
 

Ratio ρppp̄pðsÞ in Froissaron and maximal odderon approach
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The ratios ρppp̄pðsÞ of the real to the imaginary part of forward elastic pp and p̄p scattering amplitudes at
very high energies are considered in the models with rising total cross sections and its difference. It is
shown from the dispersion relations for pp and p̄p scattering amplitudes that in the Froissaron and
maximal odderon approach the ratios do not vanish asymptotically and they have the opposite signs for pp
and p̄p scattering.
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I. INTRODUCTION

It was proved in the paper [1] that the real part of
the crossing-even elastic scattering amplitude has to be
positive at s → ∞. Generally speaking in order to know
both the ratios ρhh

h̄h
ðsÞ, the corresponding crossing-even and

crossing-odd components must be jointly considered. We
would like to remark the following points concerning the
special case where hadron h is a proton.
(1) The crossing odd component, odderon, for these

amplitudes plays a very important role in observed
differences in pp and p̄p cross sections and it is
lively discussed in the old and recent papers devoted
to phenomenological models [2].

(2) In order to make a conclusion about possible
behavior of ρppp̄pðsÞ at s → ∞ we should consider
the most general case for odderon contribution
allowed by the known restrictions on asymptotic
properties of scattering pp and p̄p amplitudes.
This is the goal of the present paper. Starting from

the main strict results about crossing-even and
crossing-odd pp and p̄p amplitudes we will show
what we can say about total pp and p̄p cross
sections and ρppp̄pðsÞ.

We consider here the real parts of crossing-even and
crossing-odd pp and p̄p amplitudes which are dominated
at high energy by pomeron (presumably by Froissaron) and
odderon contribution correspondingly. It is assumed that
odderon satisfies the general bounds known from S-matrix
theory.

II. REAL PART OF THE FORWARD SCATTERING
AMPLITUDE

The crossing-even and crossing-odd amplitudes
Aþðs; t ¼ 0Þ ¼ AþðsÞ; A−ðs; t ¼ 0Þ ¼ A− of the forward
elastic pp and p̄p scattering are defined as follows:

f�ðsÞ ¼
1

2
½fppðsÞ � fp̄pðsÞ�; fðsÞ≡ Aðs; 0Þ; ð1Þ

wherem is the mass of proton. Normalization of amplitudes
is defined by the optic theorem in the following form:

σtðsÞ ¼
ImAðsÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p : ð2Þ

We use here the following main facts concerning the
amplitudes and cross sections under interest.
(A) Froissart-Martin-Lukazsuk bound [3]

σtðsÞ ≤
π

m2
π
ln2ðs=s0Þ; s0 ¼ 1 GeV2: ð3Þ

In what follows we consider an arbitrary rise of cross
section

σtðsÞ ∝ lnαðs=s0Þ; 0 < α ≤ 2: ð4Þ

(B) Bound on the difference of pp and p̄p cross
sections [4]:

Δσt ¼ jσppt ðsÞ − σp̄pt ðsÞj

¼ 2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p jImA−ðs; 0Þj ∝ lnβðs=s0Þ; ð5Þ

where β ≤ α=2.
We would like to note here that the above

assumptions (4) and (5) mean that the pomeron
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and the odderon (at t ¼ 0) are located in complex
angular momentum at j ¼ 0. It is required by
unitarity for the rising with energy pomeron (in
some sense we consider the unitarized pomeron and
odderon). While the j-location of the odderon is in
agreement with QCD results αOð0Þ ¼ 1 [5–7], a
kind of QCD odderon j-singularity [either simple
pole or more (less) hard singularity] is unknown
theoretically. Besides that, available experimental
data on Δσt are not sufficient for any solid con-
clusion about difference of the pp and p̄p cross
sections at high energy. Therefore we consider the
arbitrary value of the parameter β.

(C) The amplitudes f�ðsÞ are analytic functions of s
in the whole complex plane. These amplitudes
satisfy the twice subtracted dispersion relations
because of fþðsÞ ∝ slnαðs=4m2Þ and f−ðsÞ ∝
slnβðs=4m2Þ at s ≫ 4m2, and α; β > 0:

RefþðsÞ
s

¼ fþð0Þ
s

þ 2s
π
P
Z

∞

4m2

ds0

ðs02 − s2Þ
Imfþðs0Þ

s0
;

ð6Þ

where P means principal integral value,

Ref−ðsÞ
s

¼ f0−ð0Þ þ
2s2

π
P
Z

∞

4m2

ds0

ðs02 − s2Þ
Imf−ðs0Þ

s02
:

ð7Þ

Our aim is to find an asymptotic behavior of the real part
of leading terms in crossing-even and crossing-odd ampli-
tudes making use of Eqs. (6) and (7) taking a general form
of crossing-even and -odd contributions (4) and (5). It
would be sufficient in the case to use the derivative
dispersion relations (DDR). They were suggested in [8].
One can find more details in Refs. [9–11].
Let us consider the dispersion relations for arbitrary (but

rising with energy) pomeron and odderon with the bounds
(4) and (5). At s → ∞ one can use the following approxi-
mation for f�ðsÞ:

Imf�ðsÞ=s ≈ r�

�
ξα; α ≤ 2;

ξβ; β ≤ α=2;
ξ ¼ lnðs=4m2Þ: ð8Þ

The rigorous general constraint (see, for example, [12])

jσppt ðsÞ − σp̄pt ðsÞj
σppt ðsÞ þ σp̄pt ðsÞ → 0 at s → ∞ ð9Þ

is satisfied for the amplitudes (8) at any β ≤ α=2.
Making use of Eq. (8) and the method to obtain DDR

for Ref�ðsÞ at s → ∞, described in the Appendix, we
can write

Ref�ðsÞ
s

≈ r�

8>>>>>>>>><
>>>>>>>>>:

tan ðπ
2
d̂Þξα ¼ π

2
d̂ð1þOðd̂2ÞÞξα

≈ π
2
αξα−1;

− cot ðπ
2
d̂Þξα ¼ − 1−1

2
ðπd̂
2
Þ2þ…

πd̂
2
−1
3
ðπd̂
2
Þ3þ��� ξ

β

≈ − 2
π d̂

−1ξβð1þOðd̂2ÞÞ
¼ − 2

π

R
dξξβ ≈ − 2

π
1

1þβ ξ
βþ1;

ð10Þ

where d̂ ¼ d=dξ. The sign “−” in Ref−ðsÞ is originated
from our definition of the amplitudes f� in Eq. (1).
For the leading terms at s → ∞ we have

1

s
RefþðsÞ ¼ rþ

π

2
αξα−1; ð11Þ

1

s
Ref−ðsÞ ¼ −r−

2

πð1þ βÞ ξ
1þβ; ð12Þ

Refppp̄pðsÞ ¼ s

�
π

2
rþαξα−1 ∓ r−

2

πð1þ βÞ ξ
1þβ

�
: ð13Þ

If we consider parameters α and β in region

0 < α ≤ 2 0 < β ≤ α=2 ð14Þ

which corresponds to the models with infinitely rising σt
and jΔσtj we find that the second term in Eq. (13)
dominates at ξ → ∞ because of β þ 1 > 1 and α − 1 ≤ 1.
So, the first conclusion is the following.
The real part of the pp and p̄p scattering amplitude in

the models with infinitely rising cross sections and differ-
ence of the cross sections is asymptotically dominated by
the odderon contribution.
Thus, in this case

ρppp̄pðsÞ ¼
Refppp̄pðsÞ
Imfppp̄pðsÞ

≈ ∓ r−
rþ

2=π
1þ β

ξ1þβ−α: ð15Þ

If 0 < β < α − 1 then at ξ → ∞ ratios ρðξÞ → �0 (with the
opposite signs for pp and p̄p). But if α − 1 < β < α=2
then ratios ρðξÞ → �∞. However, if 1þ β ≤ α − 1 and
β > −1 the crossing-even term is dominating and
ρðξÞ → þ0. This is shown on Fig. 1.
In the case of the maximal odderon at fixed 0 < α ≤ 2

we have β ¼ α=2. Then at any allowed positive α

Refppp̄pðsÞ ¼ s

�
π

2
rþαξα−1 ∓ r−

2

πð1þ α=2Þ ξ
1þα=2

�

≈ ∓ s
2r−

πð1þ α=2Þ ξ
1þα=2: ð16Þ
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Consequently

ρppp̄pðsÞ ¼
Refppp̄pðsÞ
Imfppp̄pðsÞ

≈ ∓ 2r−=π
rþ

1

1þ α=2
ξ1−α=2: ð17Þ

We would like to notice that at β ¼ α=2 the jρppp̄pðsÞj → ∞
at s → ∞ if 0 < α < 2. It is the second conclusion.
As well we have the third conclusion: jρppp̄pðsÞj →

const ≠ 0 if r− ≠ 0 only in the case of the Froissaron
and maximal odderon (α ¼ 2, β ¼ 1).
In the Froissaron-maximal odderon (FMO) model

[13,14] we have considered and compared with the latest
data of TOTEM [15,16] the case α ¼ 2, β ¼ 1. Performing
fit with arbitrary values of α and β [14] we have found that
α, β come back to the maximal values 2,1, correspondingly.
In [13] the leading terms were parametrized in the form

k
s
f� ¼

�
iH1ξ̃

2 ≈ iH1ξ
2 þ πH1ξ;

O1ξ̃
2 ≈O1ξ

2 − iO1πξ;
ð18Þ

where k ¼ 0.3894;… mbGeV2 and ξ̃ ¼ ξ − iπ=2.
Comparing Eqs. (11) and (12) with (18) we have

rþ ¼ H1=k, r− ¼ −πO1=k, where H1 ¼ 0.25 mb, O1 ¼
−0.05 mb [13]. Thus

lim
s→∞

ρppp̄pðsÞ ¼∓ r−
rþπ

¼ �O1

H1

¼∓ 0.2: ð19Þ

In Fig. 2 we show an extrapolation of the result
obtained in [13] ρppp̄p for higher energies. One can see that
the real asymptotic regime occurs at extremely high energy.
Even a change of the sign in ρppðsÞ is attained atffiffiffi
s

p
∼ 104 TeV.

III. CONCLUSION

We have shown that the ratios ρppp̄pðsÞ of the real to
imaginary part of forward elastic pp and p̄p scattering is
not positive for both pp → pp and p̄p → p̄p processes
with an odderon contribution to the amplitudes do not
vanish at s → ∞.
We would like to emphasize that such a regime is

confirmed by comparison of the Froissaron and maximal
odderon approach [13,14] with the experimental data on
forward pp and p̄p scattering including the latest TOTEM
data. The model predicts asymptotic values of the ratios
ρppp̄pðs → ∞Þ≈ ∓ 0.2. Of course it would be nice to have
more precise data on pp and p̄p at various energies (for
example, at 900 GeV at LHC) and not only from the
TOTEM experiment.
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APPENDIX

The integrals in (6) and (7) (without unimportant at
s → ∞ subtracted terms) can be presented in the common
form with ν ¼ 1 for ImfþðsÞ and ν ¼ 0 for Imf−ðsÞ

RefðsÞ
s

¼ 2

π
s2−νP

Z
∞

4m2

ds0

s02 − s2
gðs0Þ

¼ 2

π
eð2−νÞξP

Z
∞

0

eξ
0
dξ0

e2ξ
0 − e2ξ

gðξ0Þ; ðA1Þ

where

gðs0Þ ¼ ðs0Þν−1Imfðs0Þ=s0

or

gðξ0Þ ¼ eðν−1Þξ0e−ξ0 Imfðξ0Þ:

After some simple transformation one can obtain
FIG. 2. Extrapolation of σtðsÞ and ρðsÞ in the FMO model at
t ¼ 0 [13].

FIG. 1. Ratio ρppp̄p at s → ∞ in different regions of the
plane (α, β).
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e−ξRefðξÞ ¼ 1

π
eð1−νÞξ

�
ln
eξ þ 1

eξ − 1
gðξ0 ¼ 0Þ

þ
Z

∞

0

dξ0 ln
eξ þ eξ

0

jeξ − eξ
0 j ðe

ðν−1Þξ0gðξ0ÞÞ0
�
: ðA2Þ

The logarithmic factor in the integral (A2) can be trans-
formed as follows:

ln
eξ

0 þ eξ

jeξ0 − eξj ¼ ln
eðξ0−ξÞ=2 þ e−ðξ0−ξÞ=2

jeðξ0−ξÞ=2 − e−ðξ0−ξÞ=2j

¼ ln

���� coth 12 ðξ0 − ξÞ
���� ¼ ln

1þ e−jxj

1 − e−jxj

¼ 2
X∞
p¼0

e−ð2pþ1Þjxj

2pþ 1
; x ¼ ξ0 − ξ:

All other factors in the (A2) can be expanded in powers
of ξ0 − ξ:

ðeðν−1Þξ0gðξ0ÞÞ0 ¼eðν−1Þξ0
�
ν−1þ d

dξ0

	
gðξ0Þ;

g̃ðξ0Þ¼
�
ν−1þ d

dξ0

	
gðξ0Þ¼

X∞
k¼0

ðξ0−ξÞk
k!

d̂kg̃ðξÞ;

eð1−νÞξeðν−1Þξ0 ¼
X∞
n¼0

ðν−1Þn
n!

ðξ0−ξÞn:

d̂¼d=dξ: ðA3Þ

Taking into account the above expression and omitting
the first term in (A2) because it goes to 0 at ξ → ∞ one can
write the integral (A2) in the form

e−ξRefðξÞ ¼ 2

π

X∞
p¼0

1

2pþ 1

X∞
k¼0

X∞
n¼0

ðν − 1Þn
k!n!

× Iðξ;p; k; nÞ · d̂kg̃ðξÞ; ðA4Þ

where

Iðξ;p; k; nÞ ¼
Z

∞

0

dξ0e−ð2pþ1Þjξ0−ξjðξ0 − ξÞkþn

¼ ð−1Þkþn

Z
ξ

0

dξ0e−ð2pþ1Þðξ−ξ0Þðξ − ξ0Þkþn

þ
Z

∞

ξ
dξ0e−ð2pþ1Þðξ0−ξÞðξ0 − ξÞkþn

¼ 1

ð2pþ 1Þkþnþ1
½Γðkþ nþ 1ÞÞ

þ ð−1Þkþnγðkþ nþ 1; ξð2pþ 1Þ�

and γða; xÞ is incomplete gamma function. At fixed a and
x → ∞

γða; xÞ ¼ ΓðaÞ − e−xxað1þOð1=xÞ; ðA5Þ
therefore we have

e−ξRefðξÞ ≈ 2

π

X∞
p¼0

1

ð2pþ 1Þ2
X∞
k¼0

X∞
n¼0

ðkþ nÞ!
k!n!

×

�
ν − 1

2pþ 1

	
n
�

d̂
2pþ 1

	k

ð1þ ð−1ÞkþnÞg̃ðξÞ

¼ 2

π

X∞
p¼0

1

ð2pþ 1Þ2
�

1

1 − ðν − 1þ d̂Þ=ð2pþ 1Þ

þ 1

1þ ðν − 1þ d̂Þ=ð2pþ 1Þ

�
g̃ðξÞ

¼ 4

π

X∞
p¼0

1

ð2pþ 1Þ2 − ðν − 1þ d̂Þ2 g̃ðξÞ:

The last sum in the above expression is simplified making
use of the equality [17]

X∞
k¼0

1

ð2pþ 1Þ2 − a2
¼ π

4a
tanðπa=2Þ:

Thus, we have finally the asymptotic form of the derivative
dispersion relations

ℜefþðsÞ=s ≈ tan

�
π

2
d̂

	
ImfþðsÞ=s; ðA6Þ

Ref−ðsÞ=s ≈ tan

�
π

2
ð−1þ d̂Þ

�
Imf−ðsÞ=s

¼ − cot

�
π

2
d̂

	
Imf−ðsÞ=s: ðA7Þ
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