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Federico Santa María, Casilla 110-V, Valparaíso, Chile
5Department of Physics, Tomsk State University, 634050 Tomsk, Russia

6The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan,
050032 Almaty, Kazakhstan

7Al-Farabi Kazakh National University, 050038 Almaty, Kazakhstan

(Received 26 November 2019; published 23 December 2019)

We calculate the semileptonic and a subclass of sixteen nonleptonic two-body decays of the double
charm baryon ground states Ξþþ

cc ;Ξþ
cc and Ωþ

cc where we concentrate on the nonleptonic decay modes.
We identify those nonleptonic decay channels in which the decay proceeds solely via the factorizing
contribution precluding a contamination from W exchange. We use the covariant confined quark model
previously developed by us to calculate the various helicity amplitudes which describe the dynamics of
the 1=2þ → 1=2þ and 1=2þ → 3=2þ transitions induced by the Cabibbo-favored effective (c → s) and
(d → u) currents. We then proceed to calculate the rates of the decays as well as polarization effects and
angular decay distributions of the prominent decay chains resulting from the nonleptonic decays of the
double heavy charm baryon parent states.
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I. INTRODUCTION

Two years ago the LHCb Collaboration reported on the
discovery of the double heavy charm baryon state Ξþþ

cc [1].
The state was found in the invariant mass spectrum of
the final state particles ðΛþ

c K−πþπþÞ where the Λþ
c baryon

was reconstructed in the decay mode pK−πþ. The mass
of the new state was given as 3621.40� 0.72� 0.14�
0.27 MeV. A year later the LHCb Collaboration identified
the same state in the decay Ξþþ

cc → Ξþ
c þ πþ with a mass

value of 3620.6� 1.5ðstatÞ � 0.4ðsystÞ � 0.3ðΞþ
c Þ MeV

[2]. The lifetime of the Ξþþ
cc was measured to be τðΞþþ

cc Þ ¼
0.256þ0.024

−0.022ðstatÞ � 0.014ðsystÞ ps [3].
The weighted average of the two mass measurements of

mΞþþ
cc

¼ 3621� 1.1� 0.3� 0.3 MeV is quite close to the
value of 3610 MeV predicted some time ago in Ref. [4] in

the framework of the one-gluon exchange model of de
Rujula et al. [5] with a Breit-Fermi spin-spin interaction
term. It is noteworthy that Ebert et al. predicted a mass of
3620 MeV for the Ξþþ

cc using a relativistic quark-diquark
potential model [6]. In Ref. [7] we have interpreted the new
double charm baryon state found in the ðΛþ

c K−πþπþÞmass
distribution as being at the origin of the decay chain
Ξþþ
cc → Σþþ

c ð2455; 1=2þÞð→ Λþ
c π

þÞ þ K̄�0ð→ K−πþÞ. In
the present paper we extend the analysis of Ref. [7] in
two directions. First, we consider the possibility that the
first step in the decay chain consists of the decay Ξþþ

cc →
Σþþ
c ð2520; 3=2þÞ þ K̄�0 where the state Σþþ

c ð2520; 3=2þÞ
is the spin 3=2 heavy quark symmetry partner of the
Σþþ
c ð2455; 1=2þÞ. In fact, in a talk at a CERN Seminar [8]

Zhang (LHCb Collaboration) showed an invariant mass
plot for the ðΛcπ

þÞ subsystem in which the peaking bin for
mðΛcπ

þÞ lies in between the two Σþþ
c ð2455; 1=2þÞ and

Σþþ
c ð2520; 3=2þÞ states. Second, we provide results for a

subclass of the Cabibbo-favored nonleptonic two-body
decays of the not yet identified JP ¼ 1=2þ double charm
baryon ground states Ξþ

ccð3610Þ and Ωþ
ccð3710Þ where the

mass values are again taken from the calculation of [4].
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The authors of [6] predict a mass value of MΩþ
cc
¼

3778 MeV, which is considerably higher than the value
MΩþ

cc
¼ 3710 calculated in Ref. [4]. A recent lattice

calculation quotes a value of 3712� 10� 12 MeV for
the Ωþ

cc state [9].
The physics of double heavy charm and bottom baryons

(mass spectrum and decay properties) has been studied
before in a number of papers [4–7,9–34]. We presented a
detailed analysis of exclusive decays of double heavy
baryons using several versions of covariant quark models
in Refs. [7,10,12]. Double heavy baryon decays and their
magnetic moments were treated by us in Refs. [10] where
we performed a comprehensive study of the semileptonic
and radiative decays of double heavy baryons using a
covariant quark model without implementing quark con-
finement. The version of the covariant quark model used in
[10] has been improved by incorporating quark confine-
ment in an effective way [35]. For the calculation of the
relevant 1=2þ → 1=2þ and 1=2þ → 3=2þ transitions per-
formed in this paper we use the improved quark model
which we refer to as the covariant confined quark model
(CCQM). In Refs. [7,11,12] we studied decay properties of
double heavy baryons in the CCQM approach. In particu-
lar, in Ref. [7] we interpreted the Ξþþ

cc baryon found by the
LHCb Collaboration in the invariant mass distribution of
the set of final state particles ðΛþ

c KπþπþÞ as being at the
origin of the decay chain Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ

K̄�0ð→ K−πþÞ. The nonleptonic decay Ξþþ
cc → Σþþ

c K̄�0
belongs to the class of factorizing decays, i.e., the decays
precluding a contamination from internalW exchange. As a
byproduct of our investigation we have also analyzed the
nonleptonic mode with K̄0 in the final state. In Ref. [11] we
proposed a novel method for the evaluation of the non-
factorizing (three quark loop) diagrams generated by W
exchange and contributing to the nonleptonic two-body
decays of the doubly charmed baryons Ξþþ

cc and Ωþ
cc.

The W-exchange contributions appear in addition to the
factorizable tree graph contributions and are not sup-
pressed in general. In Ref. [12] we reviewed novel ideas in
the theoretical description of nonleptonic decays of
double heavy baryons. In the present paper we extend
our analysis of semileptonic decays of double charm
baryons started in Ref. [10] by inclusion of all factor-
izable modes for both types of weak transitions—
semileptonic and nonleptonic using the updated theo-
retical framework—CCQM model. Note that in our paper
Ref. [10] we used mass values for the single and double
charm baryons masses Ξþþ

cc ¼ 3.61 GeV and Ξ0þ
c ¼

2.47 GeV, which differ from the updated mass values
used in the present paper (Ξþþ

cc ¼ 3.6206 GeV and Ξ0þ
c ¼

2.5774 GeV [36]). When comparing the relevant semi-
leptonic rate in [10] to that in the present paper one has to
take the changed mass values into account, which results
in a suppression of our 2001 result by a factor of ∼1.6
which is mostly kinematical in nature.

Our paper is structured as follows. In Sec. II we discuss
the decay topologies of the Cabibbo-favored nonleptonic
two-body decays of the double charm baryon ground states
Ξþþ
cc ;Ξþ

cc andΩþ
cc. Of the many possible decays we identify

16 decays which proceed via the factorizing contributions
alone. In Sec. III we collect material on the spin kinematics
of the decays. We define invariant form factors and helicity
amplitudes. We also write down formulas for the semi-
leptonic and nonleptonic rates. In Sec. IV we list a set of
local interpolating three-quark currents with the correct
quantum numbers of the baryon states that they describe.
The nonlocal versions of the interpolating currents enter the
calculation of the various transition form factors in our
CCQM. We also give a brief description of the main
features of our CCQM calculation. Section V contains
our numerical results for the semileptonic and nonleptonic
rates and branching fractions. In Sec. V we also discuss
polarization effects and angular decay distributions of the
eight semileptonic and 16 nonleptonic cascade decays. In
Sec. VI we summarize our results and outline our follow-up
program of further calculations involving alsoW-exchange
contributions to the nonleptonic decays of double heavy
charm baryons.

II. DECAY TOPOLOGIES OF CABIBBO-FAVORED
DOUBLE HEAVY CHARM BARYON

NONLEPTONIC DECAYS

We begin by a discussion of the different color-flavor
topologies that contribute to the various possible non-
leptonic two-body transitions of the double heavy Ξþþ

cc ;Ξþ
cc

and Ωþ
cc states. The relevant topologies are displayed in

Fig. 1. We refer to the topologies of Ia and Ib as tree
diagrams. They are sometimes also referred to as external
(Ia) and internalW-emission (Ib) diagrams. The topologies
IIa, IIb and III are referred to as W-exchange diagrams.
In [37] they are denoted as the exchange (IIa), color-
commensurate (IIb) and bow tie (III) diagram. As shown in
Fig. 1 the color-flavor factor of the tree diagrams Ia and Ib
depends on whether the emitted meson is charged or
neutral. For charged emission the color-flavor factor is
given by the linear combination of Wilson coefficients
ðC2 þ ξC1Þ, where ξ ¼ 1=Nc, while for neutral emission
the color-flavor factor reads ðC1 þ ξC2Þ. We take C1 ¼
−0.51 and C2 ¼ 1.20 from Ref. [38]. We use the large Nc
limit for the color-flavor factors. For the W-exchange
diagrams not treated in this paper the color-flavor factor
is given by ðC2 − C1Þ.
In Table I we provide a complete list of the Cabibbo-

favored ground-state to ground-state nonleptonic two-body
decays of double heavy charm baryons together with the
color-flavor topologies that contribute to these decays. For
reasons of compactness we employ a star notation for the
spin 3=2 ground state baryons which differs from the
notation suggested by the Particle Data Group (PDG).
Thus, for example, our Ω�0

c stands for the spin 3=2 partner
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of the spin 1=2 state Ω0
c. The spin 3=2 state Ω�0

c is listed
in the PDG [36] as Ωcð2770Þ0.
In this paper we restrict our analysis to those nonleptonic

decays whose decay dynamics is solely determined by the
tree diagram contributions Ia and Ib. There are two classes
of such decays which we discuss in turn.

(i) The first class of decays is solely contributed to by
the two topologies Ia and Ib. These decays can be
identified by necessary and sufficient conditions for
the quarks involved in the two-body nonleptonic
transitions which we label according to the follow-
ing scheme:

B1ðq1q2q3Þ → B2ðq01q02q03Þ þMðqmq̄n̄Þ: ð1Þ
A necessary condition for the contribution of
the factorizing class of decays is that a quark pair

qiqj ¼ q0iq
0
j is shared by the parent and daughter

baryon B1 and B2, respectively. A sufficient con-
dition for the factorizing class of decays is that (i) qm
is not among q1, q2, q3 and (ii) qn̄ is not among
q01; q

0
2; q

0
3. Using these two criteria we have identi-

fied the two groups of decays,

Ξþþ
cc → Σð�Þþþ

c þ K̄ð�Þ0 Ωþ
cc → Ωð�Þ0

c þ πþðρþÞ;
ð2Þ

which proceed via the tree graphs alone.
(ii) The second class of decays involves in addition to

the tree topologies the W-exchange topologies IIb
which, however, do not contribute because of the
Körner, Pati, and Woo (KPW) theorem [39,40].
The Körner, Pati, and Woo theorem states that the
contraction of the flavor antisymmetric current-
current operator with a flavor symmetric final state
configuration is 0. There are two groups of decays
that belong to this class given by

Ξþþ
cc → Ξ0ð�Þþ

c þ πþðρþÞ Ωþ
cc → Ξ0ð�Þþ

c þ K̄ð�Þ0:

ð3Þ

We neglect SU(3) breaking effects when applying the
KPW theorem to the above two groups of decays. We
plan to quantify the SU(3) breaking effects in a future
dynamical calculation of these decays.

The recently observed decay Ξþþ
cc → Ξþ

c þ πþ [2] is not
discussed in this paper since, in addition to the tree diagram
Ia, there is a nonvanishing contribution from the W-
exchange diagram IIb. In this context it is interesting to
observe that the decays

Ξþþ
cc →Σ�þþDð�Þþ Ξþ

cc→Σ�0þDð�Þþ Ξþ
cc→Σ�þþDð�Þ0

Ξþ
cc→Ξ�0þDð�Þþ

s Ωþ
cc→Ξ0ð�Þ0þDð�Þþ ð4Þ

TABLE I. Cabibbo-favored nonleptonic two-body decays of
double heavy charm baryons including W-exchange contribu-
tions.

Ia Ib IIa IIb III

Ξþþ
cc → Σð�Þþþ

c þ K̄ð�Þ0 � � � ✓ � � � � � � � � �
Ξþþ
cc → Ξð0;�Þþ

c þ πþðρþÞ ✓ � � � � � � ✓ � � �
Ξþþ
cc → Σð�Þþ þDð�Þþ � � � � � � � � � ✓ � � �

Ξþ
cc → Ξð0;�Þ0

c þ πþðρþÞ ✓ � � � ✓ � � � � � �
Ξþ
cc → Λþ

c ðΣð�Þþ
c Þ þ K̄ð�Þ0 � � � ✓ ✓ � � � � � �

Ξþ
cc → Σð�Þþþ

c þ Kð�Þ− � � � � � � ✓ � � � � � �
Ξþ
cc → Ξð0;�Þþ

c þ π0ðρ0Þ � � � � � � ✓ ✓ � � �
Ξþ
cc → Ξð0;�Þþ

c þ ηðη0Þ � � � � � � ✓ ✓ −
Ξþ
cc → Ωð�Þ0

c þ Kð�Þþ � � � � � � ✓ � � � � � �
Ξþ
cc → Λ0ðΣð�Þ0Þ þDð�Þþ � � � � � � � � � ✓ ✓

Ξþ
cc → Σð�Þþ þDð�Þ0 � � � � � � − � � � ✓

Ξþ
cc → Ξð�Þ0 þDð�Þþ

s � � � � � � � � � � � � ✓

Ωþ
cc → Ξð0;�Þþ

c þ K̄ð�Þ0 � � � ✓ � � � ✓ � � �
Ωþ

cc → Ξð�Þ0 þDð�Þþ � � � � � � � � � ✓ � � �
Ωþ

cc → Ωð�Þ0
c þ πþðρþÞ ✓ � � � � � � � � � � � �

FIG. 1. Flavor-color topologies of nonleptonic weak decays.
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induced by the topologies IIb and III are predicted to be
altogether 0 due to the KPW theorem. It would be very
interesting to experimentally confirm this prediction.
Let us add a few comments concerning the W-exchange

diagrams. The contribution of the W-exchange diagrams
cannot be neglected even if this is frequently done in the
analysis of nonleptonic charm baryon decays. A prominent
example is the decay Λþ

c → Σ0πþ which is contributed to
by the topologies IIa, IIb, and III; i.e., there are no tree
graph contributions to the decay. Nevertheless, its exper-
imental branching ratio is comparable to that of the decay
modeΛþ

c → Λ0πþ where the latter mode is also contributed
to by the tree diagram 1a. The interplay of the tree and
W-exchange diagrams for the Cabibbo-favored ΔC ¼ 1
nonleptonic charm baryon decays has been studied in
[41–44] and also in a previous version of our model [45].
We hope to return to the calculation of the W-exchange
contributions in single charm and double charm baryon
decays in the framework of our CCQM quark model. We
mention that the evaluation of the W-exchange diagrams in
our approach is technically quite demanding since it involves
a three-loop calculation. Naturally it is of utmost importance
to get the relative signs between the tree and W-exchange
contributions right since this decides whether the two classes
of contributions interfere constructively or destructively.
A first attempt to estimate the W-exchange contributions
to the 1=2þ → 1=2þ þ 0− double heavy baryon decays
has been published in [25] using a baryon pole model for the
W-exchange contributions. There is a one-to-one correspon-
dence between the 1=2þ → 1=2þ þ 0− decays treated in
[25] and the 1=2þ → 1=2þ þ 0− decays listed in Table I.
The W-exchange topology structure of the decays written
down in [25] in terms of s-channel and u-channel contri-
butions is consistent with the corresponding topology
structure in Table I.
Returning to the factorizing contributions we in the

following discuss the class 1 and class 2 decays listed in
Eqs. (2) and (3), respectively, which are determined by the
factorizing contributions alone.

III. MATRIX ELEMENTS, HELICITY
AMPLITUDES ANDDECAYRATES EXPRESSIONS

The matrix element of the exclusive decay B1ðp1; λ1Þ →
B2ðp2; λ2Þ þMðq; λMÞ is defined by (p1 ¼ p2 þ q)

MðB1 → B2 þMÞ ¼ GFffiffiffi
2

p VijV�
klCefffMMM

× hB2jq̄2Oμq1jB1iϵ†μðλMÞ; ð5Þ

where M ¼ V and M ¼ P stand for the vector and
pseudoscalar meson cases such that MM and fM are the
respective masses MV , MP and leptonic decay constants
fV , fP. The Dirac string Oμ is defined by Oμ ¼ γμð1 − γ5Þ.
Here Vij are the Cabibbo-Kabayashi-Maskawa matrix
elements: Vud ¼ 0.97420 and Vcs ¼ 0.997.
Here Ceff is the combination of the Wilson coefficients

ðC2 þ ξC1Þ, where ξ ¼ 1=Nc and Nc is the number of
colors, while for neutral emission the color-flavor factor
reads ðC1 þ ξC2Þ. We take C1 ¼ −0.51 and C2 ¼ 1.20 at
μ ¼ mc ¼ 1.3 GeV from Ref. [38]. We use the large Nc
limit for the color-flavor factors. It is known that non-
factorizable contributions coming from, e.g., one-gluon
exchange, might be important for the description of non-
leptonic decays. As an example, recall the well-known
decay B → J=ψ þ K, which is proportional to the coef-
ficient a2 ¼ C1 þ ξC2 and would thus be predicted to be 0
for Nc ¼ 3. In this case naive factorization clearly does
not describe the experimental data. The discussion on and
determination of the nonfactorizable corrections to the
coefficient a2 has been actively pursued in the literature
using various techniques. However, as far as we know, up
to now there is no well-established framework in which the
nonfactorizable contributions could be taken into account
in a self-consistent way. Therefore, we employ a phe-
nomenological and simple assumption in our calculations
of the nonleptonic decays of both heavy mesons and
baryons that the color factor ξ ¼ 1=Nc appearing in the
combination of the Wilson coefficients is set to 0. This
assumption has been extensively used in the literature and
is well justified in the comparison with experimental data
in the meson sector.
The hadronic matrix element hB2jq̄2Oμq1jB1i can be

expressed in terms of six (1=2þ → 1=2þ) and eight
(1=2þ → 3=2þ) dimensionless invariant form factors
FV=A
i ðq2Þ, respectively. One has for the transition

1
2
þ → 1

2
þ,

hB2jq̄2γμq1jB1i ¼ ūðp2; s2Þ
�
γμFV

1 ðq2Þ − iσμν
qν
M1

FV
2 ðq2Þ þ

qμ
M1

FV
3 ðq2Þ

�
uðp1; s1Þ;

hB2jq̄2γμγ5q1jB1i ¼ ūðp2; s2Þ
�
γμFA

1 ðq2Þ − iσμν
qν
M1

FA
2 ðq2Þ þ

qμ
M1

FA
3 ðq2Þ

�
γ5uðp1; s1Þ ð6Þ

and for the transition 1
2
þ → 3

2
þ,
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hB�
2jq̄2γμq1jB1i ¼ ūαðp2; s2Þ

�
gαμFV

1 ðq2Þ þ γμ
p1α

M1

FV
2 ðq2Þ þ

p1αp2μ

M2
1

FV
3 ðq2Þ þ

p1αqμ
M2

1

FV
4 ðq2Þ

�
γ5uðp1; s1Þ;

hB�
2jq̄2γμγ5q1jB1i ¼ ūαðp2; s2Þ

�
gαμFA

1 ðq2Þ þ γμ
p1α

M1

FA
2 ðq2Þ þ

p1αp2μ

M2
1

FA
3 ðq2Þ þ

p1αqμ
M2

1

FA
4 ðq2Þ

�
uðp1; s1Þ ð7Þ

where σμν ¼ ði=2Þðγμγν − γνγμÞ and all γ matrices are defined as in Bjorken-Drell.
The results of a covariant dynamical calculation as in the present case are usually obtained in terms of the invariant form

factors defined above. To proceed further, it is very convenient to convert the set of invariant form factors to a set of helicity
amplitudes where the two sets are linearly related. We therefore express the vector and axial helicity amplitudes HV=A

λ2λM
in

terms of the invariant form factors FV=A
i , where λM ¼ t;�1, 0 and λ2 ¼ �1=2;�3=2 are the helicity components of the

meson MðM ¼ P; VÞ and the baryon B2, respectively. We need to calculate the expressions

Hλ2λM ¼ hB2ðp2; λ2Þjq̄2Oμq1jB1ðp1; λ1Þiϵ†μðλMÞ ¼ HV
λ2λM

−HA
λ2λM

; ð8Þ

where we split the helicity amplitudes into their vector and axial parts. For the color enhanced decays the operator q̄2Oμq1
represents a charged current transition while, for the color suppressed decays, q̄2Oμq1 describes a neutral current transition.

We work in the rest frame of the baryon B1 with the baryon B2 moving in the positive z-direction: p1 ¼ ðM1; 0⃗Þ, p2 ¼
ðE2; 0; 0; jp2jÞ and q ¼ ðq0; 0; 0;−jp2jÞ. The helicities of the three particles are related by λ1 ¼ λ2 − λM. We use the
notation λP ¼ λt ¼ 0 for the scalar (J ¼ 0) contribution in order to set the helicity label apart from λV ¼ 0 used for the
longitudinal component of the J ¼ 1 vector meson. The relations connecting the helicity amplitudes to the invariant
form factors are given for the transition 1

2
þ → 1

2
þ: HV

−λ2;−λM ¼ þHV
λ2;λM

and HA
−λ2;−λM ¼ −HA

λ2;λM
.

HV
1
2
t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q �
FV
1M− þ FV

3

q2

M1

�
HA

1
2
t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q �
FA
1Mþ − FA

3

q2

M1

�

HV
1
2
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q �
FV
1Mþ þ FV

2

q2

M1

�
HA

1
2
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q �
FA
1M− − FA

2

q2

M1

�

HV
1
2
1
¼

ffiffiffiffiffiffiffiffiffi
2Q−

p �
−FV

1 − FV
2

Mþ
M1

�
HA

1
2
1
¼ ffiffiffiffiffiffiffiffiffi

2Qþ
p �

−FA
1 þ FA

2

M−

M1

�
; ð9Þ

and for the transition 1
2
þ → 3

2
þ: HV

−λ2;−λM ¼ −HV
λ2;λM

and HA
−λ2;−λM ¼ þHA

λ2;λM
.

HV
1
2
t
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
·
Qþ
q2

s
Q−

2M1M2

�
FV
1M1 − FV

2Mþ þ FV
3

MþM− − q2

2M1

þ FV
4

q2

M1

�

HV
1
2
0
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
·
Q−

q2

s �
FV
1

MþM− − q2

2M2

− FV
2

QþM−

2M1M2

þ FV
3

jp2j2
M2

�

HV
1
2
1
¼

ffiffiffiffiffiffiffi
Q−

3

r �
FV
1 − FV

2

Qþ
M1M2

�
HV

3
2
1
¼ −

ffiffiffiffiffiffiffi
Q−

p
FV
1

HA
1
2
t
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
·
Q−

q2

s
Qþ

2M1M2

�
FA
1M1 þ FA

2M− þ FA
3

MþM− − q2

2M1

þ FA
4

q2

M1

�

HA
1
2
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
·
Qþ
q2

s �
FA
1

MþM− − q2

2M2

þ FA
2

Q−Mþ
2M1M2

þ FA
3

jp2j2
M2

�

HA
1
2
1
¼

ffiffiffiffiffiffiffi
Qþ
3

r �
FA
1 − FA

2

Q−

M1M2

�
HA

3
2
1
¼ ffiffiffiffiffiffiffi

Qþ
p

FA
1 : ð10Þ

We use the abbreviationsM� ¼ M1 �M2,Q� ¼ M2
� − q2. The magnitude of the momentum of the daughter baryon B2 is

given by jp2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ−

p
=2M1 ¼ λ1=2ðM2

1;M
2
2; q

2Þ=ð2M1Þ.
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Let us add a few remarks on the helicity composition of
the vector and axial vector helicity amplitudes. At the zero
recoil point q2 ¼ ðM1 −M2Þ2 the vector helicity ampli-
tudes vanish and the transverse-to-longitudinal composi-
tion can be seen to be given by FL=F T ¼ 1=2 for both
1=2þ → 1=2þ; 3=2þ transitions (“allowed Fermi-Teller
transition”). At the other end of the q2-spectrum at q2¼0
the longitudinal mode dominates. These findings have a
bearing on the transverse-to-longitudinal composition of the
vector mesons in the nonleptonic decays to be discussed
later on.
Using the helicity amplitudes one can write down very

compact expressions for the various decay rates. The
semileptonic decay width is given by (ml ¼ 0)

ΓðB1 → B2 þ lþνlÞ

¼
Z ðM1−M2Þ2

0

dq2
dΓðB1 → B2 þ lþνlÞ

dq2
ð11Þ

where

dΓðB1 → B2 þ lþνlÞ
dq2

¼ 1

192π
G2

F
jp2jq2
M2

1

jVijj2HVðH0
VÞ:

ð12Þ

For the nonleptonic decays one has

ΓðB1 → B2 þ VÞ ¼ G2
F

32π

jp2j
M2

1

jVijV�
klj2C2

efff
2
VM

2
VHVðH0

VÞ;

ð13Þ

ΓðB1 → B2 þ PÞ ¼ G2
F

32π

jp2j
M2

1

jVijV�
klj2C2

efff
2
PM

2
PHSðH0

SÞ;

ð14Þ

where we denote the sum of the squared moduli of the
helicity amplitudes byHV,HS,H0

V andH0
S according to the

two cases

1=2þ → 1=2þ∶ HV ¼
X

λ2¼�1=2;λV¼�1;0

jHλ2;λV j2

HS ¼
X

λ2¼�1=2

jHλ2;λt j2

1=2þ → 3=2þ∶ H0
V ¼

X
λ2¼�1=2;�3=2;λV¼�1;0

jHλ2;λV j2

H0
S ¼

X
λ2¼�1=2

jHλ2;λt j2: ð15Þ

Angular momentum conservation dictates the constraint
jλ2 − λMj ≤ 1=2 for the helicity amplitudes since the initial
state baryon has spin 1=2.

It is quite convenient to work with normalized
helicity amplitudes which we denote by Ĥλ2λM. The helicity
amplitudes are normalized according to

Ĥλ2t ¼ Hλ2t=H
1=2
S Ĥλ2λV ¼ Hλ2λV =H

1=2
V ð16Þ

for the 1=2þ → 1=2þ case and accordingly for the 1=2þ →
3=2þ case with HS → H0

S and HV → H0
V .

IV. INTERPOLATING CURRENTS AND
CALCULATION OF THE TRANSITION FORM

FACTORS IN THE CCQM

As described in the introduction we use the CCQM
to calculate the various 1=2þ → 1=2þ and 1=2þ → 3=2þ

transition form factors FV;A
i ðq2Þ that are needed in the

calculation of the helicity amplitudes. We describe the
coupling of the baryons with the constituent quarks by
nonlocal extensions of the interpolating currents (see
details in Refs. [7,10,45–50]). In Table II we list the
interpolating currents needed in the present application.
The three constituent quarks are treated as separate

dynamic entities which propagate with fully covariant
fermion propagators SqðkÞ ¼ 1=ðmq − =kÞ in the two-loop
Feynman diagram which describes the current-induced
transition between the respective baryons. The propagator
masses mq are constituent quark masses fixed in previous
analyses of a multitude of hadronic processes within our
approach (see, e.g., Refs. [46,47]).
Apart from the choice of the interpolating current and the

constituent quark masses there are two parameters that
describe the structure of a baryon in the CCQM. These are
the coupling factor of the baryon to its constituent quarks
gB and the size parameters ΛB characterizing the size of the

TABLE II. Cabibbo-favored nonleptonic two-body decays of
double heavy charm baryons includingW-exchange contributions.

Baryon JP Interpolating current Mass [MeV]

Ξþþ
cc

1
2
þ ϵabcγμγ5uacbCγμcc 3620.6

Ξþ
cc

1
2
þ ϵabcγμγ5dacbCγμcc 3620.6

Ωþ
cc

1
2
þ ϵabcγμγ5sacbCγμcc 3710

Σþþ
c

1
2
þ ϵabcγμγ5caubCγμuc 2453.97

Σ�þþ
c

3
2
þ ϵabccaubCγμuc 2518.41

Ξþ
c

1
2
þ ϵabccaubCγ5sc 2467.93

Ξ0þ
c

1
2
þ ϵabcγμγ5caubCγμsc 2577.4

Ξ0
c

1
2
þ ϵabccadbCγ5sc 2470.85

Ξ00
c

1
2
þ ϵabcγμγ5cadbCγμsc 2577.9

Ξ�þ
c

3
2
þ ϵabccaubCγμsc 2645.57

Ξ�0
c

3
2
þ ϵabccadbCγμsc 2646.38

Ω0
c

1
2
þ ϵabcγμγ5casbCγμsc 2695.2

Ω�0
c

3
2
þ ϵabccasbCγμsc 2765.9
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nonlocal distribution of the quarks in the baryons. The
coupling factor gB and the size parameter ΛB become
related by the compositeness condition of Salam and
Weinberg [51,52]. By analogy we treat mesons as bound
states of a constituent quark and an antiquark; i.e., we
construct respective nonlocal interaction Lagrangians of
mesons with their constituent quarks (see details in
Refs. [35,49]).
The details of calculating the 1=2þ → 1=2þ and 1=2þ →

3=2þ transition form factors between baryons have been
discussed in detail in Refs. [7,10,45–50], and need not be
repeated here.

V. POLARIZATION, LONGITUDINAL/
TRANSVERSE HELICITY FRACTIONS AND

ANGULAR DECAY DISTRIBUTIONS

Since the semileptonic and nonleptonic two-body decays
of the Ξþþ

cc ;Ξþ
cc and Ωþ

cc are mediated by weak interactions,
one can expect sizable polarization effects in these decays
entailing nontrivial angular decay distributions in the
decays of the mesons and baryons further down the decay
chains. We treat the initial state baryons Ξþþ

cc ;Ξþ
cc and Ωþ

cc
as being unpolarized. In principle, the parent baryons could
acquire a nonzero transverse polarization in the hadronic
production process which would depend on the rapidity
of the baryon in question. However, since one is usually
averaging over the rapidities of the production process, the
parent baryons become effectively unpolarized (for more
details see [47]).

A. Semileptonic decays

We only consider the Cabibbo-favored semileptonic
decays of the double heavy charm baryons Ξþþ

cc ;Ξþ
cc

and Ωþ
cc induced by the quark level c → s transition.

The Cabibbo-suppressed semileptonic decays induced by
the quark level c → d transitions are suppressed by an
overall factor ðVcd=VcsÞ2 ¼ 0.049. The Cabibbo suppres-
sion factor ðVcd=VcsÞ2 is partly offset by the larger
phase space of the ΔS ¼ 1 Cabibbo-suppressed decays

which then amounts to an overall suppression factor of
∼0.1 (see e.g., [31]).
The Q values of the semileptonic c → s decays discussed

here are not large enough to allow for the semileptonic τ
modes. On the other hand, the Q values are sufficiently
large to allow one to neglect the lepton masses in the
semileptonic eþ- and μþ-modes.
In Table III we present our numerical results for the

Cabibbo-favored semileptonic decays of the double heavy
charm baryon states Ξþþ

cc ;Ξþ
cc and Ωþ

cc. We also list
branching fractions for the semileptonic decays of the
Ξþþ
cc based on the recent measurement of the lifetime of

the Ξþþ
cc [3]: τΞþþ

cc
¼ ð256þ24

−22 � 14Þ fs.
For the semileptonic decays of the Ξþ

cc and Ωþ
cc we quote

nominal branching fractions. These are nominal since the
lifetimes of the double heavy charm baryon states Ξþ

cc
and Ωþ

cc have not been measured yet. One has to rely on
theoretical calculations [14,19] from which we take the
median values

τΞþ
cc
¼ 190 fs; τΩþ

cc
¼ 210 fs: ð17Þ

In the case that the experimental lifetime of the Ξþþ
cc

changes in the future and the lifetimes of the Ξþ
cc and

Ωþ
cc become known one has to rescale our branching

fractions by the ratios

�
τΞþþ

cc

256 fs

�
;

�
τΞþ

cc

190 fs

�
;

�
τΞþþ

cc

210 fs

�
: ð18Þ

In Table III we also include numerical values for the
q2-averages of the transverse-plus, longitudinal and trans-
verse-minus helicity fractions of the off-shell gauge boson
W− where we denote the averages by hFþi; hF 0i and
hF−i. When taking the q2-averages one has to integrate the
numerators and denominators separately including the
factor jp2jq2 [see Eq. (12)]. The q2-dependent helicity
fractions are defined by

TABLE III. Cabibbo-favored semileptonic decays of double heavy charm baryons induced by the charm level
c → s transition (l ¼ eþ; μþ).

Γ [10−13 GeV] B [%] hFþi hF 0i hF−i
1=2þ → 1=2þ Ξþþ

cc → Ξþ
c þ lþνl 0.70 2.72 0.02 0.88 0.10

Ξþþ
cc → Ξ0þ

c þ lþνl 0.97 3.76 0.09 0.55 0.36
Ξþ
cc → Ξ0

c þ lþνl 0.69 2.00 0.02 0.88 0.10
Ξþ
cc → Ξ00

c þ lþνl 0.97 2.79 0.09 0.55 0.36
Ωþ

cc → Ω0
c þ lþνl 1.82 7.07 0.09 0.55 0.36

1=2þ → 3=2þ Ξþþ
cc → Ξ�þ

c þ lþνl 0.22 0.86 0.12 0.49 0.39
Ξþ
cc → Ξ�0

c þ lþνl 0.22 0.64 0.12 0.49 0.39
Ωþ

cc → Ω�0
c þ lþνl 0.40 1.27 0.12 0.49 0.39
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1=2þ → 1=2þ∶ Fþðq2Þ ¼ jĤ1=2;1j2 F 0ðq2Þ ¼ jĤ1=2;0j2 þ jĤ−1=2;0j2 F−ðq2Þ ¼ jĤ−1=2;−1j2
1=2þ → 3=2þ∶ Fþðq2Þ ¼

X
λ2

jĤλ2;1j2 F 0ðq2Þ ¼ jĤ1=2;0j2 þ jĤ−1=2;0j2 F−ðq2Þ ¼
X
λ2

jĤλ2;−1j2; ð19Þ

where λ2 ¼ 1=2; 3=2 for Fþðq2Þ and λ2 ¼ −1=2;−3=2 for
F−ðq2Þ in the 1=2þ → 3=2þ case. Since we use normalized
helicity amplitudes Ĥλ2λM [see Eq. (16)] the helicity
fractions satisfy Fþðq2Þ þ F 0ðq2Þ þ F−ðq2Þ ¼ 1. The
angular decay distribution of the lepton l− in the
ðl−; ν̄lÞ rest frame is given by

WðθÞ ¼ 3

8
ð1 − cos θÞ2Fþ þ 3

4
sin2 θF 0

þ 3

8
ð1þ cos θÞ2F−; ð20Þ

where the angle θ is defined in analogy to the angle θV in
Fig. 2 with the change of labeling ðK− → l−Þ, ðπþ → ν̄lÞ
and ðK̄�0 → W−

off-shellÞ. We do not discuss polarization
effects on the hadron side of the semileptonic decays.
These can be discussed along the lines of [48].

B. Nonleptonic decays

We discuss the rates, branching fractions and angular
decay distributions of the four classes of decays,

1=2þ → 1=2þ þ 0−

1=2þ → 1=2þ þ 1−

1=2þ → 3=2þ þ 0−

1=2þ → 3=2þ þ 1−: ð21Þ

Each of the above classes contains four factorizing non-
leptonic two-body decays. Thus we discuss altogether 16
factorizing nonleptonic two-body decays comprising the

decays Ξþþ
cc → Σð�Þþþ

c þ K̄ð�Þ0, Ωþ
cc → Ωð�Þ0

c þ πþðρþÞ,

Ξþþ
cc → Ξ0ð�Þþ

c þ πþðρþÞ and Ωþ
cc → Ξ0ð�Þþ

c þ K̄ð�Þ0 as they
appear in rows 1, 2, 13 and 15 of Table I.
When discussing angular decay distributions we con-

centrate on the 1=2þ → 1=2þ þ 1− two-sided cascade
decay Ξþþ

cc →Σþþ
c ð2455;1=2þÞð→Λþ

c π
þÞþK̄�0ð→K−πþÞ

and the 1=2þ → 3=2þ þ 1− cascade decay Ξþþ
cc →

Σþþ
c ð2520; 3=2þÞð→ Λþ

c π
þÞ þ K̄�0ð→ K−πþÞ as well as

the corresponding two one-sided cascade decays with K̄�0

replaced by K̄0. These decay chains are favored from
an experimental point of view since the second stage
branching ratios are large. On the baryon side the daughter
baryon decays Σþþ

c ð2455; 1=2þÞ → Λþ
c π

þ and Σþþ
c ð2520;

3=2þÞ → Λþ
c π

þ have a large branching ratio close to 100%.
On the meson side the branching ratio of the decay K̄�0 →
K−πþ is also quite large (∼66% from isospin invariance).
Further, all final states in the decay chains are charged,
which is optimal from an experimental point of view.
In the following we discuss the classes of decays

separately:
(i) 1=2þ → 1=2þ þ 0−

In Table IV we list the rates, branching fractions
and polarization of the daughter baryon PB2

for the
four decays in this class.

As mentioned before we concentrate on the
cascade decay Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ K̄0 when

discussing polarization effects and angular decay
distributions. The stage 2 decay Σþþ

c → Λþ
c π

þ is a
parity-conserving strong decay such that the one-
fold angular decay distribution of this cascade decay
is given by

WðθBÞ ¼
X

λ2;λ3¼�1=2

Ĥλ2tĤ
�
λ2td

1=2
λ2λ3

ðθBÞd1=2λ2λ3
ðθBÞ

¼
X

λ2¼�1=2

Ĥλ2tĤ
�
λ2t ¼ 1; ð22Þ

where the polar angle θB is defined in Fig. 2.
When simplifying the decay distribution (22) we

have used the orthonormality relation for the spin
1=2 Wigner d1=2-function

X
λ3

d1=2λ2λ3
ðθBÞd1=2λ0

2
λ3
ðθBÞ ¼ δλ2λ02 : ð23Þ

The bilinear forms of the helicity amplitudes sum
up to 1 since normalized helicity amplitudes are
used. The angular decay distribution (22) can be
seen to be flat.

FIG. 2. Definition of the angles θB, θV , and χ in the cascade
decay Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ K̄0�ð→ K−πþÞ. The Σþþ

c can
either be the Σþþ

c ð2455; 1=2þÞ or the Σþþ
c ð2520; 3=2þÞ.
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The longitudinal polarization of the daughter
baryon Σþþ

c in the stage 1 decay Ξþþ
cc → Σþþ

c þ
K̄0 is given by

PΣþþ
c

¼ jĤ1
2
tj2 − jĤ−1

2
tj2: ð24Þ

We refer to this polarization parameter as PB2
in the

general context and list PB2
for the other three

decays in Table IV. As discussed after (22) the
polarization of the daughter baryon PΣþþ

c
cannot be

resolved from its angular decay distribution because
the decay Σþþ

c → Λþ
c π

þ is a strong decay. However,
the polarization of the Σþþ

c is transferred to the
second stage baryon Λþ

c . The degree of polarization
transfer depends on the baryon side polar angle θB
and is given by

PΛþ
c
¼ PΣþþ

c
cos θB: ð25Þ

The polarization of the Λþ
c can in turn be analyzed

through its weak decays as e.g., in the decay
Λþ
c → Λ0πþ, which possesses a large analyzing

power of −0.91� 0.15 [36]. From an experimental
point of view the decay Λþ

c → pK−πþ would be
preferred as an analyzing channel since it has a
larger branching fraction than the decay Λþ

c →
Λ0πþ by a factor of ∼5. However, to our knowledge
the analyzing power of this mode has neither been
measured experimentally nor calculated theoreti-
cally except for an analysis of the two subchannels
Λþ
c → pK̄�0 and Λþ

c → ΔþþK− [53].
The decays Ξþþ

cc → Ξ0þ
c þ πþ and Ωþ

cc → Ξ0þ
c þ

K̄0 involve daughter charm baryon state Ξ0þ
c ,

which then cascades down to the ground state Ξþ
c

via a parity-conserving one-photon emission Ξ0þ
c →

Ξþ
c þ γ. As in the decay Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ

K̄0 discussed above the helicity angle distribution
of the Ξþ

c is flat. Differing from Eq. (25) the
polarization transfer is now

PΞþ
c
¼ −PΞ0þ

c
cos θB: ð26Þ

As concerns the decay Ωþ
cc → Ω0

c þ πþ the daughter
baryon Ω0

c has a multitude of decay channels of
which the relevant decay asymmetries have not been
determined yet experimentally. Theoretical predic-
tions for the two-body decay asymmetries of the
daughter baryon Ω0

c can be found in Refs. [41,42].
(ii) 1=2þ → 1=2þ þ 1−

In Table V we list the rates, branching fractions,
polarization of the daughter baryon PB2

and helicity
fractions of the vector meson for the four decays in
this class.

The threefold angular decay distribution for the
generic cascade decay 1=2þ→1=2þð→1=2þþ0−Þþ
1−ð→0−þ0−Þ is given by

WðθB;θV;χÞ
¼

X
λV ;λ0Vλ2;λ

0
2
;λ3

δλ2−λV ;λ02−λ0V e
−iðλV−λ0VÞχd10;λV ðθVÞd10λ0V ðθVÞ

×Ĥλ2λV Ĥ
�
λ0
2
λ0V
d1=2λ2λ3

ðθBÞd1=2λ0
2
λ3
ðθBÞ

¼
X
λV ;λ2

d10;λV ðθVÞd10λV ðθVÞĤλ2λV Ĥ
�
λ2λV

; ð27Þ

where we have assumed that the stage 2 decays
on the baryon and meson side are strong and thus
parity conserving as in the cascade decay

TABLE IV. Cabibbo-favored factorizing nonleptonic two-body decays of double heavy charm baryons induced by
the quark level c → s; d → u transitions for the cases 1=2þ → 1=2þ þ 0−.

Γ [10−13 GeV] B [%] PB2

1=2þ → 1=2þ þ 0− Ξþþ
cc → Σþþ

c þ K̄0 0.32 1.25 −0.96
Ξþþ
cc → Ξ0þ

c þ πþ 0.78 3.03 −0.94
Ωþ

cc → Ξ0þ
c þ K̄0 0.17 0.54 −0.97

Ωþ
cc → Ω0

c þþπþ 1.58 5.05 −0.94

TABLE V. Cabibbo-favored factorizing nonleptonic two-body decays of double heavy charm baryons induced by
the quark level c → s; d → u transitions for the case 1=2þ → 1=2þ þ 1−.

Γ [10−13 GeV] B [%] FL F T PB2

1=2þ → 1=2þ þ 1− Ξþþ
cc → Σþþ

c þ K̄�0 1.44 5.61 0.47 0.53 −0.82
Ξþþ
cc → Ξ0þ

c þ ρþ 4.14 16.10 0.49 0.51 −0.74
Ωþ

cc → Ξ0þ
c þ K̄�0 0.75 2.39 0.45 0.55 −0.79

Ωþ
cc → Ω0

c þ ρþ 8.29 26.44 0.48 0.52 −0.71
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Σþþ
c ð2455;1=2þÞð→Λþ

c π
þÞþ K̄�0ð→K−πþÞ which

we focus on in the following. When evaluating the
helicity sum in (27) one has to keep in mind that
jλ2 − λV j ≤ 1=2. The three angles θV , θB and χ
describing the angular structure of the decay are
defined in Fig. 2. We have again used the ortho-
normality property Eq. (23) in the reduction of the
first row of Eq. (27). The seeming threefold angular
decay distribution has collapsed to a onefold angular
decay distribution. In particular, the azimuthal cor-
relation between the two decay planes spanned by
fΛþ

c ; πþg and fK−; πþg vanishes.
The vector mesons on the meson side of the

decay chain can be transversely and longitudinally

polarized. We define the corresponding helicity
fractions by

FL ¼ jĤ1
2
0j2 þ jĤ−1

2
0j2 F T ¼ jĤ1

2
1j2 þ jĤ−1

2
−1j2:
ð28Þ

For the meson-side decay 1− → 0− þ 0− one obtains
the angular decay distribution

WðθVÞ ¼
�
3

2
cos2θVFL þ 3

4
sin2θVF T

�
: ð29Þ

The longitudinal polarization of the daughter baryon
Σþþ
c depends on the polar emission angle θV via

PB2
ðcos θVÞ ¼ PΣþþ

c
ðcos θVÞ ¼

3
4
sin2 θVðjH1

2
1j2 − jH−1

2
−1j2Þ þ 3

2
cos2 θVðjH1

2
0j2 − jH−1

2
0j2Þ

3
4
sin2 θVðjH1

2
1j2 þ jH−1

2
−1j2Þ þ 3

2
cos2 θVðjH1

2
0j2 þ jH−1

2
0j2Þ

: ð30Þ

When averaged over cos θV (one has to integrate the
numerator and denominator separately) one has

PB2
¼ PΣþþ

c
¼ ðjĤ1

2
1j2 − jĤ−1

2
−1j2Þ þ ðjĤ1

2
0j2 − jĤ−1

2
0j2Þ

¼ FP
T þ FP

L: ð31Þ

As mentioned before the polarization of the Σþþ
c is not

measurable in its strong decay. However, the Σþþ
c transfers

its polarization to the Λþ
c in the (strong) decay Σþþ

c →
Λþ
c π

þ where the polarization transfer depends on cos θB.
The average longitudinal polarization of the Λþ

c can be
calculated to be (again we average over cos θV)

PΛþ
c
ðθBÞ ¼ PΣþþ

c
cos θB: ð32Þ

As in Eq. (26) one has a sign reversal for the Ξþ
c in the

decay chain Ξ0þ
c þ Ξþ

c þ γ.
(iii) 1=2þ → 3=2þ þ 0−

In Table VI we list the rates and branching
fractions for the four decays in this class.
Contrary to the 1=2þ→1=2þþ0− case the baryon

side angular decay distribution ofΣþþ
c ð2520;3=2þÞ→

Λþ
c π

þ now shows a θB dependence given by

WðθBÞ ¼
�
1 −

3

4
sin2θB

�
; ð33Þ

i.e., there is a pronounced dip of the angular decay
distribution at θB ¼ 90°.

In the constituent quark model the vector tran-
sition 1=2þ → 3=2þ is conserved; i.e., the vector
current helicity amplitude HV

�1=2t ¼ 0 vanishes for
the transition Ξþþ

cc → Σ�þþ
c . This implies that the

final 3=2þ state has no polarization structure and
therefore there is no polarization transfer to the Λþ

c
in the second stage decay Σþþ

c ð2520; 3=2þÞ →
Λþ
c π

þ. The same statement holds true for the other
three 1=2þ → 3=2þ þ 0− decays.

(iv) 1=2þ → 3=2þ þ 1−

In Table VII we list the rates, branching fractions
and three polarization parameters FP

L, F
P
T and FP0

T
needed to describe the longitudinal polarization of the
daughter baryon PB2

for the four decays in this class.
The threefold joint angular decay distribution can

be obtained from the first row of Eq. (27) by replacing
the Wigner d1=2-function by the corresponding spin
3=2 Wigner d3=2-function. Again, one has to observe
the angular momentum constraint jλ2 − λMj ≤ 1=2.
The threefold angular decay distribution reads

TABLE VI. Cabibbo-favored factorizing nonleptonic two-body decays of double heavy charm baryons induced
by the quark level c → s; d → u transitions for the cases 1=2þ → 3=2þ þ 0−.

Γ [10−13 GeV] B [%]

1=2þ → 3=2þ þ 0− Ξþþ
cc → Σ�þþ

c þ K̄0 0.06 0.25
Ξþþ
cc → Ξ�þ

c þ πþ 0.16 0.63
Ωþ

cc → Ξ�þ
c þ K̄0 0.03 0.10

Ωþ
cc → Ω�0

c þ πþ 0.31 1.00
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WðθV; θB; χÞ ¼
3

2
cos2θV

�
1 −

3

4
sin2θB

��
jĤ1

2
0j2 þ jĤ−1

2
0j2

�
þ 3

4
sin2θV

��
1 −

3

4
sin2θB

��
jĤ1

2
1j2 þ jĤ−1

2
−1j2

�

þ 3

4
sin2θB

�
jĤ3

2
1j2 þ jĤ−3

2
−1j2

��
þ 3

8

� ffiffiffi
3

2

r
sin 2θV sin 2θB

�
cos χRe

�
Ĥ3

2
1Ĥ

�
1
2
0
þ Ĥ−3

2
−1Ĥ

�
−1
2
0

�
þ sin χIm

�
Ĥ3

2
1Ĥ

�
1
2
0
− Ĥ−3

2
−1Ĥ

�
−1
2
0

��
þ 3

ffiffiffi
3

p
sin2θVsin2θB

�
cos 2χRe

�
Ĥ3

2
1Ĥ

�
−1
2
−1 þ Ĥ−3

2
−1Ĥ

�
1
2
1

�
þ sin 2χIm

�
Ĥ3

2
1Ĥ

�
−1
2
−1 − Ĥ−3

2
−1Ĥ

�
1
2
1

��
: ð34Þ

The angular decay distribution can be seen to integrate to
2π. It is apparent that there is a rich angular structure in the
angular decay distribution (34).
In Eq. (34) we have also included the T-odd contri-

butions proportional to ImðĤ3
2
1Ĥ

�
1
2
0
− Ĥ−3

2
−1Ĥ

�
−1
2
0
Þ and

ImðĤ3
2
1Ĥ

�
−1
2
−1 − Ĥ−3

2
−1Ĥ

�
1
2
1
Þ even though these contributions

vanish in our model calculation because our helicity
amplitudes are relatively real. The angular coefficients
that multiply the T-odd contributions can be seen to involve
T-odd triple products. For example, one has

sin 2θV sin 2θB sin χ

¼ 4ðp̂Σþþ
c

· p̂Λc
Þðp̂K�0 · p̂k−Þðp̂Σþþ

c
× p̂Λc

Þ · p̂k− ; ð35Þ

where the hatted three-momenta are normalized to 1. The T
odd can be fed by either final state interactions or by CP-
violating interactions. It would be interesting to experi-
mentally check on the existence of such triple-product
correlations.
We define polarization parameters that describe the

angular decay distribution where we also include the
numerical values for the parameters for the cascade decay
Ξþþ
cc → Σ�þþ

c ð→ Λþ
c þ πþÞ þ K̄�0ð→ K− þ πþÞ. One has

FL ¼ jĤ1
2
0j2 þ jĤ−1

2
0j2 ¼ 0.40;

F T ¼ jĤ1
2
1j2 þ jĤ−1

2
−1j2 ¼ 0.16;

F 0
T ¼ jĤ3

2
1j2 þ jĤ−3

2
−1j2 ¼ 0.45;

FP
L ¼ jĤ1

2
0j2 − jĤ−1

2
0j2 ¼ −0.01;

FP
T ¼ jĤ1

2
1j2 − jĤ−1

2
−1j2 ¼ −0.10;

FP0
T ¼ jĤ3

2
1j2 − jĤ−3

2
−1j2 ¼ −0.31;

γ ¼ ReðĤ3
2
1Ĥ

�
1
2
0
þ Ĥ−3

2
−1Ĥ

�
−1
2
0
Þ ¼ 0.39;

γ0 ¼ ReðĤ3
2
1Ĥ

�
−1
2
−1 þ Ĥ−3

2
−1Ĥ

�
1
2
1
Þ ¼ 0.19: ð36Þ

By integrating over the respective pairs of angles one
obtains the single angle decay distributions

1

2π
WðθVÞ ¼

3

2
cos2θVFL þ 3

4
sin2θVðF T þ F 0

TÞ;
1

2π
WðθBÞ ¼

�
1 −

3

4
sin2θB

�
ðFL þ F TÞ þ

3

4
sin2θBF 0

T;

WðχÞ ¼ 1þ 2
ffiffiffi
3

p
γ0 cos 2χ: ð37Þ

The contribution of the remaining azimuthal asymmetry
parameter γ can be obtained by folding the angular decay
distribution with cos θV cos θB. The numerical values of the
angular coefficients are listed in Eq. (36).
The polarization transfer to the Λc in the strong decay

Σ�þþ
c → Λþ

c þ πþ is given by

PΛþ
c
ðθBÞ ¼

�
ðjĤ1

2
0j2 − jĤ−1

2
0j2 þ jĤ1

2
1j2 − jĤ−1

2
−1j2Þ

×

�
1 −

3

4
sin2θB

�

þ ðjĤ3
2
1j2 − jĤ−3

2
−1j2Þ

3

4
sin2θB

�
cos θB: ð38Þ

As in Eq. (26) there is a reversal in sign in the polarization
transfer to the stage 2 charm baryons Ξþ

c and Ω0
c in the last

TABLE VII. Cabibbo-favored factorizing nonleptonic two-body decays of double heavy charm baryons induced
by the quark level c → s; d → u transitions for the case 1=2þ → 3=2þ þ 1−.

Γ [10−13 GeV] B [%] FP
L FP

T F 0P
T

1=2þ → 3=2þ þ 1− Ξþþ
cc → Σ�þþ

c þ K̄�0 0.42 1.62 −0.01 −0.10 −0.31
Ξþþ
cc → Ξ�þ

c þ ρþ 1.15 4.48 −0.01 −0.08 −0.24
Ωþ

cc → Ξ�þ
c þ K̄�0 0.21 0.67 −0.01 −0.10 −0.30

Ωþ
cc → Ω�0

c þ ρþ 2.23 7.11 −0.01 −0.08 −0.24
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three decays of Table VII since the stage 2 decays Ξ�þ
c →

Ξþ
c þ γ andΩ�0

c → Ω�0
c þ γ are ∼100% one-photon decays.

VI. SUMMARY AND CONCLUSION

We have cataloged all Cabibbo-favored semileptonic and
nonleptonic two-body decays of the three double heavy
charm baryon states Ξþþ

cc ;Ξþ
cc and Ωþ

cc where the non-
leptonic two-body decays are into ground state mesons and
baryons. For the semileptonic decays we have calculated
rates, branching ratios and helicity fractions of theW−

off-shell
using transition form factors calculated in our CCQM quark
model. For the nonleptonic decays we have analyzed the
topology structure of their various two-body decays in
terms of the two W-emission (external and internal) or
tree topologies and the three W-exchange topologies. We

have identified two groups of decays Ξþþ
cc → Σþþð�Þ

c þ
K̄0ð�Þ and Ωþ

cc → Ω0ð�Þ
c þ πþðρþÞ which proceed by W-

emission alone and are thus theoretically favored since
there is no contamination from W-exchange contributions.

The W-exchange contributions to the decays Ξþþ
cc →

Ξ0ð�Þþ
c þ πþðρþÞ and Ωþ

cc → Ξ0ð�Þþ
c þ K̄ð�Þ0 vanish in the

SUð3Þ limit as a consequence of the Körner-Pati-Woo
theorem. Using again transition amplitudes from our
CCQM quark model for the latter decays we have calcu-
lated rates, branching ratios and angular coefficients that
characterize the angular decay distributions of the one-
sided or two-sided cascade decays of the above two
classes of decays. The angular decay distributions involv-
ing the 1=2þ → 1=2þ baryon transitions are markedly
different from those of the 1=2þ → 3=2þ transitions. In
particular, in the 1=2þ → 1=2þ1− cascade decay Ξþþ

cc →
Σþþ
c ð2455; 1=2þÞ þ K̄�0 there are no azimuthal correla-

tions between the two planes formed by the second
stage decays Σþþ

c ð2455; 1=2þÞ → Λþ
c π

þ and K̄�0 →
K−πþÞ, whereas the two decay planes become azimuthally
correlated in the 1=2þ → 3=2þ þ 1− cascade decay

Ξþþ
cc → Σ�þþ

c ð2520; 3=2þÞ þ K̄�0. Another discriminating
feature of these two possible decay paths is that there is
pronounced dip in the cos θ distribution in the latter case.
Any of the two-body nonleptonic decays of the Ξþ

cc
and Ωþ

cc listed in Table I could be explored in the search for
the two missing double heavy charm baryon states. If one
takes the discovery channels of the Ξþþ

cc as a guide the

decays Ξþ
cc→Λþ

c ðΣð�Þþ
c Þþ K̄ð�Þ0 and Ξþ

cc→Ξ0ð0;�Þ
c þπþðρþÞ

would be good candidates for the discovery of the Ξþ
cc

while the Ωþ
cc should be searched for in the decays

Ωþ
cc → Ξþð0;�Þ

c þ K̄ð�Þ0 or Ωþ
cc → Ω0ð�Þ

c þ πþðρþÞ. In this
paper we have provided first predictions for the

branching ratios of the decays Ξþþ
cc → Σþþð�Þ

c þ K̄0ð�Þ,
Ξþþ
cc → Ξþð0;�Þ

c þ πþðρþÞ, Ωþ
cc→Ξþð0;�Þ

c þ K̄ð�Þ0 and Ωþ
cc →

Ω0ð�Þ
c þ πþðρþÞ. In a follow-up paper we plan to also

calculate the W-exchange contribution to the Cabibbo-
favored nonleptonic double charm baryon decays with
predictions for the remaining decays of Table I not treated
in this paper. This includes a calculation of the recently
observed decay Ξþþ

cc → Ξþ
c þ πþ [2].
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