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The ratios pgﬁ (s) of the real to the imaginary part of forward elastic pp and pp scattering amplitudes at
very high energies are considered in the models with rising total cross sections and its difference. It is
shown from the dispersion relations for pp and pp scattering amplitudes that in the Froissaron and
maximal odderon approach the ratios do not vanish asymptotically and they have the opposite signs for pp

and pp scattering.
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I. INTRODUCTION

It was proved in the paper [1] that the real part of
the crossing-even elastic scattering amplitude has to be
positive at s — oco. Generally speaking in order to know
both the ratios pi—’lz (s), the corresponding crossing-even and

crossing-odd components must be jointly considered. We
would like to remark the following points concerning the
special case where hadron # is a proton.

(1) The crossing odd component, odderon, for these
amplitudes plays a very important role in observed
differences in pp and pp cross sections and it is
lively discussed in the old and recent papers devoted
to phenomenological models [2].

(2) In order to make a conclusion about possible
behavior of pf¥(s) at s — co we should consider
the most general case for odderon contribution
allowed by the known restrictions on asymptotic
properties of scattering pp and pp amplitudes.

This is the goal of the present paper. Starting from
the main strict results about crossing-even and
crossing-odd pp and pp amplitudes we will show
what we can say about total pp and pp cross
sections and pf? (s).

We consider here the real parts of crossing-even and
crossing-odd pp and pp amplitudes which are dominated
at high energy by pomeron (presumably by Froissaron) and
odderon contribution correspondingly. It is assumed that
odderon satisfies the general bounds known from S-matrix
theory.
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II. REAL PART OF THE FORWARD SCATTERING
AMPLITUDE

The crossing-even and crossing-odd amplitudes
A (s,t=0)=A,(s),A_(s,1 =0) = A_ of the forward
elastic pp and pp scattering are defined as follows:

Fols) = 176 £ sl F(5) = As.0). (1)

where m is the mass of proton. Normalization of amplitudes
is defined by the optic theorem in the following form:

ImA(s)

sy/1 —4m2/s'

We use here the following main facts concerning the
amplitudes and cross sections under interest.
(A) Froissart-Martin-Lukazsuk bound [3]

o,(s) = (2)

o,(s) S —=In(s/s),  so=1GeV2 (3)
mﬂ'

In what follows we consider an arbitrary rise of cross
section

o,(s) o< In*(s/s¢), 0<a<2. (4)
(B) Bound on the difference of pp and pp cross
sections [4]:

Ao, = |0fp(s)

e 2 |mA_(5.0) xIn(s/s0). (5)

s\/1—4m?/s

where f < a/2.
We would like to note here that the above
assumptions (4) and (5) mean that the pomeron

— ot (s)|
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and the odderon (at ¢ = 0) are located in complex
angular momentum at j=0. It is required by
unitarity for the rising with energy pomeron (in
some sense we consider the unitarized pomeron and
odderon). While the j-location of the odderon is in
agreement with QCD results ap(0) =1 [5-7], a
kind of QCD odderon j-singularity [either simple
pole or more (less) hard singularity] is unknown
theoretically. Besides that, available experimental
data on Ag, are not sufficient for any solid con-
clusion about difference of the pp and pp cross
sections at high energy. Therefore we consider the
arbitrary value of the parameter f.

(C) The amplitudes f.(s) are analytic functions of s
in the whole complex plane. These amplitudes
satisfy the twice subtracted dispersion relations
because of f,(s) o« sIn®(s/4m?) and f_(s)
sin”(s/4m?) at s > 4m?, and a, > O:

Ref(s) _ f4(0)  2s © ds' Imf (5
= +;'le2 (8/2

s o A
(6)
where P means principal integral value,
Ref_(s) 2s? /00 ds'  Imf_(s')
=fL(0)+— .
s f—( )+ e P A (s/z_sz) s/2
()

Our aim is to find an asymptotic behavior of the real part
of leading terms in crossing-even and crossing-odd ampli-
tudes making use of Egs. (6) and (7) taking a general form
of crossing-even and -odd contributions (4) and (5). It
would be sufficient in the case to use the derivative
dispersion relations (DDR). They were suggested in [8].
One can find more details in Refs. [9-11].

Let us consider the dispersion relations for arbitrary (but
rising with energy) pomeron and odderon with the bounds
(4) and (5). At s — oo one can use the following approxi-
mation for f(s):

&, a<2,

9. p<a E=In(s/4m?). (8)

Imf ., (s)/s~ ri{

The rigorous general constraint (see, for example, [12])

0" (s) = o/ (s)|

of’(s) + 7" (s)

-0 ats— o 9)

is satisfied for the amplitudes (8) at any f < a/2.

Making use of Eq. (8) and the method to obtain DDR
for Ref.(s) at s — oo, described in the Appendix, we
can write

tan (2d)&% = Zd(1 + O(d*))&"
z%afa‘l,

N (=)
Mzri —cot (5d)&* = —%gﬁ (10)
S =(5) 4

~=2d7'¢(1+ O(d))
=—2[déd ~ =2,

where d = d/d¢. The sign “~” in Ref_(s) is originated
from our definition of the amplitudes f. in Eq. (1).
For the leading terms at s — co we have

1
;Ref+(s) = mgaéa_l, (11)
1 2
sRef_(s) = r_”(l +ﬁ)§ 7, (12)
2
Reff(9) = |y oo™ F ro =gy €] (19

If we consider parameters a and f in region

0<a<2 0<pf<a2 (14)

which corresponds to the models with infinitely rising o,
and |Ac,| we find that the second term in Eq. (13)
dominates at £ — oo because of f+1>1anda—1< 1.

So, the first conclusion is the following.

The real part of the pp and pp scattering amplitude in
the models with infinitely rising cross sections and differ-
ence of the cross sections is asymptotically dominated by
the odderon contribution.

Thus, in this case

_Re g;(s) N

r_ 2/x
S ImfOh(s) T T 14 p

1+/}—a. 15
ry 1 +ﬂ§ (15)

Prn(s)

If0 < f <a—1thenaté — oo ratios p(£) — £0 (with the
opposite signs for pp and pp). Butif a—1 < f < a/2
then ratios p(¢) - +oo. However, if 1+ <a—1 and
p > —1 the crossing-even term is dominating and
p(&) = +0. This is shown on Fig. 1.

In the case of the maximal odderon at fixed 0 < @ <2
we have f = a/2. Then at any allowed positive a

/4
—r

14+a/2
> ¢

Refpp(s) =s|5ra8 Fr_ o

1+ a/2)

2r_ €l+a/2‘ (16)

E S 0+ a)2)
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FIG. 1. Ratio pbP at s — oo in different regions of the
plane (a, f3).

Consequently

o ):Re gg(s)z 2r_/m 1 fea (17)
bp Imf270(s) ry l+a/2 ’

We would like to notice that at # = a/2 the |p5"(s)| = oo
at s > o0 if 0 < a < 2. It is the second conclusion.

As well we have the third conclusion: |pp)(s)| —
const # 0 if r_ #0 only in the case of the Froissaron
and maximal odderon (@ =2, f = 1).

In the Froissaron-maximal odderon (FMO) model
[13,14] we have considered and compared with the latest
data of TOTEM [15,16] the case @ = 2, f = 1. Performing
fit with arbitrary values of @ and f# [14] we have found that
a, p come back to the maximal values 2,1, correspondingly.

In [13] the leading terms were parametrized in the form

k iH,& ~iH,E* + nH ¢,
—fiz{ = A (18)
§ 0,8~ 08 —i0xg,

where k = 0.3894, ... mbGeV? and & = & — ix/2.

Comparing Egs. (11) and (12) with (18) we have
rp = Hl/k, r_ = —7T0]/k, where H] =0.25 mb, 0] =
—0.05 mb [13]. Thus
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FIG. 2. Extrapolation of o,(s) and p(s) in the FMO model at
t=0[13].

. _ 0
limpfh(s) =F — = iH—i =F0.2. (19)
+

In Fig. 2 we show an extrapolation of the result
obtained in [13] pgﬁ for higher energies. One can see that
the real asymptotic regime occurs at extremely high energy.
Even a change of the sign in pPP(s) is attained at

Vs~ 10* TeV.

III. CONCLUSION

We have shown that the ratios p}7(s) of the real to
imaginary part of forward elastic pp and pp scattering is
not positive for both pp — pp and pp — pp processes
with an odderon contribution to the amplitudes do not
vanish at § — oo.

We would like to emphasize that such a regime is
confirmed by comparison of the Froissaron and maximal
odderon approach [13,14] with the experimental data on
forward pp and pp scattering including the latest TOTEM
data. The model predicts asymptotic values of the ratios
Php(s = 00)= F 0.2. Of course it would be nice to have
more precise data on pp and pp at various energies (for
example, at 900 GeV at LHC) and not only from the
TOTEM experiment.
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APPENDIX

The integrals in (6) and (7) (without unimportant at
s — oo subtracted terms) can be presented in the common
form with v =1 for Imf, (s) and v = 0 for Imf_(s)

Ref(s) 2, [~ ds ,
s _;S lezs’z—szg(s)

2o [T CE e, A
where

o) = (&) Imf (+) /¢
or

9(&) = e Ve Imf (&),

After some simple transformation one can obtain
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ef+1
ef—1

e~Ref (&) 9(&' =0)

1
= e(l_”)g{ln
T
ef + e

- [Taem S gy}

The logarithmic factor in the integral (A2) can be trans-
formed as follows:

e 1 ot Q€82 1 o-(E-0)/2
ln|e§’_e§| @072 _ -0
1, 1+ e
In| coth— (& — 5)’ =T
©_ o—(2p+1 |x]
-2 — g _
Z 2p+1 "7 * g

All other factors in the (A2) can be expanded in powers

of & — &

Taking into account the above expression and omitting
the first term in (A2) because it goes to 0 at £ — oo one can
write the integral (A2) in the form

where

)k+n

I(é;p,k, n) :/O dé e~ (2p+1)[¢'~ 5\(
= (i [Fagetried) (g - gy

+/ d!;’ 2p+1)(& 5)(5/ _§)k+n
¢

1
G
+ (=D (k+n+1,62p + 1)]

[(k+n+1))

and y(a, x) is incomplete gamma function. At fixed a and
X > o0

y(a,x) =T(a) —e*x*(1 + O(1/x), (A5)
therefore we have
B 2 1 o~ (k4 n)!
fRef(g) ;;}<2p+1)2;; k!
v— n d k
(o) (557 0+ 0o
2 1 1
_;;(217“)2{1—(v—1+5l)/(2p+1)

1 _
+ 1+ @w-1+4d)/2p+ 1)}9(5)

4 & 1 5
:2;<2p+ 12-(w-1 +21)2g(§>'

The last sum in the above expression is simplified making
use of the equality [17]

[Se]

Z = %tan(ﬂa/Z).

= 2p+

Thus, we have finally the asymptotic form of the derivative
dispersion relations

Mef,(s)/s ~ tan (g a) mf.(s)/s,  (A6)
Ref_(s)/s ~ tan B(—l + 21)} Imf_(s)/s
- —Cot( )Imf (s)/s (A7)

114039-4



RATIO pgﬁ(S) IN FROISSARON ...

PHYS. REV. D 100, 114039 (2019)

[1] A. Martin and T. Tsun Wu, Phys. Rev. D 97, 014011 (2018).

[2] L. Lukazsuk and B. Nicolescu, Lett. Nuovo Cimento 8, 405
(1973); D. Joynson, E. Leader, B. Nicolescu, and C. Lopez,
Nuovo Cimento A 30, 345 (1975).

[3] M. Froissart, Phys. Rev. 123, 1053 (1961); L. Lukaszuk and
A. Martin, Nuovo Cimento A 52, 122 (1967).

[4] R.J. Eden, Rev. Mod. Phys. 43, 15 (1971), and the
references therein; H. Cornille and R. E. Hendrick, Phys.
Rev. D 10, 3805 (1974).

[5] J. Bartels, L. N. Lipatov, and G. P. Vacca, Phys. Lett. B 477,
178 (2000).

[6] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Phys.
Lett. B 586, 267 (2004).

[7] J. Bartels, C. Contreras, and G. Paolo Vacca, arXiv:1910
.04588.

[8] J. B. Bronzan, G. L. Kane, and U. P. Sukhatme, Phys. Lett.
49B, 272 (1974).

[9] K. Kang and B. Nicolescu, Phys. Rev. D 11, 2461

(1975).

[10] J.R. Cudell, E. Martynov, and O. V. Selyugin, arXiv:hep-
ph/0307254.

[11] R.E. Avilaand M. J. Menon, Nucl. Phys. A744, 249 (2004);
Braz. J. Phys. 37, 661 (2007).

[12] G. Grunderg and T.N. Truong, Phys. Rev. Lett. 31, 63
(1973).

[13] E. Martynov and B. Nicolescu, Phys. Lett. B 778, 414
(2018).

[14] E. Martynov and B. Nicolescu, Phys. Lett. B 786, 207
(2018).

[15] G. Antchev et al., Eur. Phys. J. C 79, 103 (2019).

[16] G. Antchev et al., Eur. Phys. J. C 79, 785 (2019).

[17] A.P. Prudnikov, J.A. Bryckov, and O.I. Maricev,
Integrals and series, Elementary Functions, Vol. 1 (Gordon
and Breach, New York, 1981).

114039-5


https://doi.org/10.1103/PhysRevD.97.014011
https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02730293
https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1007/BF02739279
https://doi.org/10.1103/RevModPhys.43.15
https://doi.org/10.1103/PhysRevD.10.3805
https://doi.org/10.1103/PhysRevD.10.3805
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.physletb.2004.02.036
https://arXiv.org/abs/1910.04588
https://arXiv.org/abs/1910.04588
https://doi.org/10.1016/0370-2693(74)90432-8
https://doi.org/10.1016/0370-2693(74)90432-8
https://doi.org/10.1103/PhysRevD.11.2461
https://doi.org/10.1103/PhysRevD.11.2461
https://arXiv.org/abs/hep-ph/0307254
https://arXiv.org/abs/hep-ph/0307254
https://doi.org/10.1016/j.nuclphysa.2004.08.014
https://doi.org/10.1590/S0103-97332007000400035
https://doi.org/10.1103/PhysRevLett.31.63
https://doi.org/10.1103/PhysRevLett.31.63
https://doi.org/10.1016/j.physletb.2018.01.054
https://doi.org/10.1016/j.physletb.2018.01.054
https://doi.org/10.1016/j.physletb.2018.09.049
https://doi.org/10.1016/j.physletb.2018.09.049
https://doi.org/10.1140/epjc/s10052-019-6567-0
https://doi.org/10.1140/epjc/s10052-019-7223-4

