
 

Heavy quark diffusion in a Polyakov loop plasma

Balbeer Singh,1,2 Aman Abhishek,1,2 Santosh K. Das,3 and Hiranmaya Mishra1
1Theory Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

2Indian Institute of Technology Gandhinagar, Gandhinagar 382 355, Gujarat, India
3School of Physical Sciences, Indian Institute of Technology Goa, Ponda-403401, Goa, India

(Received 10 January 2019; revised manuscript received 30 May 2019; published 11 December 2019)

We calculate the transport coefficients, drag, and momentum diffusion of a heavy quark in a thermalized
plasma of light quarks in the background of a Polyakov loop. The quark thermal mass and the gluon Debye
mass are calculated in a nontrivial Polyakov loop background. The constituent quark masses and the
Polyakov loop are estimated within a Polyakov loop quark-meson (PQM) model. The relevant scattering
amplitudes for heavy quarks and light partons in the background of a Polyakov loop have been estimated
within the matrix model. We have also compared the results with the Polyakov loop parameter estimated
from lattice QCD simulations. We have studied the temperature and momentum dependence of heavy
quark drag and diffusion coefficients. It is observed that the temperature dependence of the drag coefficient
is quite weak, which may play a key role in understanding heavy quark observables at Relativistic Heavy
Ion Collider and Large Hadron Collider energies.
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I. INTRODUCTION

Experimental heavy ion collision (HIC) programs at
the Relativistic Heavy Ion Collider (RHIC) and at the
Large Hadron Collider (LHC) indicate the production of a
liquidlike phase of matter, having a remarkably small ratio
of shear viscosity to entropy density, η=s ≈ 0.1, where the
properties of the system are governed by quarks and
gluons. Such a state of matter is known as quark-gluon
plasma (QGP) [1,2]. To characterize the properties of QGP,
penetrating and well-calibrated probes are essential. In this
context, the heavy quarks (HQs) [3–9], mainly charm and
bottom, play a crucial role, since they do not constitute
the bulk part of the matter owing to their larger mass
compared to the temperature created in heavy ion colli-
sions. Also, thermal production of heavy quarks is negli-
gible, due to their large masses, in the QGP within the range
of temperatures that can be achieved at RHIC and LHC
colliding energies.
Heavy quarks are exclusively created in hard processes

which can be handled by perturbative QCD calculations
[10], and therefore their initial distribution is theoretically
known and can be verified by experiment. They interact
with the plasma constituents, the light quarks, and the
gluons, but their initial spectrum is too hard to come

to equilibrium with the medium. Therefore, the high-
momentum heavy quark spectrum carries the information
of their interaction with the plasma particles during the
expansion of the hot and dense fireball and on the plasma
properties. Since the light quark, antiquark, and gluons are
thermalized, the heavy quark interaction with the light
constituents leads to a Brownian motion which can be
treated with the framework of a Fokker-Planck equation.
Thus, the interaction of the heavy quark in QGP is
contained in the drag and diffusion coefficients of the
heavy quark. The resulting momentum distribution of the
heavy mesons, which depends upon the drag and diffusion
coefficients, gets reflected in the nuclear modification
factor (RAA), which is measured experimentally.
Initially, pQCD predicted a small nuclear suppression

factor [11,12], RAA, in nucleus-nucleus collisions in com-
parison with the proton-proton collisions. The first exper-
imental data [13–15] on heavy quarks suggest a strong
nuclear suppression factor which cannot be explained
within the pQCD framework. Several attempts [16–33]
have been made by different groups to study the heavy
quark interaction in QGP, going beyond pQCD to include
the nonperturbative effects. Quasiparticle models enjoy
considerable success in describing heavy quark dynamics
in QGP [20,24].
In the present study, we are making a first attempt to

study heavy quark transport coefficients in QGP including
the nonperturbative effects through a background gauge
field (the Polyakov loop background) and chiral conden-
sate. The Polyakov loop manifests itself in the transport
coefficient in two ways. First, it is seen through the Debye
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mass that enters when calculating the scattering of the
heavy quark off of light thermal partons. It also enters
nontrivially in the statistical distribution of the light partons
in a nonperturbative medium. Indeed, both of the effects
arising from the Polyakov loop and quark condensate are
important near the transition temperature. The value of the
normalized Polyakov loop is about half its asymptotic value
at the critical temperature in different low-energy effective
models like Polyakov Nambu–Jona-Lasinio (PNJL) mod-
els [34–36] or Polyakov quark-meson (PQM) [37–42]
models. Similarly, the chiral condensate remains signifi-
cantly finite at temperatures around the critical temperature.
Effects of the Polyakov loop have been studied in various
contexts such as dilepton and photon production [43] and
heavy quark energy loss [44]. Significant effects have been
found by including these nonperturbative features. To
estimate the quark masses and the Debye mass, we there-
fore need the value of the Polyakov loop as a function of
temperature. We do so in two different approaches. One is
phenomenological in the sense that we take the Polyakov
loop value as a function of temperature from the PQM
model. The other approach is to take the same from lattice
QCD simulations.
This paper is organized as follows: In Sec. II, we give the

formalism for calculating the drag and diffusion of heavy
quarks by employing the Boltzmann equation in soft
momentum exchange between heavy quarks and the bulk
medium [45]. In Sec. III, we recapitulate and summarize
the calculation of the Debye mass and the quark thermal
mass in a Polyakov loop background, as has been outlined
in Refs. [43,46]. In these calculations, we have also kept the
effects of a possible finite quark mass. Such an effect can be
important near the transition temperature, where the light
quark condensates could still be relevant. The drag and the
diffusion coefficients are evaluated in Sec. IV, where we
discuss their behavior as a function of temperature as well
as momentum. Finally, in Sec. V, we summarize the results
and present a possible outlook. We summarize the salient
features of the PQM model in Appendix A. Further, in
Appendix B, we give some details of the calculation for the
square of matrix elements for the relevant 2 → 2 processes.

II. FORMALISM

In the QGP phase, the Boltzmann equation for the charm
quark distribution function, neglecting any mean-field
term, can be written as [45,47]

∂fHQ

∂t ¼
�∂fHQ

∂t
�
col
; ð1Þ

where fHQ represents the spatially integrated nonequili-
brium distribution function for the heavy quark. The right-
hand side of Eq. (1) is the collision integral, where the
phase-space distribution function of the bulk medium
appears as an integrated quantity. If we define ωðp;kÞ

as the transition rate of collisions of the heavy quark with
the heat bath particles (light quarks/antiquarks and gluons)
that change the heavy quark momentum from p to p − k,
then we can write [45]

�∂fHQ

∂t
�
col

¼
Z

d3k½ωðpþ k;kÞfHQðpþ kÞ

− ωðp;kÞfHQðpÞ�: ð2Þ

The first term in the integrand represents a gain of pro-
bability through collisions which knock the charm
quark into the volume element of momentum space at p,
and the second term represents the loss out of that
volume element. ωðp;kÞ is the total contribution coming
from heavy quark scattering from gluons and light
quarks/antiquarks. Furthermore, assuming the scattering
processes to be dominated by small momentum transfer, we
can expand ωðpþ k;kÞfHQðpþ kÞ around k:

ωðpþ k;kÞfHQðpþ kÞ

≈ ωðp;kÞfHQðpÞ þ k ·
∂
∂p ðωfHQðpÞÞ

þ 1

2
kikj

∂2

∂pi∂pj
ðωfHQðpÞÞ: ð3Þ

The higher powers of the momentum transfer, ki’s, are
assumed to be small [48]. Keeping up to the second term
and substituting in Eq. (2), we get

�∂fHQ

∂t
�
col

¼ ∂
∂pi

�
AiðpÞfHQ þ ∂

∂pj
½BijðpÞfHQ�

�
: ð4Þ

Now Eq. (1) is reduced to the Fokker-Planck equation,
where the kernels

Ai ¼
Z

dkωðp;kÞki;

Bij ¼
Z

dkωðp;kÞkikj ð5Þ

stand for the drag and the diffusion coefficients, respec-
tively. The function ωðp;kÞ is given by

ωðp;kÞ ¼ gq;g

Z
dq

ð2πÞ3 flðqÞvσp;q→p−k;qþk; ð6Þ

where flðqÞ is the thermal phase-space distribution of the
particles which constitute the heat bath, which in the
present case stands for light quarks/antiquarks and gluons;
v ¼ jvp − vqj is the relative velocity between the two
collision partners; σ denotes the interaction cross section;
and gq=g is the statistical degeneracy factor for light quarks/
antiquarks and gluons.
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In particular, Ai and Bij, for the (generic) process
HQðpÞ þ lðqÞ → HQðp0Þ þ lðq0Þ (where l stands for light
quarks and gluons), are given by [45,49–51]

Ai ¼
1

2Ep

Z
dq

ð2πÞ3Eq

Z
dp0

ð2πÞ3E0
p

Z
dq0

ð2πÞ3E0
q

×
1

gHQ

X
jMj2ð2πÞ4δ4ðpþ q − p0 − q0ÞflðqÞ

× ð1� flðq0ÞÞ½ðp − p0Þi�≡ ⟪ðp − p0Þ⟫; ð7Þ

where gHQ is the statistical degeneracy of the charm
quark. The factor flðqÞ denotes the thermal phase-space
factor for the gluons and light quarks/antiquarks in the
incident channel, and 1� flðq0Þ is the final-state Bose/
Fermi enhanced/suppression phase-space factor. The above
expression indicates that the drag coefficient is a measure of
the thermal average of the momentum transfer, p − p0,
weighted by the elastic heavy quark bulk interaction
through the square of the invariant amplitude, jMj2.
Similarly, heavy quark diffusion coefficients can be

defined as

Bij ¼
1

2Ep

Z
dq

ð2πÞ3Eq

Z
dp0

ð2πÞ3E0
p

Z
dq0

ð2πÞ3E0
q

×
1

gHQ

X
jMj2ð2πÞ4δ4ðpþ q − p0 − q0ÞflðqÞ

× ð1� flðq0ÞÞ
�
1

2
ðp − p0Þiðp − p0Þj

�

≡ ⟪ðp − p0Þiðp − p0Þj⟫: ð8Þ

From the above expression, it is clear that the diffusion
coefficient is a measure of the thermal average of the square
of momentum transfer weighted by the elastic heavy quark
bulk interaction through the square of the invariant ampli-
tude, jMj2. Since Ai and Bij depend only on the vector p,
we may write [45]

Ai ¼ piA; ð9Þ

Bij ¼
�
δij −

pipj

p2

�
B0 þ

pipj

p2
B1; ð10Þ

where

A ¼ piAi=p2 ¼ ⟪1⟫ −
⟪p:p0⟫
p2 ; ð11Þ

B0 ¼
1

2

�
δij −

pipj

2p2

�
Bij ¼

1

4

�
⟪p02⟫ −

⟪ðp:p0Þ2⟫
p2

�
; ð12Þ

B1¼
pipj

p2
Bij¼

1

2

�
⟪ðp:p0Þ2⟫

p2
−2⟪p:p0⟫þp2⟪1⟫

�
: ð13Þ

The integrals appearing in the above equations can be
further simplified by solving the kinematics in the center-
of-mass frame of the colliding particles, and both the drag
and diffusion coefficients can be defined from a single
expression:

⟪Γðp0Þ⟫ ¼ 1

512π4
1

Ep

Z
∞

0

Z
1

−1
dðcos θcmÞ

×
Z

2π

0

dϕcm
q2dqdðcos χÞ

Eq
fðqÞð1� fðq0ÞÞ

×
λ
1
2ðs;m2

C;m
2
qÞffiffiffi

s
p 1

gHQ

X
jMj2Γðp0Þ; ð14Þ

with an appropriate choice of Γðp0Þ. As in Ref. [45], we
shall consider 2 → 2 processes, which involve Coulomb
scattering, i.e., qQ → qQ, through gluon exchange and
Compton scattering of gluons and heavy quarks, i.e.,
gQ → gQ. In the present work, we shall estimate the
scattering amplitudes in the background of a Polyakov
loop. This makes the square of the corresponding matrix
element as well as the distribution function dependent on
the color indices [see, e.g., Eqs. (19) and (20)]. Therefore,
the expression for ⟪Γðp0Þ⟫ becomes

⟪Γðp0Þ⟫¼ 1

512π4
1

Ep

Z
∞

0

Z
1

−1
dðcosθcmÞ

×
Z

2π

0

dϕcm
q2dqdðcosχÞ

Eq

λ
1
2ðs;m2

C;m
2
qÞffiffiffi

s
p 1

gHQ

×

�X
abef

fðqÞeð1− fðq0ÞfÞjMCj2abef

þ
X

abefgh

fðqÞefð1þ fðq0ÞghÞjMCmj2abefgh
�
Γðp0Þ;

ð15Þ

where jMCj2abef is the matrix element squared for qaQb →

qeQf, with ab ðefÞ as the initial (final) quark color indices;
and jMCmj2abefgh is the matrix element squared for
gefQb → gghQa scatterings, with ef; a ðgh; bÞ as the initial
(final) gluon and quark color indices. Here the color indices
a; b; e; f; g; h ¼ 1; 2; 3 are in the fundamental representa-
tion. Furthermore, in Eq. (15), λðx; y; zÞ ¼ x2 þ y2 þ z2 −
2xy − 2yz − 2zx is the triangular function. Ep and mC are
the heavy quark energy and mass, respectively. Eq is the
energy of the light quark/gluon. s is the Mandelstam vari-
able. To compute the heavy quark transport coefficient, one
needs, therefore, the heavy quark–light quark/gluon scat-
tering matrix along with the thermal distribution functions,
the masses of light quarks and gluons, and the Debye
screening mass. The divergence in the t-channel diagram
here is regulated by a Debye mass [45].
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In the literature, several attempts have been made over
the years to compute the heavy quark drag and diffusion
coefficients in QGP within different models. A recent study
indicates that nonperturbative contributions are essential
for the simultaneous description of heavy quarks RAA and
v2 [20]. The quasiparticle model is a way to take into
account the nonperturbative effect. This can be done in a
number of possible ways, which differ in how the effects of
QCD interactions are modeled. To study the heavy quark
transport properties in QGP, the quasiparticle approaches
[20,24] that have been recently used in the literature include
the interaction in the effective masses of the light quark and
gluons. In these quasiparticle models, the strong coupling
constant [52], gðTÞ, is the only free parameter which can be
obtained by making a fit of the energy density obtained by
lattice QCD calculations. The main feature of the quasi-
particle approach is that the resulting coupling is signifi-
cantly stronger than the one obtained from the pQCD
running coupling, particularly near the quark-hadron tran-
sition temperature (Tc). In this present study, we adopted a
different model to include the nonperturbative effects. The
statistical distribution function, thermal mass, and Debye
mass have been obtained in the presence of a nontrivial
Polyakov loop background. In the following section, we
attempt to estimate the quark thermal mass and the Debye
mass in a Polyakov loop background.

III. THERMAL AND DEBYE MASSES IN A
POLYAKOV LOOP BACKGROUND

In this section, we shall estimate the nonperturbative
Debye screening mass and quark thermal mass in a non-
trivial Polyakov loop background to be used in the
estimation of the drag and diffusion coefficients using
Eqs. (11) and (12). Such a calculation has been performed
in detail in Refs. [43,44,46,53] using a matrix model for
semi-QGP, and it has been used for estimating the ratio of
shear viscosity to entropy, as well as to dilepton and photon
production, and to the energy loss of heavy quarks in the
medium. We recapitulate the salient features of such a
calculation, including also the possible effects from a finite
mass of the light quarks which can arise from a non-
vanishing scalar quark/antiquark condensate.
The Polyakov loop is a particular case of the Wilson

loop where the gluon field is timelike. The background
gauge field can be taken as a constant diagonal matrix
Aab
μ ¼ δμ0δ

abQa=g, where the color index a is not summed
and g is the gauge field coupling constant. The Wilson line
in the temporal direction is given by

P ¼ P exp

�
ig
Z

β

0

dτA0ðx0;xÞ
�
; ð16Þ

where P denotes path ordering in imaginary time, with τ
being the imaginary time τ∶0 → β. In the mean-field
level, neglecting the fluctuations, and with the choice of

the time-independent constant background field, the
path ordering becomes irrelevant, and one can perform
the integration over imaginary time, leading to P ¼
expðigβA0Þ. The trace of the Wilson line is the Polyakov
loop ϕ, given as

ϕðQÞ ¼ 1

3

X3
a¼1

expðiβQaÞ: ð17Þ

In a SUðNÞ gauge group, the vector potential A0 is
traceless, so the sum over all the Q’s vanishes i.e.,P

a Q
a ¼ 0; for SUð3Þ, one can parametrize Qa ¼

2πTð−q; 0; qÞ, where we have introduced a dimensionless
Polyakov-loop-dependent parameter “q” [44], so that

ϕ ¼ 1

3
ð1þ 2 cos 2πqÞ: ð18Þ

Physically, such a nontrivial background field A0 can be
thought of as an imaginary chemical potential [54]. The
thermal distribution functions for the quarks/antiquarks and
the gluons are given, respectively, by [43]

faðEÞ ¼
1

eβðE−iQaÞ þ 1
; f̃aðEÞ ¼

1

eβðEþiQaÞ þ 1
; ð19Þ

fabðEÞ ¼
1

eβðE−iðQa−QbÞÞ − 1
: ð20Þ

Let us note that the quark distribution function involves
only one color index because these are represented in
fundamental representation. For gluons, the adjoint repre-
sentation leads to two fundamental indices. For three
colors, the color-averaged statistical distribution function
of the gluons becomes

fgðEÞ ¼
1

32

X3
a;b¼1

fabðEÞ

¼ 1

9

�
3

eβE − 1
þ eβEð6ϕ − 2Þ − 4

1þ e2βE þ eβEð1 − 3ϕÞ

þ eβEð9ϕ2 − 6ϕ − 1Þ − 2

1þ e2βE þ eβEð1þ 6ϕ − 9ϕ2Þ
�
: ð21Þ

A comment regarding the color-dependent distribu-
tion function may be in order. Let us note that, for the
color-dependent gluon distribution functions, the diagonal
ones i.e., f11ðEÞ, f22ðEÞ, f33ðEÞ are real, while the off-
diagonal ones i.e., fijðEÞ and fjiðEÞ are complex con-
jugates of each other. When the color sum is performed, the
imaginary parts always cancel out, leading to the sum to be
real. This cancellation of imaginary parts also always
occurs for transport coefficients even with the color-
dependent masses and leads to transport coefficients that
are always real. The color-averaged distribution functions
of the quark/antiquark are
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fq=q̄ðEÞ ¼
1

3

X3
a¼1

faðEÞ ¼
1

3

X3
a¼1

f̃aðEÞ

¼ ϕe−βE þ 2ϕe−2βE þ e−3βE

1þ 3ϕe−βE þ 3ϕe−2βE þ e−3βE
: ð22Þ

Similar to the color-averaged distribution function fgðEÞ,
the color-averaged distribution function of the quark is real
due to the cancellation of the imaginary parts of f1ðEÞ and
f3ðEÞ. It may be noted that for the pure gluon case, ϕ ¼ 1
in the confined phase and ϕ ¼ 0 in the deconfined phase.
This leads to the gluon distribution function

fgðEÞ ¼
1

e3βE − 1
ð23Þ

in the confined phase and

fgðEÞ ¼
1

eβE − 1
ð24Þ

in the deconfined phase. In the presence of quarks, one
does not have a rigorous order parameter for deconfi-
nement; however, in the ϕ ¼ 0 case the color-averaged
quark/antiquark distribution reduces to

fq=q̄ðEÞ ¼
1

e3βE þ 1
ð25Þ

so that quarks are suppressed statistically. In the perturba-
tive limit i.e., ϕ ¼ 1 it becomes

fq=q̄ðEÞ ¼
1

eβE þ 1
: ð26Þ

The color-averaged distribution function of quarks/
antiquarks as given in Eq. (22) is exactly the same as that
in the PQM model within mean field approximation [42].
For the computation of Debye and thermal mass, we use
double-line notation [55,56], which is convenient for large-
Nc calculations. For the SUðNÞ gauge group, the generators
λA satisfy the following relation [46]:

TrðλAλBÞ ¼ 1

2
δAB; ð27Þ

where A and B are adjoint indices and take the values
A;B ¼ 1; 2; 3;…; N2 − 1. Each adjoint index can be
denoted by a pair of fundamental indices. For double-line
notation, the quantity that we need here is the projection
operator; with adjoint indices it is written as

Pkl
mn ¼ δkmδ

l
n −

1

N
δklδmn: ð28Þ

In the calculation of quark and gluon self-energies,
one needs the vertices for quark-antiquark-gluon (qq̄g)

interaction, which is proportional to the generators. In the
double-line notation, the generators in the fundamental
representation are written as

tabcd ¼ 1ffiffiffi
2

p Pab
cd: ð29Þ

Here the upper pair ab denotes the adjoint index, while the
lower pair cd denotes the components of this matrix in the
fundamental representation. Similarly, the triple-gluon
vertex is proportional to structure constants which in the
double-line notation can be written as

fðkl;mn;abÞ ¼ iffiffiffi
2

p ðδknδmbδal − δkbδmlδanÞ: ð30Þ

A. Quark loop contribution to Debye mass

Generally, Debye mass (mD) is defined through the pole
of the effective propagator in the static limit i.e., ω ¼ 0,
p → 0 and is related to the timelike component of gluon
self-energy,Π44ðω ¼ 0; p → 0Þ [57]. It turns out that, in the
presence of a static background field, apart from the usual
T2-dependent term similar to that in perturbative HTL
calculations, there is an additional T3-dependent contribu-
tion to the gluon self-energy. The latter component arises
because the background field induces a color current which
couples to the gluon. While the T2-dependent term inΠμν is
transverse [i.e., PμΠμνðPÞ ¼ 0], the T3-dependent term
is not, and it spoils the transversality relation which is
required for the gauge invariance. Therefore, one needs an
additional contribution which may be of nonperturbative
origin to the gluon self-energy to cancel such a term.
Similar to Ref. [53], we assume that such a term exists and
cancels this undesirable T3 term. Under these assumptions,
the Polyakov-loop-dependent resummed propagator can be
written as [53]

Dμν; abcd ¼ PL
μν

k2

K2
DL

abcdðKÞ þ PT
μνDT

abcdðKÞ; ð31Þ

where PT
μν ¼ gμið−gij− kikj

K2 Þgjν and PL
μν ¼−gμνþ kμkν

K2 −PT
μν,

respectively, are the longitudinal and the transverse pro-
jection operators and are defined as

DL
μν;abcdðKÞ ¼

�
i

K2 − F

�
abcd

; ð32Þ

DT
μν;abcdðKÞ ¼

�
i

K2 −G

�
abcd

; ð33Þ

where

F ¼ −2m2

�
1 −

x
2
ln

�
xþ 1

x − 1

��
; ð34Þ
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G ¼ m2

�
x2 þ xð1 − x2Þ

2
ln

�
xþ 1

x − 1

��
; ð35Þ

where x ¼ k0
k and m2 ¼ ðm2Þabcd is the thermal mass of the

gluon. Under the assumptions taken here, it is clear that the
pole (F) of the longitudinal propagator can be related to
the Π44 component of gluon self-energy. Furthermore, in
the static limit, this term can be defined as the Debye
mass [46].
In this work, we shall focus only on the timelike

component of the gluon self-energy with the assumption
that the T3-dependent term is canceled. For massless
quarks, the Debye mass has already been computed in
Ref. [46]. We include here the effect of the finite constituent
quark mass in the quark loop contribution to the Debye
mass. We work in the imaginary-time formalism of thermal
field theory for evaluating the corresponding diagrams.

In this formalism, because of the boundary conditions of
imaginary time, the energy of a fermion p4 is an odd
multiple of πT, while that for a boson is an even multiple of
πT. For calculating the Debye mass, we first evaluate
the quark loop in the gluon self-energy, for which the
corresponding diagram is shown in Fig. 1, where the loop
momentum four-vector is written as K̃e

μ ¼ ðK þ Q̃eÞμ ¼
ðωn þ Q̃e;kÞ, with Q̃e ¼ Qe þ πT. In ’t Hooft double-line
notation, the polarization tensor can be written as

Πq
μν;b0baa0 ðP;Q;mÞ ¼ g2Nftaa

0
ee0 t

bb0
e0e

Z
d4K
ð2πÞ4 TrD

× ½γμð=̃Ke − =̃Pbb0 Þγν=̃Ke þm2γμγν�
× ΔðKÞΔðP − KÞ; ð36Þ

where aa0; bb0ðe; e0Þ are color indices of gluons (quark/
antiquark); Nf is the quark flavor number; and ΔðKÞ−1 ¼
ðωn þ Q̃eÞ2 þ k2 þm2; ΔðP − KÞ−1 ¼ ðω − ωn þQbb0 −
Q̃eÞ2 þ ðp − kÞ2 þm2 with Qbb0 ¼ Qb −Qb0 , Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þm2

p
, ωn ¼ ð2nþ 1ÞπT,

and P4 ¼ ω. TrD is the trace in Dirac space, and Qi is
the diagonal matrix in color space, which is given as
Qa ¼ ð−2πTq; 0; 2πTqÞ, and q is related to the Polyakov
loop expectation value as given in Eq. (18). Here, we take
the hard thermal loop (HTL) approximation and also
assume that m ≪ T. Thus, taking the HTL limit and the
trace over Dirac space, Eq. (36) reduces to

Πq
μν;b0baa0 ðP;Q;mÞ ¼ g2Nftaa

0
ee0 t

bb0
e0e

Z
d4K
ð2πÞ4 ½8ðK þ Q̃eÞμðK þ Q̃eÞν − 4ðK þ Q̃eÞ2δμν − 4m2δμν�ΔðKÞΔðP − KÞ: ð37Þ

As we are interested in calculating the Debye mass, we need the timelike component (Π44) of the gluon self-energy. So
from here onwards, we shall proceed with this term. For this purpose, we write the integration in Eq. (37) asR

d4K
ð2πÞ4 ¼ TΣ

n

R
dk

ð2πÞ3; k4 ≡ ωn ¼ 2nπT. Simplifying Eq. (37), we have

Πq
44;b0baa0 ðP;Q;mÞ ¼ 4g2Nftaa

0
ee0 t

bb0
e0e

Z
dk

ð2πÞ3 T
X
n

½ð−2k2 −m2ÞΔðKÞΔðP − KÞ þ ΔðP − KÞ�: ð38Þ

The frequency sums in Eq. (38) over discrete Matsubara frequencies are somewhat involved but can be performed routinely,
leading to

T
X∞
n¼−∞

ΔðKÞΔðP − KÞ ¼ 1

4EkEq

�
fðEq þ iQ2þ iωÞ − fðEk − iQ1Þ

Ek − Eq þ iðQ1þQ2þ ωÞ þ 1þ fðEk − iQ1Þ − fðEq − iQ2 − iωÞ
Ek þ Eq − iðQ1þQ2þ ωÞ

þ fðEk þ iQ1Þ − fðEq − iQ2 − iωÞ
Eq − Ek þ iðQ1þQ2þ ωÞ þ 1þ fðEk þ iQ1Þ − fðEq þ iQ2þ iωÞ

Ek þ Eq þ iðQ1þQ2þ ωÞ
�
; ð39Þ

T
X∞
n¼−∞

ΔðP − KÞ ¼ −
1þ fðEq þ iQ2þ iωÞ þ fðEq − iQ2 − iωÞ

2Eq
; ð40Þ

whereQ2 ¼ Qbb0 − Q̃e,Q1 ¼ Q̃e and fðE� iQÞ is the Bose-Einstein distribution function. In Eqs. (39) and (40), the term
which is independent of the distribution function is the vacuum contribution, which can be dropped when one considers the

FIG. 1. Quark loop of gluon self-energy in double-line notation.
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medium-dependent terms only. The first and third terms in Eq. (39) contribute to the T3-dependent term. Such a term exists
only in the presence of a background gauge field in the HTL approximations [46]. As mentioned earlier, this term spoils the
transversality condition, and we shall not consider this undesirable contribution. Furthermore, the T2-dependent
contributions are given by the second and fourth terms of Eq. (39), as well as by the medium-dependent term in
Eq. (40). In the static limit, the timelike component of the gluon self-energy can be written as

Πq
44;b0baa0 ðQ;mÞjðω¼0;p→0Þ ¼ −4g2Nftaa

0
ee0 t

bb0
e0e ½2I1ðm; Q̃e; Qbb0 − Q̃eÞ þ I2ðm; Q̃e;Qbb0 − Q̃eÞ þ I3ðm;Qbb0 − Q̃eÞ�; ð41Þ

where

I1ðm; Q̃e; Qbb0 − Q̃eÞ ¼
T2

16π2

Z
x4dx

ðx2 þ y2Þ32
�
fðx; y; iq1Þ þ fðx; y;−iq1Þ − fðx; y; iq2Þ − fðx; y;−iq2Þ

�
; ð42Þ

I2ðm; Q̃e; Qbb0 − Q̃eÞ ¼
m2

16π2

Z
x2dx

ðx2 þ y2Þ32
�
fðx; y; iq1Þ þ fðx; y;−iq1Þ − fðx; y; iq2Þ − fðx; y;−iq2Þ

�
; ð43Þ

I3ðm;Qbb0 − Q̃eÞ ¼
T2

4π2

Z
x2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�
fðx; y; iq2Þ þ fðx; y;−iq2Þ

�
; ð44Þ

where we have defined the dimensionless variables x ¼ βk, y ¼ βm, and q1 ¼ βQ1. Further, fðx; y; iqÞ’s are the Bose
distribution functions in terms of these dimensionless variables as, e.g.,

fðx; y; iqÞ ¼ 1

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ iqÞ − 1

: ð45Þ

Also note that although the distribution function is a complex quantity, the functions I1ðm; Q̃e; Qbb0 − Q̃eÞ,
I2ðm; Q̃e; Qbb0 − Q̃eÞ, and I3ðm;Qbb0 − Q̃eÞ are real functions. With further simplification, Π44 can be written as

Πq
44;b0baa0 ðQ;mÞjðω¼0;p→0Þ ¼ −g2Nftaa

0
e0e t

bb0
ee0

T2

4π2
½2ðDðq1; yÞ −Dðq2; yÞÞ þ 4Fðq2; yÞ þ 2y2BðQ2; yÞ�; ð46Þ

where the dimensionless real functions D, F, and B are

Dðq; yÞ ¼
Z

x4dx

ðx2 þ y2Þ32
�
fðx; y; iqÞ þ fðx; y;−iqÞ

�
; ð47Þ

Bðq; yÞ ¼
Z

x2dx

ðx2 þ y2Þ32
�
fðx; y; iqÞ þ fðx; y;−iqÞ

�
; ð48Þ

Fðq; yÞ ¼
Z

x2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�
fðx; y; iqÞ þ fðx; y;−iqÞ

�
: ð49Þ

In the limiting case of vanishing quark masses i.e., y ¼ 0 the functionBðq; yÞ does not contribute to Πq
44, as it is multiplied

by a y2 term, while the functions Dðq; y ¼ 0Þ and Fðq; y ¼ 0Þ become equal and can be written in terms of Polylog
functions Li2ðzÞ as

Fðq; y ¼ 0Þ ¼ Dðq; y ¼ 0Þ ¼
Z

dxxðfðx; y ¼ 0; iqÞ þ fðx; y ¼ 0;−iqÞÞ≡ Li2ðiqÞ þ Li2ð−iqÞ: ð50Þ

The Polylog function Li2ðzÞ can also be written in terms of Clausen functions Cl2ðzÞ; e.g.,

Li2ði2πqÞ ¼
π2

6
ð1 − 6qþ 6q2Þ þ iCl2ð2πqÞ; ð51Þ
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which has been used in Ref. [46]. In the present investigation, however, we will keep the effect of masses in Eqs. (47), (48),
and (49) and integrate it numerically to estimate the Debye mass. Generators appearing on the right side of Eq. (46) can be
simplified by using projection operators, so that the product of two generators becomes

taa
0

e0e t
bb0
ee0 ¼

1

2

�
δbeδb

0e0δa
0eδae

0 −
1

N
ðδbb0δee0δa0eδae0 þ δbeδb

0e0δaa
0
δe

0eÞ þ 1

N2
δbb

0
δee

0
δaa

0
δe

0e
�
: ð52Þ

Note that Π44 depends on the color of the quark and gluon and has a; b; a0; b0 as free color indices. So we need to sum over
other repeated color indices (i.e., e, e0), which can be done by contracting the color indices of Eq. (52) with those of
Eq. (46). Using Eq. (52) along with Eq. (46) and summing over contracted color indices, gluon self-energy can be written as

Πq
44;b0baa0 ðQ;mÞjðω¼0;p→0Þ ¼ −g2Nf

T2

4π2

�
δabδa0b0 ðDðQ̃b; yÞ −DðQ̃b0 ; yÞ þ 2FðQ̃b0 ; yÞ þ y2BðQ̃b0 ; yÞÞ

−
1

N
ðDðQ̃b0 ; yÞ þDðQ̃a0 ; yÞ þFðQ̃b0 ; yÞ þFðQ̃a0 ; yÞ þ 2y2BðQ̃a0 ; yÞ

þ 2y2BðQ̃b0 ; yÞÞδaa0δbb0 þ
1

N2

X
e

ðDðQ̃e; yÞ þFðQ̃e; yÞ

þ 2y2BðQ̃e; yÞÞδaa0δbb0
�
: ð53Þ

B. Gluon contribution to Debye mass

The gluon loop contribution to the gluon self-energy has
already been evaluated in Ref. [46]. For the sake of
completeness, we recapitulate the results here. The gluon
loop diagram with a trigluon vertex is shown in Fig. 2. In
the HTL approximation, the sum of the gluon loop, four-
gluon vertex, and ghost loop contributions to the gluon self-
energy can be written as

Πgl
μν;b0baa0 ðP;QÞ ¼ g2fðb0b;ee0;ghÞfðaa0;e0e;hgÞ

×
Z

d4K
ð2πÞ4 ½4Kμe0eKνe0e − 2K2

e0eδμν�

× ΔðKÞΔðP − KÞ: ð54Þ
As explained earlier, the timelike component of the
self-energy is needed for the Debye mass, which can be
written as

Πgl
44;b0baa0 ðP;QÞ

¼ g2fðb0b;ee0;ghÞfðaa0;e0e;hgÞ
Z

dk
ð2πÞ3

X
n

T½2ΔðP − KÞ

− 4k2ΔðKÞΔðP − KÞ�; ð55Þ

where ΔðKÞ−1¼ðωnþQe0eÞ2 and ΔðP−KÞ−1¼ðω−ωnþ
Qb0b−Qe0eÞ2þE2

q. HereQ1 ¼ Qe0e andQ2 ¼ Qb0b −Qe0e.
Similarly to the quark loop, we shall not consider the
T3-dependent term here, and the summation over discrete
Matsubara frequencies is the same as in Eqs. (39) and (40).
Using these summations and taking the static limit, the
T2-dependent contribution to gluon self-energy can be
written as

Πgl
44;b0baa0 ðQÞjðω¼0;p→0Þ ¼ −

g2T2

4π2
fðb0b;ee0;ghÞfðaa0;e0e;hgÞ

× ½3HðQb0b − qe0eÞ þHðQe0eÞ�;
ð56Þ

where

HðQÞ ¼
Z

xdxðfðx; iqÞ þ fðx;−iqÞÞ

≡ Li2ðiqÞ þ Li2ð−iqÞ: ð57Þ

The same as in the case of the quark loop, for gluon loops,
gluon self-energy depends on the color of the gluon, and
these color indices are free. Other repeated color indices
can be summed by using Eq. (30) for a structure constant.
Thus, Eq. (56) becomes

Πgl
44;b0baa0 ðQÞjðω¼0;p→0Þ

¼ g2T2

8π2
½4ðHðQbaÞ þHðQabÞÞδb0bδa0a

− 2ð3HðQbeÞ þHðQb0eÞÞδa0b0δab�: ð58ÞFIG. 2. Gluon loop in gluon self-energy in double-line notation.
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To get the total Debye mass, we need to add both of the contributions which are given in Eqs. (53) and (58). Taking both the
contributions into account, the Debye mass can be given as

ðm2
DÞb0baa0 ¼ −Πq

44;b0baa0 ðmÞjðω¼0;p→0Þ − Πgl
44;b0baa0 ðQÞjðω¼0;p→0Þ; ð59Þ

leading to

ðm2
DÞb0baa0 ¼

g2T2

4π2

�
Nf

�
δabδa0b0 ðDðQ̃b; yÞ −DðQ̃b0 ; yÞ þ 2FðQ̃b0 ; yÞ þ y2BðQ̃b0 ; yÞÞ

−
1

N
ðDðQ̃b0 ; yÞ þDðQ̃a0 ; yÞ þFðQ̃b0 ; yÞ þFðQ̃a0 ; yÞ þ 2y2BðQ̃a0 ; yÞ þ 2y2BðQ̃b0 ; yÞÞδaa0δbb0

þ 1

N2

X
e

ðDðQ̃e; yÞ þFðQ̃e; yÞ þ 2y2BðQ̃e; yÞÞδaa0δbb0
�
þ ð3HðQbeÞ þHðQb0eÞÞδabδa0b0

− ð2ðHðQbaÞ −HðQabÞÞÞδb0bδa0a
�
: ð60Þ

As the Debye mass is color dependent, one needs to sum
the contributions from all the colors and then average over
the number of colors to get the total Debye mass; i.e.,

m̄2
D ¼

X
abcd

ðm2
DÞabcd
N4

: ð61Þ

In the large-N limit (i.e., neglecting 1=N terms in Eq. (60)),
the Debye mass is diagonal, and its components can be
written in the limit quark mass m ¼ 0 as

ðm2
DÞ1 ¼ ðm2

DÞ3 ¼
g2T2

6
ð6þNf − 36qþ ð60− 12NfÞq2Þ;

ð62Þ

ðm2
DÞ2 ¼

g2T2

6
ðNf þ 6ð1 − 2qÞ2Þ: ð63Þ

which is same as was derived in Ref. [46]. It is easy to
check that, in the limit Q ¼ 0 and m ¼ 0, the Debye mass
as written in Eq. (60) reduces to its familiar HTL limit,
given as

ðm2
DÞabcd ¼

g2T2

3

�
Nc þ

Nf

2

�
Pabcd: ð64Þ

In our calculation for the heavy quark transport coeffi-
cients, however, we will use the color-averaged Debye
mass as given in Eq. (61).

C. Light quark thermal mass

In the double-line notation, the standard diagram of
one-loop quark self-energy is shown in Fig. 3, where a
and a0, respectively, are the color indices for incoming
and outgoing quarks. It is expected that similar to the
gluon self-energy, the quark self-energy also depends on
the colors of incoming and outgoing quarks, and in the
presence of a background gauge field, the same can be
written as

ΣðP;Q;mÞa0a ¼ g2ðtdeÞa0bPdefgðtfgÞba

×
Z

d4K
ð2πÞ4

γμðm − K̃bÞγμ
ðP̃a0 − K̃bÞ2ðK̃2

b þm2Þ ; ð65Þ

where g is the coupling constant, K̃b ¼ K þ Q̃b is the
quark momentum, and P̃a0 − K̃b ¼ P − K þ Q̃a − Q̃b is
the gluon momentum. To solve the integration in
Eq. (65), let us first write

R
d4K
ð2πÞ4 ¼ Σ

n

R
dk

ð2πÞ3; k4 ≡ ωn ¼
2nπT and perform a Matsubara frequency sum. There are
two types of terms where one needs to perform frequency
summation. One is similar to Eq. (39) with the product of
two propagators,

P
ΔðKÞΔðP − KÞ (arising from the term

proportional to m), and another is
P

ωnΔðKÞΔðP−KÞ
(arising from the K̃b term). The latter one can be written as

T
X
n

ωnΔðKÞΔðP − KÞ ¼ i
4Eq

�
fðEq þ iQ2þ iωÞ − fðEk − iQ1Þ

Ek − Eq − iðQ1þQ2þ ωÞ þ 1þ fðEk − iQ1Þ þ fðEq − iQ2 − iωÞ
Ek þ Eq − iðQ1þQ2þ ωÞ

þ fðEq − iQ2 − iωÞ − fðEk þ iQ1Þ
Ek − Eq þ iðQ1þQ2þ ωÞ þ 1þ fðEq þ iQ2þ iωÞ þ fðEk þ iQ1Þ

Ek þ Eq þ iðQ1þQ2þ ωÞ
�
: ð66Þ
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We take the HTL approximation and evaluate only T2-
dependent terms in quark self-energy. We note here that,
unlike gluon self-energy, one does not get any extra term
different in structure as compared to the usual perturbative
HTL approximation for the quark self-energy. The leading
contribution arises from the terms having Eq − Ek in the
denominators of Matsubara frequency sums, and in Eq. (66)
comes from the first and the third terms. Simplifying
Eq. (65) with Eqs. (39) and (66), quark self-energy becomes

ΣðP;Q;mÞa0a ¼ g2Pa0b;ba

�
m
Z

dk
ð2πÞ3

1

4EkEq

�
fðEq − iQ2Þ þ fðEq þ iQ2Þ

Pa:K̂

−
fðEk þ iQ1Þ þ fðEk − iQ1Þ

Pa:K̂

�
þ
Z

K̂d3k
Ekð2πÞ3

�
fðEk þ iQ2Þ − fðEq − iðQ1þ ωÞÞ

Pa:K̂

−
fðEq þ iðQ1þ ωÞÞ − fðEk − iQ2Þ

Pa:K̂

��
: ð67Þ

In the above equation, we have used HTL approximation so that Eq − Ek ≈ − P:k
Ek
, fðEk − iQÞ ≈ fðEq − iQÞ and e

iω
T ≃ 1.

Here Q1 ¼ Q̃b, Q2 ¼ Qa0 −Qb, and K̂ ¼ ði; k̂Þ. After simplifying Eq. (67) further, it can be written as

ΣðP;Q;mÞa0a ¼
g2T2

8π2
X3
b¼1

Pa0b;ba

�
½Fðq2; yÞ −Fðq1; yÞ�

Z
dΩ
4π

K̂

Pa:K̂
þm

T
ðJðq2; yÞ −Jðq1; yÞÞ

Z
dΩ
4π

1

Pa:K̂

�
; ð68Þ

where as before, y ¼ βm, q1 ¼ βQ1; FðqÞ is the same as given in Eq. (49), and J is given as

Jðq; yÞ ¼
Z

x2dx
x2 þ y2

ðfðx; y;−iqÞ þ fðx; y; iqÞÞ: ð69Þ

It is easy to see that to estimate the quark thermal mass from its self-energy, one needs to sum over colors in Eq. (68),
keeping a and a0 open indices. After performing this color sum, quark self-energy reduces to

ΣðP;Q;mÞa0a ¼
g2T2

8π2
δa0a

��X3
b¼1

ðFðqa0b; yÞ −Fðq̃b; yÞÞ −
1

3
ðFð0; yÞ −Fðq̃a; yÞÞ

� Z
dΩ
4π

K̂

Pa:K̂

þm
T

�X3
b¼1

ðJðqa0b; yÞ −Jðq̃b; yÞÞ þJð0; yÞ −Jðq̃a; yÞ
� Z

dΩ
4π

1

Pa:K̂

�
: ð70Þ

In the HTL approximation, the effective fermion mass
(thermal mass) can be written as [58]

4m2
th ¼ Trð=PΣðPÞÞ: ð71Þ

From Eqs. (71) and (70), the color-dependent quark thermal
mass a function of the Polyakov loop parameter q can be
written as

m2
a0 ¼

g2T2

8π2

�X3
b¼1

ðFðQa0b; yÞ −FðQ̃b; yÞÞ

−
1

3
ðFð0; yÞ −FðQ̃a0 ; yÞÞ

�
: ð72Þ

In the limit of vanishing quark mass, using Eq. (50), it is
easy to show that

m2
a ¼

g2T2

6

�
1þ 3

2
qa þ

7

2
q2a

�
: ð73Þ

In the subsequent calculations that follow, however, we
keep the quark mass dependence as in Eq. (72). Similarly to
Eq. (61), one can define a color-averaged quark thermal
mass as

m2
th ¼

X3
a¼1

m2
a

3
; ð74Þ

FIG. 3. One-loop quark self-energy diagram in double-line
notation.
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so the total quark mass becomes

mq ¼ mþmth: ð75Þ

Thus, the color-averaged Debye mass for the gluons and the
color-averaged thermal mass for quarks as given by Eqs. (61)
and (74) depend upon the Polyakov loop parameter.
For the Polyakov loop parameter, we adopt here two

approaches. First, we estimate the same from a phenom-
enological two-flavor PQM model [37,42]. The salient
features of the model and the parameters taken in the
model are discussed in Appendix A. With this parametri-
zation, the critical temperature for the crossover transition

Tc ≈ 176 MeV. We also take the Polyakov loop parameter
from lattice simulations as in Ref. [59]. The variation of the
Polyakov loop with temperature (T) is shown on the left of
Fig. 4. Clearly, compared to the lattice simulations, the
Polyakov loop parameter ϕ in the PQM model shows a
sharper rise and reaches its asymptotic value ϕ ¼ 1 at a
temperature around 320 MeV. On the other hand, in the
lattice simulations, this happens at a much higher temper-
ature. This means that the nonperturbative effects are
significant up to temperatures as high as 400 MeV in
the lattice. However, in PQM, these effects are significant
only for temperatures up to around 320 MeV. On the right
side of Fig. 4, the Debye mass as a function of temperature

FIG. 4. Left panel: Polyakov loop value as a function of temperature. The red curve is from the PQM model [42]. The blue curve is
from the lattice results of Ref. [59]. Right panel: Debye mass (mD) as a function of temperature. The black curve corresponds to pQCD
hard thermal loop calculations [57]. The blue curve corresponds to the large-N limit for mD as given in Eq. (60). The green curve
correspond to taking all the terms in Eq. (60) for N ¼ 3. Here the Polyakov loop is taken from lattice data [59].
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FIG. 5. Left panel: Quark masses as a function of temperature. The bottommost curve (magenta) shows the constituent quark mass
estimated in the PQM model. The topmost curve (black) shows the perturbative HTL estimate of the quark thermal mass [57]. The red
curve shows the temperature dependence of the quark thermal mass [Eq. (74)] with the Polyakov loop taken from PQM model
calculations. The blue curve shows the thermal mass of the quark [Eq. (74)] using the Polyakov loop from lattice simulations [59]. Right
panel: Debye mass as a function of temperature in the leading order in N of Eq. (60). The blue curve correspond to the Polyakov loop
value taken from lattice data [59], while the red curve corresponds to the Polyakov loop value taken from the PQM model.
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is shown. Here the black curve corresponds to the Debye
mass in pQCD, while the blue and the green curves are in
the presence of the Polyakov loop. The blue curve
corresponds to the large-N limit [i.e., dropping 1=N terms
in Eq. (53)]. On the other hand, the green curve corresponds
to including the 1=N terms in Eq. (53). Clearly, the large-N
limit approaches the perturbative limit faster compared to
the one including 1=N terms for the Debye mass.
For the light quarks, different contributions to the masses

as a function of temperature (T) are shown on the left side
of Fig. 5. The red and blue curves correspond to quark
thermal masses (mth) as given in Eq. (74) and evaluated in
the HTL approximation in the presence of a background
gauge field. The red curve corresponds to the Polyakov
loop value taken from the PQMmodel, while the blue curve
corresponds to the same taken from lattice simulations. The
HTL perturbative QCD thermal mass as in Ref. [57] is
shown by the black curve. Clearly, with lattice values of the
Polyakov loop, thermal masses approach the perturbative
results at a much higher temperature, while with values
taken from PQM, the perturbative limit is reached at a
relatively lower temperature around 320 MeV. It ought to
be mentioned that beyond 330 MeV, the ϕ value is larger
than 1, in which case q becomes imaginary. We have taken
here the real part of q for estimating the thermal masses.
Beyond temperature 330 MeV, the real part of q vanishes,
which leads to the perturbative limit. As compared to the
PQMmodel, the color-averaged thermal mass is smaller for
the Polyakov loop expectation value taken from the lattice
simulation. This is because, with the smaller value of ϕ,
statistical distribution functions are suppressed more. The
magenta curve is the constituent quark mass estimated in
the PQMmodel. The right side of Fig. 5 shows the behavior
of the color-averaged Debye mass in the large-N limit of
Eq. (60). The red and the blue curves correspond to the
masses with Polyakov loop values taken from the PQM and
lattice simulations, respectively. The Debye mass is smaller
as compared to the perturbative QCD Debye mass, and this
suppression is more when ϕ is taken from the lattice
simulations. The reason for this is the same as that for the
case of quark thermal mass. In the estimation of the
transport coefficients, we shall use the Debye mass and
thermal masses of quarks as in Eq. (75). It is clear that the
nonperturbative effects which are in the distribution func-
tion and the masses of quarks and gluons can significantly
affect these transport coefficients as compared to the
perturbative QCD.

IV. RESULTS AND DISCUSSIONS

With the thermal mass of the quarks and the Debye mass
as computed in the background of a nontrivial Polyakov
loop, we next numerically compute the drag and diffusion
coefficients using Eq. (15). For the heavy quark elastic
interaction with the light quarks and gluons, qQ → qQ and
gQ → gQ scattering processes are considered where Q

stands for a heavy quark, q stands for a light quark, and g
stands for the gluon. In the case of massless light quarks
and gluons, the leading-order (LO) matrix elements for
qQ → qQ and gQ → gQ scattering have been calculated
in Refs. [45,60]. These pQCD cross sections have to be
supplemented by the value of the coupling constant and the
Debye screening mass, which is needed to shield the
divergence associated with the t-channel diagrams to
compute the heavy quark transport coefficients. For mas-
sive light quarks and gluons, the calculation of the
scattering matrix, Mðq;gÞþQ→ðq;gÞþQ, is performed consid-
ering the leading-order (LO) diagram with massive quark
and gluon propagators for gQ → gQ and a massive gluon
propagator for qQ → qQ scatterings [21,23]. Within the
matrix model, the scattering amplitudes are summarized in
Appendix B. Similarly to previous work [21,23], a massive
gluon propagator for qQ → qQ and the t channel of gQ →
gQ is used. We estimate the transport coefficients for the
charm quark, whose mass is taken as mC ¼ 1.27 GeV.
Here we use the two-loop running coupling constant given
as [61]

αs ¼
1

4π

�
1

2β0 lnðπTΛ Þ þ β1
β0
lnð2 lnðπTΛ ÞÞ

�
; ð76Þ

where

β0 ¼
1

16π2

�
11 −

2Nf

3

�
; ð77Þ

β1 ¼
1

ð16π2Þ2
�
102 −

38Nf

3

�
; ð78Þ

with Λ ¼ 260 MeV and Nf ¼ 2.
We evaluate the drag and diffusion coefficients of heavy

quarks in QGP with Polyakov loop values from two
different models. In one case, the Polyakov loop value—
and hence the Debye mass and thermal masses—has been
taken from PQM calculation as an input to compute the
heavy quark transport, and we label it as PQM. In the other
case, the Polyakov loop value has been taken from the
lattice simulations, and hence, we label it as lattice in the
following discussions.
The temperature variation of the drag coefficient has

been shown in Fig. 6 for charm quark interaction with light
quarks and gluons for a given momentum (p ¼ 0.1 GeV)
obtained for both PQM and lattice Polyakov loop values.
We obtain quite a mild temperature dependence of the

heavy quark drag coefficient for the case of PQM. How-
ever, in the lattice case, we obtain a quite stronger temper-
ature dependence of the heavy quark drag coefficient than
the one with PQM. We notice that the drag coefficient
obtained with PQM input is larger at low temperature than
the one obtained with lattice inputs, whereas the trend is
opposite at high temperature. This is mainly because of the
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interplay between the Debye mass and the Polyakov loop
value obtained within both the models. In the same plot, for
comparison, we have also included results for the drag
coefficient obtained within the standard LO pQCD calcu-
lations with a constant coupling (αs ¼ 0.2) to display the
nonperturbative effects arising from the nontrivial Polyakov
loop and chiral condensate on the HQ drag coefficient.
A smaller value of the Polyakov loop, as shown on the

left side of Fig. 4 in the lattice case, reduces the magnitude
of the drag coefficients at low temperature. However, at
high temperature, a smaller Debye mass, as shown in Fig. 5
obtained with lattice input, enhances the magnitude of
heavy quark drag coefficients. Hence, at low temperature,
the Polyakov loop value plays the dominant role (e.g., at
T ¼ 180 MeV, the Polyakov loop values obtained with the
two models differ by a factor of about 2), whereas at high
temperature, the Debye mass plays the dominant role (e.g.,
at T ¼ 300 MeV, the difference between the Polyakov
loop values obtained with the two cases is reduced
significantly) for the behavior of the drag coefficient.
We observed that the temperature dependence of the

heavy quark drag coefficient obtained with the PQM

Polyakov loop value is quite consistent with the results
obtained with other quasiparticle models [20,23] and the
T-matrix approach [18]. It is important to mention that the
temperature dependence of the drag coefficient plays a
significant role [20] in describing the heavy quarks RAA and
v2 simultaneously, which is a challenge to almost all the
models on heavy quark dynamics. A constant or weak
temperature dependence of the drag coefficient is an
essential ingredient for reproducing the heavy quarks
RAA and v2 simultaneously, whereas in pQCD the drag
coefficient increases with temperature.
The momentum variation of the drag coefficient has been

shown in the right panel of Fig. 6 for charm quark
interaction with light quarks and gluons obtained with
the PQM and lattice Polyakov loop values. We observe a
strong momentum dependence of heavy quark drag coef-
ficient as compared to the same estimated within pQCD
[7,21]. This is mainly due to the inclusion of nonperturba-
tive effects through the Polyakov loop background. At
T ¼ 300 MeV, the drag obtained with the PQM Polyakov
loop (at p ¼ 0.1 GeV) is marginally larger than the drag
obtained with the lattice Polyakov value. Hence, the
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FIG. 6. Variation of drag coefficients (A) with temperature (left) for momentum p ¼ 100 MeV, and with momentum (right) for
temperature T ¼ 300 MeV.
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momentum variation of drag coefficients obtained with
inputs from PQM is marginally larger than that obtained
with inputs from lattice simulation in the entire momentum
range considered here.
In Fig. 7, the heavy quark diffusion coefficient B0 has

been displayed as a function of temperature obtained with
input parameters from PQM and lattice. The diffusion
coefficients increase with temperature for both the cases, as
it involves the square of the momentum transfer. In terms of
magnitude, the diffusion coefficient obtained in both the
cases follows a similar trend of drag coefficient due to the
same reason (i.e., interplay between the Debye mass and
Polyakov loop value). In the same plot, we have also
included the diffusion coefficient obtained within the
standard LO pQCD calculation for a constant coupling
to highlight the nonperturbative features arising from
nontrivial Polyakov loop and chiral condensates.
The momentum variation of the diffusion coefficient has

been shown in Fig. 7 for charm quark interaction with light
quarks and gluons for the same values of the Polyakov
loop. Similar to the drag coefficient, the diffusion coef-
ficient also shows the same trend, with PQM having larger

values then that from the lattice as a function of momentum.
A stronger suppression of the distribution function at high
momentum in the lattice Polyakov loop than that from the
PQM also plays a marginal role in the momentum variation
of heavy quark drag and diffusion coefficients obtained.
To understand the temperature dependence of the trans-

port coefficients, we plot the temperature variation of the
drag coefficient in Fig. 8 at different momenta obtained
with Polyakov loop values from lattice simulations. We
obtain an almost similar temperature dependence of the
heavy quark drag coefficient, with both momenta having
larger magnitude at p ¼ 2 GeV than at p ¼ 5 GeV. In
Fig. 9, we have depicted the temperature variation of the
diffusion coefficient at different momenta for the same
values of the Polyakov loop. As expected, the magnitude of
the diffusion coefficient is larger at p ¼ 5 GeV than
p ¼ 2 GeV, having similar temperature variation for both
the momenta.
In Fig. 8, we have shown the variation of drag coefficient

with momentum at different temperatures obtained with the
lattice inputs. We observe a larger magnitude of the drag
coefficient at T ¼ 320 MeV than at T ¼ 200 MeV, but the
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different values of temperature. The Polyakov loop value is taken from the lattice data [59].

0.2 0.25 0.3 0.35 0.4
T (GeV)

0

0.04

0.08

0.12

0.16

0.2

B
0 (

G
eV

2 /f
m

)

Lattice (p=2 GeV)
Lattice (p=5 GeV)

0 5 10 15
p (GeV)

0

0.05

0.1

0.15

0.2

0.25

B
0 (

G
eV

2 /f
m

)

Lattice (T=320 MeV)
Lattice (T=200 MeV)

FIG. 9. Variation of diffusion coefficients (B0) with temperature (left) for different values of momentum, and with momentum (right)
for different values of temperature. The Polyakov loop value is taken from the lattice data [59].

SINGH, ABHISHEK, DAS, and MISHRA PHYS. REV. D 100, 114019 (2019)

114019-14



momentum variation is similar at both temperatures.
Momentum variation of the diffusion coefficient has also
been depicted in Fig. 9 at different temperatures. At both
momenta, the diffusion increases with temperature, having
a larger magnitude at T ¼ 320 MeV than at T ¼ 200 MeV.
It is worth mentioning here that nonperturbative effects

from a different perspective have been investigated recently
in Refs. [62–64] and employed to calculate the transport
coefficients [64]. The method here consisted of using a T
matrix with an in-medium potential for the heavy quarks.
This potential is constrained by the heavy quark free
energy from the lattice data. The lattice heavy quark free
energy is directly related to the Polyakov loop, and hence is
correlated with the strength of the confining potential.
Therefore, it is nice to see that the behavior of the drag
coefficient being rather flat with regard to temperature
dependence, whereas the diffusion coefficient has a strong
temperature dependence as observed here, was also obser-
ved in Ref. [64]. This consistency suggests the possible
existence of model-independent correlation between the
Polyakov loop and the heavy quark transport coefficients.

V. SUMMARY

In this work, we have computed the heavy quark drag
and diffusion coefficients in QGP including nonperturba-
tive effects via a Polyakov loop background. In order to
incorporate these effects, we first calculate the quark and
gluon thermal masses, also taking the quark constituent
mass into account. We found that for temperatures below
300 MeV, the quark thermal mass and gluon Debye mass
start deviating from their perturbative values. This effect is
significant for even higher temperatures when Polyakov
values are taken from the lattice simulations. This decrease
in the Debye mass of the gluon and the thermal mass of
light quarks is due to color suppression manifested in the
quark and gluon distribution functions in the presence of a
background Polyakov loop field. In the calculation of the
HQ diffusion coefficient, the distribution function of the
light quark and the Debye mass play complimentary roles.
While the distribution function with the Polyakov loop
tends to decrease the HQ transport coefficient, the Debye
mass has the effect of increasing these transport coeffi-
cients. We have found a weak temperature dependence of
the heavy quark drag coefficient with a Polyakov loop
value taken from PQM, which is consistent with other
models like the T-matrix and quasiparticle models, which
also take into account the nonperturbative effects in a
different manner. This consistency suggests the existence of
possible model-independent correlations between the
results obtained with the Polyakov loop and other non-
perturbative models and reaffirms the temperature and
momentum dependence of heavy quark transport coeffi-
cients. In the present investigation, we have confined our
attention to the elastic 2 → 2 processes within the matrix
model. The inclusion of other effects arising from 2 → 3

processes and LPM effects are expected to be subdominant
due to the large mass of the heavy quark [65], but
nonetheless can be important at high parton density. We
plan to explore different possible phenomenological impli-
cations of the present investigation in the future.

ACKNOWLEDGMENTS

S. K. D. acknowledges support by the National
Science Foundation of China (Grants No. 11805087 and
No. 11875153). We would like to thank Yoshimasa Hidaka
for valuable discussions and important clarifications on
the HTL resummed propagator in the presence of a
Polyakov loop.

APPENDIX A: POLYAKOC LOOP EXTENDED
QUARK-MESON MODEL

The Polyakov loop extended quark-meson model (PQM)
captures two important features of quantum chromody-
namics (QCD): namely, chiral symmetry breaking and its
restoration at high temperature and density, as well as
the confinement-deconfinement transitions. Explicitly, the
Lagrangian of the PQM model is given by [37–41]

L ¼ ψ̄ðiγμDμ −m − gσðσ þ iγ5τ · πÞÞψ

þ 1

2
½∂μσ∂μσ þ ∂μπ∂μπ� − Uχðσ; πÞ −UPðϕ; ϕ̄Þ:

ðA1Þ

In the above, the first term is the kinetic and interaction
term for the quark doublet ψ ¼ ðu; dÞ interacting with the
scalar (σ) and the isovector pseudoscalar pion ðπÞ field. The
scalar field σ and the pion field π together form a SUð2Þ
isovector field. The quark field is also coupled to a spatially
constant temporal gauge field A0 through the covariant
derivative Dμ ¼ ∂μ − ieAμ; Aμ ¼ δμ0Aμ.
The mesonic potential Uχðσ; πÞ essentially describes the

chiral symmetry-breaking pattern in the strong interaction
and is given by

Uχðσ; πÞ ¼
λ

4
ðσ2 þ π2 − v2Þ − cσ: ðA2Þ

The last term in the Lagrangian in Eq. (A1) is responsible
for including the physics of color confinement in terms
of a potential energy for the expectation values of the
Polyakov loop ϕ and ϕ̄, which are defined in terms of
the Polyakov loop operator, which is a Wilson loop in the
temporal direction:

P ¼ P exp

�
i
Z

β

0

dx0A0ðx0;xÞ
�
: ðA3Þ

In the Polyakov gauge, A0 is time independent and is in
the Cartan subalgebra; i.e., Aa

0 ¼ A3
0λ3 þ A8

0λ8. One can
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perform the integration over the time variable trivially
as path ordering becomes irrelevant, so that PðxÞ ¼
expðβA0Þ. The Polyakov loop variable ϕ and its
Hermitian conjugate ϕ̄ are defined as

ϕðxÞ ¼ 1

Nc
TrPðxÞ; ϕ̄ðxÞ ¼ 1

Nc
P†ðxÞ: ðA4Þ

In the limit of heavy quark mass, the confining phase is
center symmetric, and therefore hϕi ¼ 0, while for the
deconfined phase hϕi ≠ 0. Finite quark masses break this
symmetry explicitly. The explicit form of the potential
Upðϕ; ϕ̄Þ is not known from first-principle calculations.
The common strategy is to choose a functional form of the
potential that reproduces the pure gauge lattice simulation
thermodynamic results. Several forms of this potential
have been suggested in literature. We shall use here the
following polynomial parametrization [37]:

UPðϕ; ϕ̄Þ ¼ T4

�
−
b2ðTÞ
2

ϕ̄ϕ −
b3
2
ðϕ3 þ ϕ̄3Þ þ b4

4
ðϕ̄ϕÞ2

�
;

ðA5Þ

with the temperature-dependent coefficient b2 given as

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ðA6Þ

The numerical values of the parameters are

a0 ¼ 6.75; a1 ¼ −1.95; a2 ¼ 2.625; a3 ¼ −7.44;

ðA7Þ

b3 ¼ 0.75; b4 ¼ 7.5: ðA8Þ

The parameter T0 corresponds to the transition temperature
of Yang-Mills theory. However, for the full dynamical
QCD, there is a flavor dependence on T0ðNfÞ. For two
flavors, we take it to be T0ð2Þ ¼ 192 MeV, as in Ref. [37].
The Lagrangian in Eq. (A1) is invariant under SUð2ÞL ×

SUð2ÞR transformation when the explicit symmetry-
breaking term cσ vanishes in the potential Uχ in Eq. (A2).
The parameters of the potential Uχ are chosen such that the
chiral symmetry is spontaneously broken in the vacuum.
The expectation values of the meson fields in vacuum are
hσi ¼ fπ and hπi ¼ 0. Here fπ ¼ 93 MeV is the pion
decay constant. The coefficient of the symmetry-breaking
linear term is decided from the partial conservation of the
axial vector current (PCAC) as c ¼ fπm2

π ,mπ ¼ 138 MeV,
being the pion mass. Then, by minimizing the potential,
one has v2 ¼ f2π −m2

π=λ. The quartic coupling for the
meson, and λ is determined from the mass of the sigma
meson given as m2

σ ¼ m2
π þ 2λf2π . In the present work, we

take mσ ¼ 600 MeV, which gives λ ¼ 19.7. The coupling

gσ is fixed here from the constituent quark mass in vacuum,
Mq ¼ gqfπ , which has to be about one third of the nucleon
mass that leads to gσ ¼ 3.3 [66].
To calculate the bulk thermodynamical properties of the

system, we use a mean field approximation for the meson
and the Polyakov fields while retaining the quantum and
thermal fluctuations of the quark fields. The thermo-
dynamic potential can then be written as

ΩðT; μÞ ¼ Ωq̄q þ Uχ þUPðϕ; ϕ̄Þ: ðA9Þ

The fermionic part of the thermodynamic potential is
given as

Ωq̄q ¼ −2NfT
Z

d3p
ð2πÞ3 ½lnð1þ 3ðϕþ ϕ̄e−βω−Þe−βω−

þ e−3βω−Þ þ lnð1þ 3ðϕþ ϕ̄e−βωþÞe−βωþ þ e−3βωþÞ�
ðA10Þ

modulo a divergent vacuum part. In the above, ω∓ ¼
Ep ∓ μ, with the single-particle quark-antiquark energy

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The constituent quark-antiquark mass is

defined to be

M2 ¼ g2σðσ2 þ π2Þ: ðA11Þ

The divergent vacuum part arises from the negative-energy
states of the Dirac sea. Using standard renormalization,
it can be partly absorbed in the coupling λ and v2. How-
ever, a logarithmic correction from the renormalization
scale remains, which we neglect in the calculations that
follow [66].
The mean fields are obtained by minimizing Ω with

respect to σ, ϕ, ϕ̄, and π. Extremizing the effective potential
with respect to the σ field leads to

λðσ2 þ π2 − v2Þ − cþ gσρs ¼ 0; ðA12Þ

where the scalar density ρs ¼ −hψ̄ψi is given by

ρs ¼ 6Nfgσσ
Z

dp
ð2πÞ3

1

EP
½f−ðpÞ þ fþðpÞ�: ðA13Þ

In the above, f∓ðpÞ are the distribution functions for the
quarks and antiquarks, given as

f−ðpÞ ¼
ϕe−βω− þ 2ϕ̄e−2βω− þ e−3βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−
ðA14Þ

and

fþðpÞ ¼
ϕ̄e−βωþ þ 2ϕe−2βωþ þ e−3βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ
: ðA15Þ
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The condition ∂Ω
∂ϕ ¼ 0 leads to

T4

�
−
b2
2
ϕ̄ −

b3
2
ϕ2 þ b4

2
ϕ̄ϕϕ̄

�
þ Iϕ ¼ 0; ðA16Þ

where

Iϕ ¼ ∂Ωq̄q

∂ϕ ¼ −6NfT
Z

dp
ð2πÞ3

�
e−βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−
þ e−2βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ

�
: ðA17Þ

Similarly, ∂Ω
∂ϕ̄ ¼ 0 leads to

T4

�
−
b2
2
ϕ −

b3
2
ϕ̄2 þ b4

2
ϕ̄ϕ2

�
þ Iϕ̄ ¼ 0; ðA18Þ

with

Iϕ̄ ¼ ∂Ωq̄q

∂ϕ̄ ¼ −6NfT
Z

dp
ð2πÞ3

�
e−2βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−
þ e−βωþ

1þ 3ϕe−βωþ þ 3ϕ̄e−2βωþ þ e−3βωþ

�
: ðA19Þ

By solving Eqs. (A12), (A16), and (A18) self-consistently,
one can get the values of the constituent quark mass, the
Polyakov loop variable, and the conjugate Polyakov loop
variable as a function of temperature.

APPENDIX B: SCATTERING AMPLITUDES

There are two types of scattering that contribute to
the drag and the diffusion coefficients: namely, Coulomb
scattering i.e., scattering off of HQs from light quarks—and
Compton scattering i.e., scattering off of gluons from HQs

[45]. The dominant contribution for these scatterings arise
from the gluon exchange in the t channel, which is infrared
divergent [16,47]. This is regularized by introducing the
Debye screening [16,45], which we have evaluated in the
HTL limit in the background of a Polyakov loop. In the s
and u channels, however, there is no such infrared
divergence. Note that the matrix model, mD, in Eq. (60),
is color dependent, so the propagator is also color depen-
dent. For Nf flavor of light quark, the spin-averaged matrix
element squared for Coulomb scattering, as shown on the
left side of Fig. 10, can be written as

jMCj2 ¼
16Nfg4

8N
Pcd

aePml
bfP

c0d0
ea Pm0l0

fb
ððs −m2 −M2Þ2 þ ðu −m2 −M2Þ2 þ 2ðM2 þm2ÞtÞ

ðtþ ðm2
DÞmlcdÞðtþ ðm2

DÞm0l0c0d0 Þ
: ðB1Þ

where a, b (e; f) are color indices of initial (light, heavy) and final (light, heavy) quarks. For calculational simplifications,
one can take the color-averaged Debye mass as defined in Eq. (61) so that ðm2

DÞmlcd ≈ m̄2
DPmlcd. In this case, we get

Pcd
aePml

bf
1

ðtþ ðm2
DÞmlcdÞ

¼ 1

tþ m̄2
DP

fb
ae

−
1

N

�
2

tþ m̄2
D
−

1

N
1

tþ m̄2
D

�
δaeδfb: ðB2Þ

One can further simplify the expression in Eq. (B1) by taking the leading-order contribution in N. With this assumption,
Eq. (B1) reduces to

jMCj2abef ¼
8g4

2N
δfaδbe

ððs −m2 −M2Þ2 þ ðu −m2 −M2Þ2 þ 2ðM2 þm2ÞtÞ
ðtþ ðm̄2

DÞ2Þ2
; ðB3Þ

where M is the HQ mass. For the qaQb → qeQf scattering, the product of the distribution function and matrix element
squared that appears in Eq. (15) can be simplified by summing over colors of the initial and final light/heavy quarks. Note
that for light quarks, the colors appearing in Eq. (B3) have to be summed with the distribution function and can be written as

δfaδbefðqÞeð1 − fðq0ÞfÞ ¼ N2fðqÞqð1 − fðq0ÞqÞ; ðB4Þ
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where fðqÞq is the average distribution function of the
quark as defined in Eq. (22). Similarly, for the t-channel
Compton scattering shown on the right side of Fig. 10, one
can write

jMtj2 ¼
g4

4ðN2 − 1ÞP
ml
baP

l0m0
ab fcd;ef;ghfd

0c0;fe;hg

×

�
16ðs −M2ÞðM2 − uÞ

ðtþ ðm2
DÞmlcdÞðtþ ðm2

DÞm0l0c0d0 Þ
�

ðB5Þ

and can be simplified in a similar way as done for Coulomb
scattering. Here ef; b ðgh; aÞ are the color indices for the
initial (final) gluon and quark. The scattering amplitude of
u-channel Compton scattering shown on the right side of
Eq. (11) can be written as

jMuj2 ¼
8g4

8ðN2 − 1ÞP
gh
bcP

gh
bc0P

ef
caP

ef
c0a

×

�
M4 − usþM2ð3uþ sÞ

ðu −M2Þ2
�
: ðB6Þ

Note here that the propagator has no color-dependent term.
The matrix element squared for s-channel Compton scat-
tering, as shown on the left side of Fig. 11, is

jMsj2 ¼
8g4

8ðN2 − 1ÞP
ef
bcP

ef
bc0P

gh
caP

gh
c0a

×

�
M4 − usþM2ðuþ 3sÞ

ðs −M2Þ2
�
: ðB7Þ

There are interferences between different scatterings con-
tributing to gefQb → gghQa that can be written as

MsMu
† ¼ MuMs

† ¼ g4

8ðN2 − 1ÞP
ef
bcP

gh
caP

gh
bc0P

ef
c0a

×

�
32M4 − 8M2t

ðs −M2Þðu −M2Þ
�
; ðB8Þ

MsMt
† ¼ M†

sMt ¼
g4

4
ffiffiffi
2

p ðN2 − 1ÞP
ef
bcP

gh
caPlm

abðifdc;fe;hgÞ

×

�
−8ðM4 − 2M2sþ usÞ
ðs −M2Þðtþ ðm2

DÞmlcdÞ
�
; ðB9Þ

MuMt
† ¼ M†

uMt ¼
g4

4
ffiffiffi
2

p ðN2 − 1ÞP
gh
bcP

ef
caPlm

abðifdc;fe;hgÞ

×

�
8ð4M4 −M2tÞ

ðu −M2Þððtþ ðm2
DÞmlcdÞÞ

�
: ðB10Þ

The total matrix element squared that contributes to Comp-
ton scattering (i.e., gQ → gQ) is jMCmj2abefgh¼jMsj2 þ
jMuj2þjMtj2þMuM

†
sþMsM

†
uþMtM

†
sþMsM

†
tþ

MuM
†
t þMtM

†
u. These matrix elements are used in

Eq. (15) to estimate the drag and the diffusion coefficient.
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