
 

Nucleon resonances in γp → ωp reaction

N. C. Wei ,1,2 F. Huang ,2,* K. Nakayama ,3,† and D.M. Li1,‡
1Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001, China

2School of Nuclear Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

3Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

(Received 3 August 2019; published 16 December 2019)

The most recent high-precision data on spin observables Σ, T, P0, E, F, and H reported by the CLAS
Collaboration together with the previous data on differential cross sections and spin-density-matrix
elements reported by the CLAS, A2, GRAAL, SAPHIR, and CBELSA/TAPS Collaborations for
the reaction γp → ωp are analyzed within an effective Lagrangian approach. The reaction amplitude
is constructed by considering the t-channel π and η exchanges, the s-channel nucleon and nucleon
resonances exchanges, the u-channel nucleon exchange, and the generalized contact current. The latter
accounts effectively for the interaction current and ensures that the full photoproduction amplitude is
gauge invariant. It is shown that all the available CLAS data can be satisfactorily described by considering
the Nð1520Þ3=2−, Nð1700Þ3=2−, Nð1720Þ3=2þ, Nð1860Þ5=2þ, Nð1875Þ3=2−, Nð1895Þ1=2−, and
Nð2060Þ5=2− resonances in the s-channel. The parameters of these resonances are extracted and compared
with those quoted by PDG.
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I. INTRODUCTION

The study of hadron mass spectrum and hadronic decays
provides essential information toward the understanding of
strong interaction in the nonperturbative regime of quantum
chromodynamics. It is now a consensus in the hadron
physics community that one has to investigate as many
independent reaction processes as possible to extract
detailed information on hadron resonances, especially in
the baryonic sector. Indeed, there is currently an intense
activity, both experimental and theoretical, in investigating
many different meson production reactions. One of the
major motivations behind this drive is to find the so-called
“missing resonances,” which are predicted by the non-
relativistic quark models but not found in the experiments
of π production reactions [1,2]. A possible explanation for
the missing resonances problem is that they may have
escaped from observation due to their relatively small
coupling to the πN final state. Thus the study of production
reactions of mesons other than π becomes indispensable.
The ηN channel has been investigated as a first step toward

this goal and, currently, heavier meson production proc-
esses such as η0, ω, and ϕ are the subjects of increasing
attention. These efforts are not restricted to the nonstrange-
ness sector only. There has also been an intense activity in
the strangeness sector to search for hyperon resonances
with strangeness quantum number S ¼ −1 via KY photo-
production (Y ¼ Λ, Σ), and interest in heavier meson
photoproduction such as K�Y is also increasing [3–8].
There are also initiatives to investigate strange baryon
resonances with S ¼ −2 and −3 [9,10].
The present work concerns the photoproduction of the ω

meson off the proton. This reaction has been studied
intensively from the late 1960s to 1990s at energies well
above the resonance energy region to address a variety of
interesting physics questions. In particular, the vector
meson photo- and electroproduction processes, in general,
provide an important insight into the diffractive mecha-
nisms at high energies. At lower energies in the resonance
energy region (below the center-of-mass energy of
W ∼ 3 GeV), the ω photoproduction offers a means of
probing the possible missing states in the 2 GeV mass
region (referred to as the third resonance region) which
might couple to the ωN channel. The ω photoproduction
off nuclei has also been investigated [11,12] to study the
medium effects on the properties of vector mesons [13,14].
The ω photoproduction off deuteron has been investigated
in Ref. [15]. There are a few features in this reaction off the
proton that make it attractive for studying the role of
nucleon resonances. One is that the dominant contribution
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to the nonresonant amplitude is fairly known. At higher
energies, the diffractive processes—taken into account by
the Pomeron exchange—dominate and, at lower energies,
the t-channel pion exchange dominates [16]. In fact, this
feature has been known since the early 1970s [17–22]. In
Ref. [23], it is found that at intermediate energies below
W < 3.2 GeV, the Pomeron exchange is no longer suffi-
cient to reproduce the data, and it has been suggested that
π and f2 exchanges become the dominant contributions.
Another feature is the isoscalar nature of the ω meson that
filters out the isospin I ¼ 3=2 Δ resonances in the
s-channel. Together, these features provide a great deal
of simplification to the otherwise very complex problem of
resonance extraction. The ρ meson photoproduction also
gives information on the resonances in the same mass
region of 2 GeV, since ρ has a mass of about 775 MeV,
which is close to the omega mass of 782.7 MeV. However,
the ρ meson is an isovector meson and, as such, it excites
not only I ¼ 1=2 but also I ¼ 3=2 resonances, which
makes the analysis of the resonance extraction more
involved. In addition, unlike ω, whose width is about
8.5 MeV, the width of ρ is about 150 MeV. This means that
the effect of the width of ρ in the final state has to be taken
into account in the ρ meson production reactions that may
affect the quality of the associated experimental data.
Earlier data on ω photoproduction in the resonance

energy region have low statistics and are scarce. They date
from the late 1960s to the early 1980s and one in the late
1990s [17,20,24–29].A newgeneration of datawas reported
only in 2003 by the SAPHIR Collaboration [30] with the
first high-statistics cross section and spin-density-matrix
elements (SDMEs) data in the center-of-mass energy range
from the ω-production threshold up to W ¼ 2.4 GeV. In
Ref. [31], the CBELSA/TAPS Collaboration reported the
data on beam asymmetry in the near-threshold energy
region. The CLAS Collaboration provided other high-
statistics measurements of the differential cross section
and SDMEs [32]. Many data were reported in the year
2015 in particular: new measurements of differential cross
sections and SDMEs and the first measurements of the
double polarization asymmetries, the beam-target-helicity
asymmetriesE andG, were reported by the CBELSA/TAPS
Collaboration [33,34]; a new measurement of the differ-
ential cross section with full production-angle coverage was
reported by the A2 Collaboration at MAMI [35]. Also, the
beam asymmetry Σ has been measured by the GRAAL
Collaboration [36]. More recently, the CLAS Collaboration
reported the newest data of the photon beam asymmetry and
a comparison with previous results was made [37]. The
newest high-precision CLAS data on the spin observablesE
[38] as well as on Σ, T [39] and P0, F,H [40] have just been
reported. The latter four observables, T, P0, F, and H, were
measured for the very first time.
From the theoretical side, a number of studies of the

reaction γp → ωp have been performed to learn about the

reaction mechanisms in general and the role of nucleon
resonances in particular. Earlier studies focused more on
learning about the basic features of this process such as the
dominant nonresonant reaction mechanisms [18,22]. The
formalism for vector meson photoproduction with a polar-
ized photon was given in an early work in Ref. [41]. For a
later work on spin information from the decay of the vector
meson in photoproduction, see Ref. [42]. The general
aspect of the reaction based on symmetry considerations
was investigated in Refs. [43,44]. The later works have
concentrated on more specific aspects of the reaction such
as the sensitivity of some of the spin observables to certain
details of the reaction dynamics [45,46] and the effects of
the ωN final-state interaction [47]. The role of the nucleon
resonances in ω photoproduction has been investigated in
Refs. [16,48,49] within tree-level effective Lagrangian
approaches and in Refs. [50,51] in a coupled-channel
K-matrix approach. Also in Ref. [52], the ω photoproduc-
tion has been studied in a dynamical coupled-channel
approach. Only recently, with measurements of some of
the spin observables, in addition to high-statistics cross
section data, the first partial-wave analyses have been
performed [53,54]. Although these partial-wave analyses
are limited, improvements toward a more complete analy-
ses are expected as the database for this reaction increases,
especially with measurements of more independent spin
observables.
While all of the authors agree on the π0 exchange in the

t-channel playing an important role in the lower energy
region and the diffractive processes dominance at higher
energies, i.e., Pomeron exchange, they show discrepancies
on various dominant resonance contributions. In the very
first dedicated study of nucleon resonances in ω photo-
production, Zhao [48] uses an effective quark model
Lagrangian approach based on a quark model of
Refs. [55,56] and finds that the dominant resonances in
his model areNð1720Þ3=2þ andNð1680Þ5=2þ. The former
is just at the nominalω production threshold, while the latter
is a below threshold resonance. Oh et al. [16], on the other
hand, based on another quark model by Capstick and
Roberts [57,58], claim that the dominant resonances are
Nð1960Þ3=2− and Nð1910Þ3=2þ in their calculation. The
stateNð1910Þ3=2þ is amissing resonance state predicted by
the constituent quark model used to account for the
configuration mixing. The calculation made by Titov and
Lee [49], where the resonance couplings are fixed from the
empirical helicity amplitudes togetherwith thevectormeson
dominance assumption, finds that the two most important
resonance contributions to ω photoproduction come from
Nð1680Þ5=2þ and Nð1520Þ3=2− in the low energy region
belowW ¼ 1.8 GeV. Both resonances are below threshold
resonances. The coupled-channel analysis of the Giessen
group [50], for energies W ≤ 2 GeV, finds a dominance of
two resonances, Nð1710Þ1=2þ and Nð1900Þ3=2þ, to the ω
production mechanism. In a later analysis, including further
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data, the Giessen group [51] finds that while the
Nð1680Þ5=2þ state only slightly influences the ω meson
production in πN scattering, its role is enhanced in ω
photoproduction due to its relatively large electromagnetic
coupling to the proton. In a dynamical coupled-channel
analysis, Paris [52] quotes the S11, D13, and F15 partial
waves as the dominant contributions to ω photoproduction,
but the resonances are not extracted. Three states,
Nð1700Þ3=2þ,Nð1680Þ5=2þ, andNð2190Þ7=2−, are found
to be dominant in the partial-wave analysis ofWilliams et al.
[53], based on the high-statistics cross section and SDMEs
data for energies up to W ¼ 2.4 GeV. The most recent
(partial-wave) analysis of theω photoproduction reaction to
date has been done byDenisenko et al. [54]within theBonn-
Gatchina approach. It is, by far, the most complete analysis
in the sense that it considers a large database on pion and
photo-induced reactions, including the recent ω photo-
production data for differential cross sections, several
SDMEs, the beam asymmetry Σ, the normalized helicity
difference E, and the correlation G between linear photon
and longitudinal target polarization. Here, 12 resonances,
including the two nominally below-threshold resonances,
Nð1700Þ3=2− and Nð1710Þ1=2þ, are found and the decay
rates of these 12 resonances to Nω were determined.
Most of the work mentioned above consider only the

differential cross section data in their analyses due to the,
then, lack of the data for more exclusive observables. By
now, it is a well known fact that cross sections alone are far
from imposing stringent constraints in the extraction of
resonances. For this, measurements of spin polarization
observables are of high significance and urgency. A
complete experiment in vector meson photoproduction
requires 24 independent observables to determine the 12
amplitudes [43]. Thus, such an experiment is probably not
feasible. Nevertheless, these more exclusive spin observ-
ables are much more sensitive to the details of reaction
dynamics in general and, therefore, are essential to help
constrain the resonance content of existing models. Unlike
for the scalar and pseudoscalar mesons, for vector mesons
there is relatively a much larger number of independent
spin observables. Thus, presumably they are more critical
to help impose stringent constraints in the extraction of
resonances. In fact, the sensitivity of some of the spin
observables in ω photoproduction to the reaction dynamics
has been pointed out by various authors [16,48–50,53,54].
The purpose of the present study is to learn more about

the role of resonances in ω meson photoproduction in the
2 GeV energy region based on the most recent high-
precision unpolarized and polarized CLAS data. The
analysis will be done within a tree-level effective
Lagrangian approach, similar—but not identical—to that
of Ref. [16]. The strategy in the present work differs from
that of Refs. [16,48] in that, instead of using resonance
couplings determined by quark models, we let the recent
high-precision data decide on the relevant resonances by

fitting the resonance parameters to these data within our
effective Lagrangian approach. Part of our theoretical
results for double polarization observables P0, F, and H
have been published together with the experimental data
from the CLAS Collaboration in Ref. [40]. Here we report
the details of our investigations and, in particular, we report
our results for P0, F, and H that are not shown in Ref. [40]
due to the page limit and also the results for Σ, T, E,
dσ=dΩ, and SDMEs.
The paper is organized as follows. InSec. II, the kinematics

for theω photoproduction reaction off the nucleon is defined
as well as the effective Lagrangian densities for computing
the corresponding amplitude, and the formulas for calculating
various observables are presented. Some brief comments on
the gauge-invariant amplitude and the energy-dependent
widths are also introduced in this section. Our results and
discussion are presented in Sec. III. Finally a brief summary
and conclusions are given in Sec. IV.

II. FORMALISM

The reaction of interest in the present study is

γðkÞ þ pðpÞ → ωðqÞ þ pðp0Þ; ð1Þ

where the arguments k, p, q, and p0 indicate the four-
momenta of the incoming photon, initial-state (target)
proton, outgoing ω, and final-state (recoil) proton, respec-
tively. We also define the Mandelstam variables t ¼
ðp − p0Þ2 ¼ ðk − qÞ2, s ¼ ðpþ kÞ2 ¼ ðqþ p0Þ2 ¼ W2,
and u ¼ ðp − qÞ2 ¼ ðp0 − kÞ2.
Following the field theoretical approach of Refs. [59–

62], the full amplitude for the present reaction can be
expressed as

Mνμ ¼ Mνμ
s þMνμ

t þMνμ
u þMνμ

int; ð2Þ

with ν and μ being the Lorentz indices of the ω meson and
photon, respectively. The first three terms Mνμ

s , Mνμ
t , and

Mνμ
u stand for the contributions from the s-, t-, and

u-channel diagrams, respectively. They arise from the
photon attaching to the external particles in the underlying
three-point NNω interaction vertex. The last term, Mνμ

int,
stands for the interaction current that arises from the photon
attaching to the internal structure of the NNω interaction
vertex. All four terms in Eq. (2) are diagrammatically
depicted in Fig. 1. We refer to the first term in Eq. (2),Mνμ

s ,
as the resonant amplitude and the sum of the last three
terms, Mνμ

t þMνμ
u þMνμ

int, as the nonresonant amplitude.
The (s-channel) resonant amplitude consists of the

nucleon and nucleon resonance contributions. As men-
tioned in the Introduction, previous studies of this reaction
have shown that the nonresonant amplitude is dominated
by the t-channel pion exchange at low energies and by the
diffractive processes (t-channel Pomeron exchange) at
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higher energies. Since we are interested in the limited
energy region below W ∼ 2.5 GeV, the Pomeron exchange
contribution can safely be ignored [16]. Thus, our non-
resonant amplitude in the t-channel (Mνμ

t ) is given domi-
nantly by the pion exchange contribution. We also include
the η meson exchange despite its contribution being small
since the ωηγ coupling is known to be small. For the
u-channel contribution to the nonresonant amplitude, we
take into account the nucleonic current. We have checked
and found that the u-channel resonance contributions are
small enough to not affect the extracted resonance content.
This is consistent with the observed behavior of the
differential cross section data at backward angles.
The interaction current (Mνμ

int) contributes to the non-
resonant amplitude very significantly, in general. However,
for ω photoproduction, its contribution is expected to be
relatively small, given that the nonresonant amplitude is
dominated by the t-channel processes (pion plus Pomeron
exchange). Hence, in the present work, the interaction
current is taken into account in a minimal fashion by a
phenomenological generalized contact current as specified
below. This contact current is such that it preserves gauge
invariance of the resulting total reaction amplitude (see, in
particular, Refs. [60,61]).
The Feynman diagrams that define the present model

are shown in Fig. 1. As mentioned above, they include
(a) t-channel pseudoscalar (π, η) meson exchange current;
(b) s-channel nucleonic (N) and resonance (N�) currents;
(c) u-channel nucleonic current; and (d) the phenomeno-
logical contact current. In the following, we specify the
effective Lagrangian densities and propagators required for
constructing the reaction amplitude corresponding to the
Feynman diagrams shown in Fig. 1. The phenomenological
(contact) interaction current is also specified.

A. Effective Lagrangians

We calculate the t-channel mesonic and u-channel
nucleonic currents by using the following effective
Lagrangians:

Lωπγ ¼
e

Mπ0
gωπγϵμναβð∂μAνÞð∂απ

0Þωβ; ð3Þ

Lωηγ ¼
e
Mη

gωηγϵμναβð∂μAνÞð∂αηÞωβ; ð4Þ

LNNπ ¼ −gNNπN̄γ5

��
iλþ 1 − λ

2MN
=∂
�
π

�
· τN; ð5Þ

LNNη ¼ −gNNηN̄γ5

��
iλþ 1 − λ

2MN
=∂
�
η

�
N; ð6Þ

LNNγ ¼ −eN̄
��

êγμ −
κ̂N
2MN

σμν∂ν

�
Aμ

�
N; ð7Þ

LNNω ¼ −gNNωN̄

��
γμ −

κω
2MN

σμν∂ν

�
ωμ

�
N; ð8Þ

where π, Aμ, ωμ, and N denote the pion, photon, ω, and
nucleon field, respectively. The elementary charge unit is
denoted by e, and ê ¼ ð1þ τ3Þ=2 stands for the charge
operator. The operator κ̂N is equal to κpð1þ τ3Þ=2þ
κnð1 − τ3Þ=2, with the anomalous magnetic moments κp ¼
1.793 and κn ¼ −1.913. The symbol εμναβ denotes the
totally antisymmetric Levi-Civita tensorwith the convention
ε0123 ¼ þ1. In Eqs. (3) to (8),Mπ0 ,Mη, andMN stand for the
masses of π0, η, and nucleon, respectively.
The coupling constant gNNπ ¼ 13.46, gNNη ¼ 4.76,

gNNω ¼ 11.76, and κω ¼ 0 are taken from a coupled-
channel study of pion photoproduction of Ref. [61]. The
pseudoscalar-pseudovector mixing parameter λ is set to
λ ¼ 0 for both π and η; for the pion, this is demanded by
chiral symmetry. The electromagnetic coupling constants
gωπγ ¼ 0.32 and gωηγ ¼ 0.25 are also taken from the pre-
vious work of coupled-channel pion photoproduction [61].
Following Refs. [60,62], the interaction current Mνμ

int for
γp → ωp is modeled in a minimal fashion by a generalized
contact current

Mμν
int ≈Mμν

c ¼ Γν
NNωðqÞCμ; ð9Þ

where Γν
NNω stands for the NNω vertex function given by

the Lagrangian in Eq. (8),

Γν
NNωðqÞ ¼ −igNNω

�
γν − i

κω
2MN

σναqα

�
: ð10Þ

The auxiliary current Cμ in Eq. (9) is given by

Cμ ¼ −e
fu − F̂
u − p02 ð2p0 − kÞμ − e

fs − F̂
s − p2

ð2pþ kÞμ; ð11Þ

with fu and fs denoting the phenomenological form
factors, as specified later, in the u- and s-channel nucleonic
current, respectively, and

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams that define the present model for the
γp → ωp reaction. Time proceeds from left to right.
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F̂ ¼ 1 − ĥð1 − fsÞð1 − fuÞ: ð12Þ

Here the parameter ĥ may be an arbitrary (complex)
function, ĥ ¼ ĥðs; u; tÞ, which, in general, is subject to
crossing-symmetry constraints and must go to zero at high
energies. The vanishing high-energy limit of ĥ is necessary
to prevent the “violation of scaling behavior” [63]. Since
we restricted ourselves to low energies in the present work,
we set the fit parameter ĥ as a constant, ĥ ¼ 1, for the sake
of simplicity.
The s-channel resonance currents are constructed from

the following Lagrangians. For the electromagnetic cou-
plings, we have

L1=2�
RNγ ¼ e

gð1ÞRNγ

2MN
R̄Γð∓Þσμνð∂νAμÞN þ H:c:; ð13Þ

L3=2�
RNγ ¼ −ie

gð1ÞRNγ

2MN
R̄μγνΓð�ÞFμνN

þ e
gð2ÞRNγ

ð2MNÞ2
R̄μΓð�ÞFμν∂νN þ H:c:; ð14Þ

L5=2�
RNγ ¼ e

gð1ÞRNγ

ð2MNÞ2
R̄μαγνΓð∓Þð∂αFμνÞN

� ie
gð2ÞRNγ

ð2MNÞ3
R̄μαΓð∓Þð∂αFμνÞ∂νN þ H:c:; ð15Þ

L7=2�
RNγ ¼ ie

gð1ÞRNγ

ð2MNÞ3
R̄μαβγνΓð�Þð∂α∂βFμνÞN

− e
gð2ÞRNγ

ð2MNÞ4
R̄μαβΓð�Þð∂α∂βFμνÞ∂νN þ H:c:; ð16Þ

where R designates the nucleon resonance, and the super-
script of LRNγ denotes the spin and parity of the resonance

R. The coupling constants gðiÞRNγ (i ¼ 1; 2) are fit parame-

ters. The notations Fμν and Γð�Þ are defined as

Fμν ≡ ∂μAν − ∂νAμ; ð17Þ

ΓðþÞ ≡ γ5; Γð−Þ ≡ 1: ð18Þ

For the hadronic couplings, we have

L1=2�
RNω ¼ −

gRNω

2MN
R̄Γð∓Þ

���
γμ∂2

MR ∓ MN
� i∂μ

�

−
fRNω

gRNω
σμν∂ν

�
ωμ

�
N þ H:c:; ð19Þ

L3=2�
RNω ¼ −i

gð1ÞRNω

2MN
R̄μγνΓð�ÞωμνN þ gð2ÞRNω

ð2MNÞ2
R̄μΓð�Þωμν∂νN

∓ gð3ÞRNω

ð2MNÞ2
R̄μΓð�Þð∂νω

μνÞN þ H:c:; ð20Þ

L5=2�
RNω ¼ gð1ÞRNω

ð2MNÞ2
R̄μαγνΓð∓Þð∂αωμνÞN

� i
gð2ÞRNω

ð2MNÞ3
R̄μαΓð∓Þð∂αωμνÞ∂νN

∓ i
gð3ÞRNω

ð2MNÞ3
R̄μαΓð∓Þð∂α∂νω

μνÞN þ H:c:; ð21Þ

L7=2�
RNω ¼ i

gð1ÞRNω

ð2MNÞ3
R̄μαβγνΓð�Þð∂α∂βωμνÞN

−
gð2ÞRNω

ð2MNÞ4
R̄μαβΓð�Þð∂α∂βωμνÞ∂νN

� gð3ÞRNω

ð2MNÞ4
R̄μαβΓð�Þð∂α∂β∂νω

μνÞN þ H:c:; ð22Þ

where ωμν ≡ ∂μων − ∂νωμ. The parameters gRNω, fRNω,

and gðiÞRNω (i ¼ 1, 2, 3) are fit parameters. We note that in
tree-level calculations such as the present one, the results
are only sensitive to the product of the electromagnetic and
hadronic couplings of the nucleon resonances.

B. Resonance propagators

For a spin-1=2 resonance propagator, we use the ansatz

S1=2ðpÞ ¼
i

=p −MR þ iΓ=2
; ð23Þ

where MR, Γ, and p are mass, width, and four-momentum
of the resonance R, respectively.
In accordance with Refs. [64–66], the following

prescriptions for the propagators of resonances with
spin-3=2, spin-5=2, and spin-7=2 are adopted in the
present work:

S3=2ðpÞ ¼
i

=p −MR þ iΓ=2

�
g̃μν þ

1

3
γ̃μγ̃ν

�
; ð24Þ

S5=2ðpÞ ¼
i

=p −MR þ iΓ=2

�
1

2
ðg̃μαg̃νβ þ g̃μβg̃ναÞ

−
1

5
g̃μνg̃αβ þ

1

10
ðg̃μαγ̃νγ̃β þ g̃μβγ̃νγ̃α

þ g̃ναγ̃μγ̃β þ g̃νβγ̃μγ̃αÞ
�
; ð25Þ
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S7=2ðpÞ ¼
i

=p −MR þ iΓ=2
1

36

X
PμPν

�
g̃μ1ν1 g̃μ2ν2 g̃μ3ν3

−
3

7
g̃μ1μ2 g̃ν1ν2 g̃μ3ν3 þ

3

7
γ̃μ1 γ̃ν1 g̃μ2ν2 g̃μ3ν3

−
3

35
γ̃μ1 γ̃ν1 g̃μ2μ3 g̃ν2ν3

�
; ð26Þ

where

g̃μν ¼ −gμν þ
pμpν

M2
R
; ð27Þ

γ̃μ ¼ γνg̃νμ ¼ −γμ þ
pμ=p

M2
R
; ð28Þ

and the summation over PμðPνÞ in Eq. (26) goes
over the 3! ¼ 6 possible permutations of the indices
μ1μ2μ3ðν1ν2ν3Þ.
The resonance width Γ appearing in the resonance

propagators given above is energy dependent. We account
for this dependence with an appropriate threshold behavior
in our formalism. Explicitly, we write the width Γ as a
function of W ¼ ffiffiffi

s
p

in the form of

ΓðWÞ ¼ ΓR

�XN
i¼i

βiΓ̂iðWÞ þ
XNγ

j¼1

γjΓγjðWÞ
�
; ð29Þ

where the sum over i accounts for decays of the resonance
into hadronic channels, and the sum over j accounts for
decays of the resonance into radiative channels. ΓR denotes
the total static resonance width at W ¼ MR. The factors βi
and γj are, respectively, the hadronic and radiative decay
branching ratios of the ith resonance satisfying

XN
i¼1

βi þ
XNγ

j¼1

γj ¼ 1: ð30Þ

Similar to Refs. [62,67], we parametrize the width
functions ΓiðWÞ and ΓγjðWÞ to provide the correct respec-
tive threshold behaviors. The details can be found
in Ref. [67].

C. Form factors

Each hadronic vertex obtained from the Lagrangians
given in the previous subsection is accompanied with a
phenomenological form factor to account for the composite
nature of the hadrons. Following Ref. [3], we take the form
factor for intermediate baryons as

fxðp2
xÞ ¼

�
Λ4
x

Λ4
x þ ðp2

x −M2
BÞ2

�
2

; ð31Þ

where px and MB denote the four-momentum and mass of
the intermediate baryon either in the s- or u-channel as
x ¼ s; u. The cutoff parameters Λx are treated as fit
parameters.
For the intermediate meson exchange, we take the form

factor as [3]

ftðq2MÞ ¼
�
Λ2
M −M2

M

Λ2
M − q2M

�
2

; ð32Þ

where qM andMM denote the four-momentum and mass of
the intermediate meson, respectively. The cutoff parameters
ΛM are treated as fit parameters.

D. Observables

We define a set of three mutually orthogonal unit vectors
fx̂; ŷ; ẑg in terms of the available momenta in the problem,
i.e., the incident photon momentum k and the outgoing
ω-meson momentum q,

ẑ≡ k
jkj ; ŷ≡ k × q

jk × qj ; x̂≡ ŷ × ẑ: ð33Þ

Here, the boldface indicates the respective three-
momentum.
In the γp → ωp center-of-mass (c.m.) frame, the invari-

ant reaction amplitude Mνμ, introduced in the previous
subsection [cf. Eq. (2)], can be expressed in the c.m.
helicity basis [68]

Tλωλf;λγλi ≡ hq; λω;pf; λfjMjk; λγ;pi; λii; ð34Þ

where λγ , λω, λi, and λf are the helicities of the proton,
vector meson, initial and final state nucleons, respectively.
The normalization of the above helicity amplitude is such
that it is related to the differential cross section by

dσ
dΩ

¼ 1

64π2s
jqj
jkj ×

1

4

X
λγλωλiλf

jTλωλf;λγλi j2: ð35Þ

Together with cross sections, spin-polarization observ-
ables connect experiment with theory. They can be directly
compared with theoretical calculations and hence give
access to information about the reaction dynamics. In this
work, we consider both the single and the double spin-
polarization observables involving the polarizations of the
photon beam, target nucleon, and recoil nucleon, in
addition to the ω-meson SDMEs with unpolarized target
and recoil nucleons.
Following Ref. [69], we introduce the notation

σðB; T;R;VÞ for the cross section dσ=dΩ where the
arguments ðB; T;R;VÞ denote the polarizations of the
photon beam (B), target proton (T), recoil proton (R),
and produced ω meson (V), respectively. With this nota-
tion, the unpolarized differential cross section is
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dσ
dΩ

¼ σðU;U;U;UÞ; ð36Þ

where U denotes the unpolarized spin state.
For the single-polarization observables, photon beam

asymmetry (Σ), target nucleon asymmetry (T), and recoil
nucleon asymmetry (P), we have

dσ
dΩ

Σ ¼ σð⊥; U;U;UÞ − σðk; U;U;UÞ; ð37Þ

dσ
dΩ

T ¼ σðU;⊥;U;UÞ − σðU; k;U;UÞ; ð38Þ

dσ
dΩ

P ¼ σðU;U;⊥; UÞ − σðU;U; k; UÞ; ð39Þ

where ⊥ðkÞ denotes the polarization state perpendicular
(parallel) to the reaction plane.
For the double-polarization observables, we have

dσ
dΩ

E ¼ 2½σðr;−z;U;UÞ − σðr;þz;U;UÞ�; ð40Þ

dσ
dΩ

G ¼ 2½σð⊥0;þz; U;UÞ − σð⊥0;−z; U;UÞ�; ð41Þ

dσ
dΩ

F ¼ 2½σðr;þx; U;UÞ − σðr;−x; U;UÞ�; ð42Þ

dσ
dΩ

H ¼ 2½σð⊥0;−x;U;UÞ − σð⊥0;þx;U;UÞ�; ð43Þ

where we label the helicity þ1 circular polarization
by r, and the helicity −1 circular polarization by l.
⊥0 (k0) stands for the polarization when the perpendicular
⊥ (parallel k) polarization is rotated clockwise about the
z axis by an angle ϕ ¼ π=4:� z (�x) indicates the
polarization in the �ẑ direction (�x̂ direction), respec-
tively. We note that the above definitions of the single- and
double-polarization observables coincide with those given
in Ref. [70], except for an overall minus sign in the E andG
observables.1

In Ref. [40], the CLAS Collaboration has measured the
beam-target asymmetry P0,

dσ
dΩ

P0 ¼ ½σð⊥;þy;U;UÞ − σð⊥;−y;U;UÞ
− σðk;þy;U;UÞ þ σðk;−y; U;UÞ�; ð44Þ

which is called P in Ref. [40] but is different from the
usually used one defined in Eq. (39) for the single spin

observable, recoil nucleon asymmetry (P).2 In the present
work, we shall use the symbol P0 instead of P for the beam-
target asymmetry observable defined in Eq. (44).
The SDMEs, as the interference between the indepen-

dent helicity amplitudes, can be measured in the final state
ω decay distribution. Explicitly, they are given by [41]

ρ0λωλ0ω ¼ 1

2N

X
λλλfλi

Tλωλf;λγλiT
�
λ0ωλf;λγλi

; ð45Þ

ρ1λωλ0ω ¼ 1

2N

X
λλλfλi

Tλωλf;−λγλiT
�
λ0ωλf;λγλi

; ð46Þ

ρ2λωλ0ω ¼ i
2N

X
λλλfλi

λγTλωλf;−λγλiT
�
λ0ωλf;λγλi

; ð47Þ

ρ3λωλ0ω ¼ 1

2N

X
λλλfλi

λγTλωλf;λγλiT
�
λ0ωλf;λγλi

: ð48Þ

Here λ0s denote the helicities of the respective particles
as given in Eq. (34), and N is the normalization factor
given by

N ≡ 1

2

X
λωλfλiλγ

jTλωλf;λγλi j2: ð49Þ

Because the particle’s decay distributions in general,
and the ω decay distribution in particular, are measured in
the decaying particle’s rest frame, the SDMEs are usually
presented also in this frame. More specifically, there
are three reference frames of common use, which differ
from each other by the choice in the quantization axis only.
In the helicity frame, the three mutually orthogonal axes are
given by

ẑ0 ≡ q
jqj ; ŷ0 ≡ k × q

jk × qj ; x̂0 ≡ ŷ0 × ẑ0: ð50Þ

In the Gottfried-Jackson frame, the choice of the orthogo-
nal axes is the same as that of Eq. (33). Thus this frame is
simply the c.m. frame boosted to the ω rest frame. In the
Adair frame, the ẑ0 axis equals the direction of the photon
momentum as measured in the c.m. frame. The three frames
defined above are related by a simple rotation about the ŷ0
axis. For a forward-produced ω meson, all three frames
coincide.

1Although different groups agree on the convention used for
single-polarization observables, for double-polarization observ-
ables this is not the case and care must be taken in comparing
these observables from different groups [71].

2Only for pseudoscalar meson photoproduction is the P0
defined in Eq. (44) the same as the recoil asymmetry P defined
in Eq. (39).
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III. NUMERICAL RESULTS AND DISCUSSIONS

High-precision experimental data for cross sections and a
number of spin observables in γp → ωp have been
reported by different groups (SAPHIR, CLAS, A2, and
CBELSA/TAPS). Some of the datasets from these groups,
however, are inconsistent with each other. This is the case,
e.g., with the cross section datasets. The SAPHIR [30],
CLAS [32], and A2 [35] Collaborations’ datasets are in
fairly good agreement overall with each other in the
overlapping energy regions but there are some noticeable
discrepancies, especially close to threshold energies, where
the SAPHIR and CLAS data are poorer than the A2 data.
The CBELSA/TAPS cross section data [33] show a clear
discrepancy (which increases with energy and becomes
clear for energies above W ∼ 2 GeV or so) with both the
SAPHIR and CLAS data. The SAPHIR data seem sys-
tematically lower than both the CLAS and CBELSA/TAPS
data for backward ω production angles. Despite a consid-
erable effort that has been made to resolve this issue, in
particular, between the CBELSA/TAPS and CLAS
Collaborations, where the discrepancy appears to be almost
a linear energy-dependent normalization factor, the nature
of the discrepancy remains unclear [33]. This situation
makes it difficult to include the datasets from these groups
in a single analysis. In particular, there is no valid reason to
discard any one of these datasets in favor of others. In the
present work, we chose to include in our analysis the CLAS
data only because they have, in addition to the differential
cross sections, the newest and largest number of indepen-
dent spin observables data with higher accuracies than
those from other groups. In addition to the differential cross
sections and SDMEs data [32], the CLAS Collaboration
has reported the newest data of Σ, T [39], E [38], and, just
recently, P0, F, H [40]; the data for T, P0, F, and H were
measured for the very first time to our knowledge. Later, we
consider the A2 and CBELSA/TAPS data separately.
The major objective of the present work is to extract the

information on the nucleon resonances involved in the
reaction γp → ωp based on an effective Lagrangian
approach as described in Sec. II. For this purpose, in
addition to the cross section data, we include all available
new data on spin observables as mentioned above to
constrain the model parameters. This is the main difference
that distinguishes the present work from earlier analyses.
We confine our analysis in the energy region from threshold
up to ∼2.25 GeV. The strategy employed in this work is to
consider a minimum number of resonances to achieve an
acceptable description of these data. We consider the
resonances listed in PDG [72] in the energy range of
W ¼ 1.7–2.0 GeV. Specifically, we find that the data can
be satisfactorily described by including the following set of
resonances: Nð1700Þ3=2−, Nð1720Þ3=2þ, Nð1860Þ5=2þ,
Nð1875Þ3=2−, Nð1895Þ1=2−, and Nð2060Þ5=2−, in addi-
tion to the subthreshold Nð1520Þ3=2−. We mention that we
have tried all other possible combinations of seven or fewer

resonances before arriving at our solution for the set of
resonances. Adding one more resonance to the achieved
solution will not improve the fitting quality considerably,
and we thus postpone such attempts until more spin
observable data become available.
The model parameters associated with resonance are the

resonancemassMR, total decaywidthΓR atW ¼ MR, decay
branching ratios βi, the electromagnetic and hadronic cou-

pling constants, gð1;2ÞRNγ , gRNω, fRNω, and g
ð1;2;3Þ
RNω , in addition to

the cutoff parameter ΛR in the form factor. They are free
parameters to be fitted to reproduce the considered data.
Whenever available, the dominant hadronic decay branching
ratios are taken from PDG [72]. We then introduce one
additional (effective) decay channel to satisfy the sum rule
given by Eq. (30). Of course, for resonances above the Nω
threshold, we have in addition the Nω branching ratio
which is determined from the corresponding fitted RNω
coupling constants. The radiative decay branching ratios
are also taken from PDG. In the present work we allow
both the electromagnetic and hadronic coupling constants
to be complex. With the observation that in our tree-level
effective Lagrangian approach, the results are sensitive
only to the product of the electromagnetic and hadronic
vertex functions, we introduce a common complex phase

eiϕR to the product of the coupling constants, gðiÞRNγg
ðjÞ
RNω, for

a given resonance R to account for the complex nature of
these coupling constants. All the parameters of the non-
resonant u-, t-, and (nucleon) s-channel amplitudes have
been calculated or fixed from independent sources as
described in Sec. II, except for the cutoff parameters in
the form factors, Λt, Λu, and Λs, which are treated as fit
parameters.
In Table I we list the decay channels and the correspond-

ing branching ratios we have considered for each of the
resonances. They are fixed to be the centroid values of the
dominant decay modes quoted in PDG [72], with few
exceptions. For the Nð1520Þ3=2− resonance, the centroid
value of the Nππ branching ratio quoted in PDG is
βNππ ¼ 0.30. However, we adopt the value of βNππ ≅
0.12 to satisfy the sum rule given by Eq. (30), as we
consider the Nππ decay mode as an effective mode to
account for those not included in the present model.
Likewise, for the other resonances, where the sum of the
centroid values of the corresponding branching ratios quoted
in PDG exceeds the sum rule, these centroid values, except
for the Nπ branching ratio, are reduced by a common factor
(for a given resonance) which is determined by the fit to the
data to fulfill the sum rule. We have checked that the
calculated results are not very sensitive to the particular
values used for the branching ratios in question of these
resonance decay modes. Since no information on the Nγ
branching ratio is given in PDG for the Nð1860Þ5=2þ
resonance, here it is simply taken to be βNγ ¼ 0.05.
For all the above-threshold resonances, theNω branching

ratios, βNω, are calculated from the corresponding fitted
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RNω coupling constants, gð1;2;3ÞRNω . They are also displayed in
Table I. For comparison, the ranges of the corresponding
values given in PDG [72] are also shown in square brackets.
We see that, overall, the extracted values of βNω are
consistent with those quoted in PDG. Our value for the
Nð1720Þ3=2þ resonance lays far outside the corresponding
range given in PDG. We can easily bring it within the
range given in PDG by tweaking the corresponding Nγ
branching ratio within its range as displayed in Table I with
no significant change in the results for the observables
considered. Indeed, if we take βNγ ¼ 0.05, we obtain
βNω ¼ 12.98� 0.02. In this case, the fitted Nð1720Þ3=2þ
mass and width turn out to be MR ¼ 1750� 2 MeV and
ΓR ¼ 140� 3, respectively.
Given the limitations involved in the extraction of the

branching ratios in tree-level type calculations as mentioned

earlier, the present results are quite reasonable estimations of
the Nω branching ratios. As has been pointed out, only the
products of the vertex functions are well defined in the
present-type calculations. Hence, one should take our values
for the βNω with a considerable grain of salt.
In Table II, we show the resulting fit values of

the product of the coupling constants, gðiÞRNγg
ðjÞ
RNω, and the

phase ϕR common to the displayed products of the coupling
constants for each resonance as explained previously. As
mentioned earlier, note that in a tree-level Lagrangian
approach, only the products of the vertex functions are
well constrained.
The Nð1520Þ3=2−, Nð1700Þ3=2−, and Nð1720Þ3=2þ

resonances have also been considered in Ref. [49] within an
effective Lagrangian approach in which the resonance
couplings are fixed from the empirical helicity amplitudes

TABLE I. The resonance decay channels and the corresponding branching ratios (in %) considered in the present model. Most of the
hadronic decay branching ratios in bold font denote the centroid values of the dominant decay modes quoted by PDG [72]. The
electromagnetic branching ratios have also been fixed at the centroid values quoted by PDG, except for the Nð1860Þ5=2þ resonance, of
which no information onNγ branching ratio is given by PDG. The other branching ratios in normal font are determined by the present fit
to the ω photoproduction data.

Nð1520Þ3=2− Nð1700Þ3=2− Nð1720Þ3=2þ Nð1860Þ5=2þ Nð1875Þ3=2− Nð1895Þ1=2− Nð2060Þ5=2−

Nπ 60 12 11 12 7 10 10
Nππ 11.58 19.31� 0.01 18.74� 0.02 0.00� 0.01 39.31� 0.01
Δπ 28 43 68 22 7
Nρ 23
Nη0 21
Nσ 41 45
Nη 23
ΛK 15
ΣK 11
Nð1440Þπ 7 9
Nð1520Þπ 15
Nð1680Þπ 15
Nω 14.97� 0.01 1.54� 0.01 28.21� 0.02 25.99� 0.01 19.97� 0.01 4.58� 0.01

[10–34] [12–40] [15–25] [16–40] [1–7]
Nγ 0.42 0.03 0.15 0.05 0.013 0.035 0.11

[0.31–0.52] [0.01–0.05] [0.05–0.25] [0.001–0.025] [0.01–0.06] [0.03–0.19]

TABLE II. Fitted values for the product of the coupling constants and the phase factor for each resonance. Here for resonances with
spin 1=2, gð1ÞRNω and gð2ÞRNω stand for gRNω and fRNω, respectively.

gð1ÞRNγ g
ð1Þ
RNω gð2ÞRNγ g

ð1Þ
RNω gð1ÞRNγ g

ð2Þ
RNω gð2ÞRNγ g

ð2Þ
RNω gð1ÞRNγ g

ð3Þ
RNω gð2ÞRNγ g

ð3Þ
RNω

ϕR=π

Nð1520Þ3=2− 162.35� 0.04 −175.17� 0.04 −342.93� 0.06 370.01� 0.17 8.19� 0.04 −8.84� 0.04 1.293� 0.001
Nð1700Þ3=2− 78.64� 0.25 −113.48� 0.40 −91.50� 0.38 132.03� 0.59 −24.11� 0.18 34.79� 0.27 0.042� 0.001
Nð1720Þ3=2þ −6.86� 0.01 7.44� 0.01 12.18� 0.01 −13.22� 0.01 −0.81� 0.01 0.87� 0.01 1.939� 0.001
Nð1860Þ5=2þ 147.21� 0.20 97.62� 0.17 −98.23� 0.21 −65.14� 0.05 75.00� 0.02 49.73� 0.16 0.113� 0.001
Nð1875Þ3=2− 15.18� 0.03 −13.59� 0.04 −21.02� 0.04 18.81� 0.05 −5.16� 0.01 4.62� 0.02 0.763� 0.001
Nð1895Þ1=2− 1.64� 0.01 −0.08� 0.01 1.432� 0.001
Nð2060Þ5=2− −14.63� 0.02 0.20� 0.03 143.06� 0.05 −1.92� 0.25 123.31� 0.04 −1.65� 0.21 0.142� 0.001
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together with the vector meson dominance assumption.

Note that only the terms with gð1ÞRNγ g
ð1Þ
RNω in the resonance

amplitudes have been considered in Ref. [49], and these
products turn out to be smaller than those obtained in the
present work. As a consequence, the Nð1520Þ3=2− reso-
nance, in particular, is not prominent in Ref. [49] in contrast
to the finding of this work. For the Nð1700Þ3=2− and
Nð1720Þ3=2þ resonances, their couplings in Ref. [49] are
fixed from the empirical helicity amplitudes quoted in the
PDG of 2001, and most of these values are about an order
of magnitude smaller than those in the PDG of 2018 [72].
In Table III, we show the resulting fit values for the

cutoff parameters Λt, Λs, and Λu of the form factors in
the t-, s-, and u-channel nonresonant amplitudes. Here
we note that the value of Λu ¼ 500 MeV entering in the
nucleon u-channel diagram may be too small to be realistic,

indicating that the nucleon current contribution is too large
and, therefore, a strong form factor is needed to suppress its
contribution. This feature has been observed also in the
earlier works [16,47,52]. In Ref. [52], where the analysis

TABLE III. Fitted values for the cutoff parameters Λt, Λs, and
Λu of the form factors in the t-, s-, and u-channel nonresonant
amplitudes.

Λt [MeV] Λs [MeV] Λu [MeV]

700� 6 1194� 16 500� 58

TABLE IV. Fit values for the resonances mass MR, width ΓR,
and cutoff parameter ΛR. The quantities in square brackets are the
quoted ranges in PDG [72]. The symbol * indicates the PDG
resonance rating.

Status MR [MeV] ΓR [MeV] ΛR [MeV]

Nð1520Þ3=2− **** 1508� 10 98� 9 1116� 7
[1510–1520] [100–120]

Nð1700Þ3=2− *** 1721� 1 295� 16 1200� 12
[1650–1800] [100–300]

Nð1720Þ3=2þ **** 1736� 2 140� 3 1650� 13
[1680–1750] [150–400]

Nð1860Þ5=2þ ** 1800� 3 201� 10 991� 18
Nð1875Þ3=2− *** 1943� 10 205� 4 1500� 32

[1850–1920] [120–250]
Nð1895Þ1=2− **** 1953� 3 272� 23 1500� 67

[1870–1920] [80–200]
Nð2060Þ5=2− *** 2030� 3 360� 23 1212� 38

[2030–2220] [300–450]
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FIG. 2. Differential cross section for γp → ωp as a function of cos θω in the center-of-mass frame at energy from the near threshold
region to 2.245 GeV. The numbers in parentheses denote the photon incident energy (left number) and the corresponding center-of-mass
energy of the system (right number), in MeV. Data are taken from the CLAS Collaboration [32].
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has been carried out within a coupled-channel approach,
instead of suppressing the too strong nucleonic current
contribution through a form factor, it has introduced a
fictitious heavier “omega” meson, ω0, with an adjustable
coupling constant. The NNω coupling constants, gNNω and
κω, are not yet well determined. An early account in
Ref. [73] reveals a broad range of values from g2NNω=4π ∼
8 to 35 for the vector coupling, and κω ∼ −0.16 to þ0.14
for the ratio of the tensor to vector coupling constants.
Janßen et al. [74] have shown that, once the contribution of
the correlated πρ exchange to the NN interaction is taken
into account explicitly, the large value of g2NNω=4π ≅ 20
required in the description of the NN scattering data
is reduced by about a factor of 2, leading to an NNω
coupling constant which is more in line with the value one
would obtain from the SU(3) symmetry considerations,
gNNω ¼ 3gNNρ ≈ 10. This reduces the range of gNNω con-
siderably. The value of gNNω ≈ 10, consistent with SU(3),
has been used in the analyses of the NN → NNω reaction
[73,75]. Also, the values of gNNω ¼ 7.0–10.5 and κω ≈ 0
were found to describe consistently the πN scattering and π
photoproduction processes [76]. Anyway, the problem of a
too strong nucleonic current, especially for the u-channel
contribution, is an open question and should be addressed

in future work. Here, together with the t-channel pion
exchange current, the nucleonic current has been introduced
merely to account for the nonresonant background ampli-
tude, since the focus of this work is to extract information on
the resonance content in the ω photoproduction reaction.
The fit results for the resonance massMR, total width ΓR

at W ¼ MR, and the cutoff parameter ΛR are given in
Table IV, together with the corresponding range of values
quoted in PDG [72] (in square brackets). Overall, our
extracted values of both MR and ΓR are consistent with
those quoted in PDG [72]. The extracted masses of the
Nð1875Þ3=2þ and Nð1895Þ1=2− resonances as well as the
total width of the latter are somewhat larger than those
in PDG.
In Figs. 2–9we show our numerical results for differential

cross section dσ=d cos θ, spin density matrix elements ρ000,
Reρ010, and ρ01−1, single polarization Σ and T, and beam-
target double polarization P0, E, F, and H, respectively,
together with the corresponding most recent experimental
data. Overall, the agreement of the model results with the
data is reasonable. In the differential cross sections, devia-
tions in the fit results are seen at the backward angles and low
energies. One also sees significant deviations in the descrip-
tion of the SDMEs by the present model, especially, Reρ010
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FIG. 3. Spin density matrix elements in the Adair frame for γp → ωp as a function of cos θω in the center-of-mass frame at energy
from the near threshold region to 2.245 GeV. The black squares denote ρ000, the red circles denote ρ01−1, and the blue crosses denote
Re ρ010, respectively. Numbers in parentheses are defined in the Fig. 2 caption. Data are taken from the CLAS Collaboration [32].
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for forward angles at higher energies and ρ000. Some
deviations are also observed in ρ01−1 at forward and back-
ward angles depending on the energy region. Except for E
andF, there are somedeviations for other spin observables at
the lowest energies. Also, there is a discrepancy in E for
forward angles at W ¼ 1898 MeV.

The chi squared per data points for different types of
observables are shown in Table V (row “Solution (Sol.) I,”
corresponding to the best fit results). We see that the
relatively large global χ2=N obtained arises, especially,
from the SDMEs ρ010; ρ

0
00, and ρ01−1, followed by the

differential cross section. This is caused by the very small
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the Fig. 2 caption. Data are taken from the CLAS Collaboration [40] (star), [37] (circle), CBELSA/TAPS Collaboration [54] (square),
and GRAAL Collaboration [36] (triangle). Only the data from Ref. [40] are included in the fit.
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statistical uncertainties in these data. Note that, here, no
systematic uncertainties are included.
When the systematic uncertainties are taken into

account in calculating χ2, the χ2=Ni values for dσ, ρ000,
ρ01−1, and Reρ010 are 1.4, 10.9, 16.6, and 21.6, respectively.
The χ2=Ni values for ρ000, ρ01−1, and Reρ010 are still
relatively large as both the statistical and systematic
uncertainties in these data are small. To illustrate the energy
dependence of χ2=Ni, the χ2=Ni versus the center-of-mass

energy of the systemW for i ¼ dσ, ρ000, ρ
0
1−1, and Reρ

0
10 are

shown in Fig. 10. As can be seen, the largest contribution to
χ2ρ10=Nρ10 comes, by far, from that corresponding to
W ¼ 1765 MeV, followed by those at W ¼ 1805 MeV
andW > 2000 MeV. To χ2ρ00=Nρ00 , the larger contributions
arise from those corresponding to energiesW ¼ 1765 MeV
and [1860–2065] MeV, whereas, to χ2ρ1−1=Nρ1−1 , the con-
tributions are rather constant as a function of energy. The
relatively large contribution to χ2=Ndσ arises not only from
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defined in the Fig. 2 caption. Data are taken from the CLAS Collaboration [40].
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that corresponding toW ¼ 1765 MeVbut also from those at
higher energies of W ≥ 2100 GeV. Note that χ2=Ndσ
increases with energy for W > 2000 GeV, indicating that
the present model may lack some reaction mechanism(s) at
these higher energies. A potential candidate may be the
Pomeron exchange. At the lowest energy, the agreement

with the cross section data can be improved if the finitewidth
of the ω meson is taken into account.
In Figs. 11 and 12, the theoretical differential cross

sections resulted from the fit to the CLAS data are
compared with the data from the A2 Collaboration [35]
and the data from the CBELSA/TAPS Collaboration [54],
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respectively. One sees significant deviations between
the theoretical results and the A2 data, especially, for
backward angles at lower energies. One also sees obvious
deviations between the theoretical results and the
CBELSA/TAPS data in the forward angle region at higher
energies. These deviations clearly indicate the discrepan-
cies among the data from the CLAS, A2, and CBELSA/
TAPS Collaborations as mentioned at the beginning of this
section. In Fig. 13, the theoretical results for the SDMEs
resulting from a fit to the CLAS data are compared with the
corresponding data from the CBELSA/TAPS Collaboration
[54]. Here, no obvious discrepancies are seen, mainly due
to the fact that the data from the CBELSA/TAPS
Collaboration have much larger error bars.

TABLE V. χ2i =Ni evaluated for a given type of observable specified by the index i ¼ dσ (differential cross section), ρ000, ρ
0
1−1, Reρ

0
10,

Σ, T, P0, E, F, andH. The last column corresponds to the global χ2=N, where N is the total number of data points including all the types
of observables considered. Row “Solution (Sol.) I” corresponds to the best fit results with the parameters presented in Tables I–IV. Row
“Sol. II” corresponds to the fit results with Λt ¼ 650 MeV. Row “Sol. III” corresponds to the same fit results as Sol. I, except for the
presence of the fit phase parameter φ (¼ 0.05π) in the complex exponential factor eiφ in the nonresonant amplitude.

χ2dσ=Ndσ χ2ρ00=Nρ00 χ2ρ1−1=Nρ1−1 χ2ρ10=Nρ10 χ2Σ=NΣ χ2T=NT χ2P0=NP0 χ2E=NE χ2F=NF χ2H=NH χ2=N

Ndσ ¼ 402 Nρ00 ¼ 402 Nρ1−1 ¼ 402 Nρ10 ¼ 402 NΣ ¼ 81 NT ¼ 95 NP0 ¼ 50 NE ¼ 88 NF ¼ 99 NH ¼ 50 N ¼ 2071

Sol. I 28.7 40.6 27.6 57.7 2.8 5.1 2.6 1.9 3.0 2.5 30.7
Sol. II 31.1 46.0 23.4 56.0 3.5 5.1 2.5 2.4 2.9 2.6 31.1
Sol. III 28.2 38.1 28.4 58.4 2.6 4.6 2.7 1.8 3.1 2.7 30.4

 0

 100

 200

 1.8  1.9  2  2.1  2.2  2.3

χ2  / 
N

W [GeV]

dσ/dcosθω

ρ0
00

ρ0
1-1

ρ0
10

FIG. 10. χ2=Ni versus the center-of-mass energy of the system
for i ¼ dσ, ρ000, ρ

0
1−1, and Reρ010.

 0.5

 1

 0.5

 1

 1.5

 0.5

 1

 1.5

 0.5

 1

 1.5

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1 -0.5  0  0.5  1 -0.5  0  0.5  1 -0.5  0  0.5  1

(1116, 1724) (1120, 1732) (1144, 1740) (1161, 1749)

(1176, 1757) (1190, 1764) (1206, 1773) (1221, 1781)

(1238, 1789) (1251, 1798) (1266, 1804) (1280, 1812)

(1294, 1819) (1310, 1827) (1325, 1835) (1340, 1842)

(1355, 1850) (1371, 1858) (1386, 1866) (1398, 1872)

cosθω

dσ
/d

Ω
 [μ

b/
sr

]

FIG. 11. Differential cross section for γp → ωp as a function of d cos θω compared to the data from the A2 Collaboration [35].
Numbers in parentheses are defined in the Fig. 2 caption. These data are not included in the fit.

NUCLEON RESONANCES IN γp → ωp… PHYS. REV. D 100, 114026 (2019)

114026-15



The prediction of the total cross section from the present
model is shown in Fig. 14. There, the solid curve
corresponds to theoretical total cross sections obtained
by integrating the corresponding differential cross sections
as shown in Fig. 2. The dotted and dashed curves represent
the contributions from the t-channel π exchange and the
s-channel resonance exchanges, respectively. We see that
the contribution from the π exchange is significant in the
whole energy region considered and it becomes dominant
for energies above W ∼ 1.9 GeV. The contributions from
the resonances are also significant. In Fig. 14 we also
display the available total cross section data. The stars and
open squares correspond to the data from the SAPHIR
Collaboration [30] and the A2 Collaboration [35], respec-
tively. The crosses represent the CBELSA/TAPS data. Here

we see clearly the currently existing consistencies/incon-
sistencies among these data. Because of the limited angular
acceptance of the CLAS detector, no total cross section data
exist from this collaboration. However, the solid curve
gives some idea on where the corresponding data might lay.
In Fig. 15, we show the total cross sections stemming

from the contributions of individual resonances. One sees
that the energy region close to threshold is dominated by
the Nð1520Þ3=2− resonance which causes a sharp rise of
the cross section from the threshold and peaks around
W ∼ 1.8 GeV. The next strongest contribution is due to the
Nð1700Þ3=2− resonance, followed by the Nð1860Þ5=2þ
and Nð1720Þ3=2þ resonances. Both the Nð1700Þ3=2− and
Nð1720Þ3=2þ exhibit a rather broad contribution, while
the Nð1860Þ5=2þ resonance contribution peaks around
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W ∼ 1.85 GeV. Note that the nominal Nω threshold is
Wthres ≅ 1721 MeV. The higher mass resonances,
Nð1875Þ3=2− and Nð1895Þ1=2−, become relevant for
energies above W ∼ 1.9 GeV, and the Nð2060Þ5=2− res-
onance, above W ∼ 2 GeV.
In order to gain some insight on how well the considered

CLAS data constrain the background and resonance con-
tributions, we make a comparison of the present model

results shown in Figs. 2–9, 14, and 15 with other fit
results that have a little worse but comparable fit quality
and have a reduced background contribution. This is
achieved by reducing the π exchange contribution—by
far the dominant nonresonant background contribution—
through the reduced cutoff parameter Λt (the only free
parameter in the π exchange contribution) from Λt ¼
700 MeV to Λt ¼ 650 MeV. The corresponding total cross
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section results are shown in Fig. 16. Comparing with the
results from the best fit with Λt ¼ 700 MeV as shown in
Figs. 14 and 15, we see that the reduction in the background
contribution can be compensated by the enhancement in the
resonance contribution and still achieve a reasonable fit
quality of the considered data (cf. the upper panel in
Fig. 16). We also see that, although the resonance content
remains the same, the relative contribution of the individual
resonances changes (cf. the lower panel in Fig. 16).
The chi squared per data points for different types of

observables corresponding to the fit results with Λt ¼
650 MeV are shown in Table V (row “Sol. II”) which
also give an idea of the comparable fit quality to that of the best fit results with Λt ¼ 700 MeV corresponding to

“Sol. I” in Table V.
In a full reaction amplitude, both the resonant and the

nonresonant background amplitudes are, in general, com-
plex. The complex nature of the amplitude is crucial for
describing certain spin observables in particular. In the
present model, the nonresonant amplitude is purely real.
A rough estimate of the relevance/irrelevance of the
complex nature of the nonresonant amplitude may be
obtained by introducing a complex phase factor eiϕNR in
our real nonresonant amplitude. Of course, the complex
structure of the reaction amplitude is intimately related to
the property of unitarity of the full reaction amplitude. In
other words, unitarity should, in principle, dictate the
complex phases.3 We have then repeated the fit of the
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CLAS data as has been done to obtain the fit results
corresponding to Sol. I in Table V with the phase ϕNR as an
extra fit parameter. The results obtained for χ2i =Ni for the
individual independent observables i are shown in Table V
(row “Sol. III”). Comparing with the results of row Sol. I,
we see that this can influence the fit quality of certain spin
observables by as much as ∼10%.
We now turn our attention to the analysis of the A2 [35]

and CBELSA/TAPS [33] data to see how they influence the
extracted resonance content compared to the CLAS data.
Recall that there are some inconsistencies in the cross
section of both the A2 and CBELSA/TAPS data with the
corresponding CLAS data as discussed at the beginning of
this section. For the analysis of the A2 data, we have simply
replaced the CLAS differential cross section data by the
corresponding A2 data in the overlapping energy region.
Everything else is kept as in the analysis of the CLAS data
presented above. For the analysis of the CBELSA/TAPS
data, we consider the differential cross section and SDMEs
ρ000, Reρ

0
10, ρ

0
1−1 [33], the spin observables Σ [31], E, and G

[34]. For the A2 Collaboration data shown in Fig. 11 with

300 data points and CBELSA/TAPS Collaboration data
shown in Fig. 12 with 648 data points, the χ2dσ=Ndσ are 3.3
and 2.6, respectively. The total cross section results
from the fits to the A2 and the CBELSA/TAPS data as
explained above are shown in Fig. 17. A comparison of
Figs. 14 and 15 with the upper panel of Fig. 17 reveals how
the use of the A2 differential cross section data instead of
the corresponding CLAS data in the resonance extrac-
tion affects the results. We see that the resonances
required to reproduce the data from both groups remain
unchanged, but the relative contribution of these resonances
changes, in particular, of the resonances Nð1520Þ3=2− and
Nð1860Þ5=2þ. Comparing Figs. 14 and 15 with the lower
panel of Fig. 17, we also see a different relative contribution
of the resonances between the CLAS and CBELSA/TAPS
data. Note in particular that at least an extra higher mass
resonance—here, Nð2120Þ3=2−—is required to repro-
duced the CBELSA/TAPS differential cross section data
for energies W > 2 GeV in contrast to the analysis of the
CLAS data.

IV. SUMMARY AND CONCLUSION

Quite recently, the CLAS Collaboration has reported the
newest high-precision data on the spin observables E [38]
as well as Σ, T [39], and P0, F, H [40] for the γp → ωp
photoproduction reaction. The data for the latter four
observables, T, P0, F, and H, were measured for the very
first time.
In this work, we have performed for the γp → ωp

reaction a theoretical analysis of the recently published
high-precision data on spin observables Σ, T, P0, E, F, and
H [38–40] together with the previously published high-
precision data on differential cross sections and SDMEs
ρ000, ρ

0
1−1, Reρ

0
10 [32] from the CLAS Collaboration within

an effective Lagrangian approach. Part of the results for the
double polarization observables P0, F, and H have been
published together with the experimental data in Ref. [40].
Here we have reported the details of our investigations,
showing, in particular, the results for Σ, T, E, dσ=dΩ,
and SDMEs.
In the present work, the reaction amplitudes were

constructed by considering the t-channel π and η
exchanges, the s-channel nucleon and nucleon resonances
exchanges, the u-channel nucleon exchange, and the
generalized contact current. The generalized contact current
is formulated in such a way that the full photoproduction
amplitudes satisfy the generalized Ward-Takahashi identity
and thus are fully gauge invariant. The s-channel nucleon
resonances were introduced as few as possible to get a
satisfactory description of the data.
It has been shown that all the available data from the

CLAS Collaboration can be satisfactorily described by con-
sidering the Nð1520Þ3=2−, Nð1700Þ3=2−, Nð1720Þ3=2þ,
Nð1860Þ5=2þ, Nð1875Þ3=2−, Nð1895Þ1=2−, and
Nð2060Þ5=2− resonances in the s-channel apart from the
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and 15. Note that the fit results of the CBELSA data contain an
extra resonance, Nð2120Þ3=2− (the orange dotted line) compared
to the fit results of the CLAS and A2 data.
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nonresonant contributions. The masses and widths for these
resonances have been extracted and compared with those
quoted by PDG [72]. They are in good agreement overall.
Although a proper extraction of the branching ratios
requires a coupled-channel approach, we have also esti-
mated these quantities within the present model. The
contributions from the individual terms of the reaction
amplitudes to the total cross sections have been analyzed.
The t-channel π exchange is found to dominate the back-
ground contribution, and the contributions from the
nucleon resonances were also found to be significant to
the cross sections. The effects of the data from the A2,
GRALL, SAPHIR, and CBELSA/TAPS Collaborations to

the resonance content extracted from the CLAS data for this
reaction have been discussed.
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