213(84)90033-6
https://doi.org/10.1016/0550-3213(84)90239-6
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://arXiv.org/abs/hep-lat/0112003
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1016/S0920-5632(01)00870-2
https://doi.org/10.1016/S0920-5632(01)00870-2
https://doi.org/10.1103/PhysRevE.57.111
https://doi.org/10.1103/PhysRevE.94.022134
https://doi.org/10.1103/PhysRevE.94.022134
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1016/0550-3213(83)90220-1
https://doi.org/10.1016/0550-3213(83)90220-1
https://doi.org/10.1016/0370-2693(81)90112-X
https://doi.org/10.1016/0370-2693(81)90112-X
https://doi.org/10.1016/0370-2693(82)90463-4
https://doi.org/10.1016/0550-3213(82)90091-8
https://doi.org/10.1016/0550-3213(83)90217-1
https://doi.org/10.1016/0550-3213(83)90217-1
https://doi.org/10.1016/0370-2693(82)90834-6
https://doi.org/10.1016/0003-4916(90)90325-I
https://doi.org/10.1016/0550-3213(95)00137-9
https://doi.org/10.1016/0550-3213(95)00137-9
https://doi.org/10.1016/0370-2693(95)01186-T
https://doi.org/10.1016/0920-5632(96)00052-7
https://doi.org/10.1016/0920-5632(96)00052-7
https://doi.org/10.1016/j.nuclphysbps.2004.11.262
https://doi.org/10.1016/j.nuclphysbps.2004.11.262
https://doi.org/10.1088/1126-6708/2004/08/005
https://doi.org/10.1088/1126-6708/2004/08/005
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1039/b509983h
https://doi.org/10.1039/b509983h
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1103/PhysRevD.91.096002
https://doi.org/10.1103/PhysRevD.94.114512
https://arXiv.org/abs/1503.06516
https://arXiv.org/abs/1401.3270
https://arXiv.org/abs/1401.3270
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.67.034503
https://doi.org/10.1103/PhysRevD.67.034503


[68] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler,
U. J. Wiese, and P. Zoller, Phys. Rev. Lett. 109, 175302
(2012).

[69] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler,
U. J. Wiese, and P. Zoller, Phys. Rev. Lett. 110, 125303
(2013).

[70] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U. J.
Wiese, and P. Zoller, Ann. Phys. (Amsterdam) 351, 634
(2014).

[71] E. Rico, M. Dalmonte, P. Zoller, D. Banerjee, M. Bögli, P.
Stebler, and U. J. Wiese, Ann. Phys. (Amsterdam) 393, 466
(2018).

GLUON FIELD DIGITIZATION FOR QUANTUM COMPUTERS PHYS. REV. D 100, 114501 (2019)

114501-7

https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1016/j.aop.2014.09.011
https://doi.org/10.1016/j.aop.2014.09.011
https://doi.org/10.1016/j.aop.2018.03.020
https://doi.org/10.1016/j.aop.2018.03.020

