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We study the thermal properties of the lowest multiplet of the QCD light-flavor scalar resonances,
including the f((500)/0, Ki(700)/xk, fo(980) and a(980), in the framework of unitarized U(3) chiral
perturbation theory. After the successful fits to the meson-meson scattering inputs, such as the phase shifts
and inelasticities, we obtain the unknown parameters and further calculate the resonance poles and their
residues at zero temperature. By including the finite-temperature effects in the unitarized meson-meson
scattering amplitudes, the thermal behaviors of the scalar resonance poles in the complex energy plane are
studied. The masses of ¢ and « are found to considerably decrease when increasing the temperatures, while
their widths turn out to be still large when the temperatures reach around 200 MeV. In contrast, both the
masses and widths of the f;(980) and ay(980) are only slightly changed.
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I. INTRODUCTION

Identifying the pattern of the chiral symmetry restora-
tion, which plays the key role in understanding the complex
phenomena from the relativistic heavy ion collisions, is one
of the most important subjects in the study of QCD phase
diagram. The restoration of the chiral symmetry will
definitely modify the hadronic spectrum at finite temper-
atures, which in turn will affect the hadron yields measured
in the heavy-ion-collision experiments; e.g., it is found that
the inclusion of the broad scalar resonance f(500) (also
named as o) in the hadron-resonance-gas model clearly
improves the description of the experimental data [1].

In this work we focus on the thermal behaviors of the
lowest multiplet of the light-flavor QCD scalar resonances,
including the o, f((980), K;(700) (also named as «) and
ap(980). As the lightest QCD scalar resonance and sharing
the same quantum numbers as the vacuum, ¢ has been
extensively studied both at zero and finite temperatures [2].
After decades of precise and rigorous dispersive studies, it
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is now recognized in PDG that the uncertainties of the mass
and width of the broad ¢ resonance reach the precisions of
several tens of MeV. For such a broad resonance, it is not
appropriate to still use the conventional Breit-Wigner
formalism both in the vacuum and at finite temperatures.
Instead the inverse-amplitude method (IAM) up to the one-
loop level has been employed to investigate the thermal
properties of the ¢ in a series of papers in Refs. [3-6]. It is
also found that around the transition temperature 7. the
inclusion of the thermal & poles in the scalar susceptibilities
can develop a maximum, which is consistent with the
results in the lattice study [7,8].

Instead of including further the higher order corrections
in the chiral amplitudes, we proceed in the discussions by
simultaneously studying all the members of the possible
lowest multiplet of the light scalar resonances o, f,(980), k,
and a((980) within unitarized chiral perturbation theory
(yPT). Through this exploratory study, we obtain the
thermal behaviors of all the aforementioned resonance
poles, which can provide useful guides for the hadron-
resonance-gas models and gain insights into the mechanism
of the chiral symmetry restoration.

The article is organized as follows. Section II is devoted
to the discussions of the relevant S-wave chiral amplitudes
and their fits to the scattering inputs. The resulting
resonance poles and residues at zero temperature are also
given in this section. The thermal trajectories of the scalar
resonance poles at finite temperatures are then discussed in
detail in Sec. IIl. Finally we give a short summary and
conclusions in Sec. IV.
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II. UNITARIZED S-WAVE CHIRAL AMPLITUDES
AND SCALAR RESONANCES AT ZERO
TEMPERATURE

Meson-meson scattering provides an important approach
to study the resonance dynamics, where the hadron
resonances correspond to the poles in the complex energy
plane of the scattering amplitudes; e.g., ¢ and f,(980)
appear in the 7z and KK coupled-channel scattering with
(I,J) = (0,0), I being the isospin quantum number and J
the angular momentum. The most relevant channel for « is
the Kz scattering with (7,J) = (1/2,0), and ay(980)
naturally appears in the zn and KK scattering with
(I,J) = (1,0). Since the yPT relies on the perturbative
expansions of the external momenta and light-flavor quark
masses [9—11], it is impossible to generate resonances from
the perturbative yPT scattering amplitudes alone. It is
evident that the combination of the yPT and unitarity offers
an efficient way to study the aforementioned scalar reso-
nances [12-17].

The up-to-date perturbative meson-meson scattering
amplitudes at zero temperature have been calculated up
to two loops for the three-flavor yPT [18,19]. At finite
temperatures, the perturbative meson-meson amplitudes
have only been calculated up to the one-loop level for
the two-flavor yPT [20]. The one-loop calculation of the

|

meson-meson scattering amplitudes in the three-flavor yPT
at finite temperatures is still missing and clearly deserves
an independent work. According the previous works
[13,15,16,21], both the relevant experimental data and
the lattice energy levels of the meson-meson scattering
below and around 1 GeV in the scalar channels can be well
reproduced by taking the leading order (LO) yPT ampli-
tudes in the unitarization approach. The resulting masses
and widths of the scalar resonances from such studies look
quite reasonable and are quantitatively compatible with the
various rigorous dispersive results [22]. It is plausible that
the main features of thermal properties of scalar resonances
can also be obtained in such a approach. Therefore, in the
following discussions, we take the leading order perturba-
tive yPT amplitudes and includes the finite-temperature
effects through the unitarization procedure.

We follow Refs. [23-25] to include the perturbative LO
meson-meson scattering from U(3) yPT. To set up the
notations, we simply recapitulate the main results below.
The LO U(3) yPT Lagrangian includes three terms,

F? F? F2
L= Z(“,m") +Z<)”> +?M31n2 detu, (1)

where the chiral building blocks are given by

U=u?=e?, y =2B(s+ip), ye=u yu' Fuyu,
u, = iu'D,Uu’ D,U=0,U—-i(v,+a,)U+iU(v, —a,). (2)

and the U(3) matrix of the pseudo-Nambu-Goldstone bosons (pNGBs) reads

BT+ Ry 5 P K+
® = 7~ \_/—157[0—1-%778 +%770 K° . (3)
K- K? \_/_25778 +%’10

F is the LO pion decay constant, with the normalization
F,=92.1 MeV. The last term in Eq. (1) includes the
contribution from the QCD U, (1) anomaly, which gives
the singlet 7 the LO mass M.

For the sake of completeness, in Appendix A we provide
the explicit formulas of the LO S-wave U(3) meson-meson
scattering amplitudes 7,(s), which were calculated in
Ref. [23]. The LO amplitudes given by Eq. (1) only include
the contact interactions, which do not contain any crossed-
channel cut. The on-shell partial-wave scattering amplitude
in the elastic case can be written as [16]

K(s)

Ty(s) = Ts)(}(s)’ (4)

|

where K(s) is given by the LO S-wave U(3) xPT
amplitudes T;;(s) in this work and the function G(s)
includes nonperturbatively the contribution from the right-
hand cut. When the higher order yPT contributions,
including the chiral loops, are included, the formalism in
Eq. (4) is still valid and can be matched to the perturbative
xPT at low energies to obtain the proper K(s) function
[26,27]. The essential idea is that by construction the
function /() only contains the crossed-channel contribu-
tions, including the contact terms, and the function G(s)
only includes the right-hand cut. In such a way, the
prescription of Eq. (4) can be regarded as an algebraic
approximation of the N/D method [26,27]. Explicit exam-
ples of the unitarization of the one-loop U(3) yPT have
been given in Refs. [23-25].
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The two-body unitarity requires that

q(s)

8m\/s

ImG(s) = p(s)0(s — si) = O(s —sm), (5

where sy, denotes the threshold, 6(x) is the Heaviside step
function, and the three momenta in the center of mass (CM)
frame is given by

Vs = (my + my)?][s = (my — my)?]
2\/s ’

with m; and m, being the masses of the two particles in
question. Next one can use the imaginary part of the
function G(s) to build a once subtracted dispersion relation
to get the analytical expression of G(s). Alternatively, one
can also use the dimensional regularization to calculate the
G(s) function via

q(s) = (6)

[ dYk 1
Gls) = =i / 2r)* (12 = m? + i€)[(P — k)> — m2 + ie]
s = P2, (7)

by which the explicit expression takes the form by
replacing the divergent term with a constant [16]

2
()R = —— |a(u?) + log ™2
1622 u?
x,. —1 x_—1
—x, log=F—— — x_log== , 8
x,; log . x_log— (8)

where p denotes the regularization scale and x, are
defined as

2 2
_ S+ my mziQ(S)

Xy = o \/E

One should notice that the function G(s) is independent of
the scale y, due to the cancellation of the x dependences of
the first and second terms in Eq. (8). In the following

|

©)

discussion we fix u = 770 MeV throughout. Notice that
there is a minus sign difference between the G(s) function
in Eq. (8) and the one in Refs. [23,25], which is compen-
sated by the minus sign in the denominator of the unitarized
amplitude (4), so that the imaginary part of the G(s) is
positive.

For the coupled-channel scattering, the entries of /C(s)
and G(s) in Eq. (4) should be understood as matrices
spanned in the channel space. For the case with definite
isospin and angular momentum, G(s) corresponds to a
diagonal matrix and its diagonal elements can be calculated
via Eq. (8) by using the proper masses in question. There
are five coupled channels in the (/,J) = (0,0) case,
including 7z, KK, i, ', and 5’5y’ Three relevant channels
enter in the (/,J) = (1/2,0) and (I,J) = (1,0) cases,
which are the Kr, Kn, Ky and zn, KK, and 71/, respec-
tively. In the U(3) xPT, the massive ' state is explicitly
included, which however plays a marginal role in the study
of the low lying scalar resonances o, f,(980), «, and
ap(980) [23-25]. In contrast, for the excited scalar reso-
nances with higher masses, it is evident that their couplings
to the 7’ state become large [23-25].

The S matrix is related to the unitarized 7 amplitude in
Eq. (4) via

S =142i\/p(s)-T(s)-/p(s). (10)

In the coupled-channel case, p(s) should be understood as a
diagonal matrix and its nonvanishing elements can be
calculated through Egs. (5) and (6). The phase shifts
Owes Oy and the inelasticities &g, €, With k # [, can be
obtained with the matrix elements Sy, and Sy,

Si = e, S = igge’. (11)
The inelasticities &, fulfil the condition 0 < g, < 1.

We use the physical masses for the =, K, 7% and the
physical value F, in the LO scattering amplitudes.
According to the Lagrangian in Eq. (1), the LO 5 —#
mixing angle € is given by [23]

3M3 — 2A OM3 — 12M3A? + 36A%)?
sin9:—<\/1+( 0 - VoM 0"+ >> , (12)

where A? = /m% — m2, and /g and i, are the LO kaon and

pion masses, in order. We estimate myg and m, by their
corresponding physical values. For the LO mass M, of the
Ny, we take the value M, = 820 MeV that has been
recently determined in Ref. [28] by fitting the updated
lattice data of the 7-#' mixing.

3244

The remaining unknown parameters in the unitarized
scattering amplitudes 7 (s) in Eq. (4) are the subtraction
constants, which are determined in the fits to the phase
shifts and inelasticities for the zz scattering with (,J) =
(0,0) and the K= scattering with (1,J) = (1/2,0). Since
only the LO perturbative amplitudes are included, we
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Reproduction of the phase shifts (left panel) and inelasticities (right panel) of the zz scattering with (1,J) = (0,0). The

experimental data correspond to those used in Refs. [15,23-25], which average various data points in Ref. [30]. The precise data from
the Roy equation analysis are taken from Ref. [29]. The shaded areas denote our estimates of the theoretical uncertainties at the one-

sigma level.

include the experimental data for the zz up to 1100 MeV
and the Kz up to 1000 MeV in the fits. In addition to the
experimental data used in Refs. [15,23-25], we also take
into account the precise isoscalar and scalar zz phase shifts
determined from the Roy equation [29]. The reproductions
of the data for the 7z scattering with (Z,J) = (0,0) and the
Kr scattering with (I,J) = (1/2,0) are given in Figs. 1
and 2, respectively. The resulting values of the subtraction
constants are summarized in Table I. It is remarkable that
with one and two free parameters in the Kz and zz
scattering cases, respectively, one can well reproduce the
relevant data from the experiments and Roy equation. We
have also tried other ways to perform the fits for the zz with
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FIG. 2. Reproduction of the phase shifts of the Kx scattering

with (1,J) = (1/2,0). The experimental data are taken from

Ref. [31]. The shaded area corresponds to the theoretical
uncertainties at the one-sigma level.

(1,J) = (0,0); e.g., fixing the subtraction constants of the
. ny’, and 'y’ channels as the one from the KK channel,
instead of the zz case in Table I, the fits get slightly worse.
Freeing the subtraction constants in the #z, 75/, and 7'y
channels improves the fits, but the resulting values of the
subtraction constants, which bear large uncertainties, do not
seem to fall in the reasonable ranges. In all the three cases,
it turns out that the resonances in the scattering amplitudes
are more or less compatible and we focus on the fits shown
in Table I in later discussions. For the zn, KK, and 1
coupled-channel scattering, the direct experimental mea-
surements on the scattering processes are still absent;
instead the amplitudes are determined by fitting the lattice
finite-volume energy levels in Ref. [21]. We take the

TABLE I. The values of the subtraction constants from the fits.
In the 7z scattering with (1,J) = (0,0), as;; and ag; , corre-
spond to the subtraction constants in the zz and KK channels,
respectively. For the remaining channels 7, 717" and 7'y, we fix
their subtraction constants as the same as ag; ;. For other
possibilities to perform the fits, see the text for details. In the
Kr scattering with (I,J) = (1/2,0), we take the same value of
the subtraction constant for all the three coupled channels. For the
7n, KK and 7/ coupled-channel scattering, we take the universal
subtraction constant ag;; = —1.44 £0.15 for all the three
channels as determined in Ref. [21].

zr with asy asrn y?/d.of.
(1,J)=(0,0)
—113701 —1.931023  149.0/(95 - 2)
Kn with agy y*/d.of

(1.J)=(1/2,0)
—-0.42701616.2/(36 — 1)
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subtraction constants determined in the former reference in
this work.

After the determination of all the unknown parameters,
we now discuss the resonances, corresponding to the poles
in the complex energy plane, in the unitarized scattering
amplitudes. The analytical continuation of the unitarized
amplitudes in Eq. (4) can be easily done by properly
extrapolating the G(s) function in Eq. (8) to the complex
energy plane. Two Riemann sheets (RSs) for the G(s)
function can be defined. On the unphysical/second RS it
reads [13]

G =GP —igh (13

with the G(s)PR on the physical/first RS given in Eq. (8).
By combing Eqgs. (5) and (13), it is clear that along the real s
axis above the threshold the imaginary parts of the G(s)
function on the first and second RSs have opposite signs.
As a result, 2" RSs can be defined for the n-channel
scattering problem. We denote the first, second, third,
and fourth RSs as (+,+,+, -, +), (= +,+, -, +),
(=, —,+,-+-,+), and (+,—, 4+, -+, +), respectively. The
entries of plus and minus symbols correspond to the
signs of the imaginary parts of the G(s) functions in
different channels. The residues y at the resonance pole sp,
which denote the coupling strengths of the resonance, are
given by

T(s) = —lim . (14)

s—>Sp § — SP

where y is an n-row vector and its transpose is
y' = (y1,72,---»7n)- The resonance poles and their resi-
dues at zero temperature are collected in Table II. The
successful reproduction of the input data and the
quantitative agreements of the resonance poles in
Table II with those estimated in PDG [22] provide us
with a confident starting point to extend the current

discussions of the light scalar resonances to the finite
temperatures.

III. THE SCALAR RESONANCES AT
FINITE TEMPERATURES

In the framework of yPT, the chiral loops introduce the
finite-temperature effects, while the tree-level Feynman
diagrams are free of the finite-temperature corrections
[20,32,33]. This implies that in the present work the LO
partial-wave scattering amplitudes will not get modified
when including the finite temperatures. It is the G(s)
function incorporated through the unitarization procedure
that will introduce the finite-temperature corrections. A
similar theoretical approach has been recently applied to
the study of charmed mesons in Refs. [34,35]. We point out
that in addition to the s-channel unitarity loops, the thermal
corrections from the crossed-channel and chiral tadpole
loops could also be relevant in the study of the resonance
properties at finite temperatures. Although the tadpole loop
diagrams share the same forms both at zero and finite
temperatures, the complete finite-temperature calculation of
the full contributions in three-flavor yPT clearly deserves
another independent work. At zero temperature our study in
the previous section and many other works, such as
Refs. [13,15,16,21], has shown that the scalar resonances
o, K, ay(980), and f((980) can be well described by only
unitarizing the LO contact amplitudes from yPT, indicating
that the s-channel unitarity plays the dominant role in the
scalar resonance dynamics. The exploratory study in this
work assumes that maybe it also holds for the study at finite
temperatures, or at least the unitarzation of the LO yPT may
give a qualitatively correct description of the thermal
trajectories of the scalar resonances below 1 GeV.

In this work, we use the imaginary time formalism to
include the finite-temperature corrections [36]. Although it
is a standard problem to calculate the loop function of
Eq. (7) at finite temperatures [36], we give a practical
derivation of the explicit formula in the Appendix B. In the
CM frame with real energy squared s, the expression of the
finite-temperature corrections to the G(s) function in
Eq. (7) for T # 0O takes the form

TABLE II. The masses, widths, and residues of various resonances at zero temperature in the second RS. y; denotes the residue of the
lightest channel of each resonance. The values in the last two columns correspond to the ratios |y;/7]-

R M(MeV) Width/2(MeV) 1| (GeV) Ratios

c 4657} 23418 3.1415003 0.45ng§110£)1<1'</”) 0. 02%2%?(;7 n/nr)
0.067 300 (' / ) 0.061 0 (n'n' /nx)

f0(980) 97758 1553 1291012 3.05° 0% (KK /nx) 2.2350% (yn ) nx)
1.06752 (ny' / nx) 110192 'y nx)

K 7388 27418 4.227906 0.46 503 (Kn/Kx) 0. 39+° & (Kn'/Kx)

ay(980) 10375} 4475 3.8703 1432003 (KK /7n) 0. osfgg} (z' /)
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reo [ KAk 1
66 = [t e E TV E )
1
+E+E71_E2[—f(E1)+f(Ez)]
1
+m[f(E1)—f(Ez)]}

o k2dk 1
_pv. /) Sk EEF, —F V(EN ()
) ) 1 ()00 - ), (15)

87E
with s =E2,f=1/T,E;=\/k> + m2,E; = \/q(s)> +m?,
q(s) being the magnitude of the on-shell three momenta in
the CM frame and the standard Bose distribution function

f(x) given by

1

&)= (16)
For the first three integrals of Eq. (15), they are regular in
the physical region and can be easily calculated numeri-
cally. The fourth term with the symbol P.V. corresponds to
taking the principal value of the integral. The last term of
Eq. (15) denotes the imaginary part of the thermal correc-
tions to the G(s) function in the energy region above
threshold. For the details of the calculation of the expres-
sion of Eq. (15), we refer to Appendix B. It is stressed that
below the threshold there are the so-called thermal Landau
cuts, as pointed out in Refs. [37-39]. In the CM frame of
the thermal two-body scattering, the Landau cuts can
extend to the positive real s axis up to (m; — m,)>. The
expressions of the imaginary parts along the Landau cuts
are not explicitly shown in Eq. (15). Within the on-shell
approximation of the unitarization approach in Eq. (4), we
do not expect that the Landau cuts will have important
influences, as long as the thermal resonance poles are not
close to those cuts, which are indeed the common cases in

our study, as discussed in detail later.
The unitarized amplitude at finite temperature 7' reads

T (s) = [1 = K(s) - G(s)T] 7" - K(s).  (17)

where the corrected G(s) with the finite-temperature
effect is

G(s)FT = G(5)PR + G(s)77°, (18)

with G(s)PR and G(s)™*° given in Egs. (8) and (15),
respectively. Similar as the zero-temperature case, () and
G(s)FT should be understood as matrices in the coupled-
channel scattering. Comparing with the zero-temperature
amplitudes in Eq. (4), no additional free parameters are
introduced to the amplitudes at 7' # 0 in Eq. (17). Therefore
the thermal behaviors of the unitarized amplitudes and the

scalar resonances are pure predictions in the unitarized
¥PT. In order to study the thermal trajectories of the
resonance poles, we need to first perform the analytical
continuation of the unitarized amplitude 7FT(s) to the
unphysical RS and then search the poles in the complex
energy plane. By taking into account that the signs of the
imaginary parts of G(s)T on the first and second RSs are
opposite above the threshold, the analytical continuation of
the G(s)fT function in Eq. (18) to the second sheet is
given by

G = G0 —i 2L 14 f(B) + (B (19

in analogy to the case of Eq. (13) at zero temperature.

Another subtlety in the study of the thermal behaviors of
the resonances is the thermal corrections to the pNGBs’
masses, which have been the focus of Ref. [28]. In this
work, we take into account the thermal masses of the r, K,
n, and 17/ determined in the previous reference to study their
influences on the scalar resonances. The main reason to pay
special attention to the thermal masses of the pNGBs is that
the threshold effects contained in the s-channel unitarity
loop functions, which are nonperturbatively resummed,
play important roles in the study of the scalar resonances. In
contrast, the contributions from the possible crossed
channels and the tadpole loops are only perturbatively
treated in the present unitarization procedure. Therefore we
consider that the changes of threshold effects caused by the
shifts of the thermal masses of the pPNGBs may play some
visible roles in the determination of the thermal properties
of the scalar resonances.

The thermal pole trajectories of the ¢ resonance for
0 < T <200 MeV are given in Fig. 3. We distinguish the
cases by fixing the physical masses of z, K, #, and #' and
varying their masses at different temperatures according to
the results in Ref. [28]. We have shifted the masses of the
pNGBs at zero temperature in [28] to their physical values,
in order to match the resonance poles determined in
Table II. It turns out that the differences caused by using
the different masses of the pNGBs are small, but become
visible when the temperatures 7 are above around
100 MeV. Moreover the tadpole loop diagrams in U(3)
xPT, including the 1PI Feynman diagrams shown in
Fig. 2(b) of [23] and the wave function renormalizations,
at finite temperatures share the same forms as those at zero
temperature, which have been calculated in the former
reference. For the sake of completeness, we give the
S-wave projection of the meson-meson scattering from
the tadpole diagrams in Appendix A. At finite temperatures
one only needs to replace the Ay(m?) loop function by its
thermal expression [36]

2 m2

2
m 0 p 1
Ag(m?) = ———=In— — dp ————, 20
o(m7) 1672 n,u2 A p27t2Ep eE—T”_l (20)
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FIG. 3. The pole trajectories of the ¢ resonance when increasing

the temperatures 7 from 0 to 200 MeV. The black solid line
corresponds to the case of including the LO amplitudes by fixing
the physical masses of the z, K, 5, and /, while the red dashed
line denotes the LO result by using the thermal masses of the
PNGBs from Ref. [28]. The blue dashed-dotted and green dotted
lines stand for the results by including the thermal tadpole
corrections with the physical and thermal masses of the pNGBs,
respectively. See the text for details.

with E, = p* +m?. Since we are interested in the
thermal properties of the scalar resonances, we only include
the thermal corrections from the tadpole loop diagrams;
that is, we just include the second term in Eq. (20) when
searching the thermal scalar resonance poles. The blue
dashed-dotted and green dotted lines in Fig. 3 correspond to
the results by including the additional thermal corrections
from the tadpole loop diagrams. Apparently the inclusion
of the additional thermal corrections from the tadpole loop
diagrams only slightly affects the thermal trajectories of the
o resonance. The most important lesson we learn from
Fig. 3 is that the mass of the o significantly decreases even
below the 7z threshold when increasing the temperatures 7'
up to 200 MeV. This seems consistent with the requirement
of the chiral symmetry restoration [6,40]. However the
width of the o is still quite large even when T reaches
around 200 MeV.

The comparisons of the thermal ¢ pole trajectories from
our study and those of Ref. [5] are explicitly shown in
Fig. 4. Although it is quantitatively different from the full
one-loop IAM study, the unitarization of the LO U(3) yPT
indeed gives a similar result as the single-channel study by
including both the off-shell and tadpole effects’ in Ref. [5].
We verify that by neglecting the off-shell terms in Eq. (12)
of the latter reference the results are only slightly changed.

'We have exactly reproduced the thermal o poles in the left
panel of Fig. 10 in Ref. [5], by correcting a typesetting typo in
Eq. (13) of that reference, i.e., to multiply 1/2 in the first two
terms in Eq. (13).

T T T T T T T
350 | N sa g
o N
300 b : %A
. o o T
o ° 95 e,
o o ‘ og 4
—~ 250 |- - BB A
3 | s 9% ]
(@]
= 200 L . T=0Me\j%
oN A
= L0 0 T=200MeV
150 | oo i
| o o Fig.1 (Ref.[5])]
6 » T=200MeV o Fig.10(Ref.[5])
100 | it T=180MeV & Lo @)
n 1 n 1 n 1 n 1 n 1 n 1 n 1 n
100 150 200 250 300 350 400 450 500
M(MeV)

FIG. 4. Comparisons of the thermal o pole trajectories between
ours and those from Ref. [5]. The black triangles denote our
unitarized LO results by using the physical masses of the pNGBs,
i.e., the black solid curves shown in Fig. 3. The blue squares stand
for the one-loop IAM results, i.e., the left panel of Fig. 1 in
Ref. [5] and the red circles correspond to the unitarized results by
including the off-shell and tadpole thermal corrections Ref. [5],
i.e., the left panel of Fig. 10 of the latter reference. The blue
squares from Ref. [5] are given by increasing the temperatures in
20 MeV intervals, while the results shown by the black triangles
and red circles are obtained by increasing the temperatures in the
5-MeV step.

Therefore the on-shell prescription in Eq. (17) by only
including the contributions from the yPT amplitudes to the
K(s) is used throughout this work. The qualitative simi-
larities of the curves in Fig. 4 indicate that the thermal
corrections to the G(s) function include the important part
of the finite-temperature effects in the study of the scalar
resonances.

Since the most important channel for the ¢ resonance is
the 7z, there is no problem of the Landau cut, due to the
equal-mass feature in this scattering. The only unequal-
mass process of the U(3) coupled-channel scattering in the
isoscalar scalar case is the 77’ one, which thermal Landau
cut extends up to (m, — m,)* around (400 MeV)? in the
real s axis. In order to check the possible influence of this
Landau cut, we have performed a three-channel study, i.e.,
ar, KK, and nn, where the Landau cuts are not problems,
due to the equal-mass features. It turns out that the resulting
curves are almost indistinguishable from the five-channel
scattering by including 77’ and #'#'. This in turn implies that
the #17' channel, including its Landau cut, plays unimportant
roles in the determination of the thermal ¢ poles.

The pole trajectories of the x resonance with varying
temperatures are given in Fig. 5. Clearly the thermal
behaviors of the x pole share similar trends as the o, with
a significant decrease of the mass and moderate change of
the width, when increasing the temperatures up to
200 MeV. In Fig. 6, we show the pole trajectories of the
f0(980) and a,(980) resonances. Unlike the ¢ and «, the
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FIG.5. The pole trajectories of the k resonance when increasing

the temperature 7 from 0 to 200 MeV. The notations are the same
as those in Fig. 3.

poles of the f((980) and a,(980) are insensitive to the
changes of the temperatures, and both the masses and
widths are only slightly changed; e.g., the masses of the ¢
and «x decrease around 300 and 100 MeV, respectively,
when varying the temperatures from 0 to 200 MeV. In
contrast, the masses of the f,(980) and a,(980) only
decrease around 15 and 30 MeV, in order. Comparing with
the black solid and red dashed lines, and the blue dashed-
dotted and green dotted lines in Figs. 3, 5, and 6, we can
conclude that the thermal corrections to the masses of the 7,
K, n, and ' marginally affect the properties of the scalar
resonances o, f(980), k, and a,(980). The effects of the
thermal corrections from the tadpole loop diagrams are also
small for all the cases shown in Figs. 3, 5, and 6.
Regarding the thermal Landau cut in the Kz scattering,
which is the most important channel for the «, it extends to

the positive real s axis up to (mg—m,)* around
T T T T T T T T T T T T T
16.0 b T=200MeV-. . _
) Tl e T=0MeV
el
S
2 150 T=150MeV l
N
= 145t
——Lom""s)
i e toT
14.0 T=200Me LO(m") Phys.
————— (LO+TAD)(m" Y®)
1 1 L 1 1 .- = -I ) (L.O+T'IA\D)(r:nT) 1
960 963 966 969 972 975 978

M(MeV)

(360 MeV)?, which is clearly distant from the thermal
poles shown in Fig. 5. For the inelastic Kn and Ky
channels, their thermal Landau cuts end around 502 and
460%> MeV? in the positive real s axis, which are also far
away from the x poles. The most important three channels
for f,(980) are zz, KK, and 75 and there are no issues of
the thermal Landau cuts, due to their equal-mass features,
while for a((980), the most important two channels are the
an and KK. The thermal Landau cut in the 75 scattering
extends to the positive real s axis up to (m, — m,)* around
(410 MeV)?, which is distant from the a,(980) poles
shown in Fig. 6. The Landau cut in the 77’ channel extends
to the real positive s axis up to (mj —m,)* around
(820 MeV)?. We have explicitly verified that the resulting
thermal @,(980) poles from the zn and KK coupled-
channel scattering are almost identical to the three
coupled-channel scattering by including the 77’ channel,
which implies that the zx' channel, including its Landau
cut, plays a negligible role in the determination of
the a((980).

IV. SUMMARY AND CONCLUSIONS

In this work the light-flavor QCD scalar resonances o, «,
f0(980), and a((980) are studied in the framework of the
unitarized U(3) chiral perturbation theory. Special attention
is paid to their thermal properties, including the trajectories
of their resonance pole positions with varying temper-
atures. Different from the works that only study on the
thermal masses of the scalar resonances, e.g., Refs. [41,42],
we first fix the unknown parameters by fitting the exper-
imental and lattice data of the meson-meson scattering,
which enables us to obtain reliable resonance properties at
zero temperature, including both the masses and widths.
The finite-temperature effects are included through the
unitarization procedure and the tadpole loop diagrams. It
turns out that the thermal corrections from the unitarity loop

75 — 7T

—
. _ LO(mPhyS)
rof T TE200Mev Lo 1
RN N - (LO+TAD)(m™3)]
o5 NN (LO+TAD)m") ]
%\ 60 |- ".\_.\\v 4
= T=150MeV*s,
N .
—
50 | .
45| ] .
T=0MeV
40 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
1005 1010 1015 1020 1025 1030 1035 1040
M(MeV)

FIG. 6. The thermal behaviors of the poles of the f;(980) (left) and a(980) (right). The notations are the same as those in Fig. 3.
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functions are the most important parts, while the tadpole
diagrams only play minor roles. The key merit of our
approach is that we do not need to introduce any new
parameter in the study of the thermal behaviors of the scalar

resonances, once they are determined in the vacuum.
The o pole trajectories of the present study are quali-
tatively similar to those in the previous works [4,20], which
are obtained by including the complete one-loop thermal
corrections to the zz scattering. This validates the current
approach to include the finite-temperature effects via the
unitarization procedure. Our results show that the masses of
the o and « significantly decrease when increasing the
temperatures up to 200 MeV, while their widths are
moderately changed and remain large. In contrast, both
the masses and widths of the f((980) and a((980) are
insensitive to the temperatures. The present formalism
provides an efficient and straightforward way to study
thermal behaviors of other types of resonances. We expect
|

25— m2 Tmr—»l(l_( s)i\/gs

2F2 T 4F2 00

\/_m (\/_Cg—cesa—\/_sg)
3V2F2

TG ™ (s)=

75 (5) =

TT—>Nn

5 ()=

to apply this approach to other systems at finite temper-
atures in the future.
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APPENDIX A: S-WAVE MESON-MESON
SCATTERING AMPLITUDES

First we give the leading-order S-wave meson-meson
scattering amplitudes 7;,(s) with definite isopsin number
in the U(3) yPT [23]. There are five coupled channels for

the (1,J) = (0,0) case and they read
( )7—\/§m%(C9—\/§S9)2
B 6F2 ’
—V3m2(V2cp+59) TKK—»KK(S) 3s
6F2 ’ 4F2

—[(—=6m2 —2m2+9s)c3+4v/2(2m% —m2)cysg+8m% s3]

El

KK—

Toy "(s)= 12F2 ’

rE=m () —2V2c3(m2 —2m%) + cpsp(3m? +3my, +8mi +2mz—9s) —2V/253(2m% —m2)
00 =

6V2F2

T " ()=

—8c2m% +4v/2cpsy(2my —m2) —s55(9s —6my —2my)

12F2 ’
TIm () = [ch(16m% —Tm2) +4v/2¢)59(8m% —5Sm2) +12c355(4m% —m2)]
18F2
[16\/§cgs9(mk m )+2s9(2mk+mﬂ)]
18F2
Trm—»rm( ) [\/_CH( 8mK+5m ) C0s9(8mK+m )+3\/§cgs€(4mK—m2)]

9v/2F2
n [4cosy(Smi —2m3) +4v/2sh(mi —m3)]

9V2F2 '

T8 ()=

(4m% —m2) (2¢h—2v/2¢} 593353 +2v2cys) +25%)

18F2

(4mz —m2)(2ch— 2fces9—3c§sg+2\/§cgs6+2s6)

Tnn’—mn’
00 (s)= 9 F2

[4v2¢4(=mi +m3) +4chsg(Smy —2m7) + 3V 2cGs5(=4my +my )}_[cgsg(Sm%(—Fm,z,)—\/Esg(8m%(—5m,2r)]

TH " (5) =

9\2F2

T’?U—”Y’?( )

92F2 '

[2¢3(2m% +m2) —16v/2¢)sg(my —m2) +12c555(4m% —m2)] —4\/_c9s9(8mK 5m2)+sp(16m% —Tm?)

18F2

’

18F2
(A1)
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with sy = sinf, ¢, = cos 6, and 0 being the LO 7 — 5 mixing angle given in Eq. (12).
For the (1,J) = (1,0) case, there are three coupled channels and the explicit results are

TN— TN (CH - \/jsﬂ)zmizr an—KK (3m + Sml( + m - 9S) + ZfSB(me + mﬂ)
Ty "'(s) = 32 T (s) = 6v/6F2
7= (5) = (V265 = co59 = V255)m; TER=KK (5) = s
0 3F; ’ 4F7
Ko, So(3my +8m + m7 = 95) = 2/2co(2mi + m3) ot (V2o + 59)°m?
Ty " (s) = ; Ty ") =——7m — (A2
6v/6F2 3F;

For the (1,J) = (4.0) case, there are three coupled channels and their amplitudes take the form

=3(m% —m2)? —=2(m% + m2)s + 552

Kn—Kn —
Ty )= 8572 ’
Kﬂ_)K” {6m,% —20m% +2m2+9 (_mﬁm’(ﬂg(m’(_m”ﬂ)} + 4\/5(2m%( +m2)sy
(s)= 24F?2 ’
—m2,+mf<+s mi—m%-&—s
Kk —4\2co(2m% + m2) + [6mf;, —20m% +2m2+9 e, S)( )} Sy
Ty "= 24F?2 ’
- 1
K” Ki(s)y = 4Fs (3 (=9m} — 9my + 18mks — 4mbs — 95> + 18m2m3, + 6m2s) + 8V 2cysys(2my — m2) + 16sm% s3],
(—m%+mi+s)(—m$,+mi+s)
K”_)Kn 422 (=2m% + m2) — cysg [6m,% + 6m$, —20m% +4m? +9 . } W2(2m — m)s3
(s) = A T
= 1
K” K (5) = 24Fs [16¢2m3s + 8V 2cysg(—2m% +m2)s
+ sa(—9m3, —9mYy + 18m%s —4m2s — 9s> + 18m§,m%( + 6m$,s)]. (A3)

In addition, we also consider the tadpole loop diagrams, which consist of the 1PI tadpole loops and the wave function
renormalizations. We mention that the chiral tadpole loops of the scattering processes at finite temperatures share the same
structures as those appearing in the zero temperature case. To include the thermal corrections of the tadpole loops, one only
needs to replace the Ay(m?) function by its finite-temperature counterpart; see Eq. (20). The S-wave projections of the
tadpole loop amplitudes T, 74p(s) with definite isopsin are given below. For the (1,J) = (0,0) case they read

5mz(2¢3 +2V2¢ys9 + s3)Ao(my) . Sm2Ag(m2)(c3 — 2v/2cgsg + 253)

T () = - o

_ (8mz +45)Ag(mg)  Ag(mz)(Slmz + 8s)
36F% 36F% '
ar—>KK Ao(’”i’) 2(2 2 V2 2 2 2 2 2 2

T 7ap (5) = "0V [40cs(my + mz) + 4V 2co(2my —Tmz)sg + s5(64my + 12m;, + 4mz — 155)]

_ Ag(mi)(16my +4mz +5)  Ag(mz)(40mz + 13s)
24\/3F4 48\/3F}
_ Aolmy) (3 (64m%y + 12m2 + 4m2 — 155) + 4V 2¢(Tm2 — 2m3, )5y — 40(m} + m2)s3)]
240\/§F4 0 K n n [ ] K/°0 K n)%01°
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m2Ao(m2)(vV2¢3 — cgsg — V/253)
6v/6F%
~ m2(2v/2¢4 + 2¢3s9 — 3v/2¢hs3 — Scsy — \/Esg)AO(mi,)
6v/6F4
m2Ag(m2)(V2c} = 5cysp + 3v/2¢355 + 2cp55 — 2V/2s5)
- 6/6F? ’

—n'n A0<m2)
T ) = - 08 o

W[ 0c3(m% — 3m2s3) — V2¢ys0(2m3 + 30m2s} + 3m3)

m2Ao(m2)(2ch = 27/2¢3 59 — 3¢5 4 27/ 2cqs55 + 254
— s3(16m% + 3m§, + 15m3s5 + 6m3)] — o(m;)(2¢5 V2 i 55+ 2v/2¢y J )

12¢/3F%
~ m2(4ch + 8vV2chsg + 12355 + 4/ 2cys5 + sé)Ao(mz,) ~ m2Ag(m2)(2¢3 + 2v/2¢ys + 53)
12V/3F* 12V/3F* ’
. Ag(my)[20cGmy + 2V2ce(3m2 — 8m%)sy — s2(8my + 24my, + 3mg + 155)]
Too.rap () = 60F*
N Ag(m2)[=c3(8m% + 24m2 + 3m2 + 155) — 2v/2¢y(3m?% — 8m% )5y + 20m% s3]
60F%

_ miAg(mg)  Ag(mz)(4my + m3)
F? 12F% '

KK—nn AO(mi?’)
TOO,TAD(S) = 0F?
¥

[—40c}(3m% — m%) — 3chsy(—128m% — 12m§, + 18m} 4 42m? + 15s)
+ 4263 (6my — m2)sg + 8V 2co(12m3 — Tm2)s; + 40m?2sj]
_ Ao(mi)

120F*

[~c3(80m3 53 + 32m% + 66m2 + 2m% — 455) + 40V2c)(m2 — 2m%) s,
+ 4V 2cq(6m% — m2)sy + 10c§(6m2 + 2m2 — 9s) + 40m% s3]
B Ag(m2)[ch(—64m% + 18m? + 6m2 + 155) — 8V 2¢y(dm% + m2)sg + 40m2s3]
240F%
Ag(my)
720F*

(c4(64m3 — 18m2 + 34m2 — 455) — 4v/2¢}(62m%y — 2Tm2)s,

— 120¢3(5m% — 2m2)s3 — 160V 2¢o(2m% — m2)s) — 160m%ss],
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- A
TOKOI,(TA%? (s) = 6(;)\(/’?(1 {10V2¢4(2m% — m2) + 2V 2c3(m2 — 6m%) + 5chso(8mk + 3m§, + 3mg + 2m% —9s)
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B 240F%
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00.740\%) = e 150 k z 0 r k)9 o\ony )59
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+ olrm;) 2¢5(16m% — Tm2) + 3ch(19m2 — 32m%)s3 — 4V2c) (8m3 — 5m2)s)

54F%
+ 24¢2(3my — 2m2) sy 4 24V 2¢y(2ml — m2)sy — 67 2m2cysy + 4(4my — m2)s§]

N m2Ao(m2)(2¢ — 2v/2¢)sg — 3¢ks3 + 2/ 2¢cqs + 258)
6F}

l
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'’ A 2
Té 1an (5) = 9(;]\(/’1%;1 {cos3(120m%s5 — 212m?% — 27m5, —9m} + 15mZsj + 28m3)
—20¢5(5m3 —2m2)sg + 5V2ch[8mE (352 — 1) + m2(4 — 1552)]
= 5cisgldm% (1353 — 5) + m2(12 — 2553)] + V2c3s3[2m% (7053 — 9) + m2(3 — 20s3)]

+ V25h[m% (46 — 12052) + 3m2(25s3 — 7)] + 20V 25 (m% — m2)}

Ao(my,)
- 54\/5'1’:4 8V2cG(m% — m2) + 24¢)(m2 = 3m%) sy + 60V 2ch(2my — m2)s?
—20¢3(8m% — 5m2)s) + 3co(32m% — 13m2)s5 4+ 15V2m2c2sh + V2(17m2 — 32m%)s5)
(8m% — Sm2)Ag(m2)(2v/2¢§ — 6¢3s9 — 3V2c)s3 + 11csy + 3v/2cksh — 6¢ysy — 21/258)
54/2F%
A () (23} + 2es — 3vAchsh = Seosy - vEs)
6v/2F2

’

Ay(m%)
- 45F§ {10c32m% (52 — 1) + m253] — 20V 2¢) s9[m% (455 — 2) + m2(1 — 452)]
+30c252[m% (853 — 3) + m2(1 — 253)] + V2cqs3[m% (46 — 160s3) 4+ m2(100s5 — 21)]

/! Uy
Toorap (8) =

+ 55mk (8055 + 8) + 9my, + mz(8 — 35s3)]}

2
Ao(m”/)
108F%

_ 40\/5c2(8m%( —5m2)sy + 30c5(16m% — Tm2)sp — 6\/§c9(32m%< —17m2)s}
m2Ay(m2) (4ch 4+ 8v/2chsy + 12¢2s3 + 4/ 2cys) + 55)

+ (64m% — 31m2)s5] + U leFi 050 ot 5o

[4c§(2m% + m2) — 48\/§c§(m%( —m32)sg + 60ch(4m% — m2)s3

1087 [4c§(4m% — m2) + 24\/§c§(m,zr —2m%)sg + 24cH(3my — 2m2)s5
+ 4263 (8m% — 5m2)s3 4 3c2(19m2 — 32m3)sh + 67/ 2m2cysy + 2(16m% — Tm2)sS).

(A4)
For the (1,J) = (1,0) case, the expressions from the tadpole diagrams take the form

TN—>7 Ao(mg
i 7an(s) = ngf) [—c3(16m% + 3m3 + 30mZsj + 6m3) + V2¢y(2m% + 3m2)s,
mz(2ch — 2v/2¢hsg = 3¢gsh + 2V 2¢qs; + 255)Ag(m)

— 15m2ch + 30V 2m2clsy 4+ 10mks3] + 8
m2Ag(m2)(ch — 4V/2c}sp + 12355 — 8v/2cys) + 4sp) N m2Ag(m2)(c5 — 2v/2cpsg + 253)
18F4 18F* ’
a—KK Ao(mil)
Tio7an (5) = T 360V6F [~40c;(mg — mz) + 3cgsg(—16my — 12m?, + 9my — 21my + 15s)

— 12V2c3(2m + 3m2)sg + 4V2(8m% + Tm2)s})]

A 2
) 188(76% [15¢5(8m + 3my + m3 —95) —2co(16mi + 3my + 41my —30s)
+30vV2c3(2m2 + m2)sy + 16V2(m2 — m2)s,)
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Ag(m2)[co(32m% — 9m2 + 25m2 — 155) + 4v/2(4m% — m2)sy]
724/6F%

_ Ao(m%)
360v/6F%
— 120cy(my — m2)s3 — 40V2(2m% + m2)s),

(c3(—128m% — 9m? + 1Tm2 + 455) — 24V/2c3(my — m2)s,

B Ao(m%()

T’fg}’g’};(s) = 50 [—V2c2(2m% + 3m2) — cosg(52m% + 3m$, + 3mg — 15m2sj + 12m3)

m%AO(mIZI)(\/iC% — CoSe — \/isez))
18F%

— 15V2m2ch + 15m2chsg + V2s3(2m% + 15m2s) + 3m2)] +

N m2(2v/2¢4 + 2¢3 59 — 3v/2¢ks3 — Scpsy — \/jsg)Ao(mi,)
18F%

N m2Ag(m2)(V2ch — Scisg + 3V2c3s3 + 2cy55 — 2v/2s5)
18F2 ’

KKK A (mfl,)[ZOCZ)m%( +2v2¢(3m2 — 8m% )sy — s3(8m% + 24m§, + 3m2 + 15s)]
Torap (5) = 180F*
~ Ag(m2)[c3(8m% + 24m? + 3m2 + 155) + 2v/2¢p(3m% — 8m%)sp — 20m%s3]
180F%
Ao(mi)(20mi — 65) _ Ag(m3)(—4mi + m3 + 6s)
4 - 4 ’ (AS)
3654 3654

pREmr (o _ Ao(m3)[4V2¢q(m7 — 4mi) + s9(32m% — 9m?, + 25m7 — 155)]
10,TAD 72V/6F*
_ Ao(m;%)
360V/6F;
+ 12V2¢(2m3 + 3m2)s3 + 40(m2 — m%)s3)]
2
B Ao(mr]/)
360v/6F%
+ 24V 2¢o(my — m2)s3 + s3(—128m3 — 9m5/ + 17m2 + 455)]
_ Ag(mg)
180v/6F2
—2V2¢y(30m3 53 — 8m% + 15m2s3 + 8m2)},

[—4V2¢3(8m% + Tm2) = 3cksy(16m% — 9m$, + 12m3 + 21m?% — 15s)
[40V2¢3 (2m% + m2) — 120c2(m% — m2)s,

{s¢[8m% (1555 — 4) + (4555 — 6)m§, + 15m2s3 — 82m2 + 60s — 135ss7]

> AO (m%()
itz o) = ok

{10c3(m% = 3m2s2) — V2cgs[2m% + 3m2(10s2 + 1)]

m2Ag(m2)(2c) — 2v/2¢}sg — 3¢3s3 + 2V 2cys) + 2s§)

— sgl16my + 3my, + 3mz(Ss5 +2)]} + SF
mz(4ch + 8v2chsg + 12¢555 + 4v/2cos5h + so)Ao(my)  m2Ag(m2)(2¢3 + 2v/2cpsp + 52)
* 18F; * 18F; - (89)
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For the (1,J) = (1/2,0) case, the expressions from the tadpole diagrams read

Kr—sKr AO(mi’) 20,2 2 NG) 2 2
T%O,TAD (s) = T240F%s {80scg(mx + mz) — 8V2scy(2my — Tm3)sy

+ s5l=2mx (15m3 + 19s) + 15mi — 35(8m;; + 355) + 82mys + 15my]}
Ag(m3)
1440F s

+ 8V 2scy(2m% — Tm2)sy + 80(m3 + m2)ss3}

n Ag(m%)[=2m%(Tm2 + 11s) + Tm + 2m2s + Tms — 175?]

{c3[-2m% (15m2 + 195) + 15m} — 3s(8m2 + 35s) + 82m2s + 15m}]

144F%
N Ag(m2)[=2m% (19m2 + Ts) + 19m% — 94m?2s + 19m} — 55?]
288F2s ’
Kr—Kn AO(mi’) 30,2 2 2092 2 2 2\ 3
10.TAD (s) = TAd0F? {80c9(mK —mz) + 24\/§c9(2mK +3mz)sy — 8\/_2_(8mK + Tm3)s,

2

m% —m2 + s)(m% —m% + s
+3C9S§|:15( K 4 )( K n )

N

— 28mj + 24m7 — 18m; + 42m,2,] }

_ Ag(m}) {1503 [9 (3, = 2+ 5)(m, = 2 + s)
0

20 ; —20m% + 6m2 + Zm,z,} +32V2(m2 — m)sy

(mk —m2 + s)(mk —m} +s)

—4co |15 — 44my + 3m} + 41m,2,] + 60V2¢2(2m3 + m,z,)s9}
s
Ag(m?2 & —my +5)(mg —my +
- O(m’ZR co |15 (i = i ) (i = my + ) +4m — 18m2 + 50m2 | + 8v2(4m% — m2)s,
288F; s
Ag(my)

f oot + ok i+

) ; + 76mj + 18m; — 34m,2,}

1440F*

+ 48V 22 (m% — m2)sg + 240co(m% — m2)s3 + 80V2(2m% + m,%)sg}, (A7)

(m% —m2 + s5)(m% — mf], +5)

N

TKﬂ—»Kn’( ) o AO(m%()
10.TAD - 720F4

{4\/§cg[m%((30s§ —8) + m2(1552 + 8)] + 1555(4 — 952)

+ sg[4mi (7555 — 44) + (12 = 90sg)m, — 30mzsj + 164m,2,]}

Ay (m2 (m% —m2 + s)(m% —m? + s)

- 208(8F4) |:8\/§Cg(m,2, —4m%) + 1554 g 1 + sg(dm% — 18m5, + 50m2)
Ao) [ o /33 (8% + Tm2) = 24 Bep (2 + 3n2)3 + SO(n — ni2)s]
1440F* cp(8my + Tmz) — co(2my + 3mz)sy + 80(my — mz)s,

mz—m,z,Jrs m% —m? +s

+3C§S9{15( I3 )S( kK —my, )_28m%<— 18m2, +24mg+42mg]}
AO(mr%’) 3092 2 20,2 2 2 2\ 2

~ T420F 80\/509(27}11( + m2) = 240c2(m% — m2)sg + 48V 2co(mk — m2)s3

m% —m2 + s)(m%k —m? +s
—sg[45( K mi = m, )—|—76m%<+18m3,—34m,2,}},
s
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A()
Kn—K 0
T%O'?TAD”(S) = _WI:“S [c5(=90m2m%, — 126sm? + 38sm3 + 45m% + 45m;) + 68m3is + 4557)

— 8V/25¢}(62m%, — 2Tm2)sg — 320V 25c(2m% — m2)s} — 240¢3(5my — 2m2)ss2 — 320sm3sj)]
%{ —3c§sh
— 3cps[+15my + 3s(8my, — 28my + 5s)] + 80scy(3my — myz) + 8V2sc)(m2 — 6m%)sg — 80m2ssy}
Ag(m)
240F%s
— c§[m}(42s — 90m%) + 2sm% (80s5 — 13) + 45my + 45m,) + 4sm3 + 4557]
— 80V 2sc)(2m% — m2)sg + 8V 2sco(6m% — m2)sg + 80m%ss3}
_ Ag(m3)
480F4s
+ 16V 2scy(dmy + m2)sy — 80m2ss3}, (A8)

[—6m3 (5my + 11s) + 226sm% + 15m¥] — 16V 2s¢y(12m3% — Tm?2 s,

+

{10c§[—6m; (3m% + 5) — 18sm% + Imy + 9m;) + 4sm? + 9s7]

{c3[=6m2(5m% + 11s) + 98sm% + 15m% + 15m} + 155> — 12sm2]

. Ao (m>
T{;”TAIZ’ (s) = 2(;(01%) { —64V/2c3my, + 64V253my + 136¢gsgmy + 24V 2cim> — 24V 2m2s?

(mg —my + s)(mg —my + s)

—24comisy — 96c9m,%s9 - 96cem;f;,s9 —90c¢ysy .
+5(c3 + 524 1)(8V2mk el — 4V2m2c + 4vV2m2s2 — 8v2m%s2) + 5(c2 + 53 + 1)
(m —mj + s)(mg —my, + s)] }

SoCo

s

2 2 2 2
[—ZOmK + 4mz + 6m; + 6m,, 49

Ag(m3)
+ 4%0Fj‘[ {8\/5(4m%< +m2)cs - 8v2(4m3 + m2)s3

m% —m2+s)(m% —m? +s
- {68m%{+68m,2,—18m%—18mf;,+15( k=t 5)(m = m, )}sgc,,}
N

_ Ao(m%)
1440F%

[8\/5(8m% —3m2)ch + 48V 2(mk — m2)sicd — 80(5m% — 3m2)s)cy

(mx —my +5)(mg — mz, +5)

N

+80V2(m2 — 2m})sh + soch(428mk — 172m2 + 18m} — 54m? ) + 45s,c;

Ao(m2 )
1440F4

{80\/_(m —2m%)ch + 80(Smk — 3m2)soch + 48V2(mk — m2)s3ch + 8v/2(8mk — 3m2)s)

(mg —my + s)(my — my, + s)] }
s ’

+ s5¢0 {—428m%( +172m3 + S4m;; — 18m7, — 45

- Ao(my)
llf)nTAgr/ (s) = W [320schm% — 320\/5509(2’”1( —m2)sy — stc9(62mK —27m2)s;

+ 240c5(5m% — 2m2)ss; — sp(— 90me . — 126sm> vt 38sm% + 45m% + 45m? v T 68m2s + 4552)]

_ Ao(my)
240F%s

+ spl6my, (30my 55 — 15my, + 10557 + Ts) + 45my (1 - 257)]

+ 55(25m% (9055 — 13) + (45 — 90s§)m2, + s(4m2 — 40m2s5 + 455 — 90ss3)]}

{80scIm% (253 — 1) — 8v/25¢59(20m%ks3 — 6m% + m2 — 10m2s2)
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Ag(m3) NG 2, 0 24,2
+ 130F"s [16V2scq(4my + m3)sg + 80mzscy
+ 55(30mgmy, + 66sm;, — 98smi — 15my — 15my), + 12smz — 155°)]
Ao) 13 23 30mm?, — 665 + 2265m% + 15ml + 15mb) — 163/Zsc (12, — T
—m[ cgsp(—30mygm,, — 66sm;, + 226smy + 15my + 15m,,) — scy(12my — Tmy)sg
+ 9schsg(8my — 28m3 + 5s) + 8v/2sco(m2 — 6m%)s) 4 80miscy 4 80s(m2 — 3m%)sj). (A9)

APPENDIX B: THE TWO-POINT ONE-LOOP FUNCTION AT FINITE TEMPERATURES

In this part, we discuss the evaluation of the two-point one-loop G(s) function in Eq. (7) at finite temperatures in detail.
One can first separate out the integral of the zeroth component k, in Eq. (7),

[ d*k 1
Gls) =~ / (27)* (& = m3 + ie)[(P = k)? = m} + ie]

/ &Pk dk, 1 (B1)
= —1 _— R
(27[)3 27'[ <k02 - E% + le)[(PO - k0)2 - E% + 16]

with
s=P,  P,=(Py,-P), EX=|k*+m}  Ei=|P—kP2+md (B2)

In general cases Eq. (B1) depends on P, and P separately. In the CM frame of the two-body scattering, one has P =0.

We use the imaginary time formalism to include the finite-temperature contributions. This amounts to replacing the
integration of the continuous k, with the discrete sum of iw, = i2znT [36]. In this way, one should take the substitution
ko — iw, and dky — i2zT in the last line of Eq. (B1), which leads to

G(s)"™ / o i 1
S = — . ’
(27)* £, (@3 + ED)[(Po — iw,)* — E3]
B T/ &k *Z“’ 1 1 1 1 1 1
a (2x)} = 2E, \iw, + E, iw, —E|) 2E, \iw, - Py~ E, iw,—Py+E,)

B T/ &1 *i 1 1 1
n (27)3 4E\E, £ Py+ E, + E, \iw, + E, iw,—Py,—E,

—0o0

1 1 1 1 1 1
+P0+E1—E2 (ia)n+E1_iwn—P0+E2> +P0—E1—|—E2 (ia)n—El_ia}n—Po—E)

1 1 1
PO_EI_E2 la)n—El la)n—P0+E2

where P, should take one of the possible iw, in the sum.” In order to efficiently calculate the integral, it is necessary to
evaluate the infinity sums by using the standard Matsubara techniques. The basic formula of the Matsubara sum is

+00 1
T3 rrEm TE .

where only the temperature-dependent terms are explicitly kept in the right side of the equation and the ellipses denote that
the terms survive at zero temperature. By combining Eqs. (B3) and (B4), the temperature-dependent parts of the two-point
one-loop function can be written as

After explicitly performing the Matsubara sum, one can then analytically extrapolate the P, to other values [36].
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1

66" = [ imm A e eV E) B 4 e (B + f(Es)

+ : F(E) = F(E)] -

1

PO—E1+E2+i€

which can be simplified to Eq. (15) in the CM frame.

PO—EI—E2+i€

vwo+fw»@, (85)
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