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A symmetry-preserving approach to the two valence-body continuum bound-state problem is used to
calculate the elastic electromagnetic form factors of the ρ-meson and subsequently to study the evolution of
vector-meson form factors with current-quark mass. To facilitate a range of additional comparisons, K�

form factors are also computed. The analysis reveals that vector mesons are larger than pseudoscalar
mesons; composite vector mesons are nonspherical, with magnetic and quadrupole moments that deviate
∼30% from point-particle values; in many ways, vector-meson properties are as much influenced by
emergent mass as those of pseudoscalars; and vector-meson electric form factors possess a zero at spacelike
momentum transfer. Qualitative similarities between the electric form factors of the ρ and the proton, Gp

E,
are used to argue that the character of emergent mass in the Standard Model can force a zero in Gp

E.
Moreover, the existence of a zero in vector-meson electric form factors entails that a single-pole vector-
meson dominance model can only be of limited use in estimating properties of off-shell vector mesons,
providing poor guidance for systems in which the Higgs mechanism of mass generation is dominant.
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I. INTRODUCTION

The Lagrangian that defines quantum chromodynamics
(QCD) appears very simple; yet it is responsible for a large
array of high-level phenomena with enormous apparent
complexity. Of particular importance is the emergence of
the proton mass scale, mp ≈ 1 GeV, which is 2 orders of
magnitude larger than that associated with the Higgs
mechanism of mass generation in the light-quark sector:
empirically, the scale of the Higgs effect for light quarks is
only ∼1 MeV. This also has implications for the pion.
Absent a Higgs mechanism, the pion is massless, mπ ¼ 0;
but the current masses of the light quarks in the pion are the
same as they are in nucleons. Hence, the naıve Higgs-
mechanism result is mπ ≈ ðmu þmdÞ, yielding a value
which is just 5% of the physical mass.
The physical pion mass is achieved differently, being

obtained via an enhancement factor, produced by dynami-
cal chiral symmetry breaking (DCSB), which multiplies

the current-quark mass contribution to the pion mass-
squared [1]:

m2
π ¼ ðmu þmdÞ

−hq̄qi
f2π

; ð1Þ

where hq̄qi is the chiral condensate [2] and fπ is the pion’s
leptonic decay constant, both of which are order parameters
for DCSB.
The scale of DCSB is Mχ ∼mp=3, i.e. the size of a

typical constituent mass for a u- or d-quark, and the
Nambu-Goldstone-boson character of the pion [3,4] means
that although it should have a mass similar to that of the
ρ-meson, mρ ≈ 2Mχ , most of that mass is canceled by
gluon binding effects [5].
In quantum mechanics the ρ-meson may be viewed as

the valence-quark spin-flip partner of the pion. Hence,
marked differences between the properties of these two
states, such as that between their masses, or unexpected
similarities, which calculations might reveal, could point to
features of Nature that depend critically on the properties
of strong-coupling yet asymptotically free quantum field
theories in four spacetime dimensions, in particular, how
mass emerges.
Electromagnetic form factors should also shed light on

the environment sensitivity of phenomena deriving from
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the emergence of mass. For the pion, despite the exper-
imental challenges, elastic [6–10] and transition [11–14]
form factors have been measured, and the theoretical
discussion of these data continues to provide novel insights
[15–20] and plans for new measurements [21–23].
The short lifetime of the ρ-meson means that related

measurements are generally impractical, although there is
an empirically based estimate of the associated magnetic
moment [24]: μρ ¼ 2.15� 0.5. Notwithstanding the
absence of experimental data, there are many theoretical
computations of ρ-meson electromagnetic form factors,
using a wide variety of tools [25].
In addition to the interest in developing theoretical

insights by contrasting π- and ρ-meson properties, the
J ¼ 1 character of the ρ entails that it has three distinct
electromagnetic form factors and hence more structural
freedom. For instance, the ρ has a quadrupole form factor;
thus, like the deuteron, it possesses an observable (in
principle) spectroscopic deformation [26]. Moreover, its
electric form factor, Gρ

E, is the sum of three terms, one of
which is negative definite; hence Gρ

E may possess a zero.
This possibility establishes its role as a proxy for the
proton’s electric form factor, for which data obtained at the
Thomas Jefferson National Accelerator Facility (JLab)
show a trend toward zero with increasing momentum-
transfer-squared [27–31].
These observations provide ample motivation for the

study of vector-meson form factors. Herein, therefore, we
employ a continuum approach to quark-antiquark bound
states in quantum field theory, used successfully to predict
and explain a wide range of hadron properties, e.g.
Refs. [16–20,32–41], to calculate the elastic electromagnetic
form factors of the ρ-meson and study their evolution with
current-quark mass. We also compute K� elastic form
factors; and, where worthwhile, make comparisons with
the charge distributions within pseudoscalar mesons. Our
approach to the calculation of meson form factors is detailed
in Sec. II. It produces the results discussed in Sec. III.
A summary and perspective are presented in Sec. IV.

II. VECTOR-MESON FORM FACTORS:
ELEMENTS

A. Form factor definitions

A JP ¼ 1− vector meson, V, with mass mV, constituted
from a valence quark with flavor f and valence antiquark
with flavor ḡ, has three elastic form factors and we follow
Refs. [42–45] in defining them. Denoting the incoming
photon momentum by Q, and the incoming and outgoing
V-meson momenta by pi ¼ K −Q=2 and pf ¼ K þQ=2,
then K ·Q ¼ 0, K2 þQ2=4 ¼ −m2

V and the V − γ −V
vertex can be expressed:

Λλ;μνðK;QÞ ¼
X
q¼f;g

eqΛ
q
λ;μνðK;QÞ; ð2aÞ

Λq
λ;μνðK;QÞ ¼

X3
j¼1

Tj
λ;μνðK;QÞFq

j ðQ2Þ; ð2bÞ

FV
j ðQ2Þ ¼

X
q¼f;g

Fq
j ðQ2Þ; ð2cÞ

where feq; q ¼ f; ḡg are the electric charges of the valence
constituents, defined in units of the positron charge, and the
basis tensors are

T1
λ;μνðK;QÞ ¼ 2KλPT

μαðpiÞPT
ανðpfÞ; ð3aÞ

T2
λ;μνðK;QÞ ¼

�
Qμ − pi

μ
Q2

2m2
V

�
PT

λνðpfÞ

−
�
Qν þ pf

ν
Q2

2m2
V

�
PT

λμðpiÞ; ð3bÞ

T3
λ;μνðK;QÞ ¼ Kλ

m2
V

�
Qμ − pi

μ
Q2

2m2
V

��
Qν þ pf

ν
Q2

2m2
V

�
; ð3cÞ

where PT
μνðpÞ ¼ δμν − pμpν=p2. So long as a symmetry-

preserving regularization and renormalization scheme is
implemented at every stage of the calculation, the following
identities are preserved:

QλΛ
q
λ;μνðK;QÞ ¼ 0; ð4Þ

pi
μΛ

q
λ;μνðK;QÞ ¼ 0 ¼ pf

νΛq
λ;μνðK;QÞ: ð5Þ

The electric, magnetic and quadrupole form factors are
constructed as follows:

GV
E ðQ2Þ ¼ FV

1 ðQ2Þ þ 2

3
ηGV

Q ðQ2Þ; ð6aÞ

GV
MðQ2Þ ¼ −FV

2 ðQ2Þ; ð6bÞ

GV
Q ðQ2Þ ¼ FV

1 ðQ2Þ þ FV
2 ðQ2Þ þ ½1þ η�FV

3 ðQ2Þ; ð6cÞ

where η ¼ Q2=½4m2
V�. In the limit Q2 → 0, these form

factors define the charge, and magnetic and quadrupole
moments of the V-meson, viz.,

GV
E ðQ2 ¼ 0Þ ¼ 1; ð7aÞ

GV
MðQ2 ¼ 0Þ ¼ μV; GV

Q ðQ2 ¼ 0Þ ¼ QV: ð7bÞ

Furthermore, GEðQ2 ¼ 0Þ ¼ F1ðQ2 ¼ 0Þ and

ΛðK;QÞ ¼Q2→0
2KλPT

μαðKÞPT
ανðKÞF1ð0Þ: ð8Þ
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Naturally, F1ð0Þ≡ 1 for a meson with unit positive electric
charge and F1ð0Þ≡ 0 for a neutral meson.
It remains to specify the photon-quark interaction

vertices, fΛq
λ;μν; q ¼ f; ḡg, and at leading order in the

systematic, symmetry-preserving Dyson-Schwinger equa-
tion (DSE) approximation scheme introduced in
Refs. [46,47], viz. the rainbow-ladder (RL) truncation:

Λf
λ;μνðK;QÞ ¼ NctrD

Z
d4k
ð2πÞ4 iΓ̄νðk;−pfÞSfðkþþÞ

× iΓf
λ ðkþþ; k−þÞSfðk−þÞ

× iΓμðk−0;piÞSgðk−−Þ; ð9aÞ

Λg
λ;μνðK;QÞ ¼ NctrD

Z
d4k
ð2πÞ4 iΓ̄νðk;−pfÞSfðkþþÞ

× iΓμðkþ0;piÞSgðkþ−Þ
× iΓg

λðkþ−; k−−ÞSgðk−−Þ; ð9bÞ

where kαβ ¼ kþ αQ=2þ βpi=2. The other elements in
Eq. (9) are the dressed-quark propagators, Sf;g, which,
consistent with Eq. (9), are computed using the rainbow-
truncationgap equation, and thevector-mesonBethe-Salpeter
amplitude Γμðk;PÞ and amputated dressed-quark-photon

vertices, Γf;g
λ ðkf; kiÞ, both computed in the RL truncation.1

B. Interaction kernel

The leading-order DSE result for the vector-meson form
factors is now determined once an interaction kernel is
specified for the RL Bethe-Salpeter equation. We use that
explained in Refs. [48,49]:

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð10aÞ

GμνðkÞ ¼ G̃ðk2ÞPT
μνðkÞ; ð10bÞ

with (s ¼ k2)

1

Z2
2

G̃ðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð11Þ

where γm ¼ 12=25, ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1, and
F ðsÞ ¼ f1 − expð−s=½4m2

t �Þg=s, mt ¼ 0.5 GeV. Z2 is the
dressed-quark wave function renormalization constant.
We employ a mass-independent momentum-subtraction
renormalization scheme for the gap and inhomogeneous

vertex equations, implemented by making use of the scalar
Ward-Green-Takahashi identity and fixing all renormaliza-
tion constants in the chiral limit [50], with renormalization
scale ζ ¼ 2 GeV≕ ζ2.
The development of Eqs. (10) and (11) is summarized in

Ref. [48] and their connection with QCD is described in
Ref. [51], but it is worth reiterating some points. For
instance, the interaction is deliberately consistent with that
determined in studies of QCD’s gauge sector, which
indicate that the gluon propagator is a bounded, regular
function of spacelike momenta that achieves its maximum
value on this domain at s ¼ 0 [51–58], and the dressed-
quark-gluon vertex does not possess any structure which
can qualitatively alter these features [59–67]. It is specified
in Landau gauge because, e.g. this gauge is a fixed point of
the renormalization group and ensures that sensitivity to
differences between Ansätze for the gluon-quark vertex are
least noticeable, thus providing the conditions for which
rainbow-ladder truncation is most accurate. The interaction
also preserves the one-loop renormalization group behavior
of QCD so that, e.g. the quark mass functions produced are
independent of the renormalization point. On the other
hand, in the infrared, i.e. s≲m2

p, Eq. (11) defines a two-
parameter model, the details of which determine whether
confinement and/or DCSB are realized in solutions of the
quark gap equations.
Computations [20,48,49] reveal that many properties

of light-quark ground-state vector and pseudoscalar
mesons are practically insensitive to variations of ω ∈
½0.4; 0.6� GeV, so long as

ς3 ≔ Dω ¼ constant: ð12Þ

This feature also extends to numerous characteristics of the
nucleon and Δ-baryon [36,37,39,68,69]. In the light quark
sector, therefore, the value of ς is chosen to reproduce, as
well as possible, the measured value of the pion’s mass and
leptonic decay constant. In RL truncation this requires [19]

ςq ¼ 0.82 GeV; ð13Þ

with renormalization-group-invariant current-quark mass

m̂u ¼ m̂d ¼ m̂ ¼ 6.8 MeV; ð14Þ

which corresponds to a one-loop evolved mass of mζ2 ¼
4.7 MeV. Thus defined, one obtains mπ ¼ 0.14 GeV,
fπ ¼ 0.095 GeV.
The same value of ς also serves for systems involving

s-quarks. For instance, with

m̂s ¼ 0.16 GeV; ð15Þ

corresponding to mζ2
s ¼ 0.11 GeV, ςq in Eq. (13) produces

a good description of K, η, η0 physics [19,20].

1The impact of corrections to the RL computation is under-
stood [16,17]. The dominant effect is a modification of form
factor anomalous dimensions and hence the associated logarith-
mic running. That running is slow and immaterial to the present
discussion, but its effect can readily be incorporated when
important.
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Herein, we also consider properties of vector mesons
constituted from a degenerate quark and antiquark whose
mass matches that of the c-quark. It is therefore pertinent
to remark that RL truncation has been explored in con-
nection with heavy-light mesons and heavy quarkonia
[32,38,70–74]. Those studies reveal that improvements
to RL can be important in heavy-light systems and that
a RL-kernel interaction strength fitted to pion properties
alone is not optimal in the treatment of heavy quarkonia.
Both observations are readily understood, but we focus on
the latter because it is most relevant to this study.
Recall, therefore, that for meson bound states it is now

possible [75–77] to employ sophisticated kernels which
overcome many weaknesses of RL truncation. The new
technique is symmetry preserving and has an additional
strength, i.e. the capacity to express DCSB nonperturba-
tively in the integral equations connected with bound states.
Owing to this feature, the scheme is described as the
“DCSB-improved” or “DB” truncation. In a realistic DB
truncation, ςDB ≈ 0.6 GeV, a value which coincides with
that predicted by solutions of QCD’s gauge-sector gap
equations [51,56,58,64]. Straightforward analysis shows
that corrections to RL truncation largely vanish in the heavy
+heavy-quark limit; hence the aforementioned agreement
entails that RL truncation should provide a sound approxi-
mation for systems involving only heavy quarks so long
as one employs ςDB as the infrared mass scale. In heavy-
quark systems we therefore employ Eqs. (10) and (11) as
obtained using

ςQ ¼ 0.6 GeV; ð16Þ

withω¼0.8GeV [32,36,38]. In this case, a renormalization-
group-invariant current-quark mass

m̂c ¼ 1.75 GeV; ð17Þ

corresponding to the one-loop-evolved value m2 GeV
c ¼

1.21 GeV, yields mJ=Ψ ¼ 3.09 GeV, fJ=Ψ ¼ 0.29 GeV,
values which compare favorably with other determina-
tions, respectively: 3.10 GeV [78] and 0.286(4) [79].

C. Propagators, amplitudes and vertices

The RL approximation to the elastic electromagnetic
form factor of a vector meson with mass mV is now
obtained as follows. (i) Solve the dressed-quark gap
equation using the interaction and current-quark masses
specified in Sec. II B, following Ref. [80] and adapting the
algorithm improvements from Ref. [81] when necessary.
(ii) With the dressed-quark propagators obtained thereby
and the same interaction, solve the inhomogeneous Bethe-
Salpeter equations to obtain the unamputated dressed-
quark-photon vertices, including their dependence on
Q2, as described, e.g. in Ref. [82]. (iii) With the same
inputs, solve the homogeneous Bethe-Salpeter equations to

obtain the (amputated) Bethe-Salpeter amplitudes for each
of the desired vector-meson bound states, obtaining a
complete picture of their dependence on ðk2; k · PÞ. (iv)
Combine these elements to form the integrands in Eq. (9)
and compute the integrals as a function of Q2 to extract the
form factors, FV

1;2;3ðQ2Þ.
It is here worth recording the following remarks. ðaÞ A

vector-meson Bethe-Salpeter amplitude involves eight
independent scalar functions, each labeled by the bound-
state mass-squared and depending on ðk2; k · PÞ [83]. The
Bethe-Salpeter wave function, constructed by attaching the
external dressed-quark propagator legs to the amplitude, is
expressed in terms of eight analogous functions. In the
meson’s rest frame, four of these functions describe 3S1
orbital angular momentum correlations between the
dressed valence quarks and the other four describe 3D1

correlations. Typical solutions of the vector-meson bound-
state problem indicate that the 3D1-wave strength is large
[71,84–86]; hence, vector mesons are deformed. ðbÞ In
completing steps (iii) and (iv), we emulate Ref. [43]
and solve directly for both Γμðkþ0; pi ¼ K −Q=2Þ and
Γνðk;pf ¼ K þQ=2Þ at each value of Q2 for which the
form factor is desired. This procedure is time consuming
but it improves numerical accuracy at higher Q2-values.
ðcÞ In a properly implemented RL truncation, i.e. so long as
one employs a symmetry-preserving regularization scheme
in solving for the propagators, amplitudes and vertices,
then, for a unit-charge state, FV

1 ð0Þ ¼ 1 ¼ GV
E ð0Þ is

guaranteed by the canonical normalization of the vector-
meson Bethe-Salpeter amplitude and Eq. (8) reproduces
the standard photointeraction vertex for an on-shell
vector meson.

III. VECTOR-MESON FORM FACTORS: RESULTS

A. Static properties

We have computed the elastic electromagnetic form
factors of the charged ρ-meson, charged and neutral K�-
meson, and those of fictitious charged vector mesons
constituted from u- and d̄-like quarks with current masses
equal to those of the s- and c-quarks, viz. ρs and ρc,
respectively. Results for the static properties of these
systems are collected in Table I.
The listed radii are defined as follows (L ¼ E, M):

ðrLVÞ2m2
V ¼ −½6=GV

L ð0Þ�
d
dx

GV
L ðxÞ

����
x¼0

: ð18Þ

This radius-squared can be negative for neutral hadrons,
which explains the “i” in such cases. The vector-meson
leptonic decay constants are computed using

fVmV ¼ trDZ2

Z
Λ d4k
ð2πÞ4 γμSðkþÞΓμðk;PÞSðk−Þ; ð19Þ
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where k� ¼ k� P=2 and a symmetry-preserving regulari-
zation scheme is used to define and evaluate the integral.
It is natural to first compare the vector-meson charge

radii with those of appropriate pseudoscalar meson ana-
logs: rπ¼0.66 fm [19]; rKþ ¼0.56 fm [34], rK0 ¼ 0.26i fm
[34]; rπs ¼ 0.49 fm [19]; and r̃η0c ¼ 0.16 fm, which is an
interaction radius defined via the γ�γ → ηc transition form
factor [17]. (Notably, r̃π0 ≈ rπ [16].) Evidently, the radius
of a given vector meson is larger than its pseudoscalar
counterpart. The difference diminishes with increasing
current-quark mass because spin-dependent interactions
are suppressed as current-quark masses grow. (The authors
of Ref. [43] report rρc ¼ 0.23 fm; cf. rπc ¼ 0.22 fm.)
As with pseudoscalar mesons [19], the product of the

decay constant and charge radius is roughly constant for
systems composed of light quarks:

m̂f;ḡ ≲msjfVrV ¼ 0.53ð3Þ; ð20Þ

i.e. within the domain upon which emergent mass is
dominant. Thereafter, as the Higgs mechanism of mass
generation becomes increasingly more effective, the value
of fVrV falls with increasing m̂, and the analogous product
for pseudoscalar mesons, fPrP, evolves so that the two
products become equal in the heavy-heavy limit [91]. Of
course, the charge radius is defined as a measure of the

behavior of GV
E on x ≃ 0. The evolution of GV

E with x is
discussed below.
As found elsewhere [43], Table I reveals that the

dimensionless vector-meson magnetic moment, Eq. (6b),
increases with increasing current-quark mass. However,
the growth is slow, becoming practically indiscernible on
m̂f;ḡ ≳ m̂s, viz. the domain upon which the Higgs mecha-
nism of mass generation dominates. Consequently, our
predicted value remains close to 2; hence, the interaction
between an external magnetic field and the composite,
nonpointlike vector meson diminishes as ∼2=mV, follow-
ing the point-particle pattern.
On the other hand, the magnitude of the dimensionless

quadrupole moment is significantly smaller than the point
particle value and decreases slowly with increasing current-
quark mass. Accordingly, the state remains deformed
and the quadrupole interaction between an external electro-
magnetic field and the composite, nonpointlike vector
meson falls as ∼ − 0.3=m2

V with growing meson mass.
Like the earlier DSE prediction [43], our result has the same
sign as that obtained in a recent lQCD simulation and is
similar in magnitude [87].
In order to expose deviations from point-particle behav-

ior and hence deformation in the composite vector-meson
systems, one can write [26]

μV ¼ 2þ ðκVγ − 1Þ þ λVγ ; ð21Þ

QV ¼ −1þ ð1 − κVγ Þ þ λVγ ; ð22Þ

in terms of which point-particle behavior is indicated by
1 − κVγ ¼ 0 ¼ λVγ . Expressing the Table I results in this
way, one finds

V ρ ρs ρc K�þ

1 − κVγ 0.32 0.32 0.28 0.23
λVγ 0.32 0.37 0.40 0.46

: ð23Þ

Thus perceived, one sees roughly equal compositeness-
induced deviations/deformations in both the magnetic and
quadrupole moments for all systems.
It is worth remarking here that RL truncation omits what

are commonly called meson-cloud contributions (MCCs).
At realistic light-quark masses, their impact on charge radii
is small and can be absorbed into the definition of ς [19];
but MCCs may be quantitatively important for those
static observables which are more sensitive to angular
momentum, such as magnetic and quadrupole moments.
Importantly, MCCs diminish rapidly with increasing Q2,
being negligible for a typical charged-hadron electric form
factor on Q2 ≳ 0.25 GeV2 [92].

TABLE I. Calculated values for a range of vector-meson static
properties. The quadrature integration error is≲2%. The ρ-meson
is built from mass-degenerate valence quarks with the current
masses in Eq. (14); ρs, using Eq. (15); and ρc, using Eq. (17). The
radii are defined in Eq. (18). For comparison, an average of
computed ρ-meson results tabulated elsewhere [25] yields
rρ ¼ 0.67ð12Þ fm, μρ ¼ 2.17ð21Þ, Qρ ¼ −0.55ð28Þ, and using
an interaction similar to that defined by Eqs. (10), (11), the
authors of Ref. [43] report rρ ¼ 0.73 fm, μρ ¼ 2.01, Qρ ¼
−0.41, rρc ¼ 0.23 fm, μρc ¼ 2.13, Qρc ¼ −0.28. A lattice-
QCD (lQCD) simulation yields [87] rρ ¼ 0.82ð4Þ fm, μρ ¼
2.21ð8Þ; and another produces [88] rρc ¼ 0.257ð4Þ fm,
μρc ¼ 2.10ð3Þ fm, Qρc ¼ −0.23ð2Þ. For pointlike vector mesons
with unit charge [89,90]: μ ¼ 2, Q ¼ −1. Where known, em-
pirical values are [78] mρ ¼ 0.775 GeV, fρ ¼ 0.156ð1Þ GeV,
mK� ¼ 0.892 GeV, fK� ¼ 0.158ð8Þ GeV, mϕ ¼ 1.019 GeV,
fϕ ¼ 0.161ð3Þ GeV, mJ=Ψ ¼ 3.097 GeV; and a lQCD study
obtains fJ=Ψ ¼ 0.286ð4Þ GeV [79]. (Insofar as masses and
leptonic decay constants are concerned, ρs;c results can be
compared with those for ϕ- and J=Ψ-mesons.)

V ρ Kþ� K0� ρs ρc

mVðGeVÞ 0.75 0.96 1.08 3.09
fVðGeVÞ 0.15 0.17 0.19 0.29
rVðfmÞ 0.72 0.64 0.27i 0.52 0.24
rVmV 2.76 3.13 1.29i 2.85 3.70
μV 2.01 2.22 −0.26 2.08 2.12
rμVmV 2.63 3.05 4.40 2.71 3.59
QV −0.36 −0.31 −0.021 −0.32 −0.33
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B. Focus: Electric form factor

The electric form factor of a positively charged vector
meson decreases with increasing x ¼ Q2=m2

V. However,
setting it apart from that of a pseudoscalar meson, which is
positive definite, the large-x prediction from Refs. [89,90]
suggests that GV

E ðxÞ may possess a zero at x ∼ 6. This
was the outcome in Ref. [44], which used a symmetry-
preserving regularization of a contact interaction and was
thus able to compute form factors to arbitrarily large x.
In exhibiting a zero crossing,GV

E can serve as a surrogate
for the proton’s electric form factor, Gp

E, for which modern
data show a trend toward zero with increasing Q2 [27–31]:
linear extrapolation yields a zero in Gp

E at

Q2
p ≈ 9.8m2

p ¼ 8.7 GeV2: ð24Þ

The reason for the potential appearance of a zero is similar
in both cases. For the proton, a zero can be produced by
destructive interference between the Dirac and Pauli form
factors, and will appear if the transition between the strong
and perturbative domains of QCD is pushed to a suffi-
ciently large value of Q2 [93,94]. In the vector-meson case,
it is a destructive interference between FV

1;3 (positive) and
FV
2 (negative): if the magnetic form factor, FV

2 , is removed,
then GV

E is positive definite at spacelike momenta.
The merit of using vector-meson studies to locate and

explain a zero in the electric form factor of a J ≠ 0 hadron
is the relative simplicity of the two-body continuum bound-
state problem as compared to the analogous three-body
problem, but this does not make it easy. As in most
calculations of hadron form factors that have worked
directly with a realistic RL quark-quark scattering kernel,
we use brute-force numerical techniques. Consequently,
owing to moving singularities in the complex-k2 domain
sampled by the bound-state equations [80], for each vector
meson there is a maximum value of Q2 beyond which
evaluation of the integrals in Eqs. (9) is no longer possible
with conventional algorithms.
More sophisticated methods have been developed

[16,17,20,34,95], based on the perturbation theory integral
representation (PTIR) [96]. Constructing accurate PTIRs is,
however, time consuming, and especially so in our case
because one would need to build PTIRs for each quark
propagator, Bethe-Salpeter amplitude and photon-quark
vertex considered herein, i.e. roughly 100 scalar functions.
We therefore persist with a straightforward RL trunca-

tion, computing all form factors on the accessible domain
and then extrapolating to larger Q2-values using the
Schlessinger point method (SPM), whose properties and
accuracy are explained elsewhere [38,97–101]. We note
only that the SPM is based on the Padé approximant. It is
able to accurately reconstruct a function in the complex
plane within a radius of convergence specified by that one
of the function’s branch points which lies nearest to the real

domain from which the sample points are drawn.
Moreover, owing to the procedure’s discrete nature, the
reconstruction can also provide a reasonable continuation
on a larger domain along with an estimate of the asso-
ciated error.
In the three panels of Fig. 1, as functions of x ¼ Q2=m2

V,
we display our computed electric form factors for the
three positively charged vector mesons in Table I that are
built from mass-degenerate valence quarks: V ¼ ρ, ρs, ρc.
Our analysis predicts a zero in each case, and importantly,

FIG. 1. Electric form factors of positively charged vector
mesons built from mass-degenerate valence quarks. Upper panel:
ρ, Eq. (14). Middle panel: ρs, Eq. (15). Lower panel: ρc, Eq. (17).
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as the current mass of the system’s valence quarks is
increased, the x-location of the zero, xz, moves toward
x ¼ 0:

V ρ ρs ρc

xz 10.6ð3Þ 10:1ð9Þð7Þ 4.5ð2.5Þð1.0Þ
: ð25Þ

The shift is initially slow, but the pace increases as one
leaves the domain upon which emergent mass is dominant
and enters into that for which explicit (Higgs-connected)
mass generation overwhelms effects deriving from strong-
QCD dynamics. Reverting to Q2, the location of the zero
in GV

E moves to larger values with increasing current-
quark mass.
Interestingly, working from Eq. (25), replacing m2

ρ by
m2

p, then one is led to estimate that a zero appears in the
proton’s elastic form factor at Q2 ≈ 9.4ð3Þ GeV2. This
value is comparable with that in Eq. (24) and compatible
with the prediction in Ref. [94]: Q2 ≈ 9.5 GeV2.
In developing an understanding of these features, it is

useful to bear the following observations in mind. (i) In the
cases under consideration, the RL-dressed photon-quark
vertex always possesses a pole at Q2=m2

V ¼ −1; hence, so
does GV

E . (This becomes a resonance peak with the
inclusion of decay channels, but that is immaterial here.)
(ii) GV

E ð0Þ ¼ 1 for every positively charged vector meson.
(iii) Figure 1 plots GV

E ðx ¼ Q2=m2
VÞ.

Recall now that the Higgs mechanism for mass gen-
eration is dominant for heavy quarks. Hence, in this sector
the dressed-quark mass function does not run quickly,
the effective quark (recoil) mass is roughly fixed at
ME

c ∼mV=2, the scattering photon probes this scale, and
the recoiling dressed quark has a large magnetic form
factor. Consequently, GV

E ðxÞ exhibits a zero at a given
location, not too far from x ¼ 0. On the other hand, DCSB
drives mass generation in the light-quark sector so the
dressed-quark mass runs rapidly. Hence, the recoiling
system within V has a mass which drops quickly toward
zero and a magnetic form that does likewise [76,102,103].
The photon probe resolves this dressed quark, finding a
recoiling target quark whose active mass and magnetic
moment become smaller as Q2 increases. The “effective x”
is therefore larger than Q2=m2

V, something expressed in
an electric form factor which evolves more slowly with x
than might naıvely be expected, i.e. a zero located further
from x ¼ 0.
It is also worth performing a similar analysis for the K�

mesons, and our results are depicted in Fig. 2. In this case,
owing to the imbalance between current-quark masses and
the consequent skewing of the “safe domain” of complex-
plane integration for Eq. (9), a direct calculation of the form
factors is impossible beyond x ¼ Q2=m2

K� ≈ 1.2; hence,
approximation using the SPM involves a larger error.
Notwithstanding that, one may confidently conclude that

the electric form factor of the positively charged K�
exhibits a zero at

xK
�þ

z ¼ 8.0ð2.1Þð1.1Þ; ð26Þ

whereas the analogous form factor of the neutral K� is
positive definite on x > 0.
Our confidence in the existence/absence of a zero in

these cases is not based on Fig. 2, but, instead, upon Fig. 3,
which displays the flavor-separated K� form factors.2

Evidently, both curves exhibit a zero:

GK�
Eu at x ¼ 6.2ð1.2Þð0.8Þ; ð27Þ

GK�
Es at x ¼ 12.2ð9.9Þð2.6Þ: ð28Þ

Consequently, GK�þ
E ¼ ð2=3ÞGK�

Eu þ ð1=3ÞGK�
Es must also

possess a zero. On the other hand, GK�0
E ¼ −ð1=3ÞGK�

Eu þ
ð1=3ÞGK�

Es is positive definite on x > 0 because the zero

FIG. 2. Electric form factors of K� mesons, with x ¼ Q2=m2
K� .

Upper panel: Electric-charge positive. Lower panel: Electric-
charge neutral.

2Recall that we have assumed isospin symmetry. Hence, the
form factors associated with the u-quark in the positive-K� are
the same as those for the d-quark in the neutral K�, apart for a
multiplicative factor of “−2.”
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in ð−GK�
EuÞ occurs much before that in GK�

Es and jGK�
Euj >

jGK�
Es j > 1 on that domain for which GK�

Es < 0. (N.B. Here,
analyzed in terms of a common definition of x ¼ Q2=m2

K� ,
the light-quark zero is closer to x ¼ 0 than that for the
heavier quark. This seeming conflict with the preceding
discussion is explained below.)
The radii of the flavor-separated K�-meson electric form

factors can readily be computed from the results in Table I:

ðrK�
EuÞ2 ¼ rK

�þ
E − rK

�0
E ¼ ð0.70 fmÞ2; ð29aÞ

ðrK�
EsÞ2 ¼ rK

�þ
E þ 2rK

�0
E ¼ ð0.52 fmÞ2: ð29bÞ

(Analogous formulas are valid for all form factors.)
Unsurprisingly, that associated with the heavier s-quark
is smallest. Analogous results for the magnetic moments
and radii and the quadrupole moments are

μK� rμK�=fm QK�

u 2.48 0.66 −0.29
s 1.70 0.51 −0.35

: ð30Þ

Plainly, there are differences between the charge and
magnetization distributions of u- and s-quarks within the
K�, and also the associated quadrupole deformations.
(jQs

K� j > jQu
K� j because jFK�

2u − FK�
2s j > jFK�

3u − FK�
3s j; i.e.

the difference between u- and s-quark magnetic moments
is large. This is also found elsewhere [43].) As with kindred
features in the pseudoscalar meson sector [34,104,105],
the size of such SU(3) flavor-symmetry breaking effects in
vector mesons, 28(9)%, is determined by nonperturbative
dynamics; namely, the current-quark-mass dependence
of DCSB.
While not immediately apparent, the location of the zeros

in GK�
Eu and G

K�
Es can also be understood using the arguments

developed after Eq. (25). To elucidate, we note that
GK�

E ðxK� ¼ Q2=m2
K� Þ does not exhibit a pole at x ¼ −1

because a virtual photon cannot transition to a K�-meson.
Instead, it has two poles, viz. one at xK

�
u ¼ Q2=m2

ρ ¼ −1,
generated in the dressed–photon–u-quark vertex, and the
second at xK

�
s ¼ Q2=m2

ϕ ¼ −1, arising from the photon–s-
quark vertex. We make this explicit via Fig. 4, which depicts
GK�

Euðx0 ¼ xK�m2
K�=m2

ρÞ and GK�
Esðx00 ¼ xK�m2

K�=mϕ2Þ.
Analyzed this way, the curves indicate that the electric form
factor of a heavier quark possesses a zero closer to the
appropriate x-axis origin than does that of a lighter quark
within the same bound state. Owing to the breadth of the
error band surrounding the s̄-quark curve, one cannot be
more categorial than this; but it is plain upon comparison
with Fig. 3 that both zeros have moved a long way toward
reordering.

C. Vector-meson dominance

The existence of a zero in vector-meson form factors has
another important corollary; namely, single-pole vector-
meson dominance (VMD), viz. GV

E ðxÞ ≈ 1=ð1þ xÞ, can
only be a useful tool for approximating (off-shell) vector-
meson properties within a limited x-domain. We have
analyzed this, and in Fig. 5 depict a discrepancy ratio:

δVðxÞ ≔ 2
GV

E ðxÞ − 1=ð1þ xÞ
GV

E ðxÞ þ 1=ð1þ xÞ ; ð31Þ

with x ¼ Q2=m2
V for V ¼ ρ, ρs, ρc.

The vector-meson electric form factor presents the best
case for a VMD model because it necessarily agrees with
the computed result in some neighborhood of x ¼ −1 and,
by charge conservation, also in the vicinity of x ¼ 0. Our
analysis reveals that the discrepancy is less than 20%within
the following regions:

FIG. 4. Flavor-separatedK� electric form factors.GK�
Eu is plotted

vs xr ¼ x0 ¼ Q2=m2
ρ with a solid (red) curve marked by squares

and GK�
Es vs xr ¼ x00 ¼ Q2=m2

ϕ as a dotted (orange) curve with
diamonds. (N. B. mϕ ¼ mρs .)

FIG. 3. Flavor-separated K� electric form factors plotted
versus x ¼ Q2=m2

K� : solid (red) curve marked by squares
denote the u-quark and dotted (orange) curve, diamonds, the
s̄-quark. Electric-charge factors have been divided out so both
curves are unity at x ¼ 0.
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ρ∶ − 1 < x < 0.81;

ρs∶ − 1 < x < 0.60;

ρc∶ − 1 < x < −0.96 & − 0.15 < x < 0.24: ð32Þ

(We do not consider x < −1.) It is clear from Eq. (32) and
Fig. 5 that a single-pole VMD approximation is a fair
assumption on a reasonable domain for light-quark sys-
tems. However, it is poor for states in which the Higgs
mechanism of mass generation is dominant, i.e. cc̄ and
more massive systems. In fact, without the x ¼ 0 constraint
imposed by current conservation, a VMD approximation
for the cc̄ system becomes quantitatively unreliable once
bound-state virtuality exceeds 4%.

IV. SUMMARY AND PERSPECTIVE

The symmetry-preserving rainbow-ladder truncation of
QCD’s continuum bound-state equations was used to
calculate the elastic electromagnetic form factors of the
ρ-meson and subsequently study the evolution of such
vector-meson form factors with current-quark mass. In
addition, to enable a full comparison with kindred treat-
ments of pseudoscalar meson form factors and explore the
environmental sensitivity of quark contributions,K�-meson
elastic form factors were also computed.
Predictions for the static properties of these systems are

listed in Table I, which reveals that electric charge radii of
vector mesons are typically ∼10% larger than those of the
related pseudoscalar mesons. Importantly, the product of
the vector-meson charge radius and leptonic decay constant
is practically constant on the domain of meson masses
within which emergent mass is dominant [Eq. (20)]. This
matches the behavior in the pseudoscalar sector, albeit
therein the analogous product is ≈40% smaller. Evidently,
emergent mass also plays a prominent role in fixing vector-
meson properties. Furthermore, a simultaneous analysis
of the magnetic and quadrupole form factors on Q2 ≃ 0
shows significant deformation of each vector meson:
relative to point-particle values, the magnetic and quadru-
pole moments deviate by 33(7)% [Eq. (23)]. Notably, over

a 250-fold increase in current-quark mass, from m̂u → m̂c,
these quantities are practically unchanged.
The comparison between ρ- and K�-meson elastic form

factors exposed additional similarities with the pseudosca-
lar meson sector, e.g. as with an array of K-meson
properties, the magnitude of SUð3Þ-flavor-symmetry vio-
lation in K� mesons is commensurate with the value of
fK�=fρ [Eq. (30)]; namely, it is set by the flavor depend-
ence of dynamical chiral symmetry breaking.
Experimental data from JLab, which suggest that the

proton’s electric form factor,Gp
E, might pass through zero at

Q2=m2
p ≈ 10, focus attention on vector-meson electric form

factors because, like Gp
E, the vector-meson electric form

factor, GV
E , is a sum of terms, one of which is negative

definite. Hence, studies of GV
E may provide qualitatively

sound guidance on the possible appearance and location of
a zero in Gp

E. This capacity is especially useful because the
meson bound-state problem is more easily solved than that
for the baryon. It was found herein that GV

E always exhibits
a zero, and analyzed as a function of x ¼ Q2=m2

V, that zero
moves toward x ¼ 0 with increasing current-quark mass
[Eq. (25)]. These features can also be understood as
consequences of DCSB, and they support a qualitative
argument that the character of emergent mass in the
Standard Model may ensure a zero in Gp

E.
The existence of a zero in GV

E ðxÞ entails that the domain
within which a single-pole vector-meson dominance model
can serve as a useful approximation to vector-meson
properties is circumscribed. Notwithstanding this, GV

E ðxÞ
is the best case for a VMD model because it must agree
with the computed result in some neighborhood of x ¼ −1
and, by charge conservation, also in the vicinity of x ¼ 0. It
was found herein that a single-pole VMD approximation is
a fair assumption on a reasonable domain for light-quark
systems [Eq. (32)]. However, it is poor for states in which
the Higgs mechanism of mass generation is dominant;
hence, it is likely to yield erroneous estimates for the off-
shell properties of cc̄ and more massive systems.
Focusing on the Q2-dependence of form factors, a

particular feature of the analysis herein was use of the
Schlessinger point method (SPM) for the continuation of

FIG. 5. Relative-discrepancy ratio in Eq. (31), which measures the accuracy of a single-pole vector-meson dominance approximation
for GV

E ðxÞ, V ¼ ρ, ρs, ρc. The horizontal dotted lines bound the �20% range.
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results into a Q2-domain that was not accessible using
brute-force numerical techniques. As a growing number of
applications have shown, the SPM is remarkably reliable.
Its power opens the way for numerous extensions of this
study; e.g. analyses of the semileptonic decays of D, Ds
mesons are under way and, naturally, of the proton and
neutron elastic electromagnetic form factors.
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