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The full complex phase structure of the meson-baryon reaction amplitude in coupled channels approach
is investigated, including also the photon-baryon channel. The result may be viewed as a generalization of
the well-known Watson’s theorem. Furthermore, the complex phase structure is exhibited for the pole and
nonpole parts of the reaction amplitude in such a way that it will serve as a convenient common starting
point for constructing models with different levels of approximation, in particular, for building isobar
models where the basic properties of the S-matrix can be maintained. Such models should be useful,
especially, in coupled multichannel calculations, where a large amount of experimental data are considered
in resonance analyses, a situation encountered in modern baryon spectroscopy. In particular, it is shown that
the unitarity of the pole part of the T-matrix arises automatically from the dressing mechanism inherent in
the basic scattering equation. This implies that no separate conditions are required for making this part of
the amplitude unitary as it has been done in some of the existing isobar models.
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I. INTRODUCTION

Baryon spectroscopy is an important part of the study of
nonperturbative regime of QCD. So far, most of the known
baryon resonances have been identified in πN scattering
experiments. With recent progresses in this field, it is clear
that a reliable resonance identification and extraction of its
properties from experimental spectra require a consistent
analysis of many independent reaction processes. Coupled
channels approach is the tool of choice for this task. Indeed,
reaction theories based on coupled channels approach
have been developed at various degrees of sophistication.
Nowadays, such analyses in baryon spectroscopy involve
coupled multichannel calculations analyzing a large
amount of experimental data in various meson production
channels. These data are being accumulated at major
facilities worldwide, especially, in photoproduction reac-
tions. The most sophisticated coupled channels approach is
that of dynamical coupled channel developed over many
years [1–15]. These calculations are quite involved and it is
customary to make some sort of approximations in order to
keep such calculations numerically more manageable.
A common such approximation is the K-matrix approach
and its variations employed by some of the resonance
analyses groups [16–34]. A nice feature of the K-matrix
approach is that it reduces the original scattering equation
to an algebraic equation while preserving unitarity of the
S-matrix. This feature enables incorporating a large amount
of experimental data in coupled multichannel analyses.

A particular variation of the K-matrix approach is the so-
called isobar models, where the reaction amplitude is
decomposed into a resonance and a background contribu-
tion. Basically, they should correspond to the pole and
nonpole parts of the T-matrix amplitude. The background
amplitude is usually parametrized by some smooth func-
tions of energy while the resonance amplitude is para-
metrized by Breit-Wigner forms. Isobar models are
practical and very economical in performing numerically
demanding calculations and are often used in resonance
analyses based on coupled channels calculations and also
dealing with a large amount of experimental data. Despite
being simple, isobar models still capture many interesting
properties of the resonances. One issue that arises in these
models is that unitarity is usually violated. There are many
efforts to unitarize isobar models [35–45]. There, the
resonance and the background amplitudes are unitarized
separately and independently. This leads to a quite involved
constraint on the resonance amplitude in particular. One of
the unitary isobar models used intensively in the analyses
of both the photo- and electroproduction reactions is that of
Mainz group [43–46]. In their approach, the unitarization
of the background amplitude is done by solving the
scattering equation for that amplitude. For the resonance
pole amplitude, based on Ref. [39], it introduces complex
resonance coupling constants which are constrained by
imposing the unitarity condition independent from the
background amplitude. Recently, the Mainz group updated
its etaMAID isobar model [47] by introducing a constant
complex phase to each of their resonance amplitudes.
Note that, in principle, the complex phase is an energy-
dependent function containing proper threshold behaviors.
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Complex phases in the resonance coupling constants have
been also introduced in the study of hadronic reactions (see,
e.g., Ref. [48]).
In the present work, we exhibit the full complex phase

structure of the meson-baryon T-matrix reaction amplitude
in coupled channels approach. To this end, we first expose
the complex phase structure of the full reaction amplitude
written in terms of the K-matrix and the so-called gener-
alized Watson’s factor. The result may be considered as a
generalization of the well-known Watson’s theorem in
photoproduction [49]. This helps us to expose, in a second
step, the full complex phase structure of the pole and
nonpole parts of the reaction amplitude which serves as a
common staring point for introducing approximations to the
reaction amplitude with varying degrees of sophistication.
The resulting form of the reaction amplitude is such that
the fundamental properties of the S-matrix, such as unitarity
and/or analyticity, can be maintained straightforwardly in
different approximations. In particular, we show how the
unitarity of the pole part of the T-matrix arises automatically
from the dressing mechanism inherent in the basic T-matrix
equation, and that, no separate conditions are required for
making this part of the resonance amplitude unitary as it has
been done in some of the existing isobar models.
This paper is organized as follows. In Sec. II, we introduce

the notation used throughout this work for the sake of
conciseness. In Sec. III, we derive the full phase structure of
the meson-baryon reaction amplitude which is essentially a
generalization of the Watson’s theorem. Based on this, the
complex phase structure of the pole and nonpole parts of the
reaction amplitude is derived in Sec. IV. In Sec. V, the phase
structure of the photoproduction amplitude in one-photon
approximation is derived. In Sec. VI, possible levels of
approximation to the full reaction amplitude are briefly
discussed. A summary is given in Sec. VII. For complete-
ness, the phase-shift parametrizations of the T- and
K-matrices as well as of the generalized Watson’s factor
are given in Appendix A. Since the decomposition of the
T-matrix into the pole and nonpole parts plays a central role
in the present work, this decomposition is derived in
Appendix B for both the meson-baryon and photoproduction
reaction processes. Appendix C contains the explicit form of
the dressed resonance propagator in the case of the two-
resonance coupling.

II. NOTATION

Before starting the derivation of the complex phase
structure of the meson-baryon reaction amplitude, a remark
on the notation used in the present work is in order.
The two-body reaction amplitude T obeys, in general,

the Lippmann-Schwinger-type scattering equation (also
referred to as the T-matrix equation)

T ¼ V þ VGT; ð1Þ

where V denotes the driving potential kernel, irreducible
with respect to the “two-particle cut” [50], and G stands for
the two-body propagator. Note that the above equation is an
integral equation for operators in abstract space.
In momentum space, and in the coupled channels

approach, the above equation becomes1

Tν0νðq⃗0; q⃗;EÞ

¼ Vν0νðq⃗0; q⃗Þ þ
X
λ

Z
d3q00Vν0λðq⃗0; q⃗00ÞGλðq⃗002; EÞ

× Tλνðq⃗00; q⃗;EÞ: ð2Þ

Here, q⃗0, q⃗, and q⃗00, denote the final, initial, and inter-
mediate two-particle relative momenta, respectively. E
stands for the total energy of the system. The indices ν0,
ν, and λ stand for the final, initial, and intermediate two-
particle channels.
The reaction amplitude given by Eq. (2) can be expanded

in partial waves as

hS0MS0 jTν0νðq⃗0; q⃗;EÞjSMSi
¼

X
iL−L

0 ðS0MS0L0ML0 jJMJÞðSMSLMLjJMJÞ
× TJIS0S

ν0νL0Lðq0; q;EÞYL0ML0 ðq̂0ÞY�
LML

ðq̂ÞP̂I; ð3Þ

where S, L, and J denote the spin, orbital angular
momentum, and total angular momentum, respectively,
of the two-body initial state, while MS, ML, and MJ stand
for the corresponding projection quantum numbers.
The primed quantities refer to the corresponding quantum
numbers of the final two-body state. P̂I stands for the
isospin projection operator which projects the two-body
state onto the total isospin state I. Ylml

ðp̂Þ stands for the
usual spherical harmonic function. Here, the argument
p̂ is a shorthand notation for the polar (θ) and azimuthal
(ϕ) angles, i.e., p̂ ¼ ðθp;ϕpÞ. The geometrical factor
ðj1m1j2m2jj3m3Þ is the usual SUð2Þ Clebsch-Gordan
coefficient. The summation in the above equation is over
all the quantum numbers appearing on the right-hand side
and not specified on the left-hand side of the equation.
The partial-wave amplitude TJIS0S

ν0νL0Lðq0; q;EÞ in Eq. (3)
can be extracted by inverting that equation. We have

1The relativistic generalization of the scattering equation
given by Eq. (2)—the so-called Bethe-Salpeter equation [50]—
involving a four-dimensional momentum integration, may be
reduced to a three-dimensional integral equation of the form given
by Eq. (2) in such a way to maintain Lorentz covariance and elastic
unitarity of the original reaction amplitude [51]. This means that
Lorentz covariance can be also maintained in three-dimensional
scattering equations, along with the other basic properties of the
S-matrix, such as unitarity and analyticity.
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TJIS0S
ν0νL0Lðq0;q;EÞ¼

X
iL

0−L
�

8π2

2Jþ1

��
2Lþ1

4π

�1
2

×ðS0MS0L0ML0 jJMJÞðSMSL0jJMJÞP̂I

×
Z þ1

−1
dðcosθq0 ÞhS0MS0 jTν0νðq⃗ 0;q⃗;EÞjSMSi

×Y�
L0ML0

ðθq0 ;0Þ; ð4Þ

where, without loss of generality, the initial relative
momentum q⃗ is chosen along the þz-axis and the final
relative momentum q⃗0 in the x-z plane. Similarly, to Eq. (3),
the summation in the above equation is over all the
quantum numbers appearing on the right-hand side and
not specified on the left-hand side of the equation.
Inserting Eq. (3) into (2) yields the scattering equation

for the partial-wave amplitude

TJIS0S
ν0νL0Lðq0; q;EÞ ¼ VJIS0S

ν0νL0Lðq0; qÞ

þ
X

S00;L00;λ

Z
∞

0

dq00q002VJIS0S00
ν0λL0L00 ðq0; q00Þ

×Gλðq002; EÞTJIS00S
λνL00Lðq00; q;EÞ: ð5Þ

In the present work, we use the notation

Tα0α ¼ Vα0α þ
X
β

Vα0βGβTβα ð6Þ

to denote either Eq. (2) or (5) for the sake of conciseness.
Accordingly, if the above equation is to represent Eq. (2),
the indices α0, α, and β in the above equation stand for the
two-particle channel of the final, initial, and intermediate
states, respectively, and the summation over β is to be
understood as the summation over the intermediate two-
particle channels. On the other hand, if the above equation
is to represent Eq. (5), then the indices α0, α, and β specify,
in addition to the two-particle channel of the final, initial,
and intermediate states, respectively, also the correspond-
ing two-body partial-wave states. Note also that the
reference to the two-particle relative momentum is com-
pletely suppressed in the present notation, including its
integration over the intermediate states.
The notation explained above is used throughout the

present paper. In particular, the main result of this work,
given by Eqs. (66) and (69), can be interpreted as given
either in plane-wave or in partial-wave basis.

III. PHASE STRUCTURE OF THE TWO-BODY
T-MATRIX AMPLITUDE

To expose the phase structure of the two-body reaction
amplitude, it is convenient to express the T-matrix in terms
of the K-matrix. We start with the T-matrix scattering
equation

T ¼ V þ TGV ¼ V þ VGT; ð7Þ

where the two-body propagator G can, in general, be
decomposed into the real and imaginary parts

G ¼ GR − iGI: ð8Þ

In fact, the propagator involving stable particles is of the
form (ϵ → 0)

G ¼ 1

E −H0 þ iϵ
¼ P

1

E −H0

− iπδðE −H0Þ; ð9Þ

with P standing for the principal value part, while the
propagator involving unstable particles is of the form [1,9]
(Π ¼ finite)

G ¼ 1

E − h0 − Π

¼ E −H0

ðE −H0Þ2 þ ΠI2 − i
ΠI

ðE −H0Þ2 þ ΠI2 ; ð10Þ

where h0 denotes the unperturbed Hamiltonian involving
the bare unstable particle and Π is the self-energy of that
unstable particle. H0 ≡ h0 þ ΠR, with Π ¼ ΠR − iΠI .
Inserting Eq. (8) into Eq. (7), we have [52]

T ¼ K − iTGIK ¼ K − iKGIT; ð11Þ

with the K-matrix (K) given by

K ¼ V þ VGRK ¼ V þ KGRV; ð12Þ

which is Hermitian if the driving potential V is Hermitian.
For stable particles, using Eq. (9), Eq. (11) becomes

TðEÞ ¼ KðEÞ − iπTðEÞδðE −H0ÞKðEÞ; ð13Þ

which is the familiar equation for the T-matrix in terms of
the K-matrix. Note that, for unstable particles propagation
[cf. Eq. (10)], the imaginary part of G—for which there
is no δ-function in energy—leads to a momentum loop
integration over the intermediate state.
Equation (7)—and consequently all the subsequent

equations—represents actually coupled equations in two-
particle channels. Explicitly, for Eqs. (11) and (12), we
have (using the corresponding first equalities)

Tα0α ¼ Kα0α − i
X
β

Tα0βGI
βKβα;

Kα0α ¼ Vα0α þ
X
β

Kα0βGR
βVβα; ð14Þ

where the subscripts stand for the two-particle channels,
i.e., α0 denotes the final two-particle channel and α, the
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initial two-particle channel. β denotes the intermediate two-
particle channel and it is summed over all the channels
(including the stable- and unstable-particles propagations)
to account for the possible couplings of the initial and final
states to all other channels. Note that, as explained in
Sec. II, the equations in (14) may be interpreted as given
either in plane-wave or in partial-wave basis. For the latter,
the indices α0, α, and β specify also the partial-wave states,
in addition to the two-particle channels. Note also that the
reference to the two-particle relative momentum is com-
pletely suppressed in the present notation, including the
momentum-loop integration over the intermediate states.
Usually, the integral equation for T in Eq. (14) is solved

to yield

Tα0α ¼
X
β

Kα0β

�
1

1þ iGIK

�
βα

: ð15Þ

In the present work, however, we solve that equation as
follows. First, we write it as

X
β≠α0

Tα0βðδβα þ iGI
βKβαÞ ¼ ð1 − iTα0α0GI

α0 ÞKα0α

X
β≠α0

Tα0βDβα ¼ Nα0Kα0α; ð16Þ

where we have defined

Dβ0β ≡ δβ0β þ iGI
β0Kβ0β; ðβ0; β ≠ α0Þ

Nα0 ≡ 1 − iTα0α0GI
α0 : ð17Þ

Next, we multiply Eq. (16) throughout from the right by the
inverse matrix of D to get

Tα0α ¼ Nα0
X
β0≠α0

Kα0β0D−1
β0α: ð18Þ

Finally, we insert the above result back into the equation for
T in (14) to arrive at

Tα0α ¼ Nα0

�
Kα0α − i

X
β;β0≠α0

Kα0β0 ðD−1Þβ0βGI
βKβα

�

¼ Nα0K̂α0α: ð19Þ

The last equality in Eq. (19) defines K̂ to be

K̂α0α ≡ Kα0α − i
X

β;β0≠α0
Kα0β0 ðD−1Þβ0βGI

βKβα; ð20Þ

which—unlike the K-matrix—is, in general, a complex
quantity. Note that below the first inelastic threshold,
K̂ ¼ K. Also, note that the explicit dependence on the

channel α0 in the intermediate state is absent in K̂α0α. This
dependence is contained implicitly in the K-matrices, Kij.
Inserting Eq. (19) into the definition of Nα0 in Eq. (17)

yields

Nα0 ¼ 1 − iTα0α0GI
α0 ¼

1

1þ iK̂α0α0GI
α0
: ð21Þ

Starting from the second equality in Eq. (11), it is
straightforward to show that the T-matrix can be also
expressed as

Tα0α ¼ ˆ̄Kα0αN̄α; ð22Þ

where

N̄α ≡ 1 − iGI
αTαα ¼

1

1þ iGI
αK̂αα

;

D̄β0β ≡ δβ0β þ iKβ0βGI
β; ðβ0; β ≠ αÞ

ˆ̄Kα0α ≡ Kα0α − i
X
β;β0≠α

Kα0β0GI
β0 ðD̄−1Þβ0βKβα: ð23Þ

Equation (19) or (22) is the desired result: we have
exhibited the full phase structure of the T-matrix which is
nontrivial in general due to the phase structure of K̂α0α,
introduced by the terms involving GI

βs in Eq. (20) or (23).

For on-shell K̂αα, its phase structure can be expressed
simply in terms of the phase-shift and inelasticity of the
elastic scattering T-matrix as shown in Appendix A.
Note also that Eq. (19) or (22) is completely general and

holds for fully off-shell T-matrix. Hereafter, we refer to
the factors Nα0 and N̄α defined in Eqs. (17) and (23) as the
generalized Watson’s factors. For completeness, we show
howWatson’s theorem emerges from these equations in the
following Sec. III A, when the initial channel α corresponds
to the photon-baryon channel.
If we wish, combining Eqs. (19) and (22), the T-matrix

can be expressed in a symmetric form

Tα0α ¼
1

2
ðNα0K̂α0α þ ˆ̄Kα0αN̄αÞ: ð24Þ

A. Two-channel case and Watson’s theorem

Confining now to the case of two-channel problem, K̂α0α
in Eq. (20) simplifies and Eq. (19) takes the form

Tα0α ¼ Nα0 ½Kα0α − iKα0βN̄KβGI
βKβα�; ðβ ≠ α0Þ; ð25Þ

with

N̄Kα ≡ 1

1þ iGI
αKαα

: ð26Þ
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For a transition reaction, where α0 ≠ α, Eq. (25) further
reduces to

Tα0α ¼ Nα0Kα0αN̄Kα: ð27Þ

If the two channels considered involve only stable
particles, then, in partial-wave basis, Eqs. (25) and (27)
are simple algebraic equations, where GI

β → ρβ after the
momentum loop integration with ρβ denoting the phase-
space density. Moreover, if the on-shell T-matrix and the
on-shell K-matrix can be parametrized in terms of phase-
shifts and inelasticities as given in Appendix A, we obtain
from Eq. (27),

Tα0α ¼
�
1

2
ðηα0ei2δα0 þ 1Þ

�
Kα0αðeiδα cos δαÞ; ð28Þ

for the transition amplitude (α0 ≠ α). Here, we have made
use of Eqs. (A4) and (A5).
Equation (28) reveals the phase structure of the T-matrix

amplitude explicitly in terms of the phase-shifts for the
transition amplitude in the case of a two-channel problem.
It is the analog of the well-known Watson’s theorem for
photoproduction [49] in the case of two-body hadronic
reactions. The phase of the reaction amplitude is deter-
mined by both the on-shell initial and final state interactions
through the Watson’s factors N̄Kα and Nα0 , respectively.
Note that, in Eq. (28), the effect of the channel openings is
lumped entirely into the final state interaction factor. We
remind that, from Eq. (12), if V is Hermitian, so is K and,
together with time reversal invariance, Kα0α is either pure
real or pure imaginary.
If we start with the T-matrix in the form given by

Eq. (22), instead of Eq. (19) as we have done above, we
obtain an equivalent alternative form for the transition
amplitude (α0 ≠ α),

Tα0α ¼ NKα0Kα0αN̄α; ð29Þ

with

NKα0 ≡ 1

1þ iKα0α0GI
α0
: ð30Þ

In terms of the phase-shift parametrization, Eq. (29)
becomes

Tα0α ¼ ðeiδα0 cos δα0 ÞKα0α

�
1

2
ðηαei2δα þ 1Þ

�
: ð31Þ

In contrast to Eq. (28), where the effect of the channel
openings is lumped into the final state interaction factor,
here, this effect is lumped into the initial state interaction
factor.

It should be mentioned that, strictly speaking, the two
channels consideration of the meson-baryon reaction proc-
esses applies only to πN charge-exchange scatterings, such
as π0p → πþn. This is due to the fact that the lightest
meson-baryon channel, apart from πN, is the ηN channel
which is already above the ππN threshold, leading to the
presence of an inelastic channel even when the isospin
symmetry breaking of the strong interaction is ignored.
In the case of meson photoproduction, Eq. (27) becomes

(α0 ≠ α ¼ γ)

Tα0γ ¼ Nα0Kα0γN̄Kγ; ð32Þ

where N̄Kγ ¼ 1=ð1þ iGI
γKγγÞ is the Watson’s factor due

to the γN initial state interaction. In the one-photon
approximation, due to the weakness of the electromagnetic
interaction, the Watson’s factor NKγ approaches unit since
we may set Kγγ appearing in NKγ to zero. Likewise, for the
two-channel case, where one of the channels is the photon-
baryon channel, Nα0 ¼ NKα0 in one-photon approximation.
Equation (32), then, becomes

Tα0γ ¼ NKα0Kα0γ ¼ ðeiδα0 cos δα0 ÞKα0γ; ð33Þ

which is the usual form of Watson’s theorem for photo-
production [49]. Equation (29) yields the same result as
above. Note that Watson’s theorem is a direct consequence
of unitarity and time reversal invariance of the S-matrix, in
addition to the one-photon approximation assumption.
Also, as is well known, in practice, ignoring the isospin
symmetry breaking of the hadronic interactions, Watson’s
theorem applies to pion photoproduction below ππN
threshold.

IV. PHASE STRUCTURE OF THE POLE AND
NONPOLE MESON-BARYON T-MATRIX

In this section, we exhibit the phase structure of
the T-matrix in terms of the pole (TP) and nonpole
(X ≡ TNP) parts.
First, we recall that the full T-matrix given by Eq. (7) can

be decomposed as (see, Appendix B)

T ¼ V þ VGT

≡ TP þ X; ð34Þ

where

X ¼ U þUGX; ð35Þ

with U ≡ VNP ≡ V − VP and

VP ¼
X
r

jF0riS0rhF0rj; ð36Þ
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where jF0ri and S−10r ¼ E −m0r denote the bare meson-
baryon vertex and bare baryon propagator, respectively.
The summation is over the resonances specified by index r.
The pole part of the T-matrix in Eq. (34) is (following the

ket and bra notation used in Ref. [53,54])

TP ¼
X
r0r

jFr0 iSr0rhFrj; ð37Þ

where the dressed vertices read

jFir0 ≡ ð1þ XGÞjF0r0 i;
hFjr ≡ hF0rjð1þ GXÞ; ð38Þ

and the dressed baryon propagator, Sr0r,

S−1r0r ¼ S−10r δr0r − Σr0r ð39Þ

with the self-energy

Σr0r ≡ hF0r0 jGjFri: ð40Þ

Note that the dressed baryon propagator in Eq. (39) couples
resonances, so it is a matrix propagator in resonance space.
Its structure is shown explicitly in Appendix C for the
case of a two-resonance coupling since, in practice, this is
the maximum number of resonance couplings in most of
the cases.
Second, since the structures of the T- and K-matrix

scattering equations are the same [cf. Eqs. (7) and (12)], it is
straightforward to decompose the K-matrix into the pole
(KP) and nonpole (W ≡ KNP) parts

K ¼ V þ VGRK

≡ KP þW; ð41Þ

where

W ¼ U þUGRW; ð42Þ

and

KP ¼
X
r0r

jFKr0 iSKr0rhFKrj: ð43Þ

Here, the dressed vertices are given by

jFKr0 i≡ ð1þWGRÞjF0r0 i;
hFKrj≡ hF0rjð1þGRWÞ; ð44Þ

and the dressed baryon propagator by

S−1Kr0r ¼ S−10r δr0r − ΣKr0r; ð45Þ

with the self-energy

ΣKr0r ≡ hF0r0 jGRjFKri: ð46Þ

Third, since the T-matrix can be expressed in terms
of the K-matrix as given by Eq. (11), which exhibits the
same integral-equation structure as Eq. (7), except for the
appearance of the imaginary part of the meson-baryon
propagator −iGI instead of the full propagator G, it is
straightforward to express the pole and nonpole T-matrices
[cf. Eqs. (34), (35), (37)–(40)] in terms of the K-matrix
[cf. Eqs. (41)–(46)]. Then, the nonpole T-matrix Xð≡TNPÞ
given by Eq. (35) becomes

X ¼ W − iXGIW ¼ W − iWGIX: ð47Þ

The pole part (TP) is given by Eq. (37) with

jFr0 i≡ ð1 − iXGIÞjFKr0 i;
hFrj≡ hFKrjð1 − iGIXÞ; ð48Þ

and the dressed propagator Sr0r expressed as

S−1r0r ¼ S−1Kr0r − Σ̂r0r; ð49Þ

where the self-energy Σ̂ is

Σ̂r0r ≡ −ihFKr0 jGIjFri: ð50Þ

Writing the meson-baryon channel indices explicitly, we
have, for Eq. (42),

Wα0α ¼ Uα0α þ
X
β

Wα0βGR
βUβα: ð51Þ

For Eq. (47), we have

Xα0α ¼ Wα0α − i
X
β

Xα0βGI
βWβα

¼ Wα0α − i
X
β

Wα0βGI
βXβα; ð52Þ

which can be solved to yield (from the first equality)

Xα0α ¼ NX
α0Ŵα0α; ð53Þ

with

Ŵα0α ≡Wα0α − i
X

β;β0≠α0
Wα0β0 ððDXÞ−1Þβ0βGI

βWβα ; ð54Þ

and
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DX
β0β ≡ δβ0β þ iGI

β0Wβ0β;

NX
α0 ≡ 1 − iXα0α0GI

α0 ¼
1

1þ iŴα0α0GI
α0
: ð55Þ

From the second equality in Eq. (52), it is also immediate
that Xα0α can be expressed as

Xα0α ¼ ˆ̄Wα0αN̄X
α ; ð56Þ

with

ˆ̄Wα0α ≡Wα0α − i
X
β;β0≠α

Wα0β0GI
β0 ððD̄XÞ−1Þβ0βWβα ; ð57Þ

and

D̄X
β0β ≡ δβ0β þ iWβ0βGI

β;

N̄X
α ≡ 1 − iGI

αXαα ¼
1

1þ iGI
α
ˆ̄Wαα

: ð58Þ

Note that in the case the particles in channel α are stable
(GI

α → ρα), N̄X
α ¼ NX

α .
In the following, to exhibit the phase structure of the pole

T-matrix, TP, we make use of the dressed vertices and
propagator as given by Eqs. (48)–(50). Writing the meson-
baryon channel indices explicitly, Eq. (37) becomes

TP
α0α ¼

X
r0r

jFr0 iα0Sr0rhFrjα: ð59Þ

The dressed meson-baryon vertex jFr0 i [cf. Eq. (48)]
becomes

jFr0 iα0 ≡ jFKr0 iα0 − i
X
β

Xα0βGI
βjFKr0 iβ

¼ NX
α0 jF̂Kr0 iα0 ; ð60Þ

where

jF̂Kr0 iα0 ≡ jFKr0 iα0 − i
X
β≠α0

Ŵα0βGI
βjFKr0 iβ: ð61Þ

To arrive at the last equality in Eq. (60), Eqs. (53) and (55)
have been used.
Analogously,

hFrjα ≡ hF̂KrjαN̄X
α ; ð62Þ

where

hF̂Krjα ≡ hFKrjα − i
X
β≠α

hFKrjβGI
β
ˆ̄Wβα: ð63Þ

The self-energy given by Eq. (50) reads

Σ̂r0r ¼ −i
X
β

hFKr0 jβGI
βjFriβ

¼ −i
X
β

hFKr0 jβGI
βN

X
β jF̂Kriβ: ð64Þ

Then, inserting the above result into Eq. (49), we have
for the full propagator

S−1r0r ¼ S−1Kr0r þ i
X
β

hFKr0 jβGI
βN

X
β jF̂Kriβ: ð65Þ

Finally, making use of Eq. (45) and inserting Eqs. (60),
(62), and (65) into Eq. (59), and combining with Eq. (53),
we arrive at the result we are seeking,

Tα0α ¼ TP
α0α þ Xα0α

¼
X
r0r

�
NX

α0 jF̂Kr0 iα0
�

1

ðE −m0ÞI − ΣK þ i
P

βhFKjβGI
βN

X
β jF̂Kiβ

�
r0r

hF̂KrjαN̄X
α

�
þ NX

α0Ŵα0α; ð66Þ

where I stands for the identity matrix in resonance space.
ΣK is given by Eq. (46).
The above equation exhibits the full phase structure of

the T-matrix amplitude in terms of the pole and nonpole
parts. First of all, we note that the phase structure of the
T-matrix is determined by the branch points introduced in
the amplitude due to the opening of the meson-baryon
channels. This is controlled by the availability of the phase
space for a given meson-baryon channel β encoded in the

imaginary part of the corresponding meson-baryon propa-
gatorGI

β. This quantity appears implicitly in many places in
Eq. (66) and, consequently, makes the phase structure of
the T-matrix highly nontrivial in general. Note that the
Watson’s factor NX and all the quantities with “hat” in
Eq. (66) involveGI [cf. Eqs. (53), (55), (57), (58), (61), and
(63)]. All other terms appearing in Eq. (66) are real
quantities and do not involve GI. We also recall that the
dressed vertex jF̂KiðhF̂KjÞ, as well as the Watson’s factor
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NXðN̄XÞ, are all expressed in terms of the quantity Ŵð ˆ̄WÞ
[cf. Eqs. (55), (58), (61), and (63)]. The latter quantity is the
nonpole T-matrix apart from the Watson’s factor NX

[cf. Eqs. (53) and (56)]. This means that the dynamical
effects on the phase structure are determine by the nonpole
part of the T-matrix (up to the corresponding Watson’s
factor), and that there is an intimate relationship between
the phase structure of the pole and nonpole parts of the
T-matrix amplitude.
In the following, we discuss the elastic scattering below

the first inelastic threshold where the phase structure of the
T-matrix amplitude becomes much simpler. Here, we
ignore the resonance couplings for simplicity. We also
assume a stable meson-baryon channel α and consider
the phase-shift parametrization of the on-shell nonpole
T-matrix such that NX

α ¼ N̄X
α ¼ eδ

X
α cos δXα , where δXα stands

for the phase-shift of the nonpole T-matrix (X ≡ TNP).
Then, in partial-wave basis, Eq. (66) reduces to

Tαα ¼
X
r

�
eiδ

X
α gαr

1

E −Mr þ i Γr
2

gαreiδ
X
α

�
þ eiδ

X
α W̃αα;

ð67Þ

where we have introduced the (suggestive) notations

gαr ≡ cos δXα jFKiα;r;
Γr ≡ 2ραg2αr;

Mr ≡m0r þ ΣKrr þ tan δXα
Γr

2
;

W̃αα ≡ cos δXαWαα: ð68Þ

Equation (67) exhibits, explicitly, the full phase structure of
the elastic T-matrix amplitude below the first inelastic

threshold. Apart from the phase eiδ
X
α arising from the

Watson’s factors in the dressed vertices and propagator,
there is also the same phase factor arising from the
Watson’s factor in the nonpole part of the amplitude.
Note that the last term in Eq. (67) is simply the statement
of Watson’s theorem for the nonpole T-matrix X. Recall
thatW is the nonpole part of the K-matrix and, as such, it is
Hermitian if the nonpole driving potential U≡ VNP is.
Equation (66) is the main result of this section. It serves

as a convenient starting point for approximations one can
make with varying degrees of sophistication. In particular,
it allows to keep track on the basic properties of the
S-matrix in these approximations. Indeed, Eq. (66) is being
used by us in the construction of an isobar model in which
unitarity is automatically satisfied.

V. PHASE STRUCTURE OF THE
PHOTOPRODUCTION AMPLITUDE

As shown explicitly in Appendix B, the gauge-invariant
photoproduction amplitude in one-photon approximation
also admits a decomposition into the pole and nonpole
parts. Thus, we must be able to exhibit the complex phase
structure of this amplitude in terms of the corresponding pole
and nonpole amplitudes, analogous to what has been done
for the meson-baryon T-matrix amplitude in the previous
section.2 Indeed, the meson photoproduction amplitude can
be obtained by simply considering the photon-baryon
channel as an additional channel in the coupled channels
T-matrix equation of Eq. (34), i.e., all the results of the
previous sections apply to photoproduction as well. In terms
of the coupled channels formulation of the previous sections,
the one-photon approximation means to ignore the photon-
baryon channel in the intermediate states, i.e., this channel
appears only as the initial state. Then, Eq. (66) leads to

Mμ
α0γ ¼ MP μ

α0γ þ Xμ
α0γ

¼
X
r0r

�
NX

α0 jF̂Kr0 iα0
�

1

ðE −m0ÞI − ΣK þ i
P

βhFKjβGI
βN

X
β jF̂Kiβ

�
r0r

hF̂μ
Krjγ

�
þ NX

α0Ŵ
μ
α0γ; ð69Þ

where the initial meson-baryon channel α has been replaced
by the photon-baryon channel γ which appears only in the
initial state. In particular, note that the Watson’s factor

N̄X
γ ¼ 1=ð1þ iGI

γ
ˆ̄Wμ
γγÞ → 1 in one-photon approximation.

The superscript μ stands for the Lorentz index of the photon
polarization.
The quantity Ŵμ

α0γ in Eq. (69) follows from Eq. (54).
Explicitly, we have

Ŵμ
α0γ ≡Wμ

α0γ − i
X
β;β0≠α0

Wα0β0 ððDXÞ−1Þβ0βGI
βW

μ
βγ; ð70Þ

2Note that to preserve gauge invariance of the decomposed
photoproducton amplitude into the pole and nonpole parts, we
need to consider what to take for the nonpole driving potential
Uμð≡VNPμÞ and for the bare photon coupling hFμ

0rj. They enter in
the definition of Wμ and hFμ

Krj in Eqs. (71) and (73), respectively.
For example, in the field theoretic approach of Appendix B, the
bare coupling hFμ

0rj gets renormalized as given by Eq. (B17). And
the driving potential Uμ contains additional terms compared to the
usual u- and t-channel Feynman diagrams [cf. Eq. (B20)]. These
observations should be kept in mind when constructing (gauge-
invariant) photoproduction amplitude in the present approach.
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where, from Eq. (51),

Wμ
α0γ ¼ Uμ

α0γ þ
X
β

Wα0βGR
βU

μ
βγ: ð71Þ

Note that the summations over the channels in the above
two equations, and all the subsequent equations in this
section, exclude the photon-baryon channel in the inter-
mediate states, i.e., β; β0 ≠ γ due to the one-photon

approximation. This is to be understood for the remainder
of this paper.
The dressed photon vertex hF̂μ

Krjγ in Eq. (69) follows
from Eq. (63),

hF̂μ
Krjγ ≡ hFμ

Krjγ − i
X
β

hFKrjβGI
β
ˆ̄Wμ
βγ; ð72Þ

where, from Eq. (44),

hFμ
Krjγ ≡ hFμ

0rjγ þ
X
β

hF0rjβGR
βW

μ
βγ ¼ hFμ

0rjγ þ
X
β

hFKrjβGR
βU

μ
βγ; ð73Þ

and, from Eq. (57),

ˆ̄Wμ
α0γ ≡Wμ

α0γ − i
X
β;β0

Wα0β0GI
β0 ððD̄XÞ−1Þβ0βWμ

βγ: ð74Þ

It is straightforward to show that Eq. (69) reduces (as it should) to Watson’s theorem for photoproduction below
the first inelastic threshold [49]. To this end, we realize that the first term on the right-hand side of Eq. (69) is the pole part of
the photoproduction amplitude given by Eq. (B23) as shown in Appendix B. This equation, in turn, can be recast in terms of
the pole and nonpole K-matrices [cf. Eq. (76)] as MP μ ¼ NXKP μ − iTPGIðKP μ þWμÞ through the substitutions
G → −iGI , VP μ → KP μ, and VNP μ → KNP μð≡WμÞ. Then, below the first inelastic threshold, we have

Mμ
α0γ ¼

X
r0r

�
NX

α0 jFKr0 iα0
�

1

ðE −m0ÞI − ΣK þ ihFKjα0GI
α0N

X
α0 jFKiα0

�
r0r
hF̂μ

Krjγ
�
þ NX

α0W
μ
α0γ

¼ NX
α0K

P μ
α0γ − iTP

α0α0G
I
α0 ðKP μ

α0γ þWμ
α0γÞ þ NX

α0W
μ
α0γ

¼ ðNX
α0 − iTP

α0α0G
I
α0 ÞðKP μ

α0γ þWμ
α0γÞ ¼ ð1 − iTα0α0GI

α0 ÞKμ
α0γ ¼ Nα0K

μ
α0γ

¼ eδα0 cos δα0K
μ
α0γ; ð75Þ

where we have also made use of Eqs. (70) and (72) and of
Eq. (41) for photoproduction, i.e.,

Kμ
α0γ ¼ KP μ

α0γ þWμ
α0γ; ð76Þ

with Wμ
α0γ given by Eq. (71) and

KP μ
α0γ ¼

X
r0r

jFKr0 iα0SKr0rhFμ
Krjγ: ð77Þ

Equation (69) is the main result of this section. Together
with Eq. (66) of the previous section, they may be used as
the starting points in the construction of unitary isobar
models. This is done in the following sections.
Before leaving this section, a remark is in order. It is

straightforward to show that if we use the form of the
nonpole T-matrix given by Eq. (53) for photoproduction,

Xμ
α0γ ¼ NX

α0Ŵ
μ
α0γ; ð78Þ

instead of that given by Eq. (56), the full dressed photo-
production vertex hFμ

r jγ can be expressed in the form
[cf. Eq. (48)]

hFμ
r jγ ≡ hFμ

Krjγ − i
X
β

hFKrjβGI
βX

μ
βγ

¼ hFμ
Krjγ − i

X
β

hFKrjβGI
βN

X
β Ŵ

μ
βγ; ð79Þ

instead of that form given by Eq. (62). Thus, one can
replace the photon vertex hFμ

r jγ ¼ hF̂μ
KrjγNX

γ ¼ hF̂μ
Krjγ

appearing in Eq. (69) by the form given in the above
equation. Which of the two forms to use depends on what
one wants to do. In the full calculation, where the channel
couplings are fully taken into account, the form given by
Eq. (79) would be preferable numerically, for it involves
Ŵμ

βγ which requires the matrix inversion of the same DX

that enters in the calculation of the final state hadronic

interaction part. In contrast, hFμ
r jγ ¼ hF̂μ

Krjγ involves ˆ̄Wμ
βγ
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that requires an independent matrix inversion of D̄X from
that for the final hadronic interaction. In an approximate
calculation, however, as discussed in the following sec-
tions, the form hFμ

r jγ ¼ hF̂μ
Krjγ may be more suitable.

VI. POSSIBLE APPROXIMATIONS

The basic result of Sec. IV given by Eq. (66) and of
Sec. V given by Eq. (69) provides a convenient starting
point for possible approximations one can make with
different levels of sophistications. In Eq. (66), the three
basic ingredients for possible approximations are the non-
poleK-matrix amplitudeWð≡KNPÞ as given by the integral
equation (51), the dressedK-matrix resonance vertex jFKr0 i
(hFKrj) given by Eq. (44), and the K-matrix self-energy
ΣKr0r given by Eq. (46). These involve an integration over
the loop momentum through the real part of the meson-
baryon propagator GR

β . Note that all the ingredients, the
Watson’s factor NX, the dressed K-matrix vertex, as well as
the K-matrix self-energy, entering in Eq. (66) are expressed
in terms of W. W enters the K-matrix self-energy through
the dressed K-matrix vertex. The different approximations
one makes on the basic three ingredients just mentioned
may be classified into few broad categories:
(a) Unitary and analytic isobar model: In this approach,

the driving nonpole term U in Eq. (51) is approxi-
mated by a phenomenological separable potential
(see, e.g., Ref. [55]) whose form allows to solve the
integral equation for W in Eq. (51) analytically. The
bare vertex jF0r0 iðhF0rjÞ is obtained either from a
microscopic Lagrangian or simply parametrized phe-
nomenologically. Then, the momentum-loop integra-
tion in Eq. (44) is carried out analytically to obtain
jFKr0 iðhFKrjÞ. ΣKr0r is obtained as given by Eq. (46),
also by performing the momentum loop integration
analytically. This model maintains unitarity and ana-
lyticity, the latter, by keeping explicitly both the real
and imaginary parts of the meson-baryon propagator.
Of course, the adopted separable potential should
be analytic. Note that the contribution due to the real
part of the meson-baryon propagator may lead to pole
structures in the resulting reaction amplitude in the
complex-energy plane that would correspond to
dynamically generated resonances [56–58].

(b) Unitary isobar model: Here, W and jFKr0 iðhFKrjÞ are
directly parametrized in a completely phenomenologi-
cal or semiphenomenological manner, thereby avoid-
ing to solve the integral equation for W and the
momentum-loop integration for jFKr0 iðhFKrjÞ. Here,
the self-energy ΣKr0r [cf. Eq. (46)] is also simply
parametrized. In this model, the analyticity of the
original reaction amplitude is lost, because the mo-
mentum-loop integrations involving the real part of the
meson-baryon propagator in Eqs. (44), (46), and (51)

are not performed. In general, ignoring the contribu-
tions arising from the real part of the meson-baryon
propagator violates analyticity, since the dispersion
relation condition due to analyticity between the real
and imaginary parts of the reaction amplitude [59] will
no longer be satisfied.

VII. SUMMARY

We have exposed the full complex phase structure of
the meson-baryon T-matrix reaction amplitude in the
coupled channels framework. By exhibiting the complex
phase structure of the pole and nonpole parts of the
T-matrix, we have achieved to express the reaction ampli-
tude in a form which suitably serves as a starting point for
making approximations of varying degrees of sophistica-
tion. In particular, it allows for approximations where the
basic properties of the S-matrix, namely, unitarity and
analyticity, can be maintained automatically. Recall that in
earlier works [39,43–45] unitarity of the reaction amplitude
in isobar models is implemented by imposing the unitarity
condition on the resonance amplitude (pole amplitude TP),
separately from the unitarity condition on the background
amplitude [nonpole amplitude Xð≡TNPÞ]. In the present
work, no such additional condition is required. Here, the
unitarity of TP arises automatically from the dressing
mechanism inherent in the basic scattering equation
[Eq. (7)]. In the case of photoproduction, gauge invariance
can be satisfied as well. Furthermore, we have shown how
the analog in meson-baryon reaction of the well-known
Watson’s theorem in photoproduction emerges in the
present formulation.
Finally, we mention that calculations based on a coupled

channels unitary isobar model as described briefly in
Sec. VI will be reported shortly.

ACKNOWLEDGMENTS

The authors thank Helmut Haberzettl for sharing his
private note on the resonance coupling propagator.

APPENDIX A: PHASE-SHIFT
PARAMETRIZATION

In this appendix, we give the phase-shift parametrization
of the Watson’s factors Nα and N̄α defined in Eqs. (17) and
(23), as well as of the on-shell K̂αα defined in Eq. (20).
Here, we confine ourselves to stable particles only and
consider the channels whose on-shell elastic scattering
T-matrix amplitude in partial-wave basis can be para-
metrize in terms of the phase-shift (δα) and inelasticity
(ηα) as

ραTαα ¼
i
2
ðηαei2δα − 1Þ; ðA1Þ
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with ρα denoting the (phase-space) density of state in the
channel specified by the index α. Then, inserting Eq. (A1)
into Eqs. (17) and (23), we have for the Watson factor3

Nα ¼ N̄α ¼ 1 − iραTαα ¼
1

2
ðηαei2δα þ 1Þ: ðA2Þ

Inserting the above two equations into Eq. (19), and
solving for K̂αα, we obtain

K̂αα ¼ −
1

ρα

2ηα sin 2δα þ ið1 − η2αÞ
1þ η2α þ 2ηα cos 2δα

: ðA3Þ

This result reveals a very simple phase structure of the
on-shell K̂αα in terms of the phase-shift and inelasticity of
the elastic scattering T-matrix amplitude.
Below the inelastic threshold (ηα ¼ 1), Eq. (A3)

reduces to

K̂αα ¼ Kαα ¼ −
sin 2δα

ραð1þ cos 2δαÞ
¼ −

1

ρα
tan δα; ðA4Þ

and, as it should, one recovers the phase-shift parametriza-
tion of the on-shell K-matrix Kαα (valid even above the
inelastic threshold) which is a pure real quantity.
Inserting the phase-shift parametrization of the on-shell

K-matrix into Eq. (26) yields

NK α ¼ N̄K α ¼ eiδα cos δα: ðA5Þ

In complete analogy to the phase-shift parametrization
of the on-shell elastic T-matrix amplitude [cf. Eq. (A1)], if
we assume the corresponding phase-shift parametrization
of the on-shell elastic nonpole T-matrix (X ≡ TNP) in
Eq. (35) to be

ραXαα ¼
i
2
ðηXα ei2δXα − 1Þ; ðA6Þ

then the corresponding Watson’s factors NX
α and N̄X

α

defined by Eqs. (55) and (58) become

NX
α ¼ 1 − iραXαα ¼

1

2
ðηXα ei2δXα þ 1Þ ¼ N̄X

α : ðA7Þ

For the on-shell Ŵαα, we obtain

Ŵαα ¼ −
1

ρα

2ηXα sin 2δXα þ ið1 − ηX 2
α Þ

1þ ηX 2
α þ 2ηXα cos 2δXα

; ðA8Þ

and below the inelastic threshold (ηXα ¼ 1), it reduces to

Ŵαα ¼ Wαα ¼ −
sin 2δXα

ραð1þ cos 2δXα Þ
¼ −

1

ρα
tan δXα : ðA9Þ

APPENDIX B: POLE AND NONPOLE
DECOMPOSITION OF THE T-MATRIX

REACTION AMPLITUDE

Although the pole and nonpole decomposition of the
meson-baryon T-matrix reaction amplitude is widely used
in the literature (see, e.g., [1,60]), due to its central role in
the present work, its derivation is provided in this appendix.
We will also decompose the photoproduction amplitude
starting from the gauge-invariant amplitude obtained from
the field theoretic considerations [53]. In this appendix,
the reference to two-particle channels is suppressed for the
sake of not overloading with unessential notations in the
derivation.

1. Meson-baryon T-matrix reaction amplitude

The meson-baryon T-matrix obeys the Lippmann-
Schwinger-type scattering equation

T ¼ V þ VGT: ðB1Þ

It can be recast into the form

T ¼ TP þ TNP; ðB2Þ

with

TNP ¼ VNP þ VNPGTNP; ðB3Þ

where VNP stands for one-nucleon irreducible potential
(the nonpole part of V), i.e.,

VNP ¼ V − VP; ðB4Þ

with the one-nucleon reducible potential VP (the pole part
of V) given by

VP ¼
X
r

jF0riS0rhF0rj: ðB5Þ

In the above equation, jF0ri denotes the bare vertex
and S0r, the bare baryon propagator for a given bare
resonance r, including the nucleon (r ¼ N).
Below, we show how the pole T-matrix, TP, in Eq. (B2)

can be expressed in a compact form. For this purpose, let us
start from Eqs. (B1) to (B4) to express TP as

3Note that, for a stable particle channel β, GI
β ¼

πδðE −H0βÞ → ρβ after the momentum loop integration.
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TP ¼ ð1þ TNPGÞVP þ TPGV

TPð1 −GVÞ ¼ ð1þ TNPGÞVP

TP ¼ ð1þ TNPGÞVPð1 −GVÞ−1
¼ ð1þ TNPGÞVPð1þGTÞ
¼ ð1þ TNPGÞVP½ð1þGTNPÞ þ GTP�:

ðB6Þ

Inserting Eq. (B5) into Eq. (B6), we have

TP ¼
X
r

�
jFriS0rhFrj þ jFriS0rhF0rjGTP

�
; ðB7Þ

with the dressed vertex defined as

jFri≡ ð1þ TNPGÞjF0ri;
hFrj≡ hF0rjð1þGTNPÞ: ðB8Þ

Multiplication of Eq. (B7) by hF0r0 jG from the left gives

hF0r0 jGTP ¼
X
r

�
Σr0rS0rhFrj þ Σr0rS0rhF0rjGTP

�

X
r

Σr0rS0rhFrj ¼
X
r

ðS−10r δr0r − Σr0rÞS0rhF0rjGTP; ðB9Þ

where the last equality is a simple rearrangement of the first
equality together with the introduction of the self-energy
matrix

Σr0r ≡ hF0r0 jGjFri: ðB10Þ

Defining the dressed propagator matrix

S−1r0r ≡ S−10r δr0r − Σr0r; ðB11Þ

we have, from Eq. (B9),

X
r0r

Skr0Σr0rS0rhFrj ¼
X
r0r

Skr0S−1r0rS0rhF0rjGTP

¼ S0khF0kjGTP: ðB12Þ

Inserting the above result back into Eq. (B7), we have

TP ¼
X
r

�
jFriS0rhFrj þ jFri

X
r0l

SrlΣlr0S0r0 hFr0 j
�

¼
X
rr0

jFri
�
δrr0S0r0 þ

X
l

SrlðS−10l δlr0 − S−1lr0 ÞS0r0
�
hFr0 j

¼
X
rr0

jFriSrr0 hFr0 j: ðB13Þ

2. Photoproduction reaction amplitude

Following the field theoretic approach of Haberzettl [53],
the gauge-invariant photoproduction amplitude in the one-
photon approximation can be expressed as

Mμ ¼ Vμ þ TGVμ; ðB14Þ
with μ denoting the Lorentz index of the photon polariza-
tion and

Vμ ¼ m̃μ
s þMμ

u þMμ
t þmμ

KR þ UμGjFNi; ðB15Þ
whereUμ stands for the exchange current which arises from
the coupling of the photon to VNP, mμ

KR stands for the sum
of the bare Kroll-Ruderman contact current arising from
the direct coupling of the photon to the bare vertex jF0ri
appearing in Eq. (B5), Mμ

xðx ¼ u; tÞ denotes the x-channel
(tree-level Feynman diagram) contribution, and m̃μ

s stands
for the s-channel bare current. The latter is given by

m̃μ
s ¼

X
r

jF0riS0rhF̃μ
0rj; ðB16Þ

where hF̃μ
0rj is defined as

hF̃μ
0rj≡ hFμ

0rj þ m̄μ
KRrGjFNi; ðB17Þ

with hFμ
0rj denoting the bare rNγ vertex and, m̄μ

KRr, the bare
Kroll-Ruderman term for a given resonance r in mμ

KR with
the meson leg reversed, i.e., NMγ → r.
Now, analogous to Eq. (B4), we decompose Vμ in

Eq. (B15) as

Vμ ¼ VPμ þ VNPμ; ðB18Þ
where

VPμ ≡ m̃μ
s ¼

X
r

jF0riS0rhF̃μ
0rj; ðB19Þ

and

VNPμ ≡Mμ
u þMμ

t þmμ
KR þUμGjFNi: ðB20Þ

Inserting Eqs. (B2) and (B18) into Eq. (B14), we have

Mμ ¼ VPμ þ VNPμ þ ðTP þ TNPÞGðVPμ þ VNPμÞ
¼ MPμ þMNPμ; ðB21Þ

where

MNPμ ≡ VNPμ þ TNPGVNPμ; ðB22Þ
and

MPμ ≡ VPμ þ TNPGVPμ þ TPGðVPμ þ VNPμÞ: ðB23Þ
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Now, using Eqs. (B8) and (B19),

VPμ þ TNPGVPμ ¼
X
r

jFriS0rhF̃μ
0rj: ðB24Þ

Similarly, using Eqs. (B10), (B13), and (B19),

TPGðVPμ þ VNPμÞ

¼
X
rr0

jFriSrr0
�
hFr0 jG

X
l

jF0liS0lhF̃μ
0lj þ hFr0 jGVNPμ

�

¼
X
rr0l

jFriSrr0
�
Σr0lS0lhF̃μ

0lj þ δr0lhFljGVNPμ

�
: ðB25Þ

Inserting Eqs. (B24) and (B25) into Eq. (B23), and with
help of Eq. (B11), we have

MPμ ¼
X
rr0l

jFriSrr0
�
ðSÞ−1r0l S0lhF̃μ

0lj þ Σr0lS0lhF̃μ
0lj

þ δr0lhFljGVNPμ

�

¼
X
rr0l

jFriSrr0
�
fðSÞ−1r0l þ Σr0lgS0lhF̃μ

0lj

þ δr0lhFljGVNPμ

�

¼
X
rr0

jFriSrr0 hFμ
r0 j; ðB26Þ

where, in the last equality above, we have introduced the
dressed electromagnetic vertex

hFμ
r0 j≡ hF̃μ

0r0 j þ hFr0 jGVNPμ

¼ hF̃μ
0r0 j þ hF0r0 jGMNPμ: ðB27Þ

APPENDIX C: TWO-RESONANCE COUPLING

The resonance propagator appearing in the pole part
of the T-matrix [cf. Eq. (66)] is, in general, a matrix in
resonance space. In most of the cases, there is only one
resonance for a given partial-wave state, in which case, the
propagator reduces to a number. In other cases, such as in
the πN S11 partial wave, there can be two resonances close
to each other [S11ð1535Þ and S11ð1650Þ] which causes
a considerable resonance coupling effect. For the two-
resonance case, the resonance propagator matrix S can be
obtained explicitly. Following Ref. [61], we have

S−1 ¼ S−10 − Σ ¼
�
E −m01 − Σ11 −Σ12

−Σ21 E −m02 − Σ22

�
;

ðC1Þ
and hence

S ¼
�

1

S−10 − Σ

�

¼ 1

jDj
�
E −m02 − Σ22 Σ12

Σ21 E −m01 − Σ11

�
; ðC2Þ

where jDj stands for the determinant of S−1,

jDj ¼ ðE −m01 − Σ11ÞðE −m02 − Σ22Þ − Σ12Σ21: ðC3Þ
Now, defining

μi ≡m0 i þ Σii and C2 ≡ Σ12Σ21; ðC4Þ
the pole condition reads

jDj ¼ ðE − μ1ÞðE − μ2Þ − C2 ¼ 0; ðC5Þ
producing two solutions

E → M� ¼ μ1 þ μ2
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ1 − μ2Þ2 þ 4C2

q
: ðC6Þ

We then have

1

jDj ¼
1

ðE −M−ÞðE −MþÞ

¼ 1

ðE −M−Þ þ ðE −MþÞ
�

1

E −M−
þ 1

E −Mþ

�

¼ 1

ðE − μ1Þ þ ðE − μ2Þ
�

1

E −M−
þ 1

E −Mþ

�
; ðC7Þ

where the equality M− þMþ ¼ μ1 þ μ2 has been used.
Equation (C7) allows to write the propagator in the form

S ¼ R
E −M−

þ R
E −Mþ

; ðC8Þ

with the “residue” matrix R given by

R≡
� E−μ2

d
Σ12

d
Σ21

d
E−μ1
d

�
;

1

d
¼ 1

ðE − μ1Þ þ ðE − μ2Þ
: ðC9Þ

If the resonance coupling is small enough, i.e.,
Σ12 ∼ Σ21 ∼ 0, then M� and R reduce to

Mþ¼μ1; M−¼μ2; and R¼
�E−μ2

d 0

0 E−μ1
d

�
; ðC10Þ

so that

S ¼
� 1

E−μ1
0

0 1
E−μ2

�
; ðC11Þ

as it should be.
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