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We calculate light-front wave functions of mesons, baryons and pentaquarks in a model including
constituent mass (representing chiral symmetry breaking), harmonic confining potential, and four-quark
local interaction of ’t Hooft type. The model is a simplified version of that used by Jia and Vary. The
method used is numerical diagonalization of the Hamiltonian matrix, with a certain functional basis. We
found that the nucleon wave function displays strong diquark correlations, unlike that for the Delta
(decuplet) baryon. We also calculate a three-quark-five-quark admixture to baryons and the resulting
antiquark sea parton distribution function.
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I. INTRODUCTION

A. Various roads towards hadronic properties

Let us start with a general picture, describing various
approaches to the theory of hadrons, identifying the
following:

(i) Traditional quark models (too many to mention here)
are aimed at calculation of static properties (e.g.,
masses, radii, magnetic moments etc.). Normally all
calculations are done in the hadron’s rest frame, using
certain model Hamiltonians. Typically, chiral sym-
metry breaking is included via effective “constituent
quark” masses; the Coulomb-like and confinement
forces are included via some potentials. In some
models a “residual” interaction is also included, via
some four-quark terms of the Nambu–Jona-Lasinio
(NJL) type.

(ii) Numerical calculation of Euclidean-time two- and
three-point correlation functions is another general
approach, with source and sink operators creating a
state with needed quantum numbers, and the third
one in between, representing the observable. Origi-
nally started from small-distance operator product
expansion (OPE) and the QCD sum rule method, it
moved to intermediate distances (see review e.g., in
[1]), and it is now mostly used at large time
separations Δτ (compared to inverse mass gaps in
the problem 1=ΔM) by the lattice gauge theory
(LGT) simulations. This condition ensures the

“relaxation” of the correlators to the lowest mass
hadron in a given channel.

(iii) Light-front quantization using also certain model
Hamiltonians, aimed at the set of quantities, available
from experiment. Deep inelastic scattering (DIS), as
well as many other hard processes, use factorization
theorems of perturbative QCD and nonperturbative
parton distribution functions (PDFs). Hard exclusive
processes (such as e.g., form factors) are described in
terms of nonperturbative hadron on-light-front wave
functions (LFWFs); for reviews see [2,3].

(iv) A relatively new approach is “holographic QCD,”
describing hadrons as quantum fields propagating in
the “bulk” space with extra dimensions. It was
originally supposed to be a dual description to some
strong-coupling regime of QCD, and therefore it was
mostly used for description of the quark-gluon
plasma (QGP) phase at high temperatures. Never-
theless, its versions including confinement (via
dilaton background with certain “walls” [4]) and
quark-related fields (especially in the so-called
Veneziano limit in which both the number of flavors
and colors are large Nf, Nc → ∞; Nf=Nc ¼ fixed
[5]) do reproduce hadronic spectroscopy, with nice
Regge trajectories. The holographic models also led
to an interesting revival of baryons-as-solitons-type
models, generalizing skyrmions and including also
vector meson clouds. Brodsky and de Teramond [6]
proposed to relate the wave functions in extra
dimension z to those on the light front, identifying
z with a certain combination of the light cone
variables ζ. Needless to say, all of these are models
constructed from the “bottom up,” but with well-
defined Lagrangians and some economic set of
parameters, from which a lot of (mutually consis-
tent) predictions can be worked out.
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While (i) and (iv) remain basically in the realm of model
building, (ii) remains the most fundamental and consistent
approach. Lattice studies, starting from the first principles
of QCD, have convincingly demonstrated that they cor-
rectly include all nonperturbative phenomena. They do
display chiral symmetry breaking and confinement, and
they reproduce accurately hadronic masses. Yet lattice
evaluation of PDFs and light-front wave functions remains
difficult. The light-front direction, on the other hand, for
decades relied on perturbative QCD, in denial of most of
nonperturbative physics.
The aim of the present paper is to bridge the gap between

approaches (ii) and (iii). It is a kind of pilot project, using a
particular quark model (deliberately stripped down to its
“bare bones”) and then performing consistent dynamical
calculations of the light-front wave functions in it. It
follows directly the approach of Jia and Vary [7] to pion
and rho mesons. We extended its applications to baryons,
the Delta (decuplet) and the proton (the octet), five-quark
systems (pentaquarks), and finally to three-quark-five-
quark mixing, dynamically addressing the issue of the
nonperturbative antiquark sea.
The model Hamiltonian has three terms: (i) the con-

stituent mass term, representing the chiral symmetry break-
ing, (ii) harmonic-type confining potential, and last but not
least (iii) the four-quark local interaction of NJL type. One
simplification we use is to consider only the longitudinal
degrees of freedom, ignoring the transverse motion.
Another is to reduce the complicated NJL operator to a
single local topology-induced ’t Hooft vertex [8]. This
latter step is explained in the next subsection.

B. Topology-induced multiquark interactions

Nambu and Jona-Lasinio’s 1961 paper [9] was an
amazing breakthrough. Before the word “quark” was
invented, and one learned anything about quark masses,
the notions of chiral symmetry and its spontaneously
breaking were postulated. They postulated the existence
of four-fermion interaction, with some coupling G, strong
enough to make a superconductorlike gap even in fermionic
vacuum. The second important parameter of the model was
the momentum cutoff Λ ∼ 1 GeV, below which their
hypothetical attractive four-fermion interaction operates.
After the discovery of QCD, gauge field monopoles and

instantons, a very curious relation was found [8], between
the Dirac operator and background gauge topology: they
have certain zero modes related to the topological charge.
This mathematical phenomenon has direct physical con-
sequences: the multiquark interaction vertex described by
the so-called ’t Hooft effective Lagrangian. Since in QCD it
includes all three flavors of light quarks, u, d, s, it is a six-
quark effective vertex, schematically shown in Fig. 1(a).
Note its key feature, opposite chiralities L, R of the
incoming and outgoing quarks: it is so because in order
to have zero modes of the Dirac equation, quarks and

antiquarks should have the same magnetic moments.
Unlike vectorial interaction with nontopological glue, this
Lagrangian directly connects the left and right components
of quark fields, explicitly breaking Uð1Þa chiral symmetry.
With the advent of the instanton liquid model (ILM) [10]

it became clear that it provides an explanation of the origins
of the hypothetical NJL interaction. The NJL coupling
GNJL and cutoff ΛNJL were substituted by two other
parameters, the instanton 4D density n and the typical
size ρ. Like the NJL action, the ’t Hooft effective action also
preserves the SUðNfÞ chiral symmetry, but it is also strong
enough to break the symmetry spontaneously, creating
nonzero quark condensates hs̄si; hūui ≠ 0 appearing in
diagrams (c) and (d) of Fig. 1. The residual four-quark
ðūuÞðd̄dÞ interaction induced by the diagrams (b) and (c) is
the one used below. Note that, unlike the NJL action, it
explicitly breaks the chiral Ucð1Þ symmetry.
In 1990s the so-called “interacting instanton liquid

model,” which numerically solved the vacuum properties
using the ’t Hooft Lagrangian to all orders, provided hadron
spectroscopy and Euclidean correlation functions; for a
review see [11]. Recent advances to finite temperatures and
QCD phase transitions at finite temperature are based on
instanton constituents, the “instanton dyons”; we do not
go into that here and only comment that the structure of the
’t Hooft Lagrangian remains the same.
In this pilot study we would simplify this residual four-

fermion interaction, as much as possible, assuming that the
’t Hooft effective action is local. This implies that the
instanton radius (or 1=ΛNJL) is much smaller than typical

(a)

(d)(c)

(b)

FIG. 1. The schematic form of the six-quark ’t Hooft effective
Lagrangian is shown in (a). If quarks are massive, one can make a
loop as shown in (b), reducing it to a four-fermion operator. Note
a black diamond indicating the mass insertion into a propagator.
We only show it for the s quark, hinting that for u, d their masses
are too small to make such a diagram really relevant. In (c),(d) we
show other types of effective four-fermion vertices, appearing
because some quark pairs can be absorbed by nonzero quark
condensates (red lines).
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hadronic sizes, ρ ≪ Rhadrons, and therefore can be
neglected. With this assumption, the residual four-fermion
interaction has only one parameter, the coupling.
It needs to be stated that such simplification goes with a

certain price: the wave functions get singular at x → 1,
causing bad convergence of their expansion in basis
functions, so we will terminate series by hand. Let us
add that the small size of QCD topological objects also
produces technical difficulties for lattice simulations:
many quantities (and PDF moments are among them;
see e.g., [12]) show significant dependence on the value
of lattice spacing a down to very fine lattices, with
a ∼ 1=ð2–3 GeVÞ, so the continuum extrapolation a → 0
is a nontrivial step.
The small sizes of instantons and instanton-dyons

explain a few other puzzles, known in hadronic physics
and by lattice practitioners. We will not discuss phenomena
related to strange quark mass in this work, but notice in
passing, the “puzzle of strong breaking of the SUð3Þ flavor
symmetry.” Naively, in NJL-like models

ms ∼ 0.1 GeV ≪ ΛNJL ∼ 1 GeV

is a small parameter, and expansion in it should be well
behaved. However, it is far from being seen in the real
world and lattice numerical data. One particular manifes-
tation of it, observed e.g., in recent lattice work already
mentioned [12], is that PDF moments for various octet
baryons N, Λ, Σ are very different. The SUð3Þ flavor
symmetry is broken at a 100% level. Its explanation in ILM
is also related to small sizes of the topological objects. The
four-fermion vertex of Fig. 1(b) is proportional to the
(chirality-flipping) factor msρ. (The appearance of ρ is
obvious from dimensional considerations.) The effective
vertices generated by diagrams (c) and (d) are proportional
to the respective quark condensates, as indicated. For
convenience, the sum of (b) and say the (c) vertex is
written in a form ðms þM�

sÞρ where the so-called “deter-
minantal mass”M� (not to be confused with the constituent
quark mass) can be calculated for small-size instanton
á la OPE to be

M�
f ¼

2π2

3
jhq̄fqfijρ2 ð1Þ

and, by coincidence of numbers, is comparable to ms.
Therefore, the effective four-fermion interactions for light
and strange quarks turn out to be a factor of 2 different.
Although we will not discuss chiral symmetry breaking

and chiral perturbation theory below, it is tempting to
mention one more observation that is very puzzling to
lattice practitioners. It is not related to the strange quark
mass, but to the light quark masses mu, md. Those are only
a fewMeV in magnitude and, naively, a chiral extrapolation
to mu, md → 0 should just be linear. Yet in practice,

many observables show nonlinear mass dependencies.
The answer, at least the one coming from ILM, is that
the chiral condensate, made of collectivized instanton zero
modes, has a spread of Dirac eigenvalues proportional to
overlaps of zero modes of individual instantons. To form a
condensate, the quark needs to hop from one instanton to
the next. The overlap of their zero modes is surprisingly
small because the topology ensemble is rather dilute:

Δλ ∼ ρ2=R3 ∼ 20 MeV ð2Þ

comparable to quark masses used on the lattice. Here
R ∼ 1 fm is a typical distance between instantons. It is
1=R3 because such is the propagator of a massless quark in
4D, and two ρ factors are two couplings of a quark to two
instantons.

C. Comments on perturbative evolution
and twist expansion

Completing the Introduction, we would like to add some
comments clarifying relations between the model calcu-
lation of the light-front wave functions (LFWFs), presented
below and in other works, with studies of the perturbative
processes, involving gluon and quark-antiquark produc-
tion. While generic by themselves, these comments have
prompted discussion in the literature, so perhaps they are
worth repeating.
The hadrons—e.g., a pion or a fully polarized proton—

are of course single quantum states, described by their
multibody wave functions. On the other hand, the PDFs we
used to deal with using the parton model are single-body
density matrices. In principle, they should be calculated
from thewave functions, by integrating out variables relating
to other partons. A single struck parton, being a subsystem,
possesses entanglement entropy with the rest of the state, as
recently pointed out by Kharzeev and Levin [13].
Furthermore, the celebrated and widely used Dokshitzer-

Gribov-Lipatov-Altarelli-Parizi (DGLAP) evolution equa-
tion is basically a version of the Boltzmann kinetic
equation, with “splitting functions” describing the gain
and loss in PDFs as the resolution Q2 changes. As for any
Boltzmann equation, one can define the (ever increasing)
entropy. It is also important to note, as any other single-
body Boltzmann equation, that DGLAP is based on the
implicit assumption that higher correlations between bodies
are small and can be neglected. Therefore, it may appear
strange that DGLAP is successfully applied to the nucleon,
in which diquark correlations are known to be so strong,
that it often is treated as a two-body system (e.g., the
nucleon Regge trajectories are nearly the same as for
mesons).
To understand that there is no contradiction, one needs

to have a look at evolution, including not only the
leading twist operators, whose pQCD evolution is
described by DGLAP, but the higher twist operators as
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well. In particular, the general OPE expansion for deep-
inelastic scattering includes gluon-quark and even four-
fermion operators; see e.g., [14]. Their matrix elements are
precisely the place where interparton correlations are
included. However, these operators are suppressed by
powers of 1=Q2 and are normally ignored in DGLAP
applications for hard processes at large Q.
The three lessons from this discussion are as follows.

(i) A nucleon has no entropy, but its PDFs have it.
(ii) DGLAP is a kinetic equation, ignoring correlations
between partons but explaining the entropy growth. It is
good at high Q ≫ 1GeV. (iii) Attempting to build a bridge
between hadronic models and pQCD description, one
thinks about the scale Q ∼ 1 GeV2, where correlations
and higher twist effects need to be included. Observing
parton correlations is hard, and not done yet, but still in
principle possible.

II. FEW-BODY KINEMATICAL VARIABLES
ON THE LIGHT FRONT

A textbook introduction to few-body quantum mechan-
ics starts usually with an introduction of Jacobi coordinates,
eliminating the center-of-mass motion. Those can be used
for transverse coordinates, but not for momentum fractions
xi, i ¼ 1…N. In this section we propose a set of N − 1
coordinates in which one can conveniently describe dynam-
ics with longitudinal momentum fractions x1…xN , with the
constraint

XN
i

xi ¼ 1: ð3Þ

But before we do so, let us comment that the number of
particles N and variables N − 1 in the problems to be dealt
with need not be fixed. Although such a situation is unlike
what is usually described in textbooks, it is rather common
in realistic applications of quantum mechanics. For exam-
ple, complicated atoms or nuclei are described in a basis
with closed shells, plus several nucleons (or electrons)
above it, plus an indefinite number of particle-hole pairs.
Hadronic wave functions similarly should have an indefi-
nite number of quark-antiquark pairs.
In general, LFWFs consist of sectors with N particles,

with N changing from some minimal number Nmin (2 for
mesons, 3 for baryons) to infinity. The variables should
satisfy momentum normalization in Eq. (3).
In this paper we will make some drastic simplifications.

In particular,
(i) We will ignore transverse momenta, as already

mentioned, and focus on the LFWF dependence
on the longitudinal momentum fractions xi only.

(ii) As we focus on four-quark interactions, we will
ignore gluons and processes involving them. So our
particles will be only quarks. They would be dressed

due to chiral symmetry breaking and thus have
effective “constituent quark masses.”

(iii) While each N-sector will be described by a space
with a certain appropriate number of basis states,
the corresponding polynomials, we will truncate the
Hilbert space to minimal and next-to-minimal (Nmin
and Nmin þ 2) sectors. While the former dominate
the valence quark structure functions, the latter
will be needed to discuss the “sea” quarks and
antiquarks.

So, our operational Hilbert space would include sectors
with two and four quarks for mesons, and three and five for
baryons. Let us discuss these sectors subsequently, explain-
ing more convenient variables and the integration measure
for each sector. In selecting the kinematical variables
one would like to include the constraint explicitly, yet
keeping the integration measure factorizable and within the
boundaries.
The two-particle sector is the simplest case. With two

momentum fractions, x1, x2 and the constraint (3) there
remains a single variable. For reasons to become clear soon,
we select it to be their difference:

s ¼ x1 − x2 ð4Þ

in terms of which

x1 ¼
1þ s
2

; x2 ¼
1 − s
2

: ð5Þ

The commonly used integration measure takes the form

Z
dx1dx2δðx1þ x2 − 1Þx1x2…¼

Z
1

−1
ds

ð1− sÞð1þ sÞ
4

…

ð6Þ

The polynomials used in this case, with natural
weight ð1 − sÞ2, are Gegenbauer polynomials C3=2

n ðsÞ or
Jacobi P1;1

n ðsÞ.
The three-particle sector has been discussed extensively

in the literature such as [15]. Two kinematical variables
suggested in this case are

s ¼ x1 − x2
x1 þ x2

; t ¼ x1 þ x2 − x3 ð7Þ

in terms of which

x1 ¼
ð1þ sÞ

2

ð1þ tÞ
2

; x2 ¼
ð1 − sÞ

2

ð1þ tÞ
2

; ð8Þ

and the integration measure
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Z �Y
i

dxi

�
δ

�X
i

xi − 1

��Y
i

xi

�
…

¼
Z

1

−1

Z
1

−1
dsdt

ð1 − sÞð1þ sÞð1 − tÞð1þ tÞ3
25

… ð9Þ

Note that it is indeed factorized. Therefore one can split it
into two and select an appropriate functional basis. In its
choice we however would deviate from that in [15]
(because we do not consider perturbative renormalization
and anomalous dimensions of the operators) and will use

ψn;lðs; tÞ ∼ P1;1
n ðsÞP1;3

l ðtÞ: ð10Þ

The four-particle sector follows the previous example.
Three variables are defined as

s ¼ x1 − x2
x1 þ x2

; t ¼ x1 þ x2 − x3
x1 þ x2 þ x3

;

u ¼ x1 þ x2 þ x3 − x4; ð11Þ

producing the integration measure

Z �Y
i

dxi

�
δ

�X
i

xi − 1

��Y
i

xi

�
…

¼
Z

1

−1

Z
1

−1

Z
1

−1
dsdtdu

ð1 − sÞð1þ sÞð1 − tÞð1þ tÞ3ð1 − uuÞð1þ uuÞ5
32768

… ð12Þ

The functional basis is then

ψn;l;mðs; tÞ ∼ P1;1
n ðsÞP1;3

l ðtÞP1;5
m ðuÞ: ð13Þ

The five-particle sector is our last example. Here the
four variables, collectively called zi, i ¼ 1, 2, 3, 4, are
defined by

s¼ x1−x2
x1þx2

; t¼ x1þx2−x3
x1þx2þx3

;

u¼ x1þx2þx3−x4
x1þx2þx3þx4

; w¼x1þx2þx3þx4−x5: ð14Þ

The principle idea can also be seen from the inverse
relations

x1 ¼
1

24
ð1þ sÞð1þ tÞð1þ uÞð1þ wÞ

x2 ¼
1

24
ð1 − sÞð1þ tÞð1þ uÞð1þ wÞ

x3 ¼
1

23
ð1 − tÞð1þ uÞð1þ wÞ;

x4 ¼
1

22
ð1 − uÞð1þ wÞ

x5 ¼ 1 − x1 − x2 − x3 − x4 ¼
1

2
ð1 − wÞ: ð15Þ

The integration measure follows the previous trend,
being factorizable:

Z
dsdtdudw
16777216

ð1 − sÞð1þ sÞð1 − tÞð1þ tÞ3

× ð1 − uÞð1þ uÞ5ð1 − wÞð1þ wÞ7… ð16Þ

The orthonormal polynomial basis to be used is by now
obvious,

ψ lmnkðs; t; u; wÞ ∼ P1;1
l ðsÞP1;3

m ðtÞP1;5
n ðuÞP1;7

k ðwÞ; ð17Þ

with normalization constants determined numerically.

III. MESONS AS TWO-QUARK STATES

LFWFs for pion and rho mesons were studied by Jia and
Vary (JV) [7]. Their Hamiltonian has four terms including
(i) the effective quark masses coming from chiral symmetry
breaking; (ii) the longitudinal confinement; (iii) the trans-
verse motion and confinement; and, last but not least,
(iv) the NJL four-quark effective interaction

H ¼ HM þHjj
conf þH⊥

conf þHNJL

HM ¼ M2

x1
þ M̄2

x2

Hjj
conf ¼

κ4

ðM þ M̄Þ2
1

JðxÞ ∂xJðxÞ∂x

H⊥ ¼ k⃗2⊥
�
1

x1
þ 1

x2

�
þ κ4x1x2r⃗2⊥ ð18Þ

where M, M̄ are the masses of the quark and antiquark;
κ is the confining parameter; JðxÞ ¼ x1x2 ¼ ð1 − sÞ2=4
is the integration measure; and k⃗⊥, r⃗⊥ are the transverse
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momentum and coordinate, respectively. If the masses are
the same, however, one can simplify it as

1

x1
þ 1

x2
¼ 1

x1x2
¼ 4

ð1 − s2Þ

and therefore the matrix elements of HM simply lack the
factor (1 − s2) normally present in the integration measure.
While we follow the JV work in spirit, we do not follow

it in all technical details. The reason is because we intend to
widen the scope of the study to three-, four, and five-quark
sectors, and we need to keep the uniformity of approach for
all of them.
The main deviation is that we will ignore details of the

transverse motion, and simply add the mean hH⊥i to
hadronic masses, where appropriate. The reason for it is
clear: one needs to keep the size of the Hilbert space
manageable.
Another modification is technical. The functional basis

selected by JV was the eigenfunctions of the two first terms
in the Hamiltonian. We do not find it either important or
especially beneficial, since the full Hamiltonian is non-
diagonal and is numerically diagonalized anyway.
Another provision, limited to two-quark systems, is

parity of the wave function, which is a good quantum
number. So we select (in this section only) the set of even
harmonics (polynomials of z2).
The set of functions is normalized, so that

Z
dsJðsÞψn1ðsÞψn2ðsÞ ¼ δn1n2 ð19Þ

and then we calculate the hn1jHjn2i matrix for all three
terms of the Hamiltonian. In general, quarks have different
masses (as in K, K� mesons). The confining term we
borrowed from [7] and use it in the form

Hconf ¼ −
κ4

M2
q

1

J
∂
∂s JðsÞ

∂
∂s ð20Þ

where JðsÞ ¼ ð1 − s2Þ=4 is the integration measure. Two
derivatives over momenta are the quantum-mechanical
version of the (longitudinal) coordinate squared, so it
can be called “a longitudinal version of the harmonic
confinement.” The measure appearing between the deriv-
atives is there to ensure that this term is a Hermitian
operator. The factor 4 is absorbed by changing derivatives
over x to those over s.
The quartic interaction that we use, as explained already,

is not some version of the NJL operator, but rather its
significant part, namely the topology-induced ’t Hooft
Lagrangian. As explained above, its chiral structure is such
that it does not contribute to vector mesons (chiral structure
LLþ RR). It means that by diagonalizing the first two

terms of the Hamiltonian we already get predictions for
their wave function.
The values of the parameters we use, Mq ¼ 0:337 GeV,

κ ¼ 0:227 GeV, are just borrowed from the JV paper [7];
one gets the ground state mass mρ ≈ 700 MeV. It is 10%
lower than the experimental and Jia-Vary value, as we
neglected the confinement in the transverse direction.
For the ground ρ state we have then the LFWF of the

approximate polynomial form given in the Appendix A, as
Eq. (A1). Note that it has a rather narrow peak near the
symmetry point s ¼ 0 or x1 ¼ x2, and it is very small near
the kinematical boundaries.
Now we add the four-fermion interaction, shown in

Fig. 2. Note that in local approximation the left-hand side
and the right-hand side include independent integrations,
over ðx1; x2Þ in one state and over ðx01; x02Þ in the other. But
since this gives the total probability of any values, the
corresponding matrix is proportional to this curious matrix
Mall ones which has all matrix elements being just 1:

Hn1;n2
NJL ¼ �G2Mall ones

Mn1;n2
all ones ≡ 1: ð21Þ

The minus sign corresponds to the four-fermion attraction
in the pions, and the plus sign to repulsion in the η0 channel.
Let us explain why it is so, using the simplest two-flavor
case, in which

jπ0i ∼ 1ffiffiffi
2

p ðūuþ d̄dÞ

and the isospin zero configuration orthogonal to it η
(becoming η0 in three-flavor theory) is

jηi ∼ 1ffiffiffi
2

p ðūu − d̄dÞ:

In the matrix elements of the Hamiltonian, hπ0jHjπ0i and
hηjHjηi, the nondiagonal operators ðūuÞðd̄dÞ contribute
with the opposite sign, making the pion light and η heavy.
The opposite sign here is a well-known manifestation of
explicit Uað1Þ breaking.
Adding this last term of the Hamiltonian to the first two,

and diagonalizing, we obtain masses of these states. The
coupling we select from the requirement that pions be
massless, which leads to mesonic effective coupling
G ≈ 0.65 GeV2.

FIG. 2. Kinematical variables in matrix element of four-quark
part of the Hamiltonian.
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The probability to find a quark at momentum fraction x,
P ¼ xð1 − xÞψ2ðxÞ, should correspond to valence structure
functions. (Of course, we still are in the two-quark sector
and have no sea. There is no pQCD evolution or gluons.)
The results from the diagonalization of H, for the lowest

states in the rho, pion and eta-prime channels, are plotted in
Fig. 3. Note that the predicted PDF for the ρ meson (in
which the four-fermion interaction is presumed to be
absent) is peaked near the symmetric point x ¼ 1=2,
s ¼ 0. The pion one, in contrast, has a completely different
flat shape. As one compares the lower plot to our result, one
should keep in mind the fact that the PDF includes also
a contribution from sectors with the quark number larger
than 2, while ours (so far) do not.
Two historic remarks are in order. (i) One needs to

mention an early model of the so-called “double-hump”
pion wave function suggested in the 1980s by Chernyak
and Zhitnitsky (CZ). In our notations their wave function
corresponds to the first harmonics only, ψπðsÞ ∼ s. Our
result does not of course coincide with it, yet we do find
that local four-quark interaction does indeed make the x
distribution much flatter [compared to the “asymptotic”
distribution given by the measure alone ∼xð1 − xÞ ¼
ð1 − s2Þ=4]. (ii) The pion wave function was calculated
within the instanton liquid model in [17]: to the extent we
can compare them, the results are similar.

Not surprisingly, the PDF for the “repulsive” η0 channel
moves in the opposite direction. In fact two maxima are
predicted, the larger one above x ¼ 1=2 and a small one
near x ¼ 1=4. While these predictions are not possible to
verify experimentally, one in principle should be able to
compare them with lattice data and other models.
Concluding this section, let us make a few comments

on the main simplification, as compared to [7], namely
on ignoring wave function dependence on transverse
momenta. Note that even in this paper a comparison
between wave functions with various cutoffs in the
L (x-related) quantum number is studied, with Lmax ¼ 8,
16, 32, while no similar discussion of dependence on
(p⃗⊥-related)Mmax is given. Since the aim of this paper is to
extend application of the model up to 5-bodies, doubling of
the number of degrees of freedom would obviously expand
the functional basis by several orders of magnitude
and make calculation impractical. For example, if we
would also adopt maximal orbital momentum to be
(in their notations) Mmax ¼ 2, as they did, it will bring
in 5þ 3þ 1 ¼ 9 new amplitudes per particle, or a 94

larger basis in pentaquarks.
Still, the dependence on p⃗⊥ remains an open issue. The

point we want to make is that it is not just a technical
complication with a larger functional basis, but a serious
physics issue. Using nonrelativistic language for vector
mesons, one would say that they have total angular
momentum J ¼ 1 and possible orbital ones 0 mixed with
2 (reminding one in this respect of the classic nuclear
physics system, the deuteron). The admixture of the
quadrupole, and the corresponding quadrupole moment,
depends on the magnitude of the relativistic effects ∼v2=c2
(not too large in this model) as well as the nonlocality of
the four-quark interaction. Both in [7] and in this work this
interaction is treated as local, ignoring finite sizes of
instantons and the related form factors. Therefore we do
not think that the model, in its current form, can describe
the dependence on p⃗⊥ correctly.

IV. BARYONS AS THE THREE INTERACTING
QUARKS

In this pilot study we will pay little attention to quark/
antiquark spin states. Like transverse motion, it will be
delegated to later studies with a larger functional basis. Let
us just mention that the three-quark wave functions we will
be discussing are for the delta baryon

jΔþþi ∼ ψΔðxiÞju↑ðx1Þu↑ðx2Þu↑ðx3Þi ð22Þ

and for the proton

jp↑i ∼ ψpðxiÞðju↑ðx1Þu↓ðx2Þd↑ðx3Þi
− ju↑ðx1Þd↓ðx2Þu↑ðx3ÞiÞ ð23Þ
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FIG. 3. Upper: Momentum distribution for pion, rho and eta-
prime mesons, calculated in the model. Lower (from [16]):
Comparison between the measured pion PDF (points) and the
JV model (lines).
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and in what follows we will focus on the former compo-
nent, in which the d quark has the last momentum fraction
x3. For a review see [18].
Let us just mention that some empirical information

about the three-quark LFWF of the nucleons comes from
exclusive processes. The theory of these functions is, to our
knowledge, reduced to evaluation of certain moments,
originally via QCD sum rules and now from lattice studies.
The calculation of the pQCD evolution as a function ofQ2,
using the matrix of anomalous dimensions for leading twist
operators, was done in [15]. For doing so, it was important
to use the so-called conformal basis

ΨN;nðxiÞ ∼ ð1þ tÞnPð2nþ3;1Þ
N−n ð−tÞC3=2

n ðsÞ ð24Þ

where Pða;bÞ
l ðzÞ and Cm

n ðzÞ are Jacobi and Gegenbauer
polynomials. [Both are defined on z ∈ ½−1; 1� and form
the orthonormal basis, with the weight functions ð1 − zÞa
ð1þ zÞb and ð1 − z2Þm−1=2, respectively.] For consistency,
we will be using a slightly different set of functions defined
(24) as the orthogonal set. (We omit the discussion of
normalization coefficients of these functions, which are
known but not particularly instructive.)
The first physical effect we would like to incorporate is

the part of the effective Hamiltonian coming from chiral
symmetry breaking, the constituent quark masses term

Hmass ¼ M2
q

�
1

x1
þ 1

x2
þ 1

x3

�
: ð25Þ

The masses we use are the same as those used in the fit for
mesons in [7].
The second included effect is confinement. We recall that

since xi are momenta, the longitudinal coordinates are
quantum conjugate to them, or i∂=∂xi. Making it as simple
as possible, we follow what is done for mesons in [7], so we
define this part of the Hamiltonian in the following form, in
s, t coordinates:

Hconf ¼ −
κ4

Jðs; tÞM2
q

� ∂
∂s Jðs; tÞ

∂
∂sþ

∂
∂t Jðs; tÞ

∂
∂t
�

ð26Þ

with the measure function Jðs; tÞ appearing in the s, t
integration. Note that the coefficient 4 in the denominator is
missing: this is canceled by the factor 4 coming from a
difference between derivatives in the x and s, t variables.
The third (and the last) effect we incorporate in this work

is the topology-induced four-quark interactions. Note that
the topological ’t Hooft Lagrangian is flavor antisymmetric.
This means that it does not operate e.g., in baryons made of
the same flavor quarks, like the Δþþ ¼ uuu. Another
reason why the ’t Hooft vertex should be absent is in
any states in which all spin orientations of quarks are the
same. For both these reasons, Δþþ is not affected by

topology effects, therefore serving as a benchmark (like the
ρ meson did in the previous sections).
Thus, we have a prediction for the masses of Δ baryons

and their excited states, as well as the corresponding
LFWFs. Using the quark mass and the same confining
parameter as for the mesons, we get the mass squared of the
lowest three-quark state to be 1.28 GeV2. Following what
we learned from the mesonic case about transverse energy
correction, we add it twice and get

MΔ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.28þ 2 × :12

p ¼ 1.23 GeV ð27Þ
in perfect agreement with the experimental Bright-Wigner
mass MΔ ¼ 1.230–1.234 GeV.
A couple of other comments are necessary at this point:
(i) Without the confining term, the mass squared of the

lowest three-quark state is only slightly smaller,
1.11 GeV2. This is because this state is dominated
by the lowest harmonics, as we will show below, and
the Laplacian in it is zero. In other words, the
predicted LFWS of delta is rather flat.

(ii) The mass squared of the next state is 1.679 GeV2,
and with a transverse correction it leads to

MΔ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.679þ 2 × 0:12

p ¼ 1.39 GeV: ð28Þ
Experimentally, the second Δ0 state has a higher
Bright-Wigner mass, at 1.5–1.7 GeV. We generally
do not expect the model to adequately describe the
excited states, since transverse degrees of freedom
are not really represented in the WF.

The next step is implementation of the four-quark
residual interaction. In the notations used (23), we focus
on the former proton state, in which the d quark has
momentum fraction x3. Unlike general NJL operators, the
topology-induced one is flavor antisymmetric, acting in the
ðudÞ channel only. So, in principle there can be diagrams

(a)

(b)

FIG. 4. Two terms in the Hamiltonian, describing rescattering
in the uðx2Þ dðx3Þ channel (a) and uðx1Þ dðx3Þ channel (b) due to
residual local four-quark interaction.
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(a) and (b), shown in Fig. 4, with interaction in the (2,3) and
(1-3) pairs, but none in the uu pair due to the Pauli principle
for the quark zero modes. Furthermore, the topology-
induced NJL-like local attractive term only appears in
the spin-zero diquark channel, and therefore the spin
directions of u and d quarks must be opposite. This
eliminates the diagram (b). Note also that two u quarks
are distinguishable as they have opposite spins: thus there
are no exchange diagrams.
The kinematics of the diagram is as follows. In general, a

transition amplitude from the initial set x1, x2, x3 of
kinematical variables to the final ones x01, x

0
2, x

0
3 includes

four integrations. However, since one of the quarks does
not participate, there is always one delta function for the
noninteracting quark [e.g., for (a) interacting, x1 ¼ x01], and
the matrix elements of the (a) and (b) diagrams include
effectively 3D integrals. Yet since all the functions and
kinematical boundaries are already defined in terms of
s; t; s0; t0, we preferred to keep full 4D integrations, imple-
menting the delta function approximately, by a narrow
Gaussian.
The Hamiltonian matrix for residual interaction we write

in the form, for diagram (a),

hi1jHaji2i ¼ −G
Z

dsdtJðs; tÞψ i1ðs; tÞ2

×
Z

ds0dt0Jðs0; t0Þψ i2ðs0; t0Þ2δðx1ðs; tÞ

− x01ðs0; t0ÞÞ: ð29Þ
The minus sign corresponds to attraction in the ud channel.
As G increases, the mass of the lowest state decreases: we
stop when it becomes equal to the nucleon mass. This
allows us to fix our first model parameter

G ≈ 17 GeV2: ð30Þ
(We already noticed in the pion case, that an attractive

four-fermion interaction in principle makes the vacuum
unstable and creates the massless pion. At the chosen G
there are signs of this phenomenon, as imaginary parts of
squared masses of higher nucleon states. The nucleon’s
mass remains real and far from zero.)
Now we are ready to explore properties of the obtained

nucleon wave function, which one can read off from the
eigenvector of the Hamiltonian.
The simplest quantity to display are single-quark den-

sities, corresponding to nucleon PDFs. In particular, the
distribution over x3, or the d quark, depends in our
notations only on the variable t. So, performing integration
over the variable s while keeping t arbitrary yields the
d-quark distribution

dðx3 ¼ 1 − 2tÞ ¼
Z

1

−1
dsJðs; tÞΨ2

Nðs; tÞ: ð31Þ

This distribution multiplied by x is shown in Fig. 5 (upper),
for the delta and nucleon wave functions that we obtained.
Two comments are in order: (i) the peak in the nucleon
distribution moves to lower xd, as compared to x ¼ 1=3
expected in Δ and noninteracting three quarks; (ii) there
appears a larger tail toward small xd in the nucleon, but also
some peaks at large xd. Both are unmistakably the result of
local ud pairing (strong rescattering) in a diquark cluster.
Figure 5 (lower), shown for comparison, includes the

empirical valence xdðxÞ distribution, also shown by a red
solid line. The location of the peak roughly corresponds to
data. The presence of the small-xd tail is alsowell seen (recall
that what is plotted is the distribution times x). The
experimental distribution is of course much smoother than
ours. It is an expected feature: our wave function is expected
to be “below the pQCD effects,” at a resolution of say
Q2 ∼ 1 GeV2, while the lower plot is atQ2 ¼ 2.5 GeV2, and
it includes a certain amount of pQCD gluon radiation. It also
contains higher order correlations between quarks.
Our distribution displays a certain structure, related to

the quark-diquark component of the wave function, which
may or may not be true. It is definitely present in the model
used. As for the data, it is not so obvious: collaborations
fitting the data imply simple functional forms, so their
smoothness of the empirical PDFs also may be questioned.

Δ

N

0.01 0.05 0.10 0.50 1
0.0

0.2

0.4

0.6

0.8

FIG. 5. Upper: Our calculation of the d quark distribution in the
nucleon times x, xdðxÞ (red, solid) and delta (black, dashed)
states. For comparison, the lower plot shows empirical structure
functions (copied from [16]), where the valence xdðxÞ is also
shown in red.
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In order to reveal the structure, one can of course
compare the wave functions without any integrations, as
they depend on two variables s, t only. Such plots, of
Jðs; tÞΨ2ðs; tÞ, we show in Fig. 6 for the delta, the nucleon,

and the model discussed in [19] (see the Appendix). While
the delta shows a peak near the symmetry point x1 ¼ x2 ¼
x3 as expected, without any other structures, our nucleon
WFs indicate more complicated dynamics. Indeed, there
appear several bumps, most prominent near s ≈ 1, t ≈ 1
which is x1 ≈ 1. Apparently, it is about the same peak
location which CZ wave functions wanted to emulate. Such
strong peaking corresponds to a large momentum transfer
inside the ud diquark clusters. Yet there is also the peak in
the middle, roughly corresponding to that in delta. So, the
nucleon wave function is a certain coherent mixture of
three-quark and quark-diquark components.
Additional information about the nucleon wave function

may be obtained from the amplitudes corresponding

FIG. 6. The two upper plots show the probability distribution
Jðs; tÞΨ2ðs; tÞ in s, t variables, for the delta and nucleon lowest
states, as calculated from the model. The lower plot corresponds
to the Chernyak-Zhitnitsky model wave function NIJ (C1),
shown for comparison.
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FIG. 7. Upper: The coefficients of the wave function Cα
n (the

order of basis functions is specified in the Appendix), for the
ground state delta (open points) and the nucleon (closed points)
states. The two lower plots contain histograms of these coef-
ficients for the 25 lowest delta and nucleon states, respectively.
The black lines in the background are the Gaussians with the
appropriate width.

EDWARD SHURYAK PHYS. REV. D 100, 114018 (2019)

114018-10



to particular basis states. We recall that its definition
is in (10) [up to normalization, which we fixed from
1 ¼ R

dsdtJðs; tÞψn;lðs; tÞ2].
The wave function coefficientsCα

n, defining expansion in
the basis functions

jαi ¼
X
n

Cα
njni;

are shown in Fig. 7. The upper plot compares those for the
ground state delta and nucleon channels. Note first that the
largest coefficients are the first [corresponding to trivial
ψ0;0ðs; tÞ ∼ constðs; tÞ]. Furthermore, for the delta it is
close to 1, while it is only ∼1=2 for the nucleon. The
fraction of “significant coefficients” is much larger for N.
The nucleon wave function has a tail toward higher n, l
harmonics which does not show any decreasing trend. One
may in fact conclude that convergence of the harmonic
expansion is not there. This can be traced to behavior near
x ¼ 1, perhaps the pointlike residual interaction leads to a
true singularity there.
The two lower plots of Fig. 7 address the distribution of

the wave function coefficients Cα
n in these two channels,

without and with the residual four-quark interaction. It
includes not only the ground state but the lowest 25 states in
each channel. As is clear from these plots, in the former
(delta) case the distribution is very non-Gaussian, with the
majority of coefficients being small. The latter (nucleon)
case, on the other hand, is in approximate agreement with
Gaussian. In other quantum systems, e.g., atoms and nuclei,
the Gaussian distribution of the wave function coefficients
Cα
n is usually taken as a manifestation of “quantum chaos.”

In this language, we conclude that our model calculation
shows that the residual four-quark interaction leads to the
chaotic motion of quarks, at least inside the nucleon
resonances. (If this conclusion surprises the reader, we
remind them that the same interaction was shown to
produce a chaotic quark condensate in vacuum. In particu-
lar, numerical studies of interacting instanton liquid in
vacuum has led to the chiral random matrix theory of the
vacuum Dirac eigenstates near zero, accurately confirmed
by lattice studies.)

V. PENTAQUARKS

Jumping over the four-quark LFWFs we proceed to the
next sector, with qqqqq̄ composition. Although the main
intention is to “unquench” our quark model, coupling
sectors with different numbers of quarks together in the
common Hamiltonian eigenstate, we start in this section
with a study of the pentaquark qqqqq̄ states as such. One
can also view this section as a calculation of the
Hamiltonian matrix in the 5q sector, to be coupled with
the 3q one in the next section. For simplicity, we assume
the four quarks to be in four distinguishable spin-flavor

states, namely u↑u↓d↑d↓, which minimizes the Fermi
repulsion effects by eliminating the exchange diagrams.
There is no change in the model or its parameters: all we

do is write the Hamiltonian as a matrix in a certain basis and
diagonalizing it. Four kinematical variables zi ¼ s, t, u, w,
the integration measure Jðs; t; u; wÞ and the set of orthogo-
nal functions were already defined in Sec. II. The presence
of four integers, numbering the degree of the corresponding
polynomials, naturally restricts our progress toward large
values of each. Matrix elements of the Hamiltonian become
in this sector four-dimensional integrals. Since this is a
pilot study, restricted to laptop-based calculations inside
Mathematica, we evaluate ∼103 such matrix elements. The
set of states ðl; m; n; kÞ used in this section contains 35
states for which lþmþ nþ k < 4 listed in the
Appendix D.
Matrix elements of the quark-mass term and the (longi-

tudinal) confining terms, Hmass ¼ M2
q
P

A¼1;5ð1=xAÞ and
Hconf ¼ −ðκ4=J=M2

qÞð
P

i¼1;4 ∂ziJ∂ziÞ, are calculated and
diagonalized. Let us comment on some of the results.
The lowest eigenvalue was found to be M2

min :penta ¼
4.04 GeV2. Following the procedure we adopted for
mesons, we add the transverse motion term (treated as
constant) 4 × 0.12 ¼ 0.48 GeV2. Taking the square root,
the predicted lowest mass of the light-flavor pentaquark
(due to chiral mass and confinement) is therefore

Mmin :penta ¼ 2.13 GeV: ð32Þ

To get this number in perspective, let us briefly recall the
history of the light pentaquark search. In 2003 the LEPS
group reported a pentaquark Θþ ¼ u2d2s̄ with a surpris-
ingly light mass, of only 1.54 GeV, 0.6 GeV lower than our
calculation (and many others) yielded.
Of course, so far the residual perturbative and NJL-type

forces were not included. Quick estimates of the time
(including ours [20]) suggested that since the ud diquark
has a binding energy of ΔMud ≈ −0.3 GeV and the
pentaquark candidate has two of them, one gets to the
“then observed” mass of 1.54 GeV.
Several other experiments were also quick to report

observations of this state, until other experiments (with
better detectors and much higher statistics) showed that this
pentaquark candidate does not really exist. A similar sad
experimental status persists for all six-light-quark dibary-
ons, including the flavor symmetric u2d2s2 spin-0 state
much discussed in some theory papers.
A lesson for theorists is, as is often the case, not to trust

any simple estimates but to proceed to some more con-
sistent calculation. In the framework of an instanton liquid
model, we studied diquark-diquark effective forces, by
correlating pentaquark operators in a standard Euclidean
setting [21]. We found that, like for baryons, consistently
accounting for Fermi statistics generates strong repulsion
between diquarks, basically canceling the presumed
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attraction. The same trend was observed in multiple lattice
studies, e.g., by the Budapest group [22]: no pentaquark
states close to 1.54 GeV in fact exist, while all physical
states are much heavier.
Returning to our calculation, we have a few more

comments. First, about the role of the confining term of
the Hamiltonian: without it, the lowest eigenvalue is at
3.82 GeV2, and with it is (as reported above) 4.04 GeV2.
The difference due to longitudinal confinement is thus
0.22 GeV2. Twice this value (because there are two trans-
verse directions) gives 0.44 GeV2, very consistent with
our empirical correction due to transverse motion of
4 × 0.12 ¼ 0.48 GeV2.
The next-to-lowest eigenstate of the Hamiltonian has the

mass 4.87 GeV2, demonstrating a rather large gap with the
lowest state. We have so far made no investigation of why it
happens in this case, but not the others.
Even at the current level of approximation, without

residual four-fermion interactions, the pentaquark wave
function of the lightest eigenstate turns out to be rather
nontrivial. Since it is a function of four variables, there is no
simple way of plotting it. Suppressing a bunch of small
terms, it can be written explicitly as a polynomial; see the
Appendix D.
Note that the coefficients of highest order terms are not

small, and in this sense the set of states was insufficient to
show convergence. While there are nontrivial correlations
between variables, a single-body distribution calculated
from it does not exhibit anything unexpected; see Fig. 8.

VI. THE FIVE-QUARK SECTOR
OF THE BARYONS

As already mention in the Introduction, the initial
motivation for this work was precisely a development of
the framework in which one can consistently calculate the

wave functions in the lowest sector (three-quark for
baryons), relating it to the observed parameters of the
exclusive processes (form factors etc.) and the valence
quark PDFs, and then proceed with the calculation of the
other sectors of the physical state.
For the Hamiltonian matrix element corresponding to the

diagram shown in Fig. 9 we calculated between the nucleon
and each of the pentaquark wave functions, defined above,
by the following 2þ 4-dimensional integral over variables
in the 3q and 5q sectors, related by certain delta functions:

hNjHj5q; ii ¼ Ḡ
Z

dsdtJðs; tÞds0dt0du0dw0Jðs0; t0; u0; w0Þ

ψNðs; tÞδðx1 − x01Þδðx2 − x02Þψ iðs0; t0; u0; w0Þ: ð33Þ

The meaning of the delta functions is clear from the
diagram; they are of course expressed via proper integration
variables and numerically approximated by narrow
Gaussians. After these matrix elements are calculated,
the five-quark “tail” wave function is calculated via
standard perturbation theory expression:

ψ tailðs0; t0;u0;w0Þ ¼−
X
i

hNjHj5q;ii
M2

i −M2
N

ψ iðs0; t0;u0;w0Þ: ð34Þ

The typical value of the overlap integral itself for different
pentaquark states is ∼10−3, and using for effective coupling
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FIG. 8. Probability PðXÞ to find a quark with momentum
fraction X in the lowest pentaquark state, calculated from the
wave function given in the Appendix D. Note that in this WF the
residual four-quark interaction has not yet been implemented.

FIG. 9. The only diagram in which four-quark interaction
connects the three- and five-quark sectors, generating the ū sea.
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FIG. 10. The distribution over that ū in its momentum fraction,
for the nucleon and delta five-quark “tails” (solid and dashed
lines, respectively).
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Ḡ the same value as we defined for G from the nucleon,
namely ∼17 GeV2, one finds that the admixture of several
pentaquarks to the nucleon is at the level of a percent. The
resulting five-quark “tails” of the nucleon and delta baryons
calculated in this way are given in the Appendix. The
normalized distribution of the fifth body, namely ūðxÞ, over
its momentum fraction is shown in Fig. 10. One can see a
peak at xū ∼ 0.05, which looks like a generic phenomenon.
The oscillations at large xū reflect strong correlations in the
wave function between quarks, as well as perhaps indicate
the insufficiently large functional basis used. This part of
the distribution is perhaps numerically unreliable.

VII. PERTURBATIVE AND TOPOLOGY-INDUCED
ANTIQUARK SEA

The results of our calculation cannot be directly com-
pared to the sea quark and antiquark PDFs, already plotted
in Fig. 5, as those include large perturbative contributions,
from gluon-induced quark pair production g → ūu, d̄d,
dominant at very small x. However, these processes are
basically flavor and chirality independent, while the
observed flavor and spin asymmetries of the sea indicate
that there must also exist some nonperturbative mechanism
of its formation. For a general recent review see [16].
As originally emphasized by Dorokhov and Kochelev

[23], the ’t Hooft topology-induced four-quark interaction
leads to processes

u → uðd̄dÞ; d → dðūuÞ

but not

u → uðūuÞ; d → dðd̄dÞ

which are forbidden by the Pauli principle applied to zero
modes. Since there are two u quarks and only one d in the
proton, one expects this mechanism to produce twice more
d̄ than ū.
The available experimental data, for the difference of the

sea antiquark distributions d̄ − ū (from [16]), are shown in
Fig. 11. In this difference the symmetric gluon production
should be canceled out, and therefore it is sensitive only to
nonperturbative contributions.
A few comments are in order.
(i) First of all, the sign of the difference is indeed as

predicted by the topological interaction: there are
more anti-d than anti-u quarks.

(ii) Second, since 2 − 1 ¼ 1, this representation of the
data directly gives us the nonperturbative antiquark
production per valence quark, e.g., that of ū. This
means that it can be directly compared to the
distribution we calculated from the five-quark tail
of the nucleon and delta baryons (Fig. 10).

(iii) The overall shape is qualitatively similar, although
our calculation has a peak at xū ∼ 0.05 while the

experimental PDFs do not indicate it. Of course,
there exist higher-quark-number sectors with seven
or more quarks in baryons, which our calculation
does not yet include; those should populate the small
x end of the PDFs.

(iv) The data indicate a much stronger decrease toward
large xū than the calculation.

(v) There are other theoretical models which also
reproduce the flavor asymmetry of the sea, e.g.,
those with the pion cloud. In principle, one should be
able to separate those and the topology-induced
mechanism (that we focused on in this paper) by
further combining flavor and spin asymmetry of the
sea. In particular, as also noticed in [23], if a d quark
producing a uū pair has positive helicity, the sea
quark and antiquark from ’t Hooft four-quark
operators must have the opposite (that is negative)
helicity. The spin-zero pion mechanism, on the other
hand, cannot transfer spin and would produce flavor
but not spin sea asymmetry.

VIII. SUMMARY AND DISCUSSION

Application of some model Hamiltonians to light-front
wave functions of hadrons should have been done a long
time ago. Yet it is just starting, with the model presented in
this paper still being (deliberately) rather schematic.
We follow the approach of Ref. [7], with the Hamiltonian

including three terms: (i) the “constituent” light quark
effective masses; (ii) the confinement term in harmonic
form; and (iii) the local four-quark NJL-type interaction,
here reduced to its ’t Hooft version. The aim of this
approach is to extend the model from meson to baryon

FIG. 11. The difference of sea antiquark momentum distribu-
tions, d̄ − ū, from Ref. [16].
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three-quark states, then to five-quark states, and finally to
the mixing between the two sectors.
For this pilot study we make a significant simplification

of the model. We completely ignore transverse motion
inside the hadrons, focusing on wave functions as a
function of longitudinal momenta. We reduce the local
four-fermion NJL-type effective interaction to that coming
from gauge topology, believed to be the dominant part.
We have demonstrated that this simplified model does

qualitatively describe the main features of meson and
baryon mass splittings. The pion can become massless,
while the η0 is heavier than the ρ meson. The nucleon is
lighter than the Δ baryon, because of the attractive spin-
zero ud diquark channel. All of this is already known for
quite some time, from Euclidean approaches such as
instanton liquid model and lattice QCD.
Our main findings are however not the hadronic masses,

but the light-front wave functions. We have shown that
local four-fermion residual interaction does indeed modify
them in a very substantial way. In [7] it was shown that the
π and ρmeson have very different wave functions. We now
show that it is also true for baryons: the proton and the Δ
have qualitatively different wave functions. The imprint left
by strong diquark (ud) correlations on the light-front wave
functions is now established. We furthermore found evi-
dence that nucleon resonances show features of “quantum
chaos” in quark motion.
We also made the first steps toward the “unquenching” of

the light-front wave functions, estimating multiple matrix
elements of the mixings between 3-q and 5-q (baryon-
pentaquark) components of the nucleon wave function.
This puts mysterious spin and flavor asymmetries of the
nucleon sea inside the domain of consistent Hamiltonian
calculation.
Now, moving on to the discussion part, let us point out

several directions in which the model itself, as well as the
calculations presented, can be improved.
As technical issues are concerned, the most direct (but

important) generalization of this work would be to repeat
these calculations in a significantly larger function space. In
particular, one needs to restore the dependence of the wave
function on transverse motion and on explicit spin states of
the quarks.
It would be just a straightforward exercise to generalize

this work to strange mesons and baryons. We already
discussed (around Fig. 1) that ðūuÞðd̄dÞ interaction in-
cludes comparable contributions from diagrams (b) and (c),
while ðs̄sÞðd̄dÞ; ðūuÞðs̄sÞ only have the diagram (d): light
quark masses are too small to include sizable analogs of
the diagram (b). Therefore SUð3Þf breaking is expected to
be substantial.
As for the model, in its current form we only get a

schematic understanding of multiquark correlations in the
LFWFs. One can use instead more realistic NJL-type
interactions, as used in modern models, including mean

value of the Polyakov line as a dynamical variable, or in
works including its functional renormalization group flow,
e.g., [24]. Yet, the main thing which needs improvement is
to complement the current local form of the four-fermion
interaction by a form with certain realistic form factors.
Even the original NJL model had a cutoff parameter Λ,
above which the interaction no longer exists. In the
instanton liquid version, the form factors have the form
∼ expð−pρÞ where ρ ∼ 1=600 MeV is the instanton size.
The current model uses a purely local form, assuming that
topological solitons are small compared to hadronic sizes.
Yet one needs these form factors to be perhaps able to
finally find good convergence in the functional space of
harmonics.
Needless to say, many applications of the LFWFs we did

not even touch. For example, one can calculate cross
sections of various exclusive processes, e.g., electromag-
netic form factors or large angle scattering. Perhaps one
should only do so when the model used becomes more
realistic and quantitative.
Finally, we comment on our general goal of bridging the

nonperturbative models with observed PDFs and perturba-
tive evolution. The pQCD evolution of the baryon wave
functions can be included if needed, as the (matrix of)
anomalous dimensions has been calculated quite some time
ago [15]. The multibody wave functions, if known, allow us
to do more than just predict the PDFs: one may in particular
evaluate the matrix elements of the higher-twist operators.
So far, the only effort in this direction we are aware of is
Ref. [25] in which four-body q3g wave functions were
derived and used for twist-3 estimates. Comparing their
properties with experiment at mediumQ2 would eventually
provide a satisfactory “bridge” between the perturbative
and nonperturbative views on the hadronic structure.
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APPENDIX A: THE TWO-BODY LFWFs FOR
PION, RHO AND ETA’ MESONS

The approximate form of three mesonic wave functions
are given below. The measure times their squares is plotted
in Fig. 2. The only comment is about convergence of the
series: the first one, for ρ, clearly shows sign of conver-
gence, as the maximal coefficient is at the middle term. The
pion seems to have a singularity at the end points, while eta’
has zero. Here we give approximate forms of three mesonic
wave functions. (Note that for mesons z simply means the
variable s in Eq. (4).)
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ψρðsÞ≈−1.56263þ13.5307z2−55.002z4

þ138.857z6−241.184z8þ298.688z10−261.438z12

þ153.563z14−53.9465z16þ8.49524z18 ðA1Þ

ψπðsÞ≈−0.727959−3.13128z2þ66.7135z4

−681.778z6þ3689.13z8−11582.8z10þ21693.6z12

−23823.4z14þ14124.3z16−3485.37z18 ðA2Þ

ψη0 ðsÞ≈−1.77724þ26.6155z2−147.594z4

þ518.514z6−1365.06z8þ2750.13z10−3971.84z12

þ3738.27z14−2012.73z16þ465.809z18: ðA3Þ

APPENDIX B: THE THREE-BODY LFWFs
FOR NUCLEON AND DELTA BARYONS

The 25 lowest harmonics shown in Fig. 7 correspond to
the following set of the n, l values:

ð0; 0Þ; ð0; 1Þ; ð1; 1Þ; ð1; 0Þ; ð0;2Þ; ð1;2Þ; ð2; 2Þ; ð2; 0Þ;
ð2; 1Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ; ð3;3Þ; ð3;2Þ; ð3; 1Þ; ð3; 0Þ;
ð0; 4Þ; ð1; 4Þ; ð2; 4Þ; ð3; 4Þ; ð4;4Þ; ð4;3Þ; ð4; 2Þ; ð4; 1Þ; ð4; 0Þ:

The functional set is defined in (24).
The approximate polynomial form of the light-front

wave functions of the nucleon and delta baryons, in s, t
variables, is

ψN ∼ −2.34þ 11.7tþ 43.5t2 − 4.78t3 − 48.7t4

þ s4ð−26.2þ 16.8tþ 316:t2 þ 14.2t3 − 523:t4Þ
þ sð7.98 − 29.3tþ 31.4t2 þ 115:t3 − 97.3t4Þ
þ s3ð−12.4þ 57.4tþ 45:t2 − 169:t3 − 30:t4Þ
þ s2ð22.3 − 32:t − 239:t2 − 11.2t3 þ 347:t4Þ ðB1Þ

ψΔ ≈ −12.7 − 23.1tþ 39.9t2 þ 36.2t3 − 39.5t4

þ s2ð39.2þ 69.9t − 121:t2 − 109:t3 þ 120:t4Þ
þ s4ð−28.1 − 49.4tþ 86.9t2 þ 78.0t3 − 86.3t4Þ:

ðB2Þ

APPENDIX C: MODELS FOR NUCLEON
LFWF USED BY CHERNYAK, OGLOBLIN

AND ZHITNITSKY

In the paper [19] one finds usage of at least three
different nucleon LFWFs, which came from a different
usage of the QCD sum rules method in the 1980s. For
definiteness, we reproduce it here:

NIJ ¼ 23.814x21 þ 12.978x22 þ 6.174x23 þ 5.88x3 − 7.098

NKS ¼ 20.16x21 þ 15.12x22 þ 22.68x23 − 6.72x3

þ 1.68ðx1 − x2Þ− 5.04;

NJ ¼ 18.06x21 þ 4.62x22 þ 8.82x23 − 1.68x3 − 2.94: ðC1Þ

However, for the purpose of comparison we used only
one of them, NIJ, in Fig. 6, since they are all qualitatively
similar.

APPENDIX D: THE FIVE-BODY LFWF
OF THE LOWEST PENTAQUARK

For definiteness, we indicate the specific set of five-body
wave functions used. In the notations of (17), the set of
states ðl; m; n; kÞ used in this section contains the following
states for which lþmþ nþ k < 4, 35 in total:

ð0; 0; 0; 0Þ; ð1; 0; 0; 0Þ; ð0; 1; 0; 0Þ; ð0; 0; 1; 0Þ; ð0; 0; 0; 1Þ;
ð1; 1; 0; 0Þ; ð1; 0; 1; 0Þ; ð1; 0; 0; 1Þ; ð0; 1; 1; 0Þ; ð0; 1; 0; 1Þ;
ð0; 0; 1; 1Þ; ð2; 0; 0; 0Þ; ð0; 2; 0; 0Þ; ð0; 0; 2; 0Þ; ð0; 0; 0; 2Þ;
ð0; 1; 1; 1Þ; ð1; 0; 1; 1Þ; ð1; 1; 0; 1Þ; ð1; 1; 1; 0Þ; ð2; 1; 0; 0Þ;
ð2; 0; 1; 0Þ; ð2; 0; 0; 1Þ; ð1; 2; 0; 0Þ; ð0; 2; 1; 0Þ; ð0; 2; 0; 1Þ;
ð1; 0; 2; 0Þ; ð0; 1; 2; 0Þ; ð0; 0; 2; 1Þ; ð1; 0; 0; 2Þ; ð0; 1; 0; 2Þ;
ð0; 0; 1; 2Þ; ð3; 0; 0; 0Þ; ð0; 3; 0; 0Þ; ð0; 0; 3; 0Þ; ð0; 0; 0; 3Þ:

The quark mass and confinement terms of the Hamiltonian,
after diagonalization, produced the following mass spec-
trum (in GeV2):

M2
5q ≈ 13.9; 13.7; 12.4; 12.2; 11.0; 10.9; 10.9; 10.8; 10.6;

10.6; 10.4; 10.3; 10.3; 10.3; 10.3; 10.1; 10.0; 9.97;

9.90; 9.76; 8.60; 8.20; 8.14; 8.13; 8.04; 8.02; 7.89;

7.76; 7.71; 7.64; 5.16; 5.05; 4.94; 4.84; 4.04: ðD1Þ

TheWF of them wewill not present except for the lowest
(the last). Its approximate form is

ψpenta ¼ 1. − 1.21t3 þ 1.61u − 0.519u2 − 2.03u3

þ s2ð−1.79þ 0.0622tþ 0.177uþ 0.248wÞ
þ t2ð−1.40þ 0.265uþ 0.341wÞ þ 1.46w

− 0.488uwþ 0.510u2wþ 0.835w2 þ 0.194uw2

− 2.81w3 þ tð1.19 − 0.117uþ 0.059u2 − 0.18w

− 0.018uwþ 0.074w2Þ ðD2Þ

where harmonics with smaller coefficients are neglected.
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APPENDIX E: THE LFWF IN THE FIVE-QUARK SECTOR OF THE NUCLEON AND DELTA BARYONS

The five-quark “tails” of the nucleon and the delta baryons that we calculated have (in arbitrary normalization) the
following wave functions:

ψ5q
N ≈ −0.88 − 1.08s3 þ 2.89t3 þ 3.55u − 4.66u2 þ t2ð2.46 − 4.65wÞ

þ s2ð−0.44 − 0.42tþ 3.9u − 1.83wÞ − 0.40w − 3.3uwþ 9.2u2w

þ 4.45w2 − 7.4uw2 − 1.w3 þ tð0.94 − 4.32u − 2.68u2 − 3.12w

þ 10.1uwÞ þ sð1.86þ 1.96t2 − 1.914uþ tð0.25 − 2.48uÞ − 7.0wþ 4.58uwþ 5.36w2Þ ðE1Þ

and

ψ5q
Δ ≈ 1.78 − 2.80s3 þ 7.49t3 − 6.54uþ 3.33u2 þ s2ð3.50 − 1.09tþ 0.91u − 4.73wÞ − 8.25wþ 20.1uw

− 1.71u2wþ 11.5w2 − 19.2uw2 − 2.57w3 þ t2ð−5.35þ 1.19wÞ þ tð−1.09þ 4.66u − 6.91u2 − 0.96wþ 1.44uwÞ
þ sð0.05 − 0.20tþ 0.40t2 − 0.21uþ 2.61wþ 0.35uw − 1.08w2Þ: ðE2Þ
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