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Complex phase structure of the meson-baryon 7-matrix
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The full complex phase structure of the meson-baryon reaction amplitude in coupled channels approach
is investigated, including also the photon-baryon channel. The result may be viewed as a generalization of
the well-known Watson’s theorem. Furthermore, the complex phase structure is exhibited for the pole and
nonpole parts of the reaction amplitude in such a way that it will serve as a convenient common starting
point for constructing models with different levels of approximation, in particular, for building isobar
models where the basic properties of the S-matrix can be maintained. Such models should be useful,
especially, in coupled multichannel calculations, where a large amount of experimental data are considered
in resonance analyses, a situation encountered in modern baryon spectroscopy. In particular, it is shown that
the unitarity of the pole part of the T-matrix arises automatically from the dressing mechanism inherent in
the basic scattering equation. This implies that no separate conditions are required for making this part of
the amplitude unitary as it has been done in some of the existing isobar models.
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I. INTRODUCTION

Baryon spectroscopy is an important part of the study of
nonperturbative regime of QCD. So far, most of the known
baryon resonances have been identified in z#N scattering
experiments. With recent progresses in this field, it is clear
that a reliable resonance identification and extraction of its
properties from experimental spectra require a consistent
analysis of many independent reaction processes. Coupled
channels approach is the tool of choice for this task. Indeed,
reaction theories based on coupled channels approach
have been developed at various degrees of sophistication.
Nowadays, such analyses in baryon spectroscopy involve
coupled multichannel calculations analyzing a large
amount of experimental data in various meson production
channels. These data are being accumulated at major
facilities worldwide, especially, in photoproduction reac-
tions. The most sophisticated coupled channels approach is
that of dynamical coupled channel developed over many
years [1-15]. These calculations are quite involved and it is
customary to make some sort of approximations in order to
keep such calculations numerically more manageable.
A common such approximation is the K-matrix approach
and its variations employed by some of the resonance
analyses groups [16-34]. A nice feature of the K-matrix
approach is that it reduces the original scattering equation
to an algebraic equation while preserving unitarity of the
S-matrix. This feature enables incorporating a large amount
of experimental data in coupled multichannel analyses.
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A particular variation of the K-matrix approach is the so-
called isobar models, where the reaction amplitude is
decomposed into a resonance and a background contribu-
tion. Basically, they should correspond to the pole and
nonpole parts of the 7-matrix amplitude. The background
amplitude is usually parametrized by some smooth func-
tions of energy while the resonance amplitude is para-
metrized by Breit-Wigner forms. Isobar models are
practical and very economical in performing numerically
demanding calculations and are often used in resonance
analyses based on coupled channels calculations and also
dealing with a large amount of experimental data. Despite
being simple, isobar models still capture many interesting
properties of the resonances. One issue that arises in these
models is that unitarity is usually violated. There are many
efforts to unitarize isobar models [35-45]. There, the
resonance and the background amplitudes are unitarized
separately and independently. This leads to a quite involved
constraint on the resonance amplitude in particular. One of
the unitary isobar models used intensively in the analyses
of both the photo- and electroproduction reactions is that of
Mainz group [43—-46]. In their approach, the unitarization
of the background amplitude is done by solving the
scattering equation for that amplitude. For the resonance
pole amplitude, based on Ref. [39], it introduces complex
resonance coupling constants which are constrained by
imposing the unitarity condition independent from the
background amplitude. Recently, the Mainz group updated
its etaMAID isobar model [47] by introducing a constant
complex phase to each of their resonance amplitudes.
Note that, in principle, the complex phase is an energy-
dependent function containing proper threshold behaviors.
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Complex phases in the resonance coupling constants have
been also introduced in the study of hadronic reactions (see,
e.g., Ref. [48]).

In the present work, we exhibit the full complex phase
structure of the meson-baryon 7-matrix reaction amplitude
in coupled channels approach. To this end, we first expose
the complex phase structure of the full reaction amplitude
written in terms of the K-matrix and the so-called gener-
alized Watson’s factor. The result may be considered as a
generalization of the well-known Watson’s theorem in
photoproduction [49]. This helps us to expose, in a second
step, the full complex phase structure of the pole and
nonpole parts of the reaction amplitude which serves as a
common staring point for introducing approximations to the
reaction amplitude with varying degrees of sophistication.
The resulting form of the reaction amplitude is such that
the fundamental properties of the S-matrix, such as unitarity
and/or analyticity, can be maintained straightforwardly in
different approximations. In particular, we show how the
unitarity of the pole part of the 7-matrix arises automatically
from the dressing mechanism inherent in the basic 7-matrix
equation, and that, no separate conditions are required for
making this part of the resonance amplitude unitary as it has
been done in some of the existing isobar models.

This paper is organized as follows. In Sec. II, we introduce
the notation used throughout this work for the sake of
conciseness. In Sec. III, we derive the full phase structure of
the meson-baryon reaction amplitude which is essentially a
generalization of the Watson’s theorem. Based on this, the
complex phase structure of the pole and nonpole parts of the
reaction amplitude is derived in Sec. IV. In Sec. V, the phase
structure of the photoproduction amplitude in one-photon
approximation is derived. In Sec. VI, possible levels of
approximation to the full reaction amplitude are briefly
discussed. A summary is given in Sec. VII. For complete-
ness, the phase-shift parametrizations of the 7- and
K-matrices as well as of the generalized Watson’s factor
are given in Appendix A. Since the decomposition of the
T-matrix into the pole and nonpole parts plays a central role
in the present work, this decomposition is derived in
Appendix B for both the meson-baryon and photoproduction
reaction processes. Appendix C contains the explicit form of
the dressed resonance propagator in the case of the two-
resonance coupling.

II. NOTATION

Before starting the derivation of the complex phase
structure of the meson-baryon reaction amplitude, a remark
on the notation used in the present work is in order.

The two-body reaction amplitude 7' obeys, in general,
the Lippmann-Schwinger-type scattering equation (also
referred to as the 7T-matrix equation)

T =V + VGT., (1)

where V' denotes the driving potential kernel, irreducible
with respect to the “two-particle cut” [50], and G stands for
the two-body propagator. Note that the above equation is an
integral equation for operators in abstract space.

In momentum space, and in the coupled channels
approach, the above equation becomes'

Tz/u(é)/v é); E)

V@3 + Y [ V@36 e
A

xT3(q".4:E). (2)

Here, ¢', g, and ¢”, denote the final, initial, and inter-
mediate two-particle relative momenta, respectively. E
stands for the total energy of the system. The indices ¢/,
v, and A stand for the final, initial, and intermediate two-
particle channels.

The reaction amplitude given by Eq. (2) can be expanded
in partial waves as

<S/MS’ |Tz/v(§/’ ZI); E) |SMS>
= il (S Mg LMy |JM,) (SMSLM |JM,)

X TISS (4 4 E)Y g, (@)Y 1, (0 Py, (3)

where S, L, and J denote the spin, orbital angular
momentum, and total angular momentum, respectively,
of the two-body initial state, while My, M;, and M stand
for the corresponding projection quantum numbers.
The primed quantities refer to the corresponding quantum
numbers of the final two-body state. P, stands for the
isospin projection operator which projects the two-body
state onto the total isospin state 1. Y, (p) stands for the
usual spherical harmonic function. Here, the argument
p is a shorthand notation for the polar (¢) and azimuthal
(¢p) angles, ie., p= (Hp,gb,,). The geometrical factor
(jimyjom,|jzms) is the usual SU(2) Clebsch-Gordan
coefficient. The summation in the above equation is over
all the quantum numbers appearing on the right-hand side
and not specified on the left-hand side of the equation.

The partial-wave amplitude 77/5% (¢, ¢; E) in Eq. (3)
can be extracted by inverting that equation. We have

'"The relativistic generalization of the scattering equation
given by Eq. (2)—the so-called Bethe-Salpeter equation [50]—
involving a four-dimensional momentum integration, may be
reduced to a three-dimensional integral equation of the form given
by Eq. (2) in such a way to maintain Lorentz covariance and elastic
unitarity of the original reaction amplitude [S1]. This means that
Lorentz covariance can be also maintained in three-dimensional
scattering equations, along with the other basic properties of the
S-matrix, such as unitarity and analyticity.
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: o 8m* \ [2L+1\:
TISS (of gE)="S iL'-L
vt (d GE) =i (2J+1>< 4z >

X (S'MgL'M;/|JM,)(SMLO|JM,)P,
+1
X / d(cosO,)(S'Mg|T,,(7'.q:E)|SMy)
-1

XYZ’ML/ (9[1/,0), (4)

where, without loss of generality, the initial relative
momentum ¢ is chosen along the +z-axis and the final
relative momentum ¢’ in the x-z plane. Similarly, to Eq. (3),
the summation in the above equation is over all the
quantum numbers appearing on the right-hand side and
not specified on the left-hand side of the equation.

Inserting Eq. (3) into (2) yields the scattering equation
for the partial-wave amplitude

T(d a:E) = Vi (d.q)

(o]
1" 1127 JIS'S" i
+ E /0 dq"q"" V(4. q")
S//,L//,A

x Gi(q" E)T}}5 (¢". a: E). (5)

In the present work, we use the notation

T(/a = Va’a + Z V{f[)’ G/} T/)’a (6)
Y/

to denote either Eq. (2) or (5) for the sake of conciseness.
Accordingly, if the above equation is to represent Eq. (2),
the indices o, @, and f in the above equation stand for the
two-particle channel of the final, initial, and intermediate
states, respectively, and the summation over f is to be
understood as the summation over the intermediate two-
particle channels. On the other hand, if the above equation
is to represent Eq. (5), then the indices o, a, and f§ specify,
in addition to the two-particle channel of the final, initial,
and intermediate states, respectively, also the correspond-
ing two-body partial-wave states. Note also that the
reference to the two-particle relative momentum is com-
pletely suppressed in the present notation, including its
integration over the intermediate states.

The notation explained above is used throughout the
present paper. In particular, the main result of this work,
given by Egs. (66) and (69), can be interpreted as given
either in plane-wave or in partial-wave basis.

III. PHASE STRUCTURE OF THE TWO-BODY
T-MATRIX AMPLITUDE

To expose the phase structure of the two-body reaction
amplitude, it is convenient to express the 7-matrix in terms
of the K-matrix. We start with the 7-matrix scattering
equation

T=V+TGV=V+VGT, (7)

where the two-body propagator G can, in general, be
decomposed into the real and imaginary parts

G =GR -G (8)

In fact, the propagator involving stable particles is of the
form (¢ — 0)

1

G: pu—
E—Hg+ ie PE—HO

—ind(E — Hy), (9)

with P standing for the principal value part, while the
propagator involving unstable particles is of the form [1,9]
(IT = finite)

1
G:
E—hy—1I
E-H, i

—i . (10
E-Hy+1" =m0

where A, denotes the unperturbed Hamiltonian involving

the bare unstable particle and IT is the self-energy of that

unstable particle. Hy = hy + II¥, with IT = II¥ — {IT’.
Inserting Eq. (8) into Eq. (7), we have [52]

T=K-iTG'K = K —iKG'T, (11)
with the K-matrix (K) given by
K=V +VGRK =V + KGRV, (12)

which is Hermitian if the driving potential V is Hermitian.
For stable particles, using Eq. (9), Eq. (11) becomes

(13)

which is the familiar equation for the 7-matrix in terms of
the K-matrix. Note that, for unstable particles propagation
[cf. Eq. (10)], the imaginary part of G—for which there
is no o-function in energy—Ileads to a momentum loop
integration over the intermediate state.

Equation (7)—and consequently all the subsequent
equations—represents actually coupled equations in two-
particle channels. Explicitly, for Eqgs. (11) and (12), we
have (using the corresponding first equalities)

T(E) = K(E) — inT(E)3(E — Hy)K(E).

Tye=Kyoa— iZTa’ﬂG;jKﬂav
p

Kyog=Vaa+ ZKa’ﬂvaﬂm (14)
p

where the subscripts stand for the two-particle channels,
i.e., @ denotes the final two-particle channel and «a, the
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initial two-particle channel. f denotes the intermediate two-
particle channel and it is summed over all the channels
(including the stable- and unstable-particles propagations)
to account for the possible couplings of the initial and final
states to all other channels. Note that, as explained in
Sec. II, the equations in (14) may be interpreted as given
either in plane-wave or in partial-wave basis. For the latter,
the indices o', @, and g specify also the partial-wave states,
in addition to the two-particle channels. Note also that the
reference to the two-particle relative momentum is com-
pletely suppressed in the present notation, including the
momentum-loop integration over the intermediate states.

Usually, the integral equation for 7 in Eq. (14) is solved
to yield

1
T, =S K5l ———| . 1
da Zﬂ: “ﬂ[1+iG’KLa (15)

In the present work, however, we solve that equation as
follows. First, we write it as

> Tup(Bpa + iGhKpa) = (1 = iTyGl) K
pEd

ZT(//)’D/J(I = N(z’K{)/(zv (16)
p#d

where we have defined

Dﬁ/ﬂ = (Sﬂ/ﬂ + iGI/Kﬂ’ﬂa ()B/vﬂ # a/)

Na’ =1- iTa/a’Gé" (17)

Next, we multiply Eq. (16) throughout from the right by the
inverse matrix of D to get

Twa=No Y KopDjl. (18)
prd

Finally, we insert the above result back into the equation for
T in (14) to arrive at

Tt =N [K“/" =i Ka’ﬁ’(D_l)ﬁ’ﬂGllfKﬁ“]
i

:Na’f(a/a' (19)
The last equality in Eq. (19) defines K to be

ka’a = Ka’a —i Z Ka/ﬂ’(D_l)/ﬁ”/)’G;{Kﬂaa (20)
pp#d

which—unlike the K-matrix—is, in general, a complex
quantity. Note that below the first inelastic threshold,

A

K = K. Also, note that the explicit dependence on the

channel « in the intermediate state is absent in K. This
dependence is contained implicitly in the K-matrices, K;.

Inserting Eq. (19) into the definition of N, in Eq. (17)
yields

1

N,=1-iT;,G}, = ——F .
a aa a 1 + iKa’a’Gi/

(21

Starting from the second equality in Eq. (11), it is
straightforward to show that the 7-matrix can be also
expressed as

Tyoa=KyaN,. (22)
where
_ o 1
Na =1- lGaTaa = B = >
1+ lGéKaa
Dyp=68y5+ iKﬁ/ﬂGg, (B.p # a)
I_(a/a = Ka/a _— l Z Ka’ﬂ’Gl/(D_1>/}’[;’Kﬂa' (23)

B #a

Equation (19) or (22) is the desired result: we have
exhibited the full phase structure of the 7-matrix which is
nontrivial in general due to the phase structure of K,
introduced by the terms involving G;;s in Eq. (20) or (23).

For on-shell K,,, its phase structure can be expressed
simply in terms of the phase-shift and inelasticity of the
elastic scattering 7-matrix as shown in Appendix A.

Note also that Eq. (19) or (22) is completely general and
holds for fully off-shell 7T-matrix. Hereafter, we refer to
the factors N, and N, defined in Eqs. (17) and (23) as the
generalized Watson’s factors. For completeness, we show
how Watson’s theorem emerges from these equations in the
following Sec. III A, when the initial channel a corresponds
to the photon-baryon channel.

If we wish, combining Egs. (19) and (22), the T-matrix
can be expressed in a symmetric form

2

T (Na’ka’a + Ka’aNa)' (24)

da —

M| —

A. Two-channel case and Watson’s theorem

Confining now to the case of two-channel problem, Ky,
in Eq. (20) simplifies and Eq. (19) takes the form

Ta’a = Na/ [Ka/a - iKa’ﬂNKﬂGéKﬂaL (ﬁ ?é a'), (25)

with

_ 1
Ney=— . 26
Ke =1 +iGIK,, (26)
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For a transition reaction, where @ # a, Eq. (25) further
reduces to

Ta’a = Na’KaJaNKa' (27)

If the two channels considered involve only stable
particles, then, in partial-wave basis, Eqs. (25) and (27)
are simple algebraic equations, where Gllj — py after the
momentum loop integration with p; denoting the phase-
space density. Moreover, if the on-shell 7-matrix and the
on-shell K-matrix can be parametrized in terms of phase-
shifts and inelasticities as given in Appendix A, we obtain
from Eq. (27),

1 . .
Ta’rx - {5 (’70‘/6126"] + 1) }K“/a(eléa cos 50:)’ (28)

for the transition amplitude (¢’ # a). Here, we have made
use of Eqgs. (A4) and (AS).

Equation (28) reveals the phase structure of the 7-matrix
amplitude explicitly in terms of the phase-shifts for the
transition amplitude in the case of a two-channel problem.
It is the analog of the well-known Watson’s theorem for
photoproduction [49] in the case of two-body hadronic
reactions. The phase of the reaction amplitude is deter-
mined by both the on-shell initial and final state interactions
through the Watson’s factors N, and N, respectively.
Note that, in Eq. (28), the effect of the channel openings is
lumped entirely into the final state interaction factor. We
remind that, from Eq. (12), if V is Hermitian, so is K and,
together with time reversal invariance, K, is either pure
real or pure imaginary.

If we start with the 7T-matrix in the form given by
Eq. (22), instead of Eq. (19) as we have done above, we
obtain an equivalent alternative form for the transition
amplitude (¢ # @),

Ta’a = NKa’Ka’an (29)
with
Ney=— (30)
Ko — 1 + l.Ka/a/G(Ii .

In terms of the phase-shift parametrization, Eq. (29)
becomes

) 1 .
T = (€% 0030 Ka{ 1262 4 D} (1)

In contrast to Eq. (28), where the effect of the channel
openings is lumped into the final state interaction factor,
here, this effect is lumped into the initial state interaction
factor.

It should be mentioned that, strictly speaking, the two
channels consideration of the meson-baryon reaction proc-
esses applies only to zN charge-exchange scatterings, such
as 7°p — nn. This is due to the fact that the lightest
meson-baryon channel, apart from zN, is the yN channel
which is already above the zzN threshold, leading to the
presence of an inelastic channel even when the isospin
symmetry breaking of the strong interaction is ignored.

In the case of meson photoproduction, Eq. (27) becomes

d #£a=y)

Ta’y = N(z’Ka’yNKy’ (32)

where N, = 1/(1 +iG.K,,) is the Watson’s factor due
to the yN initial state interaction. In the one-photon
approximation, due to the weakness of the electromagnetic
interaction, the Watson’s factor N, approaches unit since
we may set K, appearing in N, to zero. Likewise, for the
two-channel case, where one of the channels is the photon-
baryon channel, N, = N, in one-photon approximation.
Equation (32), then, becomes

Ta’y = NKa’Ka’y = (eiéﬂ/ COS 50/)[{0/}” (33)

which is the usual form of Watson’s theorem for photo-
production [49]. Equation (29) yields the same result as
above. Note that Watson’s theorem is a direct consequence
of unitarity and time reversal invariance of the S-matrix, in
addition to the one-photon approximation assumption.
Also, as is well known, in practice, ignoring the isospin
symmetry breaking of the hadronic interactions, Watson’s
theorem applies to pion photoproduction below zzN
threshold.

IV. PHASE STRUCTURE OF THE POLE AND
NONPOLE MESON-BARYON 7-MATRIX

In this section, we exhibit the phase structure of
the T-matrix in terms of the pole (77) and nonpole
(X = TNP) parts.

First, we recall that the full 7-matrix given by Eq. (7) can
be decomposed as (see, Appendix B)

T=V+VGT
=7F +X, (34)
where
X =U+ UGX, (35)

with U= VNP = vV — VP and

VP = Z|F0r>S0r<F0r|7 (36)

r
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where |Fy,) and S;! = E — my, denote the bare meson-
baryon vertex and bare baryon propagator, respectively.
The summation is over the resonances specified by index .

The pole part of the T-matrix in Eq. (34) is (following the
ket and bra notation used in Ref. [53,54])

TP = |F,)S,,(F,l, (37)
where the dressed vertices read
), = (14 XG)|Fy,).
(F|, = (Fo|(1 + GX), (38)
and the dressed baryon propagator, S,.,,
S;i =850, — Zp, (39)
with the self-energy
%, = (Fo|GIF,). (40)

Note that the dressed baryon propagator in Eq. (39) couples
resonances, SO it i a matrix propagator in resonance space.
Its structure is shown explicitly in Appendix C for the
case of a two-resonance coupling since, in practice, this is
the maximum number of resonance couplings in most of
the cases.

Second, since the structures of the 7- and K-matrix
scattering equations are the same [cf. Egs. (7) and (12)], itis
straightforward to decompose the K-matrix into the pole
(K?) and nonpole (W = KNP) parts

K =V +VGRK
=K'+ W, (41)
where
W =U+ UGrW, (42)
and
K" = rIZ|FKr’>SKr’r<FKr" (43)

Here, the dressed vertices are given by

|[Fy) = (1+ WGF)|Fop),
<FKr| = <F0r|(1 + GRW)’ (44)

and the dressed baryon propagator by

S}lﬂr = Sarlér’r Y (45)

with the self-energy
2‘Kr’r = <F0r’|GR|FKr>' (46)

Third, since the T-matrix can be expressed in terms
of the K-matrix as given by Eq. (11), which exhibits the
same integral-equation structure as Eq. (7), except for the
appearance of the imaginary part of the meson-baryon
propagator —iG instead of the full propagator G, it is
straightforward to express the pole and nonpole 7-matrices
[cf. Egs. (34), (35), (37)—-(40)] in terms of the K-matrix
[cf. Egs. (41)—(46)]. Then, the nonpole T-matrix X (=7"F)
given by Eq. (35) becomes

X =W-iXG'W=W-iWG'X. (47)
The pole part (T7) is given by Eq. (37) with

[Fy) = (1-iXG")|Fgp),
<Fr| = <FKV|(1 - lGIX)? (48)

and the dressed propagator S, expressed as

=580 — 2, (49)
where the self-energy 2 s
i“r’r = _i<FKrJ|GI|Fr>‘ (50)

Writing the meson-baryon channel indices explicitly, we
have, for Eq. (42),

W(l’(l = Ua’rl + Z:V[/(J/[)’Gé'e U[)’a' (51)
p

For Eq. (47), we have

Xoa=Waa—i) XapGiWp,
p

= Wyu— iy WasGhXp,. (52)
B
which can be solved to yield (from the first equality)
Xya = N,)x(/Wa’w (53)
with

W{l'a = W{l’(l -1 Z W(fﬂ/((DX)_l)/}’[)’Gé’Wﬂ(l , (54)
Bp#d

and
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X — el w
Dﬁ’ﬁ = 5ﬁ/ﬂ + lGﬁ/ BB
1

NY=1-iX,,G, =—F——.
o T LW G

(55)

From the second equality in Eq. (52), it is also immediate
that X, can be expressed as

Xa’a = Wa’aN()fv (56)

with

Wea=Waa—i Y WapGLIDX)™)ysWpe,  (57)
pp#a

and

Dgﬂﬂ = 5,5/,5 + iWﬂ/ﬂGl,
1

N =1-iGXyy=— .
1+ iGiW,,

(58)

Note that in the case the particles in channel a are stable
(Gl = po), N = Nj;.

In the following, to exhibit the phase structure of the pole
T-matrix, 77, we make use of the dressed vertices and
propagator as given by Egs. (48)—(50). Writing the meson-
baryon channel indices explicitly, Eq. (37) becomes

T(Iz)’a = Z|Fr’>a’Sr’r<Fr|a- (59)

The dressed meson-baryon vertex |F,.) [cf. Eq. (48)]
becomes

|Fr'>a’ = |FKr’>a’ - izxa’ﬁG/I}|FKr'>ﬁ
p

= N¥|F o). (60)

Tyu=TF

da

+Xa’a

where

Exp)e = |Frr)w = izwa’ﬂG/Ij|FK/>/j' (61)
pd

To arrive at the last equality in Eq. (60), Egs. (53) and (55)
have been used.
Analogously,

<Fr|a = <FKr|aN§7 (62)

where

<FKr|a = (Firla = iZ<FKr|ﬂG;}Wﬂa' (63)
pta

The self-energy given by Eq. (50) reads
ir'r = _lZ<FKr/|ﬂG2|Fr>ﬂ
p

= _iZ<FKr’|ﬂG[I3N§|ﬁKr>ﬂ- (64)
s

Then, inserting the above result into Eq. (49), we have
for the full propagator

SoL=SeL, +i> (Fryl,GINX|Fy,)  (65)
p

Finally, making use of Eq. (45) and inserting Eqs. (60),
(62), and (65) into Eq. (59), and combining with Eq. (53),
we arrive at the result we are seeking,

= Z{N§|ﬁl(r’>a’< ; X F
i (E —m)l —Zg + lZﬂ<FK|ﬁGﬂNﬁ |Fk) s

where [ stands for the identity matrix in resonance space.
Xk is given by Eq. (46).

The above equation exhibits the full phase structure of
the 7-matrix amplitude in terms of the pole and nonpole
parts. First of all, we note that the phase structure of the
T-matrix is determined by the branch points introduced in
the amplitude due to the opening of the meson-baryon
channels. This is controlled by the availability of the phase
space for a given meson-baryon channel f encoded in the

> <ﬁKr|aN§} + Ni(’Wa’m (66)

|
imaginary part of the corresponding meson-baryon propa-
gator G;),. This quantity appears implicitly in many places in
Eq. (66) and, consequently, makes the phase structure of
the 7T-matrix highly nontrivial in general. Note that the
Watson’s factor N* and all the quantities with “hat” in
Eq. (66) involve G’ [cf. Egs. (53), (55), (57), (58), (61), and
(63)]. All other terms appearing in Eq. (66) are real
quantities and do not involve G/. We also recall that the
dressed vertex |F)((Fg|), as well as the Watson’s factor
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NX(NX), are all expressed in terms of the quantity W (W)
[cf. Egs. (55), (58), (61), and (63)]. The latter quantity is the
nonpole T-matrix apart from the Watson’s factor NX
[cf. Egs. (53) and (56)]. This means that the dynamical
effects on the phase structure are determine by the nonpole
part of the T-matrix (up to the corresponding Watson’s
factor), and that there is an intimate relationship between
the phase structure of the pole and nonpole parts of the
T-matrix amplitude.

In the following, we discuss the elastic scattering below
the first inelastic threshold where the phase structure of the
T-matrix amplitude becomes much simpler. Here, we
ignore the resonance couplings for simplicity. We also
assume a stable meson-baryon channel a and consider
the phase-shift parametrization of the on-shell nonpole
T-matrix such that N¥ = N¥ = ¢% cos 5%, where 8% stands
for the phase-shift of the nonpole T-matrix (X = T"F).
Then, in partial-wave basis, Eq. (66) reduces to

Cox 1 X X~
Tou = Z{eléf’ garmgareléa } + ei0 W o
r

r 5

(67)
where we have introduced the (suggestive) notations
Gar = COS 5§|FK>GJ”
L) =2p,Gr
xLr
Mr = My, + z:Krr + tanﬁa Ev

W o = cOSSXW . (68)

Equation (67) exhibits, explicitly, the full phase structure of
the elastic 7-matrix amplitude below the first inelastic
|

u _ agPu iz
Ma,y = Ma,y + Xa,y

threshold. Apart from the phase e arising from the
Watson’s factors in the dressed vertices and propagator,
there is also the same phase factor arising from the
Watson’s factor in the nonpole part of the amplitude.
Note that the last term in Eq. (67) is simply the statement
of Watson’s theorem for the nonpole 7-matrix X. Recall
that W is the nonpole part of the K-matrix and, as such, it is
Hermitian if the nonpole driving potential U = VP is.

Equation (66) is the main result of this section. It serves
as a convenient starting point for approximations one can
make with varying degrees of sophistication. In particular,
it allows to keep track on the basic properties of the
S-matrix in these approximations. Indeed, Eq. (60) is being
used by us in the construction of an isobar model in which
unitarity is automatically satisfied.

V. PHASE STRUCTURE OF THE
PHOTOPRODUCTION AMPLITUDE

As shown explicitly in Appendix B, the gauge-invariant
photoproduction amplitude in one-photon approximation
also admits a decomposition into the pole and nonpole
parts. Thus, we must be able to exhibit the complex phase
structure of this amplitude in terms of the corresponding pole
and nonpole amplitudes, analogous to what has been done
for the meson-baryon T-matrix amplitude in the previous
section.” Indeed, the meson photoproduction amplitude can
be obtained by simply considering the photon-baryon
channel as an additional channel in the coupled channels
T-matrix equation of Eq. (34), i.e., all the results of the
previous sections apply to photoproduction as well. In terms
of the coupled channels formulation of the previous sections,
the one-photon approximation means to ignore the photon-
baryon channel in the intermediate states, i.e., this channel
appears only as the initial state. Then, Eq. (66) leads to

1

= So{ e | =) (| Np,
;{ @ (E_mO)I_XK+lZﬁ<FK|/}G/I}N/)}(|FK>/} ’r v o

*Note that to preserve gauge invariance of the decomposed
photoproducton amplitude into the pole and nonpole parts, we
need to consider what to take for the nonpole driving potential
U*(=VNPH) and for the bare photon coupling (F%, |. They enter in
the definition of W¥ and (F%,| in Egs. (71) and (73), respectively.
For example, in the field theoretic approach of Appendix B, the
bare coupling (FY,| gets renormalized as given by Eq. (B17). And
the driving potential U* contains additional terms compared to the
usual u- and #-channel Feynman diagrams [cf. Eq. (B20)]. These
observations should be kept in mind when constructing (gauge-
invariant) photoproduction amplitude in the present approach.

(69)

[
where the initial meson-baryon channel  has been replaced
by the photon-baryon channel y which appears only in the
initial state. In particular, note that the Watson’s factor
NX =1/(1+iG!W},) > 1 in one-photon approximation.
The superscript u stands for the Lorentz index of the photon
polarization.

The quantity W* , in Eq. (69) follows from Eq. (54).
Explicitly, we have

Wh =W =i Wy ((DX)™),,GEWS,. (70)

Bp#a
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where, from Eq. (51),

Wh = Ul + Y Wa,GEUS,. (71)
p

Note that the summations over the channels in the above
two equations, and all the subsequent equations in this
section, exclude the photon-baryon channel in the inter-
mediate states, ie., f,f #y due to the one-photon

|

approximation. This is to be understood for the remainder
of this paper.

The dressed photon vertex (F%.[, in Eq. (69) follows
from Eq. (63),

<F’1l(r|y = <F//Il(r|y - iZ<FKr|ﬂG[I;’W;;yv (72)
B

where, from Eq. (44),

<Fl;(r|y = <Flér‘7 + Z<F0V|ﬂG§W;V = <F€r|7 + Z<FK’|/3G§U;;V’ (73)
s s
and, from Eq. (57),
2 ” . I —
Wiy, = Why =iy WupGh((DX)™) 5, W, (74)
BB

It is straightforward to show that Eq. (69) reduces (as it should) to Watson’s theorem for photoproduction below
the first inelastic threshold [49]. To this end, we realize that the first term on the right-hand side of Eq. (69) is the pole part of
the photoproduction amplitude given by Eq. (B23) as shown in Appendix B. This equation, in turn, can be recast in terms of

the pole and nonpole K-matrices [cf. Eq. (76)] as MP# = NXKP# —

iT?G!'(K** + W*) through the substitutions

G — —iG!, VP# — KPH and VNPH — KNPH(=WH). Then, below the first inelastic threshold, we have

M, = NX|F . B NXWH,
r Z{ ! K’>”’<(E mo)l — g + i(Fg|,GL,NX|F), ) ,< ’”'y}+ @y

r'r

P
= NXK ) —iTh Gl (K0! + W ) + NSWY,
= (N% - ’TS,,'GQ)(KW +Wh ) =(1

— 0
= €% cos éa/Ka,y,

where we have also made use of Egs. (70) and (72) and of
Eq. (41) for photoproduction, i.e.,

K, =Ko+ W | (76)

with W7, given by Eq. (71) and

afy Z'FKr ’SKrr Krl (77)

Equation (69) is the main result of this section. Together
with Eq. (66) of the previous section, they may be used as
the starting points in the construction of unitary isobar
models. This is done in the following sections.

Before leaving this section, a remark is in order. It is
straightforward to show that if we use the form of the
nonpole 7T-matrix given by Eq. (53) for photoproduction,

Xt = NW, (78)

- iTa’o/G(I/)

oy
K’;y = Na/K’;Jy
(75)

[
instead of that given by Eq. (56), the full dressed photo-
production vertex (F7|, can be expressed in the form
[cf. Eq. (48)]

(Fi|, = (F%,|, - 'Z<Fm|ﬁGéX%y

= (Fk,|, zz Fy l,GINSWY . (79)

instead of that form given by Eq. (62). Thus, one can
Hy = (Pl N = (.,
appearing in Eq. (69) by the form given in the above
equation. Which of the two forms to use depends on what
one wants to do. In the full calculation, where the channel
couplings are fully taken into account, the form given by
Eq. (79) would be preferable numerically, for it involves
W;y which requires the matrix inversion of the same D*

replace the photon vertex (F

that enters in the calculation of the final state hadronic

interaction part. In contrast, (F¥|, = (F%.|, involves W},
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that requires an independent matrix inversion of DX from
that for the final hadronic interaction. In an approximate
calculation, however, as discussed in the following sec-

tions, the form (F%|, = (F%,|, may be more suitable.

VI. POSSIBLE APPROXIMATIONS

The basic result of Sec. IV given by Eq. (66) and of
Sec. V given by Eq. (69) provides a convenient starting
point for possible approximations one can make with
different levels of sophistications. In Eq. (66), the three
basic ingredients for possible approximations are the non-
pole K-matrix amplitude W(=K"P) as given by the integral
equation (51), the dressed K-matrix resonance vertex |F,)
((Fg,|) given by Eq. (44), and the K-matrix self-energy
Xk given by Eq. (46). These involve an integration over
the loop momentum through the real part of the meson-
baryon propagator Gﬁ. Note that all the ingredients, the

Watson’s factor NX, the dressed K-matrix vertex, as well as
the K-matrix self-energy, entering in Eq. (66) are expressed
in terms of W. W enters the K-matrix self-energy through
the dressed K-matrix vertex. The different approximations
one makes on the basic three ingredients just mentioned
may be classified into few broad categories:

(a) Unitary and analytic isobar model: In this approach,
the driving nonpole term U in Eq. (51) is approxi-
mated by a phenomenological separable potential
(see, e.g., Ref. [55]) whose form allows to solve the
integral equation for W in Eq. (51) analytically. The
bare vertex |Fy.)((Fy,|) is obtained either from a
microscopic Lagrangian or simply parametrized phe-
nomenologically. Then, the momentum-loop integra-
tion in Eq. (44) is carried out analytically to obtain
|Fry)((Fk,|). Zg, is obtained as given by Eq. (46),
also by performing the momentum loop integration
analytically. This model maintains unitarity and ana-
Iyticity, the latter, by keeping explicitly both the real
and imaginary parts of the meson-baryon propagator.
Of course, the adopted separable potential should
be analytic. Note that the contribution due to the real
part of the meson-baryon propagator may lead to pole
structures in the resulting reaction amplitude in the
complex-energy plane that would correspond to
dynamically generated resonances [56-58].

(b) Unitary isobar model: Here, W and |F,)((Fk,|) are
directly parametrized in a completely phenomenologi-
cal or semiphenomenological manner, thereby avoid-
ing to solve the integral equation for W and the
momentum-loop integration for |Fg,)((Fk,|). Here,
the self-energy X, [cf. Eq. (46)] is also simply
parametrized. In this model, the analyticity of the
original reaction amplitude is lost, because the mo-
mentum-loop integrations involving the real part of the
meson-baryon propagator in Egs. (44), (46), and (51)

are not performed. In general, ignoring the contribu-
tions arising from the real part of the meson-baryon
propagator violates analyticity, since the dispersion
relation condition due to analyticity between the real
and imaginary parts of the reaction amplitude [59] will
no longer be satisfied.

VII. SUMMARY

We have exposed the full complex phase structure of
the meson-baryon 7-matrix reaction amplitude in the
coupled channels framework. By exhibiting the complex
phase structure of the pole and nonpole parts of the
T-matrix, we have achieved to express the reaction ampli-
tude in a form which suitably serves as a starting point for
making approximations of varying degrees of sophistica-
tion. In particular, it allows for approximations where the
basic properties of the S-matrix, namely, unitarity and
analyticity, can be maintained automatically. Recall that in
earlier works [39,43—45] unitarity of the reaction amplitude
in isobar models is implemented by imposing the unitarity
condition on the resonance amplitude (pole amplitude 77),
separately from the unitarity condition on the background
amplitude [nonpole amplitude X(=T"F)]. In the present
work, no such additional condition is required. Here, the
unitarity of 77 arises automatically from the dressing
mechanism inherent in the basic scattering equation
[Eq. (7)]. In the case of photoproduction, gauge invariance
can be satisfied as well. Furthermore, we have shown how
the analog in meson-baryon reaction of the well-known
Watson’s theorem in photoproduction emerges in the
present formulation.

Finally, we mention that calculations based on a coupled
channels unitary isobar model as described briefly in
Sec. VI will be reported shortly.
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APPENDIX A: PHASE-SHIFT
PARAMETRIZATION

In this appendix, we give the phase-shift parametrization
of the Watson’s factors N, and N, defined in Egs. (17) and
(23), as well as of the on-shell kaa defined in Eq. (20).
Here, we confine ourselves to stable particles only and
consider the channels whose on-shell elastic scattering
T-matrix amplitude in partial-wave basis can be para-
metrize in terms of the phase-shift (6,) and inelasticity
(1) as

i

= S e = 1), (A1)

paTaa
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with p, denoting the (phase-space) density of state in the
channel specified by the index a. Then, inserting Eq. (A1)
into Egs. (17) and (23), we have for the Watson factor®

Na = N{x =1- ipaTaa = (naei%a + 1) (Az)

| =

Inserting the above two equations into Eq. (19), and
solving for K ,,, we obtain

Fo_ 1 25, sin28, +i(1 —7,2)
T pe 144 2n,c0825,

(A3)

This result reveals a very simple phase structure of the
on-shell K, in terms of the phase-shift and inelasticity of
the elastic scattering T-matrix amplitude.

Below the inelastic threshold (3, =1), Eq. (A3)
reduces to

sin 26, __Lns
= -

K —K ——__>""a
T pa(14c0828,)  pa

(A4)

and, as it should, one recovers the phase-shift parametriza-
tion of the on-shell K-matrix K,, (valid even above the
inelastic threshold) which is a pure real quantity.

Inserting the phase-shift parametrization of the on-shell
K-matrix into Eq. (26) yields

Ngo = Ng, = € cosé,. (A5)

In complete analogy to the phase-shift parametrization
of the on-shell elastic T-matrix amplitude [cf. Eq. (A1)], if
we assume the corresponding phase-shift parametrization

of the on-shell elastic nonpole T-matrix (X =7~F) in
Eq. (35) to be

i

anaa - 5 (ﬂgeizéf’( - 1)’ (A6)

then the corresponding Watson’s factors NX and NX
defined by Eqgs. (55) and (58) become

1 . _
N =1 = ipaXa =5 (e +1) = N (A7)
For the on-shell W, we obtain
. 1 25X sin 265 + i(1 —nX?)
aa — T X2 X X (Ag)
Pa 14157 + 21y cos 25,
*Note that, for a stable particle channel p, G;, =

76(E — Hy) — py after the momentum loop integration.

and below the inelastic threshold (7% = 1), it reduces to

A in 26% 1
S 2% = ——tan Y.

e A
Pl +c0s250) e (49)

APPENDIX B: POLE AND NONPOLE
DECOMPOSITION OF THE 7T-MATRIX
REACTION AMPLITUDE

Although the pole and nonpole decomposition of the
meson-baryon 7-matrix reaction amplitude is widely used
in the literature (see, e.g., [1,60]), due to its central role in
the present work, its derivation is provided in this appendix.
We will also decompose the photoproduction amplitude
starting from the gauge-invariant amplitude obtained from
the field theoretic considerations [53]. In this appendix,
the reference to two-particle channels is suppressed for the
sake of not overloading with unessential notations in the
derivation.

1. Meson-baryon 7-matrix reaction amplitude

The meson-baryon 7-matrix obeys the Lippmann-
Schwinger-type scattering equation

T=V+VGT. (B1)
It can be recast into the form
T=TF+TN, (B2)
with
T = VNP VRPGTNY, (B3)

where VNP stands for one-nucleon irreducible potential
(the nonpole part of V), i.e.,
VNP —y — VP, (B4)

with the one-nucleon reducible potential V¥ (the pole part
of V) given by

VP = Z|F0r>SOr<FOr|' (B5)

In the above equation, |F,,) denotes the bare vertex
and Sj,, the bare baryon propagator for a given bare
resonance r, including the nucleon (r = N).

Below, we show how the pole T-matrix, 77, in Eq. (B2)
can be expressed in a compact form. For this purpose, let us
start from Egs. (B1) to (B4) to express T7 as
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TP = (1 +1TG)VP + TPGV
TP(1-GV) = (14 TN?G)v*
TP = (1 + TN?G)VFP(1 - GV)~!
= (1+TG)V"(1 + GT)
= (1+TN°G)VP[(1 + GTN?) + GT?].

(B6)

Inserting Eq. (BS) into Eq. (B6), we have

7 = SIS0+ IFSo oot (B7)

r

with the dressed vertex defined as

|Fr> = (1 + TNPG)‘FOr>,

(F/| = (Fo, (1 + GT™F). (B8)

Multiplication of Eq. (B7) by (F,|G from the left gives

<F0r’|GTP = Z{Zr/rSOr<Fr| + Zr’rSOr<F0r|GTP}

r

er’rSOr<Fr‘ = Z(Sarléfr - Zr’r)SOr<F0r|C;TPv (Bg)

where the last equality is a simple rearrangement of the first
equality together with the introduction of the self-energy
matrix

Zy, = (For|G|F,). (B10)
Defining the dressed propagator matrix
Sy =S58, =Ty, (B11)
we have, from Eq. (B9),
Zskﬂzﬂrs(,, (F,| = Zsk,,s So(Fo,|GT
= Sor(For| GT". (B12)

Inserting the above result back into Eq. (B7), we have

7 = {0+ |Fr>;sﬂz,fsw<m}

r

= Z'Fr>{6rr’80r’ + Zsrl(sallélr’ - Sl_r/l)SOr’}<Fr/|
rr 1

= Z'Fr>Srr’<F
rr

(B13)

2. Photoproduction reaction amplitude

Following the field theoretic approach of Haberzettl [53],
the gauge-invariant photoproduction amplitude in the one-
photon approximation can be expressed as

Mt = V¥ +TGVH, (B14)
with p denoting the Lorentz index of the photon polariza-
tion and

VH =il + MYy + MY + migg + UFG|Fy), (B15)
where U* stands for the exchange current which arises from
the coupling of the photon to V¥, mj stands for the sum
of the bare Kroll-Ruderman contact current arising from
the direct coupling of the photon to the bare vertex |F,)
appearing in Eq. (B5), M%(x = u, t) denotes the x-channel
(tree-level Feynman diagram) contribution, and 77§ stands
for the s-channel bare current. The latter is given by

ﬁ’l Z|F0r>S0r<F0r (B16)
where (F} | is defined as
(F5,| = (Fo,| + mig,G|Fy). (B17)

with (F§, | denoting the bare rNy vertex and, fitf,, the bare
Kroll-Ruderman term for a given resonance r in mj with
the meson leg reversed, i.e., NMy — r.

Now, analogous to Eq. (B4), we decompose V¥ in
Eq. (B15) as

Vi = VP 4 yNBu (B18)
where
H=nm Z'FOr Sor(F, (B19)
and
VNP = MY + MY + mlg + UFG|Fy).  (B20)

Inserting Eqgs. (B2) and (B18) into Eq. (B14), we have

M# = VP VN (TP - TNP)G(VPH  VNPR)

— MPH 4 MNP (B21)
where
MNPH = YNBu . TNPGYNPY (B22)
and
MP = VP 4 TNPGVPr + TPG(VPr + VNPH) - (B23)
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Now, using Egs. (B8) and (B19),

VI E NGV = SUIE) S (Fh ). (B24)

Similarly, using Eqs. (B10), (B13), and (B19),

TPG(VF 4 VNPH)

= Z|Fr>srr’ |:<Fr’|GZ|F01>SOI<FgZ| + <Fr’GVNP”:|
1

= Z'Fr>Srr’ |:2r’lS01<Fgl| + 5r’l<Fl|GVNPM:| . (BZS)
rr’l

Inserting Egs. (B24) and (B25) into Eq. (B23), and with
help of Eq. (B11), we have

MPH = Z|Fr>Srr’ |:(S);}501<FI(;1| + S0 (Fyl

rr’l

+ 5r’1<F1|GVNP”}
_EJRWMFSW+ENMMmA

+ 5r’l<F1|GVNP”:|

= Z|Fr>Srr’<F,:/|’ (B26)

where, in the last equality above, we have introduced the
dressed electromagnetic vertex

(Fh| = (Fh | + (F, |GV

— (P4 + (Fo lGMN. (B27)

APPENDIX C: TWO-RESONANCE COUPLING

The resonance propagator appearing in the pole part
of the T-matrix [cf. Eq. (60)] is, in general, a matrix in
resonance space. In most of the cases, there is only one
resonance for a given partial-wave state, in which case, the
propagator reduces to a number. In other cases, such as in
the zN S, partial wave, there can be two resonances close
to each other [S;;(1535) and S;;(1650)] which causes
a considerable resonance coupling effect. For the two-
resonance case, the resonance propagator matrix S can be
obtained explicitly. Following Ref. [61], we have

—Z >
E—my — Xy ’

(C1)

E—my — Xy

st =5t -x = ( -z,

and hence

()
S;T—%

1 [(E—my—X% z
_ b < 02~ 222 12 ) (2)
|D| 2 E—my — 2y
where |D| stands for the determinant of S,
ID| = (E—moy —Z11)(E = mpy — Zpp) = Epp%y;. - (C3)
Now, defining
Hi = My, + Zii and C2 = 212221, (C4)
the pole condition reads
D] = (E=m)(E = pp) = C* =0, (C5)
producing two solutions
1
E—M, =M 72”‘2 ii\/(,ul — ) +4C%. (C6)
We then have
I 1
D]~ (E-M_)(E-M.)
B 1 .
(E-M_)+(E-M,)|E-M_ E-M,
1 1 1
(E-m)+(E—p) |[E-M_ E-M,

where the equality M_ + M, = u; + u, has been used.
Equation (C7) allows to write the propagator in the form

R R

S = + , (C8)
E-M_ E-M,
with the “residue” matrix R given by
E-py Zp

o 1 1
R= , —= . C9
(4 e) imEmrE ©

d d

If the resonance coupling is small enough, i.e.,
X~ 2y ~0, then M, and R reduce to

E—py

d
M,=p, M_=p,, and R:(O %), (C10)

so that

(C11)

as it should be.
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