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The hadronization mechanism is described by the fragmentation functions (FFs) which are universal and
process-independent quantities. They can be generally determined theoretically or phenomenologically.
In the phenomenological approach which is based on the data analysis, we present the FFs of Dþ

s both at
leading-order (LO) and next-to-leading order (NLO) and, for the first time, at next-to-next-to-leading order
in the minimal subtraction factorization scheme with five massless quarks. These functions are determined
by fitting all available experimental data of inclusive single Dþ

s -meson production in electron-positron
annihilation, from the OPAL Collaboration at CERN LEP1.We shall also estimate the uncertainties in these
FFs as well as in the corresponding observables. In the theoretical approach, we apply the perturbative FFs
formalism based on the Suzuki’s model and present our analytical results at LO and NLO perturbative QCD
framework. For the first time, a comparison between both approaches will be presented in this work. We
also apply our new FFs to generate theoretical predictions for the energy distribution of Dþ

s mesons
produced through the decay of unpolarized top quarks, to be measured at the CERN LHC.

DOI: 10.1103/PhysRevD.100.114031

I. INTRODUCTION

For a long time, there has been considerable interest in
the study of production mechanism of charmed-flavored
hadrons (D-hadrons) at hadron and electron-positron colli-
ders, both experimentally and theoretically. The study of
properties of these heavy mesons provides us a possibility
for better understanding the quark-gluon interaction
dynamics in the QCD framework. Presently, there is
particular interest in hadron production at the CERN
Large Hadron Collider (LHC) and the BNL Relativistic
Heavy Ion Collider due to ongoing experiments.
In general, two various mechanisms are assumed for the

production of heavy hadrons: recombination and fragmen-
tation. In the recombination scheme, as an example, heavy
mesons are formed through the combination of heavy-light
or heavy-heavy quarks which are produced independently in
hard subprocesses. At sufficiently large transverse momen-
tum of heavy hadron production, the recombination mecha-
nism (or direct production scheme) is normally suppressed
while the fragmentation one becomes dominant [1].
Fragmentation refers to the process of a parton which carries
large transverse momentum and subsequently decays to
form a jet containing the expected colorless hadron [2].

Therefore, fragmentation functions (FFs) describing the
hadronization processes, along with the parton distribution
functions (PDFs) of initial hadrons (in hadron-hadron or
lepton-hadron collisions), are needed as nonperturbative
inputs for the calculation of hadron production cross
sections. Specifically, their specific importance is for their
model-independent predictions of the cross sections. The
universality feature of FFs allows one to transfer exper-
imental information from, for example, electron-positron
annihilation to any other production mechanism, such as
photoproduction, leptoproduction, hadroproduction, and
two-photon scattering.
Due to the importance mentioned for the FFs, of interest

is to accurate determination of FFs as much as possible.
Generally, two various approaches are used for determi-
nation of the nonperturbative FFs, which are known as the
theoretical and phenomenological approaches. Independent
of the approach used, when FFs are calculated at the initial
scale of fragmentation one can evolve them to higher scales
using the timelike Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) renormalization group equations [3]. In
the phenomenological approaches which are frequently
used to determine the nonperturbative FFs, all free param-
eters in the proposed forms of the FFs are extracted form
experimental data analysis; see, e.g., Refs. [4–7] and
references therein. In this approach, FFs are calculated
with high accuracy up to second-order approximation in
QCD [8–15]. In an alternative approach which is based on
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the theoretical models, one can compute the heavy quark
FFs by virtue of perturbative QCD with limited phe-
nomenological parameters [16,17]. In Refs. [18–25],
using the Suzuki’s model [26], the FFs of heavy hadrons
are calculated using the convenient Feynman diagrams at
each order of perturbative QCD for the parton level of
the process. Of its advantage is to include the spin
information of hadrons into the corresponding FFs as
well as the bound state nonperturbative dynamics of
produced hadrons through the wave functions of bound
states [27].
In this paper, we first apply the theoretical approach to

compute the initial scale FF of charm quark to split into the
S-waveDþ

s meson at leading-order (LO) as well as next-to-
leading order (NLO) perturbative QCD. In the following,
using the phenomenological approach, a comprehensive
QCD analysis is performed to obtain a set of gluon-,
charm-, and bottom-quark FFs into the Dþ

s meson through
a global QCD fit to the electron-positron single inclusive
annihilation (SIA) data measured by OPAL Collaboration
[28,29] at the CERN LEP1 collider. In Ref. [30], the
nonperturbative Dþ

s -FFs were determined both at LO and
NLO in the modified minimal subtraction (MS) factoriza-
tion scheme by fitting the fractional energy spectra of Dþ

s
measured by the OPAL Collaboration in e−eþ annihilation
on the Z-boson resonance. Authors in Ref. [30] have
applied the massless scheme or zero-mass variable-
flavor-number scheme (ZM-VFNS) where heavy quarks
are treated as any other massless parton. In the present
analysis, using the ZM-VFNS we focus on the hadroniza-
tion of gluon, charm, and bottom quarks into Dþ

s meson
and provide the first QCD analysis of ðg; c; bÞ → Dþ

s -FFs
at next-to-next-to-next-to leading order (NNLO) in pertur-
bative QCD. We also go beyond Ref. [30] by performing a
full-fledged error estimation, both for the FFs and the
resulting differential cross sections, using the Hessian
approach [31]. We will also impose the effect of meson
mass on the FFs.
It should be mentioned here that our analysis is restricted

to the SIA data only due to the lack of other theoretical
partonic cross sections for single inclusive production of
partons at NNLO accuracy [32–37]. This allows one to
interpret the eþe− data of the inclusive single production of
hadron at NNLO and thus to extract the corresponding FFs
at this order. On the other hand, we are not also aware
of any other such data from eþe− annihilation; therefore,
we are restricted to the SIA data. Although among all
processes producing hadrons, the eþe− annihilation pro-
vides the cleanest laboratory for the extraction of FFs,
being devoid of nonperturbative effects beyond fragmen-
tation itself. In the standard model (SM), top quark has a
short lifetime so it decays before hadronization takes place.
At the lowest order, top quark decays as t → bWþ followed
by b → X þ Jets, where X refers to the detected hadrons in
final state. Therefore, at the LHC, the study of energy

spectra of produced hadrons through top-quark decays
is proposed as a new channel to indirect search for the
top-quark properties. As an example of a possible appli-
cation, the extracted FFs in our phenomenological analysis
are used to make the theoretical predictions for the energy
distributions of Dþ

s mesons in top decays.
The outline of this paper is as follows: In Sec. II, using

the perturbative QCD approach, we provide a general
discussion of the fragmentation process for the S-wave
heavy meson and determine the fragmentation distribution
of c-quark to fragment into Dþ

s meson at LO and NLO. In
Sec. III, we describe the theoretical framework of inclusive
single hadron production in eþe− annihilation through
NNLO in the ZM-VFNS and introduce our parametrization
of the c=b → Dþ

s FF at the initial scale. In this section, we
will also explain the minimization method in our analysis
and our approach to error estimation. Our LO, NLO,
and NNLO results are presented and compared with the
experimental data fitted to. In Sec. IV, we present our NLO
predictions for the normalized-energy distributions of Dþ

s
mesons from decays of unpolarized top quarks. Our
conclusions are presented in Sec. V.

II. THEORETICAL APPROACH TO
DETERMINATION OF D+

s -MESON FFs

Despite that the FFs are related to the low-energy part of
hadroproduction processes but, fortunately, it was found
that these functions for heavy hadroproductions are ana-
lytically calculable by virtue of perturbative QCD (pQCD)
with limited phenomenological parameters [16,17].
Historically, the first theoretical attempt to describe the
hadroproduction procedure containing heavy quarks was
established by Bjorken [38]. In the following, the pQCD
approach was applied by Suzuki [26], Ji and Amiri [39]
by considering more elaborate models. While in their
approach, Suzuki calculates the heavy quark FFs by
applying a Feynman diagram similar to that in Figs. 1
and 2, Amiri and Ji calculate their FFs in eþe− annihilation
process in the same order of pQCD. The Suzuki’s model
contains most of the kinematical and dynamical properties

FIG. 1. Lowest-order Feynman diagram contributing to the
fragmentation of a heavy quark Q into a heavy meson MðQq̄Þ.
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of the fragmentation process and gives one a detailed
insight on the hadronization process.
In the following, we briefly describe the Suzuki’s

model and use it to compute the FF of heavy quark
at NLO. According to the Suzuki’s model, the FF for
the production of an S-wave heavy meson M in the
fragmentation of a heavy quark Q may be put in the
following form [26]:

DM
Q ðz;μ0Þ ¼

1

1þ 2ri

X
r;c

Z
Πfd3p⃗fjTMj2δ3

�X
f

p⃗f − p⃗i

�
;

ð1Þ

where μ0 refers to the initial fragmentation scale, ri stands for
the spin of fragmenting quark, and the summation is going
over the spins and colors. In Eq. (1), TM is the probability
amplitude of the meson production which is expressed in
terms of the hard scattering amplitude TH and the process-
independent distribution amplitude ΦM as [39,40]

TM ¼
Z

dx1dx2δð1 − x1 − x2ÞTHΦMðxi; Q2Þ; ð2Þ

where x1 and x2 are the energy fractions carried by the
constituent quarks. This scheme is convenient to absorb the
soft behavior of the bound state into the hard scattering
amplitude [40]. The short-distance coefficient TH can be
calculated perturbatively from quark-gluon subprocesses at
each order of pQCD. The long-distance distribution ampli-
tude ΦM, which contains the bound state nonperturbative
dynamic of the outgoing meson, is the probability amplitude
for a quark-antiquark pair to evolve into a particular bound
state. The distribution amplitudeΦM is related to the valence
wave function ofmesonΨM [40].With the heavy quarkmass,
the relative motion of the constituent quarks is effectively
nonrelativistic and this allows one to estimate the non-
relativistic mesonic wave function as a delta function form.
Therefore, the distribution amplitude for an S-wave heavy
meson with neglecting the Fermi motion reads [27]

ΦM ≈
fM
2

ffiffiffi
3

p δ

�
xi −

mi

M

�
; ð3Þ

where fM ¼ ð6b3=πMÞ1=2 refers to the decay constant of
meson. With this approximation, we are assuming that the
contribution of each constituent quark from the energy of
meson (with the mass M) is proportional to its mass, i.e.,
xi ¼ mi=M. In Ref. [20], using the Suzuki’s model, we
derived an analytical expression for the heavy quark FF at
lowest order (α2s order) of pQCD by considering the typical
Feynman diagram shown in Fig. 1, where a heavy quark Q
creates a bound state MðQq̄Þ along with a light quark q
through a single gluon. The result for the fragmentation
functionDQ→Mðz; μ0Þ depends on the transverse momentum
kT of the initial heavy quark. Here, we present a compacted
expression of our previous result, i.e.,

DLO
Q→Mðz; μ0Þ ¼

2B2α2s
3

C2
F
zðz − 1Þ3
Fðz; hk2TiÞ

�
mQM4

mq
ð1 − zÞ2 þ 2

zð1 − zÞM3

mq
ðmqmQ − ð1 − zÞm2

QÞ

þmQM2

mq
z2ðð2þ 3z2 − 2zÞhk2Ti þ 3m2

q þ 3m2
Qð1 − zÞ2 − 8mqmQð1 − zÞÞ

− 2
mQM
mq

z3ð½mQ − ð1 − zÞmq�hk2Ti þmqmQ½mq − ð1 − zÞmQ�Þ þ ½hk2Ti þm2
q�½hk2Ti þm2

Q�
mQz4

mq

�
; ð4Þ

where

Fðz; hk2TiÞ ¼ ½ðz − 1ÞðM2 − zm2
QÞ − zðm2

q þ zhk2TiÞ�2 × ½z2hk2Ti þ ðMðz − 1Þ − zmqÞ2�2 ð5Þ

and B ¼ πmQmq̄fM but is related to the normalization condition
R
1
0 DQ→Mðz; μ0Þdz ¼ 1 [39].
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FIG. 2. Production of heavy meson MðQq̄Þ at NLO pQCD in
the Suzuki’s model. Real radiative contributions to the process
Q → MðQq̄Þ þ q are shown at NLO. The spins (ri) and four-
momenta are also labeled.
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In computing Eq. (4), following Ref. [26], we adopted
the infinite momentum frame where the fragmentation
parameter in its usual light-cone form, i.e., z¼ðp0

Mþp3
MÞ=

ðp0
Qþp3

QÞ, is reduced to a more popular form z ¼ p0
M=

p0
Q ¼ EM=EQ, which is more convenient when the masses

of partons and outgoing meson are ignored. In reality, the
scaling variable z refers to the energy fraction of fragment-
ing heavy quark which is taken away by the produced
meson and takes the values as 0 ≤ z ≤ 1.
More details on the heavy quark FF at LO, the effects of

meson mass, as well as the Fermi motion of constituents
can be found in Refs. [20,27].

A. Heavy quark FF at NLO

In this section, we compute an analytical expression for
the transverse momentum-dependent FF of heavy quark at
NLO ignoring the Fermi motion of constituents. This is
done by assumption of a delta function for the meson
bound state; see Eq. (3).
Considering the NLO Feynman diagrams shown in

Fig. 2, where a produced meson is replaced by its collinear
constituents, we make the NLO approximation for the FF
of heavy MðQq̄Þ meson. Considering these Feynman
diagrams, we set the relevant four-momenta as

p0
μ ¼ ½p0

0; k⃗T ; p
0
L�; sμ ¼ ½s0; 0⃗; sL�; s0μ ¼ ½s00; s⃗0T; s0L�

t0μ ¼ ½t00; t⃗0T; t0L�; tμ ¼ ½t0; 0⃗; tL�; P̄μ ¼ ½P̄0; 0⃗; P̄L�;
ð6Þ

where P̄ stands for the four-momentum of the produced
meson. Considering the definition of fragmentation param-
eter, z ¼ EM=EQ ¼ P̄0=p0

0, the parton energies can be
expressed in terms of the initial heavy quark energy as
s0 ¼ x1zp0

0; t0 ¼ x2zp0
0; s

0
0≃ t00 ¼ ð1− zÞp0

0=2, where con-
sidering the delta function for meson bound state (3) we
are assuming that the contribution of each constituent from
the meson energy is proportional to its mass, i.e., x1 ¼
mQ=M and x2 ¼ mq̄=M. Using the kinematics (6), the dot
products of relevant four-vectors read

2t · t0 ¼ 2mqz

Mð1 − zÞ
�
m2

q þ
k2T
4

�
þ 1 − z

2z
mqM;

2p0 · s0 ¼ k2T
2ð1 − zÞ þ

1 − z
2

ðm2
Q þ k2TÞ − k2T;

2s · p0 ¼ mQM
z

þ zmQ

M
ðm2

Q þ k2TÞ;

2s · s0 ¼ zmQ

2Mð1 − zÞ k
2
T þ 1 − z

2z
mQM: ð7Þ

In Eq. (2), the QCD amplitude TH is, in essence, the
partonic cross section to produce a quark pair Qq̄

with certain quantum number that in the old fashioned
perturbation theory is expressed as

TH ¼ g3smQmq̄

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P̄0s00t

0
0p

0
0

p CF

P
4
i¼1 Γi

P̄0 þ s00 þ t00 − p0
0

; ð8Þ

where CF ¼ 2
ffiffiffi
2

p
=3 is the color factor for the process

Q → MðQq̄Þ þ qþ g, shown in Fig. 2. In Eq. (8), the
amplitudes Γi stand for each Feynman diagrams in Fig. 2
and include an appropriate combination of the gluon
and quark propagators and the spinorial parts of the
amplitude. Here, we set the amplitudes Γ1 for Fig. 2(a),
Γ2 for Fig. 2(b), Γ3 for Fig. 2(c), and the amplitude Γ4 for
Fig. 2(d). By substituting Eqs. (2), (3), and (8) in Eq. (1)
and carrying the necessary integrations out, the heavy
quark fragmentation function reads

DReal
Q→Mðz; μ0Þ ¼

A2α3s
3

C2
F

Z
d3t0d3s0

t00s
0
0

Z P
4
i;j¼1 Γi · Γ⋆

j

P̄0p0
0D

2
0

× δ3ð ⃗P̄þ t⃗0 þ s⃗0 − p⃗0Þd3 ⃗P̄; ð9Þ

where A ¼ π3=2fMmqmQ and the factor D0 ¼ P̄0 þ t00 þ
s00 − p0

0 is the energy denominator. For the phase space
integration in the relation (9), one has

Z
d3 ⃗P̄δ3ð ⃗P̄þ t⃗0 þ s⃗0 − p⃗0Þ

p0
0P̄0D2

0

¼ z
G2ðzÞ ; ð10Þ

where GðzÞ¼M2−m2
Q−m2

q−2t0 ·s0 þ2p0 · t0 þ2p0 ·s0 ¼
M2þz½zk2Tþ2m2

q−ð1−zÞm2
Q�=ð1−zÞ. For the remaining

integrals, according to the Suzuki’s model and for sim-
plicity, we replace the transverse momentum integrations
by their average values, e.g.,

Z
d3t0

fðz; t02T Þ
t00

≈ f
�
z;
1

4
hk2Ti

�
; ð11Þ

where we assumed t0T ¼ kT=2 so that hk2Ti is a free
parameter which can be specified phenomenologically.
Substituting all in Eq. (9), the hadronization process
Q → M is described by the following fragmentation
function:

DReal
Q→Mðz; μ0Þ ¼

A2α3s
3

C2
F

z
G2ðzÞ

X4
i;j¼1

Γi · Γ⋆
j : ð12Þ

Using the Dirac algebra and the dot products of four-
momenta (7), we simplify the expression

P
4
i;j¼1 Γi · Γ⋆

j .
Adopting the Coulomb gauge, it is easy to show that the
contribution of fourth Feynman diagram [Fig. 2(d)] to the
radiative corrections is zero and other contributions read
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X
ri

Γ1 · Γ⋆
1 ¼ 2mqmQ

G2
1G

2
2

�
m4

Q

z2
ðz − 1Þð19z2 − 6zþ 3Þ −m2

Qk
2
T

1 − z
ð21z2 − 10zþ 5Þ − z2k4T

1 − z
þ z4k6T
m2

Qð1 − zÞ3
�
;

X
ri

Γ2 · Γ⋆
2 ¼ 24m3

q

G2
3G

2
4

�
m3

Q

z2
ðz − 1Þð3z2 − 2zþ 1Þ − 2

mQk2T
1 − z

ð2z2 − 2zþ 1Þ − z2k4T
mQð1 − zÞ

�
;

X
ri

Γ3 · Γ⋆
3 ¼ 2mq

G2
5G

2
6

�
m5

Q

z2
ðz − 1Þð19z2 − 6zþ 3Þ −m3

Qk
2
T

1 − z
ð21z2 − 10zþ 5Þ − z2k4T

1 − z
mQ þ z4k6T

mQð1 − zÞ3
�
;

X
ri

Γ1 · Γ⋆
2 ¼ −8

G1G2G3G4

mq

z3ð1 − zÞ2mQ
× ½ð1 − zÞ2m2

Q þ z2k2T �2 × ½z2k2T þm2
Qð1 − 2zþ 3z2Þ�;

X
ri

Γ1 · Γ⋆
3 ¼ 4mq

G1G2G5G6

�
m5

Qðz − 1Þ
z3

ð5z4 − 2z3 þ 6z2 − 2zþ 1Þ − m3
Qk

2
T

zð1 − zÞ ð12z
4 − 19z3 þ 21z2 − 9zþ 3Þ

−
zmQk4T
1 − z

ð9z2 − 6zþ 3Þ þ z3ð2z − 1Þk6T
mQð1 − zÞ2

�
;

X
ri

Γ2 · Γ⋆
3 ¼ −8

G3G4G5G6

mq

z2ð1 − zÞ2mQ
× ½z2k2T þm2

Qð1 − 2zþ 3z2Þ� × ½z2k2T þ ð1 − zÞ2m2
Q�2; ð13Þ

where the denominators of propagators are expressed as
G1 ¼ 2m2

q þ 2t · t0; G2 ¼ 2s · s0; G3 ¼ 2m2
Q − 2s · p0; G4 ¼

2s0 · t0; G5 ¼ 2m2
q þ 2t · t0, and G6 ¼ −2p0 · s0.

It should be noted that at NLO approximation in addition
to the real gluon radiative corrections there are some
Feynman diagrams related to the virtual gluon radiative
corrections. This new class of diagrams interferes with the
LO amplitude, so that the NLO full amplitude is the sum
of amplitudes of the Born term (ΓLO), virtual one-loop
(ΓLoop), and the real contributions (ΓReal), i.e.,

ΓNLO ¼ ΓLO þ ΓLoop þ ΓReal: ð14Þ

The QCD NLO contributions result from the square of
these amplitudes, i.e., jΓBornj2 ¼ ΓLO · ΓLO⋆ so its related
fragmentation function is of order α2s ; see Eq. (4),
jΓVirj2 ¼ 2ReðΓLO · ΓLoop⋆Þ, and jΓRealj2 ¼ ΓReal · ΓReal⋆
so that the NLO fragmentation function is of order α3s ;
see Eq. (12). Note that the Feynman diagrams related to the
virtual radiative corrections are classified into two classes.
The first class of diagrams includes the fermionic loop
diagrams and diagrams with three- and four-gluon vertices.
It is shown that these virtual contributions interlock in
an essential way. In general, Feynman diagrams with n
loops typically contain correction terms proportional
to ðαs logðQ2=Λ2ÞÞn, where Λ is a renormalization scale.
Fortunately, these corrections can be absorbed into the
lowest-order terms by using the renormalization group
equations. In other words, their effect is to modify the gluon
propagator by replacing the fixed renormalized coupling
with a running coupling constant. Besides these 1PI

diagrams, there are also three tadpole diagrams, one-loop
diagrams with a propagator that connects back to its
originating vertex. It is shown that these contributions
automatically vanish.
The second class of virtual radiative corrections includes

the gluon-quark loops on the incoming or the outgoing
quark legs. Generally, these amplitudes need to be consid-
ered and included in order to maintain the infrared stability
of the overall result. Indeed, these virtual corrections
consist of both infrared (IR) and ultraviolet (UV) singu-
larities where the UV divergences appear when the inte-
gration region of the internal momentum of the virtual
gluon goes to infinity and the IR divergences arise from the
soft-gluon singularities. All UV singularities are canceled
after summing all virtual contributions up, whereas the IR
singularities are remaining. The real gluon radiative cor-
rections also include IR divergences which arise from the
soft and collinear gluon emissions. According to the Lee-
Nauenberg theorem, after summing, all radiative correc-
tions up the IR singularities cancel each other and the final
result is free of all singularities. For more discussion on the
IR and UV singularities, see, e.g., Refs. [41–48]. Note that,
according to the Suzuki’s model, to compute the contri-
bution of real corrections into the fragmentation function
we do not integrate over the momentum of the emitted
real gluon and instead, we replace the gluon momentum
integration by its average value; see Eq. (11). Therefore, by
this simplification on the one side, we shall not deal with
the IR singularities in the real gluon radiative corrections
(12) and on the other side the contribution of the virtual
corrections can be ignored. We checked that the contribu-
tion of virtual gluon corrections into the QCD amplitude
TH (8) is small and can be ignored.
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Generally, the fragmentation functions depend on both
the fragmentation parameter z ¼ EM=EQð0 ≤ z ≤ 1Þ and
the fragmentation scale μ. This scale is normally arbitrary,
but in a high-energy process of electron-positron annihi-
lation where a jet is produced with transverse momentum
kT , large logarithms of kT=μ in the partonic cross section of
the process eþe− → QQ̄ → MðQq̄Þ þ X can be avoided by
choosing μ on the order of kT . Also, the z dependence of the
FF is not yet calculable at each desired scale. However,
once they are computed at some initial fragmentation
scale μ0, their μ evolution is specified by the DGLAP
equations [3]. Therefore, the function (12) should be
regarded as a model for the heavy quark FF at the scale
μ0 of order mQ and the DQ→Mðz; μÞ at larger scales is
obtained by solving DGLAP equations.
Here, as an example, we consider the fragmentation of c

quark into Dþ
s meson with the constituent quark structure

jDþ
s i¼ jcs̄i taking fM¼0.22GeV [49] and hk2Ti¼1GeV2.

In this work, we also consider αsðmcÞ¼0.38�0.03 adjusted
such that αsðmZÞ¼0.1184 with mZ¼91.18GeV. In Fig. 3,
the behavior of Dþ

s -FF at the initial scale μ0 ¼ mc is
shown at the LO (solid line) and NLO (dashed line)
QCD approximations. As is seen, higher order QCD
corrections shift the peak of fragmentation toward higher-
z regions. Except the improvement due to the virtual
corrections, we may also think of other effects such as
the Fermi motion of constituent quarks and the effects of
meson mass, etc.

III. PHENOMENOLOGICAL DETERMINATION
OF D+

s -FFs AND THEIR UNCERTAINTIES

As was explained in the Introduction, more common
method to determine the nonperturbative FFs is the
phenomenological approach. In this method, the FFs are
studying in hadroproduction processes such as electron-
positron SIA, lepton-hadron semi-inclusive deep inelastic

scattering (SIDIS), and hadron-hadron collisions.
Theoretically, the cleanest process to extract the fragmen-
tation densities is SIA because we do not require the
simultaneous knowledge of PDFs and FFs. Recently,
different analysis have been focused on extracting of
FFs for light and heavy hadrons at NLO as well as
NNLO accuracies in pQCD [5–10]. The calculation of
FFs at high order corrections of pQCD, here we mean
NNLO, is possible just for electron-positron annihilation
while the calculations for the hard processes in SIDIS and
p-p collisions at NNLO are not accessible yet. In this
section, we describe the theoretical framework of inclusive
single hadron production in eþe− annihilation through
NNLO in the ZM-FVNS and introduce our parametriza-
tions for the Dþ

s -FFs at the initial scale of fragmentation.

A. QCD framework for D+
s -meson FFs

As was mentioned, in the phenomenological approach,
the optimal way to determine the parton FFs is to fit them to
all available experimental data. Among all, the best one is
the SIA process which occurs via exchange of virtual
photon (γ) or Z boson,

eþe− → ðγ⋆; ZÞ → Dþ
s þ X; ð15Þ

where X stands for the unobserved part of final state. Here,
our analysis is restricted to the SIA data due to two reasons.
First, as explained previously, among all processes pro-
ducing hadrons the eþe− annihilation provides the cleanest
environment for the extraction of FFs, being devoid of
nonperturbative effects beyond fragmentation itself, i.e., the
uncertainties due to PDFs. The second reason is due to the
lack of other theoretical partonic cross sections for single
inclusive production of partons at NNLO accuracy. This
allows us to interpret the eþe− data of the inclusive single
production of hadron at NNLO and thus to extract the
Dþ

s -FFs at NNLO. Moreover, we are not aware of any other
data for the production of Dþ

s meson.
The partonic cross section of the process (15) is written

in terms of three polarized parts [50],

d2σ
dxid cos θ

¼ 3

8
ð1þ cos2θÞ dσ

T

dxi

þ 3

4
sin2θ

dσL

dxi
þ 3

4
cos θ

dσA

dxi
; ð16Þ

where θ is the scattering angle so this variable is integrated
out. The three terms on the right-hand side are related with
the transverse, longitudinal, and asymmetric contribution
of cross section, respectively. In fact, the first two are
associated with the corresponding polarization states of the
virtual boson with respect to the direction of the observed
hadron and the asymmetric term is due to the parity-
violating interference terms and is not present in QED.

NLO

LO

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

z

zD
c

D
s

FIG. 3. The FF of c → Dþ
s at LO (solid line) and NLO (dashed

line) in the Suzuki’s model. The fragmentation scale is μ0 ¼ mc
and we set hk2Ti ¼ 1 GeV2.
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These contributions at NLO can be found in Ref. [50]
and the extended results up to NNLO are presented in
Ref. [37]. Denoting the four-momenta of intermediate
gauge boson, produced partons, and hadron by q, pi,
and pD, respectively, so that s ¼ q2 and p2

D ¼ m2
D we

introduce the scaling variables xi ¼ 2ðpi · qÞ=q2 and xD ¼
2ðpD · qÞ=q2. Here, ffiffiffi

s
p

stands for the collision energy. In
the center of mass (CM) frame, the scaling variables are
simplified as xi ¼ 2Ei=

ffiffiffi
s

p
and xD ¼ 2ED=

ffiffiffi
s

p
, where Ei

and ED refer to the energies of partons and Dþ
s - meson. In

fact, xi and xD are the energies of produced partons and
meson in units of the beam energy, respectively.
According to the factorization theorem in the QCD-

improved parton model [51], the cross section of
process (15) can be written as the convolution of differ-
ential partonic cross sections dσiðeþe− → iþ XÞ=dxi with
the DDþ

s
i -FFs. In the ZM-VFNS (or zero-mass scheme),

where all quarks are treated as massless partons except in
the initial conditions of their FFs, one has

dσ
dxD

ðeþe− → Dþ
s þ XÞ

¼
X
i

Z
1

xD

dxi
xi

dσi
dxi

ðxi; μR; μFÞDDþ
s

i

�
xD
xi

; μF

�
; ð17Þ

where i ¼ g; u; ū;…; b; b̄ runs over the active partons.
Here, μR and μF are the renormalization and factorization
scales, respectively, which are a priori arbitrary but a
typical choice is μR ¼ μF ¼ ffiffiffi

s
p

[52] to avoid the loga-
rithmic term lnðs=μ2FÞ appearing in differential partonic
cross sections. In Eq. (17), the differential hard-scattering
cross sections dσi=dxi are known up to NNLO in pertur-

bative QCD [32–37] and the DDþ
s

i ðz; μFÞ-FF describes the
nonperturbative part of the process (15) related to the
transition i → Dþ

s . In the CM frame, the fragmentation
parameter z ¼ xD=xi is the fraction of energy passed on
from parton i to the charmed meson, like the definition in
Sec. II. It is customary in experimental analyses to normal-
ize Eq. (17) by the total hadronic cross section,

σtot ¼
4πα2ðsÞ

s

�Xnf
i

ẽ2i ðsÞ
�
ð1þ αsK

ð1Þ
QCD þ α2sK

ð2Þ
QCD þ � � �Þ;

ð18Þ

where ẽi is the effective electroweak charge of quark i, α
and αs are the fine-structure and strong-coupling constants,

respectively, and the coefficient KðnÞ
QCD contains the

NnLO correction. Here, we need Kð1Þ
QCD ¼ 3CF=ð4πÞ and

Kð2Þ
QCD ≈ 1.411 [53].
It should be noted that the factorization formula pre-

sented in Eq. (17) is proved provided that the mass of
quarks and hadron is ignored. In Ref. [7], we have proved

how to enter the hadron mass effects into the inclusive
hadron production in eþe− reaction. To incorporate the
hadron mass effects, we used a specific choice of scaling
variables by working in the light-cone coordinates.
Ignoring the detail of calculations, as a generalization of
the massless case, the factorization relation in the presence
of hadron mass mH reads

dσ
dxH

ðxH; sÞ ¼
1

1 − m2
H

sη2ðxHÞ

dσ
dη

ðηðxHÞ; sÞ; ð19Þ

where η ¼ xH=2 × ð1 − 4m2
H=ðsx2HÞÞ and

dσ
dη

ðη; sÞ ¼
X
i

Z
1

η

dy
y
dσ̂i
dy

DH
i

�
η

y
; μF

�
: ð20Þ

The above relation will be a basic formula for the
factorization theorem extended in the presence of hadron
mass and would be more effective and applicable when the
data are presented in lower energy scales. As a considerable
point, the effect of hadron mass is to increases the cross
section dσ=dxH at small xH so this treatment acts inverse
for large xH. We incorporated the mass corrections into the
publicly available APFEL package [54] which is used to
determine the free parameters of FFs.
The z distribution of the ðc; bÞ → Dþ

s -FFs at the starting
scale μ0 is a genuinely nonperturbative quantity to be
extracted from experimental data. Their forms are
unknown, and an educated guess is in order. The selection
criterion is to score a minimum χ2 value as small as
possible with a set of fit parameters as minimal as possible.
Due to few numbers of experimental data for Dþ

s -meson
production, it is not possible to constrain b and c quarks
in the same parametrization form; thus, following
Ref. [30], we adopt two different parametrization forms
for the c → Dþ

s and b → Dþ
s FFs. Since the charm

distribution usually dominates at large z, we use the optimal
functional form for the parametrization of charm suggested
by Peterson et al. [55] as

DDþ
s

c ðz; μ20Þ ¼ Nc
zð1 − zÞ2

½ð1 − zÞ2 þ ϵz�2 ; ð21Þ

which includes two free parameters Nc and ϵ. For the
b → Dþ

s transition, we use the following simple power
form [30]:

DDþ
s

b ðz; μ20Þ ¼ Nbzαð1 − zÞβ; ð22Þ

including three unknown and free parameters Nb, α, and β.
These forms were found to enable excellent fits. The free
parameters will be extracted from a global fit on exper-
imental data measured by OPAL Collaboration [28,29]
at the CERN LEP1 collider. In this analysis, the FFs are
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parametrized at the initial scale μ20 ¼ 18.5 GeV2, which is a
little grater than the b-quark mass threshold, and then
evolved to the scale of experimental measurements. At the
initial scale μ0, the FFs of light quarks and gluon are
assumed to be zero so that they will be generated through
DGLAP equations [3] to higher values of μF.
In our analysis, we employ the publicly available APFEL

package [54] in order to the evolution of zDDþ
s ðz; μ2Þ-FFs

as well as for the calculation of SIA cross sections up to
NNLO accuracy. The free parameters of FFs are deter-
mined by minimizing the χ2global function using the CERN
program MINUIT [56]. This function is defined in our
previous work in detail [9]. This quantity includes the
overall normalization errors of the D-meson productions
datasets. Note also that, to estimate the FFs uncertainties,
the experimental data uncertainties are propagated to the
extracted QCD fit parameters using the asymmetric
Hessian method, as outlined in [57,58]. In this method,
a confidence region is identified by providing the tolerance
criterion Δχ2. There is no unique criterion for selecting the
correct value of Δχ2 in the various global analysis. In some
analysis, the value of Δχ2 ¼ 1 has been chosen as a
standard tolerance criterion [59]. To be more precise, in
such analysis, the Δχ2 value is calculated such that the
confidence level P becomes the one σ error range
(P ¼ 0.6826) for only one parameter. In fact, the main
argument for such choice is that for the Gaussian distri-
butions the parameter errors in χ2 fits should be determined
by Δχ2 ¼ 1 irrespective of the number of free parameters
in the fit [60]. This approach is usually called Hessian
methodology.

B. Experimental data and fit result

Defining our framework, we are now in a situation to
perform our analysis of Dþ

s -FFs using available SIA
experimental data. For input parameters, we set the charm-
and bottom-quark masses as mc ¼ 1.67 GeV and mb ¼
4.3 GeV, respectively, and take the strong coupling α

ðnfÞ
s in

the MS scheme with nf ¼ 5 active quark flavors adjusted

such that α
ðnfÞ
s ðMZÞ ¼ 0.1184 for MZ ¼ 91.2 GeV [49].

For the charm fragmentation into Dþ
s meson via SIA

process, there are the B-factory CLEO [61] and Z-factory
OPAL [28] datasets. The CLEO Collaboration released
their its results for σðDsÞ at energies near to the ϒð4SÞ
resonance 10.5 GeV. Moreover, CLEO Collaboration
has presented its results for the scaled momentum spectra
dσ=dxp, where the scaled momentum fraction is defined as
xp ≡ jp⃗j=jp⃗maxj with

pmaxðDsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam −m2

Ds

q
; ð23Þ

where Ebeam and mDs
stand for the beam energy and the

mass of Ds meson, respectively. Since the CLEO and the

OPAL Collaborations reported their results for dσ=xp and
dσ=xD, respectively, then one needs a relation between
the scaled momentum and energy fractions, i.e., xp and xD.
This is achieved by the following relation [50]:

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D − ρH
1 − ρH

s
; ð24Þ

where ρH ¼ 4m2
H=s. For differential cross section, the

conversion formula is [50]

dσðxpÞ
dxp

¼ ð1 − ρHÞ
xp
xD

dσðxDÞ
dxD

: ð25Þ

Since the variable xD ranges as
ffiffiffiffiffiffi
ρH

p ≤ xD ≤ 1, then xp
ranges from xp ¼ 0 to xp ¼ 1. The APLFEL code [54],
used in our analysis, is set for 1=σtot × dσ=dxD, so using
the equation above we rescaled the CLEO dataset in this
form and included into our analysis. Although the CLEO
data can provide useful information on the Dþ

s -FFs, but
there is a problem in using them in our analysis. In fact,
on the one hand, we are employing the ZM-VFNS in our
analysis, which is reliable only for high-energy scales,
while the data from CLEO are located much close to the
thresholds

ffiffiffi
s

p ¼ 2mc and
ffiffiffi
s

p ¼ 2mb of the transitions
c → Hc and b → Hb. The OPAL results have been
reported at the Z-boson resonance, i.e.,

ffiffiffi
s

p ¼ 91.2 GeV,
which is much higher than the CLEO one for whichffiffiffi
s

p ¼ 10.5 GeV. On the other hand, the CLEO
Collaboration has not included the corrections due to
electromagnetic initial-state radiation in the SIA process
[50,62]. Consequently, we realized that the inclusion of
CLEO dataset leads to a tension and increases the value of
χ2=d:o:f: Therefore, we excluded the CLEO data and
restricted ourselves to the OPAL dataset [28]. In the SIA
process, two mechanisms contribute with similar rate;
Z → cc̄ decay followed by c=c̄ → Dþ

s fragmentation and
Z → bb̄ decay followed by b=b̄ → Hb fragmentation and
weak decay of the bottom-flavored hadron Hb into the
charmed meson via Hb → Dþ

s þ X. Note that the energy
spectrum of Dþ

s meson originating from decays of Hb
hadrons is much softer than that due to primary charm
production. For separating charmed hadron production
through Z → cc̄ decay from Z → bb̄ decay, OPAL used
the apparent decay length distributions and energy spectra
of the charmed hadrons. The decay lengths of Hb hadrons
intoHc ones are longer than those from prompt production.
OPAL Collaboration has presented xD distributions

for Dþ
s sample and for the z → bb̄ subsamples (b-tagged

events). The datasets are displayed in the form
1=Nhad × dN=dxD, where N is the number of charmed
meson candidates reconstructed through appropriate
decay chains. To convert these data into the desired cross
section 1=σtot × dσ=dxD, one should divide them by the
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convenient branching fractions of decays used in
Refs. [28,29] for the reconstruction of charmed mesons,
i.e.,

BrðDs → ϕπþÞ ¼ ð3.5� 0.4Þ%: ð26Þ

The characteristics of available experimental data along
with the values of χ2 are presented in Table I. We also
presented the total χ2 divided by the number of degrees of
freedom at LO (χ2=d:o:f: ¼ 0.082), NLO (χ2=d:o:f: ¼
0.064), and NNLO (χ2=d:o:f: ¼ 0.060). These values show
a well-satisfying fit. As expected on general grounds,
χ2=d:o:f: is reduced as one passes from LO to NNLO.
These results are extracted including the hadron mass
effect. Our analysis shows that the inclusion of meson
mass leads to a reduction in the value of χ2=ðd:o:f:Þ up to
about 4%. However, due to the scale of energy given for the
data used in our work, i.e.,

ffiffiffi
s

p ¼ 91.2 GeV, this improve-
ment is small but having the data at lower energies, it is
expected to have more effect on the χ2=ðd:o:f:Þ.
After introducing the experimental data used in our

analysis, we now present our results obtained through
the QCD fit. The optimal values of the free parameters
expressed in the models considered for the FFs, Eqs. (21)
and (22), at the initial scale μ20 ¼ 18.5 GeV2 are listed in
Table II at the LO, NLO, and NNLO accuracies. In Fig. 4,
we plotted the z distributions of the LO, NLO, and NNLO
Dþ

s -FFs with their uncertainties at higher energy scale
μ ¼ 10 GeV. To this aim, we studied the ðc; b; gÞ → Dþ

s -
FF at LO (solid lines), NLO (dashed lines), and NNLO

(dot-dashed lines). As is seen, the charm-quark fragmen-
tation is peaked at large z, whereas the one due to bottom-
quark fragmentation has its maximum at small z. This is
due to the fact that the fragmentation process b → Dþ

s
contains two-step mechanism including b → Xb fragmen-
tation followed by the weak Xb → Dþ

s þ X decay of the
bottom-flavored hadron Xb. Figure 4 does also include the
g → Dþ

s -FF, which is generated via DGLAP evolution

from the initial conditionDDþ
s

g ðz; μ0Þ ¼ 0, as was explained
previously.
In Fig. 4, the KK06 results [30] (dot-dashed-dashed

lines) are also shown for comparison. In Ref. [30], the
starting scales for the charm and bottom FFs are taken to be
μ0 ¼ mc ¼ 1.5 GeV and μ0 ¼ mb ¼ 5 GeV, respectively.
As is seen from Fig. 4, our results for the bottom and gluon
fragmentations are in good agreement with the ones
presented by KK06. In comparison to the KK06’s results,
there is a considerable difference between the KK06 charm
FF and ours over the whole range of z. A reason for this
inconsistency might be due to the different initial energy
scales chosen. In Fig. 5, our LO, NLO, and NNLO
theoretical predictions for SIA cross sections evaluated
with our respective Dþ

s -meson FF sets are shown at the
scale μ ¼ 91.2 GeV and are compared with the experi-
mental data fitted to, so as to check directly the consistency
and goodness of our fits. As is seen, our results are in a
good agreement with OPAL datasets particularly for
b-tagged ones. It is also seen that higher order corrections
can make a better consistency between the theoretical
predictions and the experimental data. Although other
improvements such as those from inclusion of heavy quarks
masses can make better consistencies. These effects are
considered in the general-mass variable-flavor-number
scheme (GM-VFNS) [50]. In Fig. 5, we have also shown
the uncertainty bands which are needed to visually quantify
the remaining error of our analysis.
In this work, we extracted the FF of c → Dþ

s through two
different approaches. To check the validity of our theo-
retical model, i.e., the Suzuki’s model, using the parameters

presented in Table II we plotted theDDþ
s

c ðz; μ0Þ-FF in Fig. 6
at different accuracies, i.e., LO (solid line), NLO (dashed
line), and NNLO (dot-dashed line). The LO, NLO,
and NNLO results agree in the shape and the position of
maximum, but differ in normalization. This difference is
induced by higher order radiative corrections Oðα2sÞ in
the hard-scattering cross sections and in the timelike
splitting functions, and it is compensated in the physical
cross sections to be compared with the experimental
data up to terms beyond Oðα2sÞ. In Fig. 6, we have also

plotted the DDþ
s

c ðz; μ0Þ-FF at NLO QCD approximation
obtained through the Suzuki’s model (dotted line); see
also Fig. 3. A considerable agreement between both
approaches can be seen which ensures the validity of the
Suzuki’s model.

TABLE I. The individual χ2 values for inclusive and b-tagged
cross sections obtained by OPAL Collaboration [28] at LO, NLO,
and NNLO. The total χ2 and χ2=d:o:f: fit for Dþ

s is also shown.

Data
properties

ffiffiffi
s

p
GeV

Data
points χ2 (LO)

χ2

(NLO)
χ2

(NNLO)

Inclusive 91.2 8 0.037 0.025 0.022
b tagged 91.2 8 0.123 0.103 0.098

Total 16 0.160 0.128 0.121
(χ2=d:o:f:) 0.082 0.064 0.060

TABLE II. The optimal values for the fit parameters in Eqs. (21)
and (22) at the initial scale μ20 ¼ 18.5 GeV2 determined by QCD
analysis of the experimental data listed in Table I.

Best values

Parameter LO NLO NNLO

Nc 0.176 0.176 0.176
ϵ 0.108 0.141 0.155
Nb 1.555 1.359 1.380
α 0.318 0.206 0.203
β 1.859 1.923 1.983
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IV. CHARMED MESON PRODUCTION
BY TOP-QUARK DECAY

Charmed mesons may be produced directly or through
the decay of heavier particles, including the Z boson, the

Higgs boson, and the top quark. At the LHC, the study of
energy spectrum of produced mesons through top decays
might be considered as an indirect channel to search
for the top-quark properties. As a topical application of
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FIG. 5. Our LO, NLO and NNLO theoretical predictions are compared with the normalized inclusive total (right) and b-tagged (left)
data sets for Dþ

s meson production from OPAL experiment. Corresponding uncertainty bands are also shown.
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our analysis, here we study inclusive single Dþ
s -meson

production through the following process:

t → bþWþðgÞ → Wþ þDþ
s þ X; ð27Þ

where X collectively denotes any other final-state particles.
At the parton level in the process (27), both the b-quark
and gluon may hadronize into the charmed mesons.
Gluon fragmentation contributes to the real radiations at
NLO and higher orders. The partial width of the process
(27) differential in the scaled Dþ

s energy, xD, in the
ZM-VFNS reads

dΓ
dxD

¼
X
i¼b;g

Z
xmax
i

xmin
i

dxi
xi

dΓi

dxi
ðμR; μFÞDDþ

s
i

�
xD
xi

; μF

�
; ð28Þ

where in the top-quark rest frame, we have xD ¼ ED=Emax
b

and xi ¼ Ei=Emax
b , where ED and Ei are the energies of the

Dþ
s hadron and parton i, and Emax

b is the maximum energy
of the bottom quark. In our application of the ZM-VFNS,
where mb ≪ μF ¼ OðmtÞ, the bottom quark is taken to be
massless. By the same token, we also neglect the charmed
meson massmD. So far, dΓi=dxi are only available through
NLO; analytic expressions may be found in [63,64].
Although a consistent analysis is presently limited to
NLO, we also employ our NNLO Dþ

s -meson FF set to
explore the possible size of the NNLO corrections.
In (28), the factorization (μF) and the renormalization

(μR) scales are arbitrary but to remove the large logarithms
which appear in the differential decay rate, here, we set
them to μR ¼ μF ¼ mt.
Adopting mW ¼ 80.379 GeV and mt ¼ 173.0 GeV, in

Fig. 7, we plotted the energy distribution of Dþ
s meson

produced in the unpolarized top-quark decay at LO (dots),

NLO (dashed line), and NNLO (solid line) accuracies at
μ ¼ mt. It is observed that switching from the LO Dþ

s -
meson FF set to the NLO one leads to enhancement in the
theoretical prediction in the peak region and reduction it
in the tail region thereunder. At the same time, the peak
position is shifted toward smaller values of xD. Results at
NNLO are the same as in NLO accuracy; however, for the
NNLO spectrum, we are using the partonic differential
decay rates dΓi=dxi which are only available up to NLO.
These effects should mark an lower limit of the total NNLO
corrections because the as-yet-unknown NNLO corrections
to dΓi=dxi are expected to give rise to some compensation
if FF universality is realized in nature. Using the NLO FFs
of ðb; gÞ → Dþ

s from Ref. [30], we have also compared our
results with the one from the KK06 Collaboration (dot-
dashed). As is seen, in comparison with the KK06 result,
our FFs lead to an enhancement in the energy spectrum of
Dþ

s meson at the peak position.
At the CERN LHC, the study of the energy spectrum of

charmed mesons can be also considered as a new window
toward searches on new physics. In other words, any
considerable deviation of energy distribution of mesons
from the SM theoretical predictions can be related to the
new physics [65,66].

V. SUMMARY AND CONCLUSIONS

In this paper, we determined the nonperturbative FFs for
the charmed meson Dþ

s in two various methods: theoretical
and phenomenological approaches, and compared them.
In the theoretical approach, we computed the Dþ

s -FF
both at LO and NLO using the Suzuki’s model in the
QCD framework. In the phenomenological approach,
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FIG. 6. The c → Dþ
s FF at LO (solid line), NLO (dashed line),

and NNLO (dot-dashed line) extracted through the phenomeno-
logical approach at the initial scale μ0. These are compared with
the one extracted through the Suzuki’s model (dotted line) at
NLO; see Fig. 3.
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μ ¼ mt. Our results are also compared with the NLO one from
KK06 [30] (dot-dashed).
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we determined the Dþ
s -FFs both at LO, NLO and, for the

first time, at NNLO in the ZM-VFNS, by fitting to all
available experimental data of inclusive single Dþ

s -meson
production in eþe− annihilation, eþe− → Dþ

s þ X, from
OPAL Collaboration [29]. The theoretical framework
provided by the zero-mass scheme was quite appropriate
for the present analysis, since the characteristic energy
scales of the considered process, MZ, greatly exceeded the
charm- and bottom-quark masses, which could thus be
neglected. In our analysis, we have adopted the optimal
functional form for the parametrization of charm FF
suggested by Peterson et al., Eq. (21), with two free
parameters and the simple power ansatz of Eq. (22) for
the b → Dþ

s transition with three free parameters. Then, we
obtained for the fit parameters appearing therein the values
listed in Table II. For the lowest-order approximation, as is
seen in Fig. 5, the behavior of cross section given
theoretically is not acceptable at low-x region so it goes
to infinity when x → 0. This treats reasonably when the
NLO and NNLO radiative corrections are imposed.
Moreover, the goodness of the LO, NLO, and NNLO fits
turned out to be excellent, with χ2=d:o:f: values of 0.082,
0.064, and 0.060, respectively (see Table I). As expected on
general grounds, the fit quality is improved by ascending to
higher orders of perturbation theory. Our analysis improves a
similar one in the literature [30] in the following respects.
For the first time, we advanced to NNLO in a fit of Dþ

s -
meson FFs; however, this correction is tiny. We performed
an estimation of the experimental uncertainties in our Dþ

s -
hadron FFs using the Hessian approach. We have also

imposed the effect of meson mass on the corresponding
FFs. On the other side, we have compared, for the first time,
the analytical results obtained through the Suzuki’s
model with the ones extracted through the phenomenologi-
cal approach. We found good consistency between both
approaches; see Fig. 6.
As a typical application of extracted FFs, we employed

the LO, NLO, and NNLO FFs to make theoretical
predictions for the scaled-energy distributions ofDþ

s meson
inclusively produced in top-quark decays. We encourage
the LHC Collaboration to measure the xD distribution of
the partial width of the decay t → Dþ

s Wþ þ X, for two
reasons. On the one hand, this will allow for an independent
determination of the Dþ

s -hadron FFs and thus provide a
unique chance to test their universality and DGLAP scaling
violations, two important pillars of the QCD-improved
parton model of QCD. On the other hand, this provides a
new window toward searches on new physics.
Possible theoretical improvements via the phenomeno-

logical approach include the inclusion of finite quark masses
and the resummation of soft-gluon logarithms, which extend
the validity toward small values of xD, and the resummation
of threshold logarithms, which extends the validity toward
large values of xD. The general-mass variable-flavor-number
scheme [42] provides a consistent and natural finite mass
generalization of the ZM-VFNS on the basis of the MS
factorization scheme [51]. Possible improvements via the
theoretical approach include the inclusion of Fermi motion
of constituents by considering the real aspects of the valence
wave function of meson ΨM [40], etc.
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